
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print. colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

NOTE TO USERS

This reproduction is the best copy available.

1+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions et Acquisitions and
Bibliographic Services services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Librruy of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
pernusswn.

Your fils VOUB r61tiffiiiCB

Our file Notre rtift!Jr&r~aJ

L' auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L' auteur conserve Ia propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-62442-0

Canada

Ad-hoc Recovery in Workflow Systems:

Formal Model and a Prototype System

by

Xuemin Xing

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science

:Vlemorial University of Newfoundland

Newfoundland, Canada

February, 1999

© Copyright 1999

by

Xuemin Xing

Dedication

To my par·ents

for their encouragement and support

throughout the course of my education.

Abstract

A workflow management system (WFMS) facilitates business processing (work

flow) across distributed nodes. State-of-the-art vVF:viSs do not have adequate sup

port for the dynamic changes during the workflow execution. This thesis focuses on

one of the dynamic problems, ad-hoc recovery. It is a phenomenon that occurs in

workflow applications when an agent needs to alter the control flow prescribed in the

original definition. Specifically, we are interested in the backward ad-hoc recoveries,

in which the control flO\v is redirected backward. When this happens, some tasks will

be re-executed and consistency problems may arise. In our proposed ad-hoc recovery

model, the key components of the ad-hoc recovery are defined and some constraints

are given to ensure the correctness of the workflow execution. We also present a

WF"MS prototype, describing its design strategy and implementation method, as well

as a related protocol, as one application of this model. The protocol is exemplified

by a hospital workflow. Some performance issues are also discussed.

lV

Acknowledgments

This research could never have been accomplished without the constant support ,

encouragement and suggestions from my professor, Dr. Jian Tang. His prudent

manner and innumerable criticisms pushed the work to a better and better quality.

I would also like to acknowledge the comments, advice, and assistances from Dr.

Gregory Kealey in the school of graduate studies, Dr. Paul Gillard, ~Is. Elaine

Boone, Dr. ~anrique ~'vlata-~ontero, :\•Ir. Nolan White, and ~r. Steven Johnstone,

etc. in the Department of Computer Science during my studies and research. I thank

all my friends in St. John's whose presence made life as a graduate student much

more palatable. Finally I offer a deep and a sincere appreciation to my parents for

their support throughout all these years.

v

Table of Contents

Abstract IV

Acknowledgments v

1 Introduction 1

1.1 Workflow management concepts 1

1.2 Research issues 2

1.3 \llotivation . . . 4

1.4 Thesis structure . 5

2 Relevant work 6

2.1 Advanced transaction models 7

2.1.1 Sagas 7

2.1.2 Flexible Transaction \llodel 8

2.1.3 Con Tract \!lode! 9

2.2 Transactional vVorkflows 10

2.2.1 Flow:\-Iark 10

2.2.2 Action Workflow 11

Vl

2.2.3 1vf ET EOR2 workflow model . 12

2.2.4 C-Units 13

2.2.5 INCAs . 13

3 A generic workflow model 15

3.1 Basic components . . . 15

3.2 Definition graph (DG) 17

3.3 Normal execution ... 20

4 Ad-hoc recovery model 23

4.1 Two types of ad-hoc recoveries . 23

4.2 Backward ad-hoc recovery . . .

4.2.1 Repetition of task instances and run 26

4.2.2 Redirected execution 28

4.2.3 Redirect-to (RDT) and redirect-from (RDF) sets 36

4.2.4 Execution graph (EG) 42

4.2.5 RDF and RDT in terms of EG in backward recovery . 44

5 A WFMS protot:ype supporting backward ad-hoc recovery 50

5.1 Design and runtime representation 51

5.2 Outline of a client-server architecture supporting ad-hoc recovery 59

5.3 Components 63

5.3.1 Graphical workflow designer 63

5.3.2 vVorkfiow server . 65

5.3.3 Task manager . . 68

vii

5.3.4 Database server

5.4 Back\vard ad-hoc recovery protocol

6 Implementation and an exrunple

6.1 .Java features for enterprise computing

6.1.1 Java DataBase Connectivity (JDBCT'"')

6.1.2 Remote :Yiethod Invocation (RYLfT'"')

6.2 Some implementation details

6.3 Ad-hoc recovery in a hospital workflow

6.4 Discussion about availability and scalability

7 Conclusions and future work

Bibliography

viii

70

70

74

74

75

76

78

79

83

90

93

List of Figures

3.1 An example DG 18

3.2 Example for 8FT-dependency 21

4.1 Order processing workflow . . 24

4.2 Well defined sequence of backward redirected executions 30

4.3 Orders in well defined sequence of backward redirected executions 31

4.4 Proof of Theorem 4.2 34

4.5 Example of non-minimal< RDT', RDF > 41

4.6 An example EG 43

4.7 Constraints on RDT and RDF in terms of EG 49

5.1 Structures of transactional tasks ...

5.2 Structures of non-transactional tasks

5.3 A client-server architecture supporting ad-hoc recovery

5.4 Types of client-server computing . .

u.u The infrastructure of the prototype

5.6 The snapshot of the Graphical Workflow Designer

5.7 Transition of a work item between lists

ix

52

53

60

61

62

64

68

5.8 Task manager GUI 69

6.1 Flow chart of donelnAH () 78

6.2 Flow chart of donePostAH () 79

6.3 The initial Nurse Task Manager window 81

6.4 Processing work item Tom in the Nurse Task Manager window . 82

6.5 Processing work i tern Tom in the Doctor Task Manager window 83

6.6 External ad-hoc request and choose restart-from tasks . 84

6.7 The decision 85

6.8 Undo Doctor task . 85

6.9 Undo Nurse task 86

6.10 Redo Nurse task 87

6.11 Redo Doctor task 87

6.12 Build time data 88

6.13 Run time data . 89

X

Chapter 1

Introduction

To be competitive, organizations are increasingly relying on enterprise-wide in

tegration of information using advanced technologies. Among this trend, workflow

management has emerged as a practical technique to automate business processes. It

has attracted attention from both industry and research communities in numerous ap

plication domains such as telecommunications, manufacturing, finance and banking,

health care, and office automation [35, 12, 27, 6, 1, 5]. 11any companies in these fields

have shown interest in adopting this technology for conducting their daily business.

1.1 Workflow management concepts

The interest in workflow had originated from office automation, image processing etc.

in early 1980's. However, at that time, there was only very limited resource sharing

and the coordination was mainly done manually. This limited the productivity of

the business processes. The solution lies on the effective and efficient coordination

among various segments that constitute a business process.

1.2 Research issues 2

According to vVorkflow Management Coalition [16], the workflow is "the automa

tion of a business process, in whole or part, during which documents, information

or tasks are passed from one participant to another for action, according to a set

of procedural rules." According to this definition, a workflow is an abstraction of a

business process. Simply put, a workflow is a collection of tasks. A task defines some

work to be done. The execution of a workflow must fulfill a well defined business goal

through the cooperation of all the constituting tasks. This cooperation is achieved

through the coordinated execution of the tasks. Such a coordination is provided by

a set of software tools called workflow management systems (vVF:YIS).

The workflow life cycle can be divided into a build-time phase and a run-time

phase. Build-time phase mainly concerns the modeling and specification of the busi

ness process, while the run-time phase concerns its enactment. These functions are

provided by WF:\1Ss.

1.2 Research issues

The work carried out in the past is mainly concerned with process modeling and

design, inter-task dependency and scheduling, and workflow management system

design [34, 33, 8, 29, 30, 32, 3, 24]. However, while growing in popularity, many

problems still remain, such as the lack of a clear theoretical basis, limited support

for heterogeneous and distributed computing infrastructures, lack of inter-operability

and dynamic features, and lack of reliability in the presence of failures and excep

tions (38, 36, 12, 20, 31, 18, 13, 14, 19]. For example, the scalability, heterogeneous and

1.2 Research issues 3

distributed computing infrastructure, and recovery schema were studied in [36, 32, 7] .

In [19] the authors summarized some of the most glaring limitations of existing work

flow systems.

1. Existing systems are almost totally incompatible. These incompatibilities are

not just the syntax or the platform, but the very interpretation of workflow

e..xecution. In most cases, the system is so tied to the underlying support system

that it is not feasible to extend its functionality to accommodate other workflow

interpretations.

2. Systems are too dependent on the modeling paradigm (Petri-nets, state charts,

transactional dependencies, to name a few) and there is no clear understanding

of the execution model of workflow processes.

3. The architectural limitations(single database, poor communication support ,

lack of foresight in the design, the problems posed by heterogeneous designs)

have prevented existing systems from being able to cope with a fraction of the

expected load.

4. Lack of robustness and very limited availa bility. Current products have a single

point of failure (the database) and no mechanism for backup or efficient re

covery. ::VIoreover, since workflow systems will operate in large distributed and

heterogeneous environments, there will be a variety of components involved in

the execution of a process. Any of these components can fail and, nowadays,

there is not much that can be done about it. Existing systems lack the redun

dancy and flexibility necessary to replace failed components without having to

1.3 1\tiotivation 4

interrupt the functioning of the system.

1.3 Motivation

Our research is mainly concerned \"ith the dynamic features of workflmv systems.

We notice that most of the workflow products are based on the pre-defined structure.

Pre-defining a business process can simplify the design and the implementation. But

it lacks flexibility in that the execution must follow the workflow definition strictly.

It cannot go back or skip forward. However, due to the frequent occurrence of ad

hoc events, the execution orders do need to be changed at run time. These ad-hoc

events may result from the changing environments, unexpected intermediate results,

or personal favors, etc. For example, the sudden cancellation of a flight, strike in the

post-office, or changing an order, are all ad-hoc events that cannot be predicted in

advance. Therefore, it is impossible to use a pre-defined exception handler to deal

with the ad-hoc events.

Our solution to this problem is to combine the pre-defined structure with a change

able control flow. Since there is no clear basis about the workflow execution, we

formalize a workflow execution model to depict both normal executions and ad-hoc

recoveries in a workflow. This model does not include the dynamic changes made to

the workflow definition. Thus it can handle only a specific kind of dynamic changes.

Another motivation is end-user involvement. During the evolution of the informa

tion systems, more and more attention is paid to end-users since they are the essence

of creativity and productivity. In our model, the end-users are given more rights to

1.4 Thesis structure 5

take part in the control than in other workflow products.

1.4 Thesis structure

The rest of the thesis will be organized in the following way. Chapter 2 contains a

review of the relevant work. Chapter 3 introduces a generic workflow model. Chap-

ter 4 discusses the issues related to the changeable control flow and formalizes the

backward ad-hoc recovery model. Chapter 5 discusses the design of a prototype sys-

tern 1• Chapter 6 mentions some implementation features with an example hospital

workflow. Section 7 gives conclusions and some future work.

1 A preliminary version of the proposed client-server architecture is presented at the International
Database Engineering and Applications Symposium (IDEAS 99).

Chapter 2

Relevant work

The concept of ad-hoc recovery is related with dynamic workfiows, exception

handling and recovery in workflow management systems, and cooperative information

systems. It crosses the boundaries of these fields and grows into a specific topic. The

ad-hoc recovery model makes use of the pre-defined workflow structure, and allows

dynamic redirections of the control flow at run time. It can be called an exception

handling mechanism but the exceptions it handles are those ad-hoc events that cannot

be predicted in advance. It provides the users more ways to cooperate in order to

fulfill the business goal.

To build the context for discussion, a brief overview of the related area will be

given in this chapter. We start from the advanced transaction models which rela..x the

ACID properties of the traditional transaction model. Then several typical workflow

prototypes/products will be introduced to compare with our approach.

2.1 Advanced transaction models 7

2.1 Advanced transaction models

Advanced transaction models (ATMs) extend the basic transaction models to incorpo

rate more complex transaction structures and relax the traditional ACID p1operties.

The complex transaction structures in advanced transaction models include nested

and multi-level transactions; The relaxation of ACID properties refers to a controlled

rela.."'Cation of the isolation and atomicity to better match the requirements of various

database applications. Correctness criteria other than global serializability have also

been proposed.

However, many of these extensions have resulted in application- specific ATYfs

that offer adequate correctness guarantees in a particular application, but not in

others. Furthermore, an AT}..{ may impose restrictions that are unacceptable in one

application, yet required by another. If no existing AT11 satisfies the requirements

of an application, a new AT}..{ is defined to do so.

2.1.1 Sagas

A saga [23] is a long-lived transaction that consists of a set of relatively independent

subtransactions Tt,T?., .. . ,T"n each of which has a compensating subtransaction CL ,

C2 , ... ,Cn· To execute a Saga, the system must guarantee that either the sequence

TL,T2, .. . ,Tn (successful) or the sequence TL ,T2, ... ,Ti,Ci, ···,C2,Ct (undo partial execu

tion) for some l:=;i <n.

Sagas preserve the atomicity and durability properties of traditional transactions

but rela..x the isolation property by allowing a saga to reveal its partial results to other

2.1 Advanced transaction models 8

transactions before it is compiete. It is useful only in limited environment because of

its consistency problem and the requirement of compensatable transactions.

The concept of compensating task is first proposed in Saga. It is used in our ad-hoc

recovery model too but it is not required that every task must have a compensating

task. 11oreover, undoing the partial execution sequence in ad-hoc recovery does not

necessarily follow the reverse order of tasks as described in compensating a saga.

Instead, it is possible that a task is not compensated during the undo phase but is

compensated during the redo phase.

2.1.2 Flexible Transaction Model

Flexible transaction model [2] was designed to allow more flexibility in transaction

processing. A flexible transaction is a set of tasks. For each task, the user can specify

a set of functionally equivalent subtransactions, each of which when completed will

accomplish the task. The execution of a flexible transaction succeeds if all of its tasks

are accomplished. A flexible transaction is resilient to failures in the sense that it

may proceed and commit even if some of its subtransactions fail.

The flexible transaction model also allows the specification of dependencies on the

subtransactions, including failure- dependencies, success-dependencies, and external

dependencies. Flexible transactions use compensation and relax global atomicity

requirements by allowing the transaction designer to specify acceptable states for ter

mination of the flexible transaction, in which some subtransactions may be aborted.

Because flexible transactions share some of the features of a workflow model, it was

perhaps the first AT:\-1 to have been tried to prototype workflow applications [28] .

2.1 Advanced transaction models 9

Through the use of compensating subtransactions, the flexible transaction model

allows the user to control the isolation granularity of a transaction. However, all

the failures are handled before one task is accomplished. It is not possible for the

task to roll back after it is committed. That is different from our approach in which

committed tasks can be rolled back too.

2.1.3 ConTract Model

A ConTract [4] is a consistent and fault tolerant execution of an arbitrary sequence

of predefined actions (called steps) according to an explicitly specified control flow

description (called script). The main emphasis of the ConTract model is that the

execution of a ConTract must be forward-recoverable. This means that when an

execution of a ConTract is interrupted by failures, it must be re-instantiated and

continued from where it was interrupted after the system is recovered. To be able

to do so, all state information, including database state, program variables of each

step, and the global state of the ConTract, must be made recoverable. These state

information form the conte:Lt in a ConTract. ConTracts provide relaxed atomicity

and relaxed access restrictions on shared objects.

Forward recovery of a ConTract is different from the forward ad-hoc recovery.

The former concerns how to continue the current task execution after a failure. The

latter concerns a forward jump from the current task to a follow up one without

affecting the semantics of the workflow.

2.2 Transactional vVorkflows 10

2.2 Transactional Workflows

The concept of transactional workflow clearly recognizes the relevance of transactions

to workflows. A transactional workflow is characterized by selective use of transac

tional properties for individual tasks or an entire workflow.

Two major approaches have been used to study and define transactional work

flows. The first one is an embedded approach that assumes that the existing entities

support some active data management features. This approach is frequently used in

dedicated systems developed to support a particular class of workfiows and usually

involves modification of the e.-xecuting entities. The second one is a layered approach

that implements workflow control facilities on top of uniform application-level inter

faces to execution entities. The degree to which each model incorporates transactional

features varies, and depends largely on the requirements (such as flexibility, atomicity

and isolation of individual task executions and multiple workflow instances, etc.) of

the organizational processes it tries to model.

2.2.1 FlowMark

FlowMark is a product from IBYf Corporation. It has been designed to manage

long duration business processes in large enterprises. FlowYfark runs across differ

ent platforms and supports distribution of most of its components. It is organized

into five components: FlowMark Server, Runtime Client, Program Execution Client,

Buildtime Client, and Database Server [21].

In [21], the authors analyzed the current architecture of Flow:Viark and proposed

2.2 Transactional Wor.kf:lows 11

extensions for better resiliency to failures. The previous architecture provides forward

recovery of business processes interrupted by system failures. One extension is to

deal with semantic failures. In particular, if a certain activity is unable to perform

the desired task, alternative completion paths should be provided to the business

processes. This may involve undoing part of the results of the path being executed

until a point of the execution is reached where an optional path can be taken. This

approach is part of IB:\1 Almaden Research Center's Exotica project, which aims at

incorporating advanced transaction management capabilities in IB:Y1's products and

prototypes.

Semantic failures defined in Flow :\tfark are those that occur when a particular

state of the system does not allow a certain task to be performed. For instance, to

try to deliver an item that is not in stock, or to try to withdraw money from an

empty bank account. In these cases, the business process cannot proceed as planned

and optional courses of action should be taken.

Flow:Ylark provides a way to group several tasks into a sphere of control which

can maintain the integrity of them. If a task in a sphere fails, all the others must be

compensated for or rolled back. It is a kind of pre-defined exception handler.

2.2.2 Action Workflow

The Action vVorkfiow from Action Technologies Inc. consists of products that rapidly

develop and deploy Web- and client/server-based work management solutions [9] . It

is a communication based model where a business processing is composed of workflow

loops. Each workflow loop has two participants, the customer and the performer. The

2.2 Transactional Workflows 12

workflow loop can be invoked multiple times until the customer is satisfied.

A workflow loop has four states, which represent the four phases of the interaction

between the customer and the performer: preparation, negotiation, perfonnance,

and acceptance. During the perfom1ance phase, secondary workfiow loops may be

invoked. In this case, the performer in the main workflow loop becomes the customer

in the secondary loop.

The purpose of the Action vVorkfiow is to satisfy the customer. However, there

are business processes where the customer emphasis may be superficial, e.g., if the

objectives are to minimize information system cost or reduce waste of material in

a process. Therefore, Action Workfiow is not appropriate for modeling business

processes with objectives other than customer satisfaction.

2.2.3 MET EOR2 workflow model

The lvf ET EO R2 workflow project at the Large Scale Distributed Information Sys

tems Lab., University of Georgia is a continuation of the METEOR (32] effort at

Bellcore. The 1\1 ET EO R2 vVF:MS is being designed and developed to support coor

dination of automated and user tasks in the real world heteorgeneous, autonomous,

distributed (HAD) environment.

It supports modeling of a hierarchical workflow process (with compound tasks) ,

behavioral aspects of heterogeneous human-performed and application/system tasks

(what can be observed, what can be controlled for a task execution by a given

processing entity) , inter-task dependencies (with control and data flow) , specifica

tion of interfaces (involved in supporting legacy applications, client/server processing

2.2 Transactional V\lorktiows 13

and distributed processing), run-time environment and task assignments to various

system components, error handling and recovery requirements: etc [10].

1\tf ET EO R2 is based on the pre-defined workflow structure and the scheduJing

information is embedded in the individual tasks. A recovery model is incorporated

into the lv!ETEOR2 workflow structure at different levels. However, Jv!ETEOR2 is

not a dynamic \.YF:\tfS. In order to be dynamic, primary enhancement is needed in

the areas of modeling collaboration and specification of dependencies or interactions

among tasks that support coordination and collaboration [10].

2.2.4 C-Units

One of the projects in which transactional semantics have been applied_ to a group of

steps defines a logical construct called a Consistency unit (C-unit) [25]. A C-unit is a

collection of workflow steps and enforced dependencies between them. It is similar to

the sphere of control in FlowYfark, but a C-unit can dissolve itself if it is committed

or aborted.

2.2.5 INCAs

The INformation CArrier (INCA) [11] workflow model was proposed as a basis for

developing dynamic workflows in distributed environments where the processing enti

ties are relatively autonomous in nature. In this model, the INCA is an object that is

associated with each workflow and encapsulates workflow data, history and process

ing rules. The transactional semantics of INCA procedures (or steps) are limited by

the transaction support guaranteed by the underlying processing entity. The INCA

2.2 Transactional Worktlows 14

itself is neither atomic nor isolated in the traditional sense of the terms. However,

trnasactional and extended transactional concepts such as redo of steps, compensat

ing steps and contingency steps have been included in the INCA rules to account for

failures and fonvard recovery.

INCA rules give recovery strategy for each processing entity in the workflow.

But because the processing entities are autonomous, one cannot invoke another for

recovery. In our model, a scope of tasks can be found for recovery at run-t ime and

they are recovered in a logical order.

Chapter 3

A generic workflow model

In this chapter, we present a generic workflow model and describe in reasonable

detail the related components that are vital to the theme of this thesis. The model is

based on the one given by vVfMC [16] and the basic concepts have been used in most

of the literatures in this area. This model describes the normal workflow execution

and will be used as the basis to formalize the ad-hoc recovery model in the subsequent

chapter.

3.1 Basic components

A workflow is a set of tasks. A task represents the smallest unit of work in a work

flo\\'. It may be manual or a computer program. The internal structure of a task is

transparent to the workflow level. (This makes it possible to implement tasks flexi

bly.) However, we do require that some states of a task to be externally observable.

These states include, for example~ not executing, executing, commit, abort, done,

fail, succeed. (The exact set of externally observable states depends on workflow

3.1 Basic components 16

applications.) Tasks can run at different geographical locations and be executed by

heterogeneous processing units. (However, the issue of how to handle the heterogene-

ity is not the concern of this thesis.) In general cases, at any time there exists only

one execution for a specific task at its processing unit . Otherwise, if multiple copies

are executed concurrently, it would be confusing which output should be adopted.

In the general case, the workflow is in a certain state when the task starts execu-

tion, and may change to a different state after the execution terminates. Thus any

task execution can be viewed as a mapping from a particular workflow state to the

other. Since sites may preserve local autonomy, we assume a task execution can be

affected only by the states local to the site where the task is executed.2 Thus in the

following we are concerned only with local states.

In normal cases, tasks are executed in a well defined order and subject to the

satisfaction of certain conditions. This determines the control dependency among

tasks at run time. Besides control dependency, there are also data dependency. A data

dependency specifies a data flow among task executions. (There may also exist other

types of dependencies , such as temporal dependency. But we will not consider them in

this thesis because they are largely orthogonal to the topics discussed in this thesis.)

These dependencies are sometimes aggregately called inter-task dependencies. An

inter-task dependency is part of the application semantics and it is the responsibility

of the workflow designer to specify the inter-task dependencies properly.

Tasks are invoked by agents3 . An agent can be either a human agent or a com-

2 However, a task execution can change the local states at other sites. T his may happen, for
example, when the output of a task is passed to a different site.

3 In terms of the terminology by WfMC, these correspond to client application only.

3.2 Definition graph (DG) 17

puter program. A.n agent may be identified within the workflow definition or (more

nonnally) identified by reference to a role, which can then be filled by one or more

real agents at the run time.

3.2 Definition graph (DG)

It is natural to depict the tasks and their dependencies using a graph. Tasks can

be represented by vertices, and their orders by arcs. Each arc is associated with a

condition. This kind of graph is termed a definition graph in our ad-hoc recovery

model.

Definition 3.1 (Definition Graph) A definition graph is a weighted directed graph
DG in which each vertex 7i represents a task and each arc

is a constraint such that:

1. IfTi is an and-joint task, it can be activated only after the condition c associated
with each of its incoming arc is satisfied.

2. IfTi is an or-joint task, it can be activated when the condition c associated with
one of its incoming arcs is satisfied.

A vertex is a minimal vertex of the DC if there is no incoming arc to it. It is

a maximal vertex if there is no outgoing arc from it. If two of the conditions of the

or-joint vertex both are true, we assume the task will be invoked twice, according to

each of the conditions, respectively. Task Ti is said to be Tj's ancestor (or Tj is 7i's

descendent) if there is a path from 7i to 'Ij in the DC. A definition graph describes

the structure of a workflow, namely, its constituent tasks, their execution orders and

the conditions under which these orders actually happen.

3.2 DeB.nition graph (DG) 18

Figure 3.1 is a typical DG. After T4 finishes, T5 is activated immediately. Whether

T7 can be activated or not depends on the truth value of c3. After T.s finishes, either

T6 or T2 (but not both) ·will be activated depending on cl. T10 ·will be activated when

Ta and T9 terminate successfully and both c2 and c4 are satisfied.

Figure 3.1: An example DC

Note that DC provides only a schema for the workflow execution, but is not the

execution itself. For example, in Figure 3.1 both T2 and Tf, depend on T5. Suppose

after the workflow is started, tasks T 1, • • • ,T5 are executed successfully in that order.

After T5 is finished, condition cl is false. Then the next task to be invoked is T2 .

(Note: this is the second invocation of T2 .) This is followed by T3 , T 17 and T5 again.

Suppose after T5 terminates for the second time, c1 becomes true. Thus T5 is invoked.

As can be seen from this scenario, in order to describe this execution, we must be able

to model the execution of a task. To this end, we use the notation of task instance.

The task instances are generated according to the schema given in the \vorkflow

definition (i.e. DC). When the activation condition becomes true, the task will

be executed, and therefore a task instance is generated. Note that, invocations of

the or-joint task from different arcs are looked on as different task instances. As

mentioned before, the generation of the task instance is associated with a local state.

3.2 Definition graph (DC) 19

In this thesis, we treat a local state as an entity which has two attributes, signature

and content. A signature uniquely determines a local state. The content of a local

state is a mapping P ---7 Q, where Pis the set of all workflow relevant data items at

that site, and Q is the set of all possible values for these data items. For any local

state, we use function () to map its signature to its content. For example, P={ city,

province}, Q={Toronto, Ottawa, Vancouver, ON, BC}. :Yiapping {city=Toronto,

province=ON} is the content of a local state. vVe mark this state with signature s.

Thus 8(s)={ city=Toronto, province=ON}

As mentioned before, at any time there exists only one execution for a specific

task. Thus each task instance is unique at any time. So is its local state. In other

words, the local state in which the task is invoked to generate it is determined. vVe

observe that the signature of the local state which identifies it is unique at any time,

too. However, before the task is invoked there usually exists some choices of the

local states for the task invocation. This is partly because of the existence of the

human factor. The user can choose from a range of input values. To characterize

such a multiple choices of local states, we introduce the notion of legal set. The legal

set for a task instance is an entity which contains all the valid local states in which

the task could be invoked prior to the start of that task instance. (In some sense,

this is similar to the concept of set of consistent database states in the traditional

transaction model. A transaction can start from any state in that set.)

Any task instance must be distinguishable from the others even if multiple task

instances can be instantiated from the same task. This is because from the viewpoint

of the workflow schema, the presence of every task instance has a unique occasion.

3.3 Normal execution 20

Put differently, every task instance plays a unique role in the workflow execution.

For example, even if a task is executed more than once due to the loop in DG, the

multiple task instances invoked are logically different. Since each task instance is

associated with a legal set, we use legal sets to identify task instances. As a result,

the legal sets from which task instances are generated must be distinguishable. For

this purpose, like local states, each legal set is also associated with two attributes,

signature and content. A signature uniquely determines a legal set. The content of a

legal set is the set of contents of all its member local states. For a convenient abuse

of symbols, for any legal set we also use (} to map its signature to its content. Let L

be a legal set, and S be its signature. Thus we have (}(S)={ (}(s) I s is the signature

of l where l E L.}. Note that, legal sets may overlap in their contents.

3.3 Normal execution

The legal sets and local states are essential in modeling the normal execution of a

workflow.

Definition 3.2 (Normal execution) A normal execution of a workflow is a di
rected acyclic graph NE where V(NE)~{ <S,s, T>IS is the signature of a legal set L
associated with an instance of T, s is the signature of a local state l where lE L, and
TE V(DG)}, such that

1. 'r/tt,t2E V(NE)(tt #t2==} tt.S=f=t2.S & tt .s=f=t2.s),

2. (<S,s, T>~<S',s ', T'>)EE(NE) ===r-{T~ T ')EE(DG).

A triple in the above definition models a task instance in that normal execution.

The edge in NE denotes the execution order of task instances. In triple <S, s , T> , s

is the signature of the local state from which the task instance of T is generated. S

3.3 Normal execution 21

is the signature of the legal set for this task instance. The local state is a member of

the legal set, modeling the fact that this local state from which the task instance gets

started is only one of the possibly many choices present in the legal set. Sis unique for

each member in V(N E) . Since the normal execution is consistent with the workflow

schema, E(N E) must have an order consistent with E(DG). In the following, \Ve

refer to the vertices without incoming arcs in N E as the minimal vertices of N E,

and use the function I'vfin(N E) to get the set of minimal vertices of N E. Similarly,

we use function .lvfax(NE) to get the set of maximal vertices of NE.

For easy presentation, we use the term Start-Follow- Termination {SFT) depen-

dency to refer to the relation in the above definition.

Definition 3.3 (SFT-order (-<sFT)) In a normal execution NE, <S2,s2,T2> is
SFT-dependent on <St,St,T1>, or denoted as <St,s1,Tt >-<sFr<S2,s2 ,T2>, if (<St,St,Tt>
-+<S2,s2,T2>)EE{NE).

Figure 3.2: Example for 8FT-dependency

SFT-dependency expresses the 'immediate follow up' relations between two task

instances. For example, consider the workflow shown in Figure 3.2. In this figure, the

DC contains four tasks. Suppose the execution order of the tasks is T1 --+ T?, --+ T4 --+

T3. For simplicity, we use Tii to represent the j -th instance of task Ti- (Note that,

Tii is associated with a unique triple in the previous definition of normal execution.)

Therefore, theN E is Tu --+ T21 --+ T4 1 --+ T31 • According to our definition, T3t does

not SFT -depend on T.n.

3.3 Normal execution 22

The notion of SFT -dependency is more restrictive than that of task dependency

described in DG. An arc in DC may or may not imply a 8FT-dependency. In the

following we use phrase SFT* -dependency to refer to the closure of 8FT-dependency.

That is, task instance A SFT*-depends on B if A=B or if A transitively SFT-depends

on B. Refer to the above example, T3t is SFT*-dependent on T21•

Chapter 4

Ad-hoc recovery model

Ad-hoc recovery is a phenomenon that occurs in workflow applications when an

agent needs to alter the control flow prescribed in the original definition. \IVhen ad

hoc recovery occurs, the normal workflow execution is interrupted. After the ad-hoc

recovery, it assumes the normal execution from a different state.

Ad-hoc recovery is usually caused by unpredictable reasons, such as une.xpected

output of some individual tasks, events or exceptions due to the changing environ

ment, etc. Because of its irregularity in nature, ad-hoc recovery in general cannot be

dealt with by using pre-defined exception handler in a traditional way.

4.1 Two types of ad-hoc recoveries

There are two kinds of ad-hoc recoveries, backward and forward. The former occurs

when it is necessary to stop the execution of certain tasks and restart some previous

tasks, and the latter occurs at a point when some follow up tasks should be skipped.

In order to understand these, let us look at an order processing workflow depicted in

4.1 Two types of ad-boc recoveries 24

Figure 4.1.

R~-dircc:t from ta.'ik

Rcdirccl to task

Rcdirccl from and rcdiro:cl to task

Figure 4.1: Order processing workflow

In this workflow, based on the weekly-sales-report and the historical data gener-

ated by find-history, sales-analysis is performed to evaluate the market perspective

(i .e., how many merchandise will be sold in the next month). Task inventory-report

determines the volumes of the merchandise in stock. Based on the outcome of sales-

analysis and inventory-report, make-decision determines whether a new order should

be placed. If the decision is 'yes ', choose-supplier and arrange-storage will be per-

formed in parallel. After the supplier has been chosen, the following three tasks,

choose-shipping-company, prepare-payment-to-supplier and prepare-order are invoked.

The successful execution of prepare-payment-to-supplier and prepare-order \viii lead

to the invocation of send-to-s1Lpplier which delivers the order and the payment (or

4.2 Backward ad-hoc recovery 25

some kind of letter of credit) to the supplier. Then the payment is made to the

shipping company which will do the shipment.

Suppose during (or after) the e.xecution of send-to-supplier, some events occur

that renders it being necessary to increase the quantities of the merchandise on the

previous order. The ordering department therefore decides to do the ordering again ~

or modify the previous order, whichever is more feasible. As a result, prepare-order

is effectively re-executed. In this case, the control flow is said to be redirected back.

This is a typical characteristic of the backward recovery.

The example of a forward recovery may be like this. Suppose there is a power

failure in a city due to a snowstorm and candles are in urgent need. If there are not

enough candles in stock, a department store may want to place an order immediately.

Therefore, it would be desirable that the sales-analysis and its previous tasks be

skipped and only the inventory-report be executed to make a decision. One way to

realize the skip is to assemble the output of the sales-analysis manually by the user,

say 1000 candles are demanded by the market. In this way, the semantic of the

workflow is not compromised.

Our efforts are mainly on the formalization of the backward ad-hoc recovery

model. The counterpart for the forward recovery remains as future work.

4.2 Backward ad-hoc recovery

The purpose of the backward ad-hoc recovery model is to solve the inconsistencies

arising due to there-execution of some tasks. Consider the order processing v:orkflow,

4.2 Backward ad-boc recovery 26

if the prepare-order is re-executed successfully: and there is no control over the send-

to-supplier task, two orders will be sent to the supplier. This is not the intention of

the redirection. On the contrary, the users want to roll back the send-to-supplier task

and cancel the previous order. To summarize, during the backward recovery: some

active tasks cannot proceed and some finished tasks may need to be rolled back.

4.2.1 Repetition of task instances and run

As described before: backward recovery involves the repetition of task instances.

However, the repetition of a task instance in the context of ad-hoc recovery has

different meaning from that caused by the loop in the workflow definition. In the ad-

hoc recovery the repetition of the task instance is logically the same task instance as

the previous one even if they are two different executions physically. To understand

this, let us look at the order processing workflow again.

Clearly, the re-execution of prepare-order essentially plays the same role as the

previous execution intended to do. Put differently, these two executions serve the

same purpose from the viewpoint of the workflow schema, but only the more recent

one counts. vVe say one is the peer of the other. Formally, we have

Definition 4.1 (Peer) Let NE be a normal execution. < S, s', T > zs a peer of
< S, s, T > if< S, s, T >E V(NE) and s' =/= s.

Note that from the definition, peer is symmetric. The fact that peers share the

same signature of a legal set indicates that they are logically the same task instance.

On the other hand, since s' =!= s they are different physical executions. However, we

may or may not have O(s') = O(s) . If the equality holds, these physical executions

generate the identical results, otherwise they do not .

4.2 Backward ad-hoc recovery 21

In the definition of normal execution given in the previous chapter: a triple is

referred to as a task instance, even though this triple actually identifies a physical

execution. That is: T is invoked under state S: where fJ(s) E fJ(S). It is fine in that

context where we did not distinguish a task instance \vith its physical execution, since

there is only one physical execution associated with each task instance in a normal

execution. vVith the introduction of peer, hmvever, this is no longer the case. Now

a task instance may be associated with multiple physical executions which produce

different results. For example, suppose< S, s', T >is a peer of< S: s, T >. These two

(physical) executions may produce different results since we may have fJ(s') # fJ(s).

On the other hand, from the viewpoint of the workflow schema, they are associated

with the same task instance since both triples share the same signature S of the legal

set. Thus there is a need to distinguish a task instance with its physical execution.

To this end, we refer to a triple < S, s, T > as a run associated \vith task instance

< S, T >. Furthermore, a task instance is uniquely represented by a run (normally

the most recent run, referring to the discussion below).

Note that the concept of the run and that of the task instance described above by

virtue model the physical and logical executions, respectively. (This is very similar

to the concept of data item and its replicas in a replicated database.) vVith the

introduction of run, the meaning of SFT -dependency defined in chapter 3 should

be re-explained. The definition then was said to express the 'immediate follow up'

relations between two task instances in a given normal execution. However, since

the triples represent runs instead of task instances now, we would refer to 8FT

dependency on runs. It expresses the ' immediate follow up' relations between two

4.2 Backward ad-hoc recovery 28

runs in the workflow execution involving possibly multiple normal executions. With

a given normal execution, the original expression still makes sense because every task

instance has only one run associated with it. 'Without a specific normal execution,

only the new expression is correct. This is because a run is unique in the workflow

execution, and there is only one normal execution corresponding to it.

4.2.2 Redirected execution

Having defined the concept of peer, we are now at a position to formalize a key

concept in backward ad-hoc recovery, backward redirected execution.

Definition 4.2 (Backward redirected execution) A backward redirected execu
tion is a pair (<E>, NE0) or {<NEo, .. . ,NEn- L>, NEn} where n?.l, VeEMin{V{N En}),
there is an f EV{NEi) for some i, O~i~n-1, such that f is a peer of e. For all
0 < i < n, N Ei is said to be generated by the ith redirection.

In fact, a redirected execution is still a normal execution. But since it is gener-

ated by redirections, we give it a new name in the backward recovery model. vVe

assume that the Oth redirection can be viewed as the start of the workflow execution.

Thus N E0 denotes the very first normal execution after the workflow starts. Any

other normal executions must start from re-executions of some task executions. This

simulates the fact that they are caused by exceptions that redirect the control flow

back to some task instances that were already finished.

Note that this definition implies that redirected executions take place in sequence.

This is often the case in reality since the exceptions that interrupt the normal control

flow often come in sequence. Even thought the exceptions may occur concurrently,

we can still handle them one at a time. Thus the idea of sequential executions is

4.2 Backward ad-hoc recovery 29

justified. On the other hand, in real applications, a normal execution generated as

a result of a redirection is related in some way to those before the redirection. This

relation is described by the following

Definition 4.3 (Well defined sequence of redirected executions) Su=Ro, ... ,Rn.
is a well defined sequence of redirected executions, where Ro=(<E>, N E0), Rr. =(<N E0 ,

... ,NEi-t>, NEi) for l~i~n, if V(e2 -t et) E E(NEi) where 0 ~ i < n, and
e~ E V(N Ei) where e~ is a peer of e 1 and 0 < j < i, the following conditions are
met:

1. if e'1 E V(NEj)-Min(V(NEi)J, then there exists {e~-+eUEE(NEiJ where e~ is
a peer of e2;

2. if e'1 Efvfin(V(N Ei)), there exists a e~ E V(N Ek) where e~ is a peer of e2 and
0 ~ k < j;

A well defined sequence of redirected executions requires that the 8FT-dependencies

be consistent before and after a redirection if they involve peers. The two conditions

describe the two cases where the consistency must be preserved. These two cases are

exemplified in Figure 4.2.

In Figure 4.2, if e1 in N Ei has a peer e~ in N Ei , and e'1 is not a minimal vertex

in N Ej, its SFT-parent e2 should also have a peer in N Ei . If e'1 is a minimal vertex

in N Ei, there exists a peer e~ of e2 in N Ek ·

Note that although the above definition implies a total order on redirected execu-

tions, we do not require the individual task executions in these redirected executions

also to follow the same order, since this cannot always be guaranteed in real applica-

tions. Consider the scenario depicted in Figure 4.3.

In Figure 4.3, it is possible that run c is executed after run d' even though it

belongs to an earlier normal execution. However, we observe that orders do exist on

certain runs in a well defined sequence of redirected executions. Still consider Figure

4.3. d' is executed after d and e.

4.2 Backward ad-hoc recovery 30

Constraint 1

Ck=k<j<i

Constrdint 2

Figure 4.2: Well defined sequence of backward redirected ex:ecutions

To establish a similar order in general case, we first introduce the concept of

general descendent.

Definition 4.4 (General descendent) In a well defined sequence of redirected ex
ecutions Ro, ... Rn,

1. \;/ e1,e2E V{NEi), 0~ i < n, e2 is a general descendent of e1 if e2 SFT"-depends
on e1.

2. For any two elements e1 and e3, e3 is a general descendent of e1 if there exist
e2 and e;, such that e2 E V(NEi), e;E V(NEj), e; is a peer of e2, O~i<j~n, e2
is a general descendent ofe1 , and e3 is a SFT* -descendent ofe;.

4.2 Backward ad-b.oc recovery 31

Figure 4.3: Orders in well defined sequence of backward redirected executions

If e2 is e1 's general descendent, e 1 is e2 's general ancestor. In Figure 4.3~ d' is the

general descendent of a and d. e' is the general descendent of a, d and e.

Among all the general descendents of certain run e 1, there are some which have

no general descendents and have not been affected by redirections. These runs are

currently active or terminated and they are the far-most runs to which the effects of

e1 may have been propagated. They are called the least general descendents of e1 in

our model.

Definition 4.5 (Least general descendent) In a well defined sequence of redi
rected executions Su , e2 is e1 's least general descendent if it is e1 's general descendent
and there does not exist e3 which is e2 's general descendent in Su.

vVhen a redirection occurs that interrupts a normal execution, some current task

executions will not be followed by their normal 8FT-descendents, but rather by the

repetitions of some previous task executions. The orders induced by the redirection

are termed RD-orders.

Definition 4.6 (RD-order) In a well defined sequence of redirected executions PLO, .. . ,
Rn, 'Ve 1EMin(V{NEi)) where 05: i <5: n, ife~ is a peer ofe1, e'1EV(NEj), e2 is a
general descendent of e'11 e2 E V{NEk) where 0$ j $ k<i, then e 1 RD-follows e2 ,

denoted as e2-<noe1.

For example, in Figure 4.3, d'-<nod and d'-<no e. The definition requires that

when the execution of a task is repeated as a result of redirection, all the general

4.2 Backward ad-hoc recovery 32

descendents of the previous execution of that task must have been terminated. This

makes sense since once a task is re-executed, all its follow up tasks may be re-executed

too. To avoid the inconsistencies, their previous executions must be terminated and

rolled back.

Now we have two kinds of orders, the SFT-order and RD-order. Both of them

indicate the execution orders in reality. They together can be termed computational

order in our model.

Definition 4. 7 (Computational order (-<c)) In a well defined sequence of redi
rectedexecutionsRo, ... , Rn, e1ENEi ande2ENEi , O~i,j~n. e1-<ce2 ifeitheret-<sFTe2
or e1 -<noe2.

The transitive closure of the computational order produces paths that correspond

to the task executions in a time path in the real \vorld. \iVe want to prove that this

transitive closure is a partial order.

Theorem 4.1 The transitive closure of -<c, -<: is a partial order.

Proof: In order to prove -<: is a partial order, we prove it is non-reflexive,

antisymmetric and transitive. Since it is the transitive closure of -<c, the transitivity

is ensured.

1. Antisymmetric

Suppose a E V(NEi), bE V(NEi), i::; j, and a-<:b. There exists a sequence

definition of -<c, we have i ::; k 1 ::; • • • < kn ::; j . Therefore, i < j. Suppose there

also exists b-<: a. Then we have j < i. That is to say, i = j, or the two sequences

exist in one normal execution N Ei. That is, there existences a loop between a and

4.2 Backward ad-hoc recovery 33

b. This contradicts the property that a normal execution is an acyclic graph. Thus

-<t is antisymmetric.

2. Non-reflexive

Suppose a-<t a. If a-<ca, it is symmetric, contradiction. If a -f..c a, there exists

a sequence a-<c· · · b-<c· ··a, b "# a. Therefore, we have two sequences a-<c·- · -<cb

and b-<c· · · -<ca. From the definition of -<t, we have both a-<tb and b-<ta. This

contradicts with the antisymmetric property. Therefore, -<t is non-reflexive. -<t is

thus a partial order. 0

Theorem 4.2 For any two elements et E V(N Ei) and e2 E V(N Ei) where OS:i<j,

if e2 is a peer of et, et-<te2-

Proof:

vVe assume one of the paths including e2 in N Ei is denoted as an ~ · · · ---+ at

where n ~ 1, at = e2 and an E lvfin(V(NEi)), where n is a constant. vVe want to

prove the following claim by induction on k where k ~ 1:

If there exists a path bk ~ · · · ---+ bt where bk E Jvfin(V(NEi)), then for any

peer b't of bt where b't E V(NEu) and 0 '5:. u < j , there exists a peer b~ of bk where

b~ E V(N Ed) and 0 < d '5:. u such that b't is a general descendent of b~.

Basis: k = 1.

bt E Jv!in(V(NEj)). For any peer b~ of bt where b~ E V(NEu) and 0 < u < j,

there exists a peer b't of bt where b't E V(N Ed) and d = u such that b't is a general

descendent of b~ .

Inductive step: Suppose the claim is true for k. We want to prove it is also

true for k + 1. Now there is a path bk+t ~ bk ~ · · · ~ bt in N Ej, and bk+t E

4.2 Backward ad-hoc recovery

.
I

~E;~

- SFT·dcpcndcncy

-- -> RD·ordcr

Figure 4.4: Proof of Theorem 4.2

34

1Hin(V(NEi)). The following is to be proved: for any peer b'1 of b1 where l/1 E

V(NEu) and 0 < u < j, there is a peer b~+L of bk+ 1 and b~+L E V(NEd) for some

0 ::; d ::; u, such that b'1 is a general descendent of b~+t·

vVe consider the following two cases.

Case 1) b'1 E F(NEu)- J\t!in(V(NEu))

According to the definition of well defined sequence of redirected executions, there

must exist a peer b~ of b2 in N Eu, such that (b~ -t b'1) E E(N Eu)·

For path bk+L -t · · · -t b2 in N Ei, b~ is a peer of b2 where b~ E V(N Eu)· By the

inductive hypothesis, there exists a peer b~+t of bk+t in some NEd where 0::; d < u,

such that b~ is a general descendent of b~+t· This means there exist c and its peer

c' where c is a general descendent of b~+L and b~ is an SFT* -descendent of d. Since

(b~ ~ b'1) E E(N Eu), b'1 is also an SFT*-descendent of c'. Thus, b'1 is a general

descendent of b~+ 1 .

Case 2) b'1 E !v!in(V(NEu))

According to the definition of well defined sequence of redirected executions, there

exists a peer b'[of b'1 in NEx where 0 < x < u. If b~ E lHin(V(NEx)), b'{ has a peer

b'(', and so on. Every time when a new minimal peer is found, the normal execution

4.2 Backward ad-hoc recovery 35

containing it has its subscript be decreased by at least one. Eventually, we should

be able to find in some NEd where 0 :::; d < u, the peer of b'1 , denoted as B: belongs

to F(NEd) - ivfin(V(NEd)). Otherwise, we would have B E lvfin(V(NE0)): a

contradiction to condition 2 of well defined sequence of redirected executions.

Using the similar argument to that in case 1), B is a general descendent of b~+ 1•

Since B is a peer of b'1 , and b'1 is an SFT* -descendent of itself, b'1 is also a general

descendent of b~+t·

vVe have proved the claim is true for any k > 1. Thus for any peer Ct of e2(e2 =at)

where e1 E V(NEi) and 0:::; i < j, there exists a peer a~ of an where a~ E V(NEd)

and 0 :::; d :::; i, such that e 1 is a general descendent of a~.

From the definition of RD-order, we have e1 -<no an. This order together with

the SFT*-order from an to e2 form a sequence of computational orders from e1 to e2 .

Hence e1 -<; e2 • 0

Run e2 is said to be the more recent run compared with e1•

For easy presentation, we use a triply indexed notation Tiik to denote a run

(triple). Tiik represents the k-th run of task instance Tii- The mapping from triples

to this notation has the following property. Suppose <S,s',T> is the next peer of

<S,s:T>. If <S,s,T> is denoted as Tiik: <S,s',T> is 7ii(k+L)· In general, Tiikt and

7iik2 (kt < k2) serve the same purpose from the viewpoint of the workflow schema,

but only Tijk2 counts. 7iik2 is a more recent run compared with Tiikt. Refer to the

order processing example, the two executions of prepare-order are different runs of

the same task instance. However, as far as the workflow schema is concerned only

the second order is valid.

4.2 Backward ad-hoc recovery 36

4.2.3 Redirect-to (RDT) and redirect-from (RDF) sets

As can be seen from the previous example, when backward ad-hoc recovery occurs, the

control flow is redirected back. But the backward redirected executions introduced in

our model is too general to describe ad-hoc recoveries. From its definition, any normal

execution beginning \vith a set of peers, or the first runs of the task instances, is called

a backward redirected execution. There are no other conditions in this definition. vVe

further add a constraint on the SFT -dependencies in redirected executions if peers

are involved. Thus the well defined sequence of redirected executions are generated

to model the preservation of the 8FT-dependencies during recovery in reality. This

constraint is still not strong enough to characterize the ad-hoc recovery in the aspect

of maintaining the correctness of the workflow execution. This aspect cannot be

reflected only by the well defined sequence of redirected executions. Some other

constraints on the runs before and after the redirections are needed. These constraints

will be discussed in this section.

:Ylany runs are affected during an ad-hoc recovery. Their executions are inter-

rupted and rolled back. The range of affected runs can be given by two sets, the

set of the runs the control is redirected to and that it is redirected from . vVe call

them RDT (ReDirect-To) set and RDF (ReDirect-From) set (hencefore called RDT

and RDF for simplicity). All the minimal vertexes in the redirected execution form

RDT. It is a set of peers. Formally, RDT can be defined a.s follows.

Definition 4.8 (RDT) For a redirected execution R = (< NEo, ···NEi-L>, N Ei) ,
RDT = Min(V(NEi)) .

RDF is a set containing the most recent runs before the redirection. It can be

defined as:

4.2 Backward ad-hoc recovery 37

Definition 4.9 (RD F) For a redirected execution R = (< N E0 , • • • N Ei-t >, N Ei),
RDF ~ U~:,~kfax(V(NEi))

The re-execution starts from runs in RDT, and continues according to the paths

consistent with the SFT*-dependencies. The redirected execution containing RDF

occurs before that containing RDT in a well defined sequence of redirected executions.

For example, consider the ad-hoc recovery in the order processing workflow mentioned

before. The redirection is from the most recent run of send-to-supplier to a new run

of prepare-order. RDT is the set containing only the peer of prepare-order, and RDF

is the set containing only the most recent run of send-to-supplier. For simplicity,

in the remaining part of this example we directly use task instances to describe the

memberships of RDT and RDF, with the understanding that the runs are involved

implicitly. We would like to point out that RDT and RDF should not overlap. The

reason is that a run cannot be both redirected to and redirected from.

The concept of RDT and RDF is important since it is de facto of the soundness of

the semantics of ad-hoc recovery. An ill-defined concept not only makes the semantics

awkward, but also directly affects the efficiency of the implementation. Consider

again the above ad-hoc recovery scenario, but this time we assume that after the

shipping company has been chosen but before the payment is made, some events

occur that renders it being necessary to choose a new one. The question we would

like to ask is what should be the RDT and the corresponding RD F. If RDT remains

the same, i.e . {prepare-order}, then we should not include also choose-shipping-

company to the corresponding RDF, even if presumably the shipping company must

be reselected. This is because the re/ execution of prepare-order has no effect on

selecting a new shipping company intended by such an inclusion. On the other hand,

4.2 Backward ad-hoc recovery 38

if RDF remains the same, i.e. {send-to-supplier} then including choose-shipping

company to RDT would be erroneous since one of its SFT* -descendents, itself, is the

current run which is affected by the ad-hoc recovery. Therefore the choose-shipping

company should be included in RDF.

There are six constraints on RDF and RDT in the backward recovery. They can

be characterized into four categories as follows.

• Intra-group independency

1. For any two elements Tiik and Tuvw in RDT, Tij(k-L) is not a general descen

dent of Tuv(w- L) and vice versa.

2. For any two elements Tiik and Tuvw in RD F, Tijk is not a general descendent

of T'uvw and vice versa.

The rationale for condition 1 is that if for example, Tii(k- L) is a general de

scendent of Tuv(w- t) then after the redirection, Tij may have two runs. One is

indicated by run Tijk· The other results from T'uv(w- L) and the execution path

from Tuv to Tii. This is not allowed since any task instance can be represented

only by one run after each redirection.

For condition 2, if Tiik is a general descendent of T'uvw (or vice versa), the

semantic is confusing because restarting the descendent task instance but not

its ancestors means all its ancestor's effects are deemed acceptable. However,

the effect of T'uvw, which is the general ancestor of Tiik, is not acceptable because

it appears in the RDF.

• Inter-group dependency

4.2 Backward ad-hoc recovery 39

3. For each element Tiik in RD F, there is an element T"uvw in RDT such that

Iiik is a least general descendent of Ttw(w- 1).

4. For each element T!ww in RDT, there is an element Tiik in RDF such that

Tr.ik is a least general descendent of T'uv(w- L).

These two constraints require that any element in RDT (RDF) are related to

certain element(s) in RDF (RDT). If there is a Tiik in RDF none of whose

general ancestor's peer is in RDT, the recovery will not create a new run of

Tr.i which updates Tijk's effect. Thus Tiik should not be included in RDF.

Nevertheless, such question may be asked what if task 'L. is invoked by another

ancestor in DG. Remember in our generic workflow model, we assume if a task

is an or-joint, invocations from different ancestors are deemed as different task

instances. Thus our reasoning is justified.

The same reason works for RDT. For any element T"uuw in RDT, if none of its

previous run's general descendents is in RDF, then re-executing Tuvw will not

affect RDF.

• Least general descendents closure

In case e 1 is re-executed, its least general descendents should all be stopped

to maintain the consistencies. Otherwise, re-executing e1 may result in dupli

cate runs of certain general descendent and it is not known which execution

represents the task instance. Therefore, we have the following constraint.

5. For each element Tuuw in RDT, all of Tuv(w- 1) 's least general descendents

are in RDF.

4.2 Backward ad-hoc recovery 40

The next constraint will use two new concepts, family and closed family. Given

set Rand set S of runs, let set Rt~R, and set 5 1 ~S.

Definition 4.10 (Family) <R1 ,S1> is a family within domain< R ,S> if

1. VsES1, 3rERt(s is r's least general descendent);

2. VrER1, 3sES1 (s is r 's least general descendent);

Definition 4.11 (Closed family) <Rt, S1> is called a closed family within do
main < R,S> if

1. <R1,S 1> is a family within domain <R,S>;

2. all the least general descendents, within S, of every element in R 1 are in S1 •

3. all the general ancestors, within R, of every element in 5 1 are in R 1 •

Theorem 4.3 If< R 1 , 5 1 > is a family within domain< R 1 , S 1 >, it is also a closed

family within the same domain.

The reason of this theorem is that condition 2 and 3 are satisfied automatically

because of R = R 1 and S =St.

• Minimality

Given RDT, let RDT'={Tij(k-L) IVTijkERDT}.

6. <RDT',RDF> in backward recovery is a minimal closed family within

domain <RDT' ,RD F>.

This constraint is intended to preclude the situation depicted in Figure 4.5. In

this figure, a subset of RDT' and a subset of RDF form a closed family. A c RDT',

B C RDF, < A, B > is a closed family within domain < RDT', RDF >. In this

4.2 Backward ad-hoc recovery 41

R!JT" RDF

Figure 4.5: Example of non-minimal < RDT', RDF >

case, < A, B > corresponds to an ad-hoc recovery and < RDT'- A, RDF- B >

corresponds to another recovery. They do not interfere with each other.

:~Iinimality' requires that an ad-hoc recovery involve only 'related' task execu

tions. That is, RDF should contain only the related runs. So is RDT. ~ore

specifically, in RDF (RDT'), all the elements should be related to each other, di

rectly or indirectly, by means of the transitive closure of computational orders via

some elements in RDT' (RDF). In this sense, <RDT',RDF> is minimal. To get

some concrete idea about this property, let us look at the scenario described at the

end of the last section again.

Suppose, when the assumed event occurs choose-shipping-company has been fin

ished. But before the payment is made, a strike occurs in the selected shipping

company. Thus the control flow should be redirected not only from send-to-supplier

to prepare-order, but also from choose-shipping-company to itself. It may seem that

RDF must contain both send-to-supplier and choose-shipping-company, and RDT'

contains both prepare-order and choose-shipping-company. \Ve observe, however, that

prepare-order has no effect on selecting a new shipping company, since the latter does

not SFT* -depends on the previous run of the former in the normal execution. Like

wise, choose-shipping-company has no effect on send-to-supplier, due to the similar

reason. Vve say that the two elements in RD F are not related to each other by

4.2 Backward ad-hoc recovery 42

means of SFT* -dependency via any element in RDT'. The same can be said to the

two elements in RDT'. The point here is that the RDT and RDF defined above do

not satisfy the minimality of< RDT', RDF > within domain< RDT': RDF >.

4.2.4 Execution graph (EG)

vVe can simplify the above concepts and constraints using a graph. It is termed the

execution graph (EG) in our model.

Definition 4.12 (Execution graph} An execution graph is a directed acyclic graph
each of whose vertexes is a run and each arc is either a consistent arc or a backward
inconsistent arc.

Definition 4.13 (Consistent arc) Consistent arc Tiik -tTuvw indicates Tiik -<sFT
T~vw. A path is called a consistent path if it contains only consistent arcs.

A redirected execution is a subgraph of EG containing only consistent arcs and

associated vertexes. A consistent arc represents the normal invocation of a task. Sim-

ilarly we would like to define a backward inconsistent arc to represent the abnormal

invocation of a task, or a redirection. vVe note that the redirections have already

introduced the RD-orders into the model. The RD-order between a least general de-

scendent and a new run of the ancestor can be used to represent a redirection. This

order is abstracted into a new concept, the direct RD-order (-<onv).

Definition 4.14 (DRD-order) In a well defined sequence of redirected executions
Su., 'ife1 EMin(V(N Ei)) where 0$. i $. n, if e'1 is the immediately preceeding run of
e1, e'1EV(NEiJ where 0::; j < i, e2 is a least general descendent ofe'1, e2EV(NEk)
where j $. k<i, then e1 DRD-follows e2, denoted as e2 -<onoe1.

Definition 4.15 (Backward inconsistent arc) 1ijk-7Tuvw is a backward incon
sistent arc if Tijk -< D RD Tuvw.

4.2 Backward ad-hoc recovery

,-·-------- ---··-··- ·· -··-··-··--·-··----------------------- ··-··-·-- ··-··-·· ---- -------~

8-B

I

! !'\EO
!
j

j

I 8--8--8
~------------- - - -- -·- --- -- - ---·· - -- - - - ~-.'7 ;-.:-·---~:: ~·- :.::. --- - - - - - - - ------- ----- ;

8-8- .. ·-~
8 - B - 8 :

'

'
: ___ _______ _____ ---- ·· -··-·· -·· ----------- ---- ---·-··-··------- · ·- --- --- -·- -·-·· - ---·· ----·-------·-·· -.!

Figure 4.6: An example EG

43

Figure 4.6 is an example EG whose DG is Figure 3.1. The solid lines represent

consistent arcs, for example, T111 -t T2 u; The dotted lines represent backward incon-

sistent arcs, for example, T 43 t · · · > T2t2· There are two normal executions in Figure

4.6, N E0 and N E 1 • T512 is a general descendent of T2u but not a least general

descendent of T211 because T:;.22 is a general descendent of 7512. The least general

descendents of T2u include T43t, Tsu , and TLO,L,t · T212 , which is the peer of T2u ,

directly RD-follows T431 and T811 , the two least general descendents of T ?.u .

Properties of EG

1. Each minimal vertex of EG is the first run of a starting task.

4.2 Backward ad-hoc recovery 44

2. Each maximal vertex of EG is either a run of a terminated task or an active

run of some task instance.

3. Each minimal vertex of a redirected execution is either a minimal vertex of EG

or the destination of a back\vard inconsistent arc.

4. Each maximal vertex of a redirected execution is either a max:imal vertex of

EG or the source of a backward inconsistent arc.

0. The source of a backward inconsistent arc is a maximal vertex of a redirected

execution. The destination of a backward inconsistent arc is a minimal vertex

of a redirected execution.

6. For any inconsistent arc Tiik-tTuuw, there is a Tuv(w-L) and Tiik is T~v(w- L) 's

least general descendent.

4.2.5 RDF and RDT in terms of EG in backward recovery

EG introduced above does not involve the six constraints on RDT and RDF. It

is the graphical representation of other concepts given in the model. EG makes

most of the contents in the model clear and straightforward. In this section, we will

incorporate the si.x: constraints on RDT and RDF into EG in a simplified format.

The new statements in terms of EG are easier to understand and more applicable.

First of all, let us explain what RDT and RD F are in terms of EG. As mentioned

before, backward inconsistent arcs represent redirections. The source/ destination of

an inconsistent arc is a member of RDF / RDT . During an ad-hoc recovery, there is

4.2 Backward ad-hoc recovery 45

a set of redirections which generates a group of inconsistent arcs. The vertexes of

this group of inconsistent arcs form RDF and RDT. In order to avoid the overlap

of RDT and RD F, the group of inconsistent arcs should not form any path whose

length is greater than 1. The counterpart of each previous constraint in EG is as

follows.

• Intra-group independency

1. For any two elements 1iik and T"uvw in RDT, Tii(k-1) is not a general descen

dent of T'uv(w- L) and vice versa.

2. For any two elements 1iik and Tuvw in RDF, Tiik is not a general descendent

of Tuvw and vice versa.

vVe observe that this constraint is satisfied automatically if two inconsistent arcs

have different destinations. Because both source vertexes are the least general

descendents of the same element, none of them is a general descendent of the

other.

• Inter-group dependency

3. For each element Tiik in RDF, there is an element T'uvw in RDT such that

Tiik is a general descendent of Tuv(w- t) ·

4. For each element T"uvw in RDT, there is an element 1iik in RDF such that

Tiik is a general descendent of Tuv(w- L)·

These two constraints are automatically satisfied in EG due to properties of

EG.

4.2 Backward ad-hoc recovery 46

• Least descendents closure

5. For each element Tuvw in RDT, all of T~v(w- l) 's least general descendents

are in RDF.

This constraint should be re-iterated in terms of EG as follows. If Tuvw is the

destination of an inconsistent arc, all ofT~v(w-l) 's least general descendents are

the sources of inconsistent arcs leading to Tuvw ·

• Minimality

Given RDT, let RDT'={Tij(k-t) I\/TijkERDT}.

6. <RDT',RDF> in backward recovery is a minimal closed family within

domain <RDT',RDF>.

Because the inter-group dependency constraint is met, < RDT', RDF > gener

ated by inconsistent arcs is a family within < RDT', RD F >. According to theorem

4.3, < RDT' , RDF > is a closed family within< RDT' , RDF >. To be minimal, it

should form a connected 4 subgraph of EG. Formally, we have the following theorem:

Theorem 4.4 Given a redirected execution R = (< N E 0 , • • • N Ei-t >, N Ei) and

RDT, RDF on R, assume the first five constraints are satisfied by RDT and RDF.

Let BEG be a subgraph of EG. Each destination vertex of arcs in BEG is in RDT,

and each source vertex of arcs in BEG is in RDF. < RDT', RDF > is a minimal

closed family within < RDT', RD F > if and only if BEG is connected.

"A direct graph is connected if there is no isolated part in it.

4.2 Backward ad-hoc recovery

Proof:

1. If:

47

Since RDT and RDF satisfy the inter-group dependency constraint,< RDT', RDF >

is a family within < RDT', RDF >. From theorem 4.3, it is also a closed family.

Next, we prove its minimality. That is, any proper subset of RDT' and any sub-

set of RD F cannot form a pair which is a closed family. The following three cases

cover all the possibilities that the pair can be formed by means of subsets. If we can

prove none of them is a closed family within < RDT', RDF > , the minimality of

< RDT', RD F > is ensured.

a) < A, RDF > \Vhere A c RDT'.

b) < RDT', B >where B c RDF.

c) < A., B > where A c RDT', B c RDF.

In case a) , at least one ancestor of some element in RDF is not included in A.

This missing ancestor is within RDT'. Thus <A, RDF > cannot be a closed family

within< RDT',RDF >.

Symmetrically, case b) can be proved. Compared with case a), there is at least

one lease general descendent missing in B for some element in RDT'.

In case c), since BEG is connected, there exists at least one element in A .. which

has least general descendent(s) in RDF - B and there exists at least one element in

B which has ancestor(s) in RDT'- A.. (Otherwise BEG is not connected.) If any of

them is true, <A., B > is not a closed family within < RDT', RDF >.

2. Only if:

We prove the following statement: If BEG is not connected, < RDT', RDF > is

4.2 Backward ad-hoc recovery 48

not a minimal closed family within < RDT', RD F >.

If BEG is not connected, it has isolated parts each of which is a connected

subgraph of BEG. Take one of such connected subgraphs G for consideration. Note

that, G is a bipartite graph. Suppose the source vertexes of G is set B and the

destination vertexes of G is set A. We have < A, B > where A c RDT and B c

RD F . Let .4' be the set of last runs of elements in A. A' c RDT'. This pair of

<A', B > can be proved to be a closed family within < RDT', RDF >.

'r/e' E A', there is an e E A, which is its next run. From the way backward incon

sistent arcs are created and the connectivity of G, e' has a least general descendent

in B. Similarly, 'r/e E B, there is an!' E A' , such that e is a least general descendent

off'. Therefore, <A', B > is a family within < RDT', RDF >.

Furthermore, 'r/ e' E A', all of its least general descendents within RD F are in

B because G is isolated from other subgraphs in BEG. 'r/e E B, all of its general

ancestors within RDT' are in A'. Hence < A', B > is a closed family within <

RDT',RDF >.

Since A' c RDT' and B c RDF, < RDT' , RDF > is not a minimal closed

family within < RDT', RDF >. 0

The six constraints on RDT and RDF in terms of EG facilitate the users to

determine whether a group of inconsistent arcs is the result of an ad-hoc recovery. For

example, the two inconsistent arcs in Figure 4. 7 do not belong to one ad-hoc recovery.

This can be detected immediately since they are not connected with each other. In

fact, the DC in Figure 4. 7 is the abbreviation of the order processing workflow. T t

is the choose-supplier task and the others follow Tt correspondingly. Each of the two

4.2 Backward ad-boc recovery 49

inconsistent arc represents the redirection of the two ad-hoc recoveries explained in

section 4.2.3 respectively.

DG

r-- --------------- -- -
1 I

I I
NED I I

I I

Tlll- T2ll ~--~~

: ~TSII--- T6ll (;;\ ----!
I /; 1

1
- I

~----~~~~~i;~~~~~~~~--~_! / T3Il:
I / I

' 1112- T612 I

NEI

' I

---~ redirection

- SIT-dcpcndcncy

Figure 4.7: Constraints on RDT and RDF in terms of EG

On the other hand, if the EG is used as a tool to keep track of the workflow

execution: it can help the users to choose the right set of tasks to be re-executed

during an ad-hoc recovery. In case the constraints are violated on the chosen RDT,

a controller should be able to find the right RDT and RD F for the recovery.

Chapter 5

A WFMS prototype supporting

backward ad-hoc recovery

The purpose of prototyping a workflow management system is two fold. First , it

stresses the redesign of the key components in the vVF:\18 in order to support ad

hoc recovery. Second, it demonstrates an application of the model with a hospital

workflow. A protocol is given to facilitate the cooperation among vVF\18 compo

nents during the ad-hoc recovery. The architecture of the prototype system is open,

extensible, and feasible.

Our efforts are mainly made in the following four directions. a) Extend the work

flow specification proposed by the WNC to provide ad-hoc properties for tasks; b)

Extend the functionalities of the workflow server for ad-hoc recovery; c) Define a stan

dard task manager user interface to provide ad-hoc recovery related operations; And

d) propose a backward ad-hoc recovery protocol. These contents will be discussed in

the following sections.

5.1 Design and runtime representation 51

5.1 Design and runtime representation

Table 5.1 and 5.2 are the snapshots of the workflow definition generated by the

Graphical vVorkflow Designer in the prototype. Table 5.3 is the worklist generated

at nm time. These three tables contain the key workflow control data. Table 5.4

is used for role management. Account of each agent is maintained in this table,

including the user name, password and role mapping. It should be generated by the

role management tool which is not in the scope of this prototype. The meaning of

each field in the tables and the relations among them are as follows.

Table 5.1: Task specification

w-id t-id narne type AH-property host join role input output X y

01 01 Start u 89

OJ 0!! R~guter .VT undoa.ble dat.•e register 131 91

01 03 ,\ 'ur:tc .VT undoahle lark nurs-e f!aq ! I! 93

01 0~ Doctor .VT undoa.blc eagle I doctor 2!i3 218

01 05 Payment T undoabte garfield or CQ.jlucr 383 94

01 01) Stop <65 96

Table 5.2: Inter-task dependencies specification
from-task to-task condition anchor-x anchor-y end-x end-y

0!01 0102 86 85 136 85

0102 0103 done t7J 86 220 86

0/03 010~ dono and {lag= 1 £31 101 305 203

0103 0105 done and {lc.g=O 256 86 3.a9 I 86

0104 0105 done 3~~ 206 ~01 108

0105 0106 c:ommit ~27 85 ~85 85

Task specification

5.1 Design and runtime representation 52

Table 5.3: Run time worklist

w-id wi-id I t-id ti-id name agent state status oper output I host get pickup

01 I 01 I 02 01 Tom '""~I Donr: prc- AH dm:r: 0 0 I
01 01 I O:J 01 Tom nurl Done pre-AH I I lark I I

01 02 OJ! 01 .Wiler: real Don~ prc-AH d.otue 0 0

01 OJ! 03 01 M•ke nurl prc-AH lark 0 0

0 1 01 0~ 01 Tom doc:: I A chvi!! ~reo·AH eag(r: 0 I

01 0 1 O:J 01 Tom nurl Done in-AH undo I I

01 01 03 01 Tom nurl Done po.st.AH rcdo I 1 I

01 01 0~ 01 Tom dacl Donr: in-AH
I

undo 1 I

0 1 01 0~ 01 Tom dod Do ne po.•t -AH rcdo I I

01 01 05 01 I Tcm pre-AH garfield 0 0

• Workflow identifier (w-id) identifies different workfl.ows.

• Task identifier (t-id) identifies different tasks in one \vorkflow. Two tasks in

a workflow have different t-id .

• Task type

L Transactional task (T)

Cn-pick:up

0---c<~o c~mi<
Initial Active 0 Abort

0

8---a--c<c-"
Pickup Init ial Act1vc 0 Abon

a) An automated transactional tas:..: b) A manual transactional tasl-.

Figure 5.1: Structures of transactional tasks

Transactional and the non-transactional tasks are the two smallest atomic

units of activity each of which forms one logical step \vithin a process.

5.1 Design and runtime representation 53

There are two kinds of transactional tasks: automated ones and manual

ones. An automated transactional task can be performed by the computer

directly. Its states are changed automatically from Initial to Active then

Commit or Abort. A manual transactional task has to be picked up be-

fore it is initiated. Structures of the two kinds of transactional tasks are

shown in Figure 5.l(a) and Figure 5.1(b). A typical transactional task is

a database update which satisfies the ACID properties. The recovery of a

transactional task is done by the system.

2. Non-transactional task (NT)

en -pickup

0 g_o-- 0 Do"'

"'""' '"''''' .~oF·"
a) An automated non-transactional task h) A manual non-ttans.actional task

Figure 5.2: Structures of non-transactional tasks

The only difference between the structure of this kind of tasks and that of

the manual transactional tasks is that the terminating states are changed

to Done and Fail respectively. The non-transactional task can either be an

automated one or a manual one. A typical example maybe a nurse checking

a patient's pulse and record the data in a .YIS Word file. It does not have

any transactional properties and hence requires some human assistance on

failure.

3. Start icon (Start)

5.1 Design and runtime representation 54

If there is an edge from the start icon to a task in the workflow map, that

task is a starting task of the workflow. Usually there is only one start

icon in the workflow map. \;vben a workflow instance is created, new task

instances of the workflow instance will be created for those starting tasks.

Start icon occupies a row in table 5.1. But only five fields are used, namely,

w-id, t-id, type, x and y.

4. Stop icon (Stop)

If there is an edge from the stop icon to a task in the workflow map, that

task is a terminating task. There maybe a condition associated with the

edge. The combination of all of these conditions forms the terminating

condition of the workflow. Like the Start icon, stop icon occupies a row in

table 5.1.

• AH-property

This property of a task relates to the actions that can be taken during the ad-

hoc recovery of a task. Its value can be one of the following: { undoable, comp

(compensatable)-for-redo, comp-for-undo, redoable, null}.

1. undoable 1: undesirable effects of the task can be eliminated as if the task

has never been executed.

2. comp-for-undo: undesirable effects can be eliminated semantically.

3. comp-for-redo: desirable effects can be generated semantically.

1 Cndo here means the elimination of the effects of a task. It captures a wider spectrum than the
meaning in the transaction processing.

5.1 Design and runtime representation

4. redoable: any task instance can be repeated.

v. null: none of the above.

55

The AH-property does not depend on the task type. That is to say, a trans

actional task and a non-transactional task can have the same value of AH

properties. If a task is comp-for-undo(redo) , a compensating task should be

specified. AH-properties are used to validate the decisions made by the agents

during the ad-hoc recovery.

• Host specifies where the task can be executed.

• The value of Join can be of {and, o;, null}. 'And' ('or') corresponds to the

and-joint(or-joint) in the generic workflow model. If the value is null, it implies

that the indegree of the task node is 1, or the task has only one precedent task.

This precedent task must be finished successfully in order to invoke it.

• Role

Role is a conceptual categorization of agents. It comes from the organizational

management in an enterprise. The use of role simplifies the control of the

accessibility rights to tasks. For example, suppose Jane and ~ary are both

nurses in a hospital, and role 'nurse' is allowed to perform a nurse task. Thus

Jane and ~ary both get the access rights to the nurse task. Another advantage

of using role is that work can be allocated to agents dynamically. If .Jane t akes

a leave for a few hours, some of her work items can be transfered to ~ary.

• Input and output hold data objects' names or identifiers. Input data objects

5.1 Design and runtime representation 56

Table 5 4 · Role
w-id uname passwd role

OJ reg/ r-eguter

01 l'lurJ nur3e

01 dod doctor

should be available before the task is invoked. Values of output data objects

should be set before the task terminates successfully.

• Symbol x and y are the coordinates of the top left corner of the task icon drawn

on the designer's canvas. These two fields together with the task type help to

redraw a task icon on canvas when the workflow definition is loaded into the

Graphical vVorkflow Designer.

Inter-task dependencies

The inter-task dependencies are stored in another table since it is a set of data

relatively independent of the task specification. Each row of Table 5.2 represents an

edge(inter-task dependency) between two tasks in the workflow map.

• From-task and to-task refer to the source and destination tasks of an edge.

Their values are the concatenation of the values of w-id and t-id. The modifi-

cation of w-id and t-id in Table 5.1 will change from-task and to-task in Table

5.2 automatically in the graphical workflow designer.

• The condition field is a logical expression associated with an edge.

• Anchor-x and anchor-y are the x-coordinate and the y-coordinate of the

5.1 Design and runtime representation 57

source task. End-x and end-y are the x-coordinate and the y-coordinate of

the destination task.

Run time data

vVhile Table 5.1 and 5.2 concern the workflow definition, Table 5.3 and 5.4 store

the workflow run time data. vVe extend the concept of worklist mentioned in \Vf\IIC

to refer to task instances in the prototype system. In fact , the worklist in vVfYIC is

only a subset of ours.

Worklist

• Workflow instance is represented by <w-id, wi-id> . The value of wi-id is

generated automatically when a new workflow instance is created.

• Task instance is represented by <t-id, ti-id>. Once a new instance of a task

is created, the value of ti-id is incremented.

Tuple <w-id, wi-id, t-id, ti-id> identifies a unique task instance in workflows.

• Name is the name of the task instance (work item). Users recognize a work

item from its name, which is translated into the actual identifier, <w-id, wi-id ,

t-id, ti-id> by the system.

• Agent is the login name taken when the agent logs onto the system. Each agent

is responsible for processing his/her chosen work items, during both normal

scheduling and ad-hoc recovery.

• State corresponds to the nodes in task structures (Figure 5.1 and 5.2) except

pickup and un-pickup. Its value can be taken from {Initial, Active, Done,

5.1 Design and runtime representation 58

Commit, Fail, Abort}. The pickup and un-pickup states are reflected by the

:pickup' field. (Refer to the Pickup part for more detaiL)

• Status can be pre-AH, in-AH, or post-AH. vVhen a work item is initialized for

the first time in a normal execution: its: status is pre-AH. During an ad-hoc

recovery: if the work item is being undone, its status is in-AH. After the undo

procedure, its status is post-AH.

• Output keeps a list of data objects generated by a task instance.

• Host specifies the computer where the task instance is executed. The host

must be one of those specified in the field :host' of the task specification table

(Table 5.1).

• Get is a flag indicating whether a work item has been fetched into the task

manager window or not. Once get = 1, the item will not be fetched again.

Therefore, this field helps to allocate work items among several agents of the

same role. After an item is done or committed, this field will keep the value

L vVhen an agent logs off, all his/her unpicked items will be returned to the

worklist for re-allocation by means of setting get = 0.

• Pickup is a flag indicating whether a work item has been picked up or not.

The pick up operation is only provided for the Todo list.

There are three types of work items in the worklist: pre-AH work items: in-AH

work items, and post-AH work items. Pre-AH work items can appear in the Todo

list and the Done list. In-AH work items can only appear in the Todo list. Post-AH

5.2 Outline of a client-server architecture supporting ad-hoc recovery 59

work items appear in the Redo list or Comp-for-redo list, depending on the ad-hoc

recovery decision. If the decision is <null, comp-for-redo>, the work items will be

put into the Comp-for-redo list. Othenvise it \vill be put into the Redo list.

Decision

Decision is a table storing the recovery decisions made by the agents. Each work

item involved in the ad-hoc recovery has an entry in the decision table. Agents are

responsible for undoing(redoing) work items that they picked up. The decision table

is shown in Table 5.5. The last field 'leaf' indicates whether an item is a least general

descendent or not.

Table 5 5· Decision
w-id wi-id t-id ti-id tname state in arne agent in-AH-oper post-A H-oper fl ag leaf

01 01 03 01 Nur .te Don~ Tom PIUr"/ undo N!do I 0

01 01 Oi 01 Doctof" Actu.·e Tom doe! undo n:do I I

5.2 Outline of a client-server architecture support-

ing ad-hoc recovery

Shmvn in Figure 5.3 is an architecture of the vVF:YIS which supports ad-hoc recovery.

It can be separated into build time and run time parts each of which conform to client-

server computing architecture. The build time part includes a Graphical vVorkflow

Designer (client) and the vVorkflow Server. The run time part is a nested client-

server architecture. The higher level is the Task ;\1anager(client)-Workflow Server.

5.2 Outline of a client-server architecture supporting ad-hoc recove.zy

Client

Run
Time

Build
Time

Work!low §§~~~~~~~§§~~t§~~~
Server i Graphical

i \Vork!low

Client

DB:I-!S Server

Figure 5.3: A client-server architecture supporting ad-hoc recovery

60

The lower level is the vVorkflow Server(client)-DB:YIS(server). The vVorkflow Server

provides services for Task :v!anager's requests. There are mainly two sets of services,

normal scheduling and the ad-hoc recovery, handled by the scheduler and the ad-hoc

recovery handler, respectively. Key components in the architecture will be introduced

in section 5.3.

Client-server is a software architecture in which one set of software components

(the clients) use messages to ask another set of software components (the servers) to

do things. The servers carry out the required actions and return their results to the

clients, again using messages. Both the clients and the servers send their messages

not using addresses, but instead using names. The clients, in particular, send their

requests to named services rather than to specific machines, relying on some form

5.2 Outline of a client-server architecture supporting ad-hoc recovery 61

of name resolution to determine the physical server to be used. A breakdown (see

Figure 5.4) was proposed by the Gartner Group to show the variety of ways in which

the workload can be divided between the client and the server [15].

Do ""'-d,... ...

Figure 5.4: Types of client-server computing

The build time architecture belongs to the remote data management type. The

DB~S server only deals with the data management, and the Graphical \V"orkflow

Designer (client) handles everything else. This includes the interface management and

the issues related with workflow definition. In the run time part , the two client-server

levels both belong to the distributed logic type. Besides the interface management,

the clients have some intelligence of the workflow enactment such as where to put

the '\vork items and how to invoke the real task, etc ..

The infrastructure of the prototype system is shown in Figure 5.5. Graphical

\Vorkflow Designer uses a graphic tool, Java AWT(Abstract Window Toolkit) , to

generate a workflow map. While the map is drawn, information about tasks and

inter-task dependencies are extracted into a database. The communication between

5.2 Outline of a client-server arcbitecture supporting ad-hoc recovery

Workflow server \Vork:flow server
Task: ~tanager GL 1

API [mplcmcnt.1tion

TcDo U"

l ~<l<cmO -

1--------+-----to--ll piciJo:m() -

1--------+---~~l ~:~~

~------J----1~•~cn~v~a<c~.
hem()

donelo:m() -

l faill<cm() -

commit
l !<em()

l abanlo:m() -

l donelnAII()

Involved T '"'"-' I J fuu!De> -
Done List Display _ I · J tic <() - -

DL<plav I ./ /\.. a:n n
[op:ExtlRcq}--- · v I
l d . .) lnccuion Di.<log k -r r:!::~J

op: ccuton j ·

l t (done
fr---±,--r-.------t---__,..ll Po"Ml()

I =R~=-,~ l i=Conl='j;,"'=dol-......---_j rs::l-_ -{ ncwL"IS() -
'-- Display l D~la~· I ~

\ / ---(login() -

=f---.,1 Login I

...

...

..

..

..

..
lmplcmc:n-

I>
tation ..

..
I>

...
I>

...

,_,
I

JDBC

interface

Exccu<c }
Query()

I r ExcCU[C }
l "pd;ne()

'----~
G~•phical WoriJlow De.i

h

t:_

Figure 5.5: The infrastructure of the prototype

AWT and the database is through .JDBCTM (Java Database Connectivity).

62

DB~!S

server

gncr

There may exist multiple Task ~anagers for one user task. They all have the

standard interfaces. The Task Manager interface contains four list displays each of

which is responsible to manipulate work items in different status and state. Items

move from list to list. Operations are grouped and attached to each list. These

operations once performed require services from the Workflow Server through Java

RMPM (Remote ~ethod Invocation). Task Manager is not the real task. It can either

5.3 Components 63

invoke an automated task or report to the workflow that a manual task is activated.

\Vorkflow Server provides services to task Managers by means of a set of APis

and their implementations. It is a registered object and bound to a unique name.

Task :\:fanagers locate Workflow Server from its name. If the Scheduler and Ad-hoc

Recovery Handler are separated into two registered objects, they have different names

and contain different A.Pis. Since Task :Yfanagers do not access the database directly

at run time, the data integrity is maintained by the Workflow Server.

DB:MS Server implements JDBC APis to provi de Java applications access to

databases. The .JDBC APis are provided by JDK(Java Development Toolkit). The

DB:Y1S Server we use is a commercial product which implements the JDBC APis.

5.3 Components

5.3.1 Graphical workflow designer

Figure 5.6 is the screen snapshot the the Graphical ·workflow Designer. It provides

basic drawing functions like creating, modifying, and deleting dra\ving objects. Cen

tral to the designer is a canvas. All the drawing objects are listed in the toolbar to

the left of the canvas. In our prototype, the toolbar includes start icon, stop icon,

transactional task icon, non-transactional task icon, and the arrow icon. By clicking

the left mouse buttons on an object in the toolbar and dragging it onto the canvas, a

task or an inter-task dependency will be created. Clicking the middle mouse button

on an object will delete it both from the screen and the database. vVhen clicking the

right mouse button on tasks or edges, two different kinds of windows will be popped

5.3 Components 64

Figure 5.6: The snapshot of the Graphical Workflow Designer

up as shown in Figure 5.6. The larger one corresponds to the modification of the

task attributes. The smaller one corresponds to the modification of an inter-task

dependency.

The workflow designer is capable of modeling the normal structures including

sequence, branch and loop. The workflow definition is stored into the workflow data

base during the design. When the 'open' operation is selected in the 'File' menu, the

map will be re-constructed and shown on the canvas. Advantages of using database

as the storage of the workflow definition are as follows.

1. Saving storage. Instead of saving the image of the map, graphical information

like the coordinates and task types are stored into a database. These occupy

5.3 Components 65

less space than an image file.

2. Standard access methods and easy manipulation. Database queries and updates

are standardized as SQL.

3. Information sharing. Several workflow definitions can coe.xist in one database.

4. Concurrent design. Transactional properties of the database management may

facilitate the concurrent design of the workflow definition.

5.3.2 Workflow server

Central to the server is a Scheduler which is responsible for scheduling tasks according

to the workflow definition. It monitors the progress of task instances and decides the

next tasks to run by examining the conditions attached to the relevant transitions.

The ad-hoc recovery related services include finding the affected tasks and agents

who are responsible for the task executions, checking the validity of the decisions,

undoing (redoing) work items, etc. :Most of the interactions between the Task :Ylan

ager and the Ad-hoc Recovery Handler are done by the Ad-hoc Recovery Stub. vVhen

the DB:Y1S is being rolled back, Ad-hoc Recovery Monitor keeps track of the progress

of the DB:\1S and reports to the Ad-hoc Recovery Handler when the rolling back is

finished.

The workflow server is the implementation of backward ad-hoc recovery model

described in Chapter 4. The scheduler schedules the tasks according to the workflow

definition in case there is no ad-hoc recovery request. This is exactly the normal

execution in the modeL On the other hand, if there is ad-hoc recovery request ,

5.3 Components 66

some tasks will be repeated by the server and the repetition is still governed by the

dependency described by the workflow definition. So the two conditions in Definition

4.3 are naturally met. This implies that the workflow instance in the presence of

ad-hoc recovery is a well defined sequence of redirected executions.

The concept of general descendency in the model is nothing more than the normal

SFT-descendency with the peers included. In our prototype, before any tasks are

repeated, all their general descendents must be terminated. This means the new peer

follows the general descendents of the old peer. This is actually the RD-order in the

modeL

In the architecture, there is a user interface to specify the tasks from which the

new execution starts. \Vhen the recovery stub gets this set of tasks, it searches for

all the least descendents along the execution paths to form a candidate RDF. It

then creates a characteristic graph for the set specified by the user and the candidate

RDF. By evaluating the connectivity of the characteristic graph, we can get a set

of minimum RDF, RDT pairs. This result can be returned to the user to assist

him/her in making a final decision on the pairs of RDF and RDT to initiate ad-hoc

recoveries. The current version of the prototype has not yet implemented the graph

algorithm.

The workflow server APis defined in this prototype are as follows.

public interface \\'FServer extends Remote {

public String 0 get Item (String task_id , String agent) throws java.rmi.RemoteException; 1 /Get new items from

the v;orklist, and put it in the corresponding lists for display.

public void pick Item (String name, String t_id, String agent) throws java.rmi.RemoteException; //Set pickup= 1

in the 'WOrklist, activated when user performs pick up operation.

public boolean validl.'nPick (String name, String t_id) throws java.rmi.RemoteException; //Check whether the

5.3 Components 67

'C"npick up operation is valid or not.

public void 'C"nPickltem (String name, String Ud) throws java.rmi.RemoteException; //Set pickup:;;O in the

worklist, unpick up a work item.

public void activate Item (String name, String t..id, String agent, String status) throws java.rmi.RemoteException;

I /Change the state to 'active' in the worklist, performed after the work item is picked up.

public void done Item (String name, String tJd , String output) thrcm-s java.rmi.RemoteException; //Change the

state of a normal work item to 'done' in the worklist, performed after user clicks done option.

public String doneinAH (String name, String tid, String output) throws java.rmi.RemoteException; I /Change

the state of an item whose status is 'in-AH' to 'done', and schedule the next work items to be undone.

public void donePostAH (String name, String Ud, String output) throws java.rmi.RemoteException; I /Change

the state of an item whose status is 'post-AfT' to 'done', and schedule the next task instances.

public String 0 findiD (String name, String Ud) throws java.rmi.RemoteException; I /Find the id tuple for a

specified item.

public String O fetchAttrs (String 0 itemjd, StringO attrs_v.-anted) throws java.rmi.RemoteException; //Fetch

the attributes wanted for an item whose id tuple is given by item..id, which is returned by findiD() .

public 'lroid failltem (String name, String tid) throws java.rmi.RemoteException ; //Change the state of a normal

work item to 'fail' in the worklist, indicating the corresponding task is unsuccessful.

public boolean login (String uname, String passwd, String taskid) throws java.rmi.RemoteException; //Validate

the login of an agent to a task, performed when an agent is trying to login.

public void newlnstance(String pname, String agent) throwsjava.rmi.RemoteException; I /Create a new v;orkflow

instance, including the first task instances (follcm·ed 'start').

public SerialObj findDescendent(String 0 taskSet , inc length, StringO ids) throws java.rmi.RemoteException;

I /Find the descendents of tasks in taskSet of 'IVOrktlow instance specified by ids.

public StringQ getALITask(String w..id) throws java.rmi.RemoteException; f /Get all the task names of workflow

'w jd' from the task specification table.

public void saveDecn(SerialObj seObj) thrmvs java.rmi.RemoteException; f /Sav-e the decisions of agents into

the decision table. The agents are specified in seObj.

public void quit(String tid, String agent) throws java.rmi.RemoteException; f f :\!ake all unpicked items avo..ilable

if an agent quits.

public void undo() throws java.rmi.RemoteException; //Start the undo phase of the ad-hoc recovery. t:ndo the

least general descendent tasks. Their ancestors which need to undo v.;ll be scheduled by doneinAH() and performed

by activateitem() .

}

5.3 Components 68

5.3.3 Task manager

Task manager is the synonym of the worklist handler. It is responsible for work-

list manipulations such as selecting a work item, reassigning a work item, notifying

completion of a work item, and invoking a tool or client application as part of the

work item [37]. The implication of the last function is that the task manager is the

wrapper of the real task. In our prototype, the functions of the task manager have

been extended to provide interface for the ad-hoc recoveries.

There are four list display in the Task 1'1anager GUI (Figure 5.8). They are Todo

list, Done list, Redo list, and Comp-for-redo list. The transition of one work item

between these lists is shown in Figure 5. 7.

Todo lisl

'
b'---

a. If undo or comp_for_undo is needed

b. Olherwisc

~ Norma!Lransition

· - -> Transition during ad -hoc recovery

Figure 5.7: Transition of a work item between lists

Each list provides a set of operation interface where the user can perform state

transition for each work item.

• Todo list

It holds the pre-AH work items and the in-AH items whose states are Unpickup,

5.3 Components 69

Figure 5.8: Task manager GUI

Pickup, Initial or Active. Operations provided for Todo list are: Pick Up,

UnPick Up, Activate, Done, Fail, Commit, Abort.

• Done list

It holds the pre-AH items whose states are 'done' or 'commit'. This is also

where ad-hoc recovery requests are submitted. Operations provided for done

list are: Query, Req Extl, Req IntA, Req IntN, Decision.

• Redo list

It holds the post-AH items which are to be redone. Operations provided for

redo list are: Query, Activate, Done, Fail, Commit, Abort.

• Comp-for-redo list

It holds the post-AH items which are to be compensated for redo. These items

are not undone. Operations provided for comp-for-redo list are: Query, Acti

vate, Done, Fail, Commit, Abort.

5.4 Backward ad-hoc recovezy protocol 70

5.3.4 Database server

The workflow schema, control data and the work items are stored in a relational

database, \1ini SQL2 database in this prototype. Imaginary JDBC driver is used to

access the mSQL database.

5.4 Backward ad-hoc recovery protocol

Three ad-hoc recovery protocols are proposed in (26} . They are external collaboration,

internal independent and internal automatic protocols. The differences among these

three protocols are the degree of machine involvement. External collaboration is the

most flexible one with least machine involvement. In internal automatic protocol,

after the workflow server receives the recovery request, it handles all the remaining

processing. A practical system should provide all these three protocols from which

the user can choose a preferred one in processing ad-hoc recovery requests. In this

prototype system, only external collaboration protocol is implemented.

Initiator

1. \1ake an ad-hoc recovery request, specifying the set of the tasks to start from,

then wait for response;

2. Upon receiving the response, consult all the agents whose ids are returned, and

collect their decisions;

3. ~lake a decision-handling request, specifying the decisions collected at step 2,

2 Mini SQL is a product from Hughes Technologies Inc.

5.4 Backward ad-hoc recovery protocol 71

and wait for the response;

4. If the response is decision-invalid then consult with other agents again, make a

new decision, and go to step 3, else if the response is recoveT'1J-impossible then

either go to step 1 or exit, else initiation is successful;

Agent

1. Pick up a work item w, assuming it is for task i;

2. If w.status = in-AH(post-AH, perform operation w.oper;

3. Else activate task i;

4. When the operation at 2 or 3 is finished, do w.state -t- done/commit;

Workflow Server

• ad-hoc recovery stub

1. If an ad-hoc recovery request is received then ;

a. lock the process instance;

b. search for the task instances that will be affected by the ad-hoc recov

ery, and the agents' ids in charge of these instances; The affected task

instances are those that are still active or have been done, which are

the descendents of the tasks in the recovery request.

c. return the agent's ids obtained at step b to the initiator;

2. If a handling-decision request is received then;

5.4 Backward ad-hoc recovery protocol 72

a. if the decision conflicts with the tasks' attributes, return decision

invalid, else if at least one decision is not-exist return recovery-impossible

and unlock the process instance, else;

i. store all the decisions in the decision-list in the database;

ii. create two entries in the worklist for every decision, an in-AH work

item and a post-AH work item.

iii. inform the DB~S to do backward scanning (undoing the repre

sentations of the task instances obtained at step l.b) ;

iv. activate ad-hoc recovery monitor;

v. return recovery-starts to the initiator;

• ad-hoc recovery monitor

1. Wait for the message from the DB:\118 (either Iii -undone or alLundone) ;

2. If the message is Jii_undone:

a. create in the worklist a work item w for task instance Iii;

b. w.status ~ in-AH;

c. w.oper ~ Jii.Dec.in_AH_oper;

d. go to step 1;

3. If the message is all-undone:

a. if there exists a work item in the worklist with status in-AH then wait

until the antecedent becomes false and go to the next step, otherwise

go to the next step;

5.4 Backward ad-boc recovery protocol

b. unlock the process instance;

• scheduler

1. Determine the next task Ti to run;

2. If there is an entry for Tii in the worklist then;

a . w.status f- post-AH;

b . w.oper f- ~i.Dec.post_.AH_oper;

3. Else;

a . create in the worklist a work item w for ~i;

b . w.status f- pre-AH;

73

In this protocol, the ad-hoc recovery stub must find the required information

about the affected task instances. Since the affected task instances are the ones on

the paths from the tasks in RDT' to the tasks in RDF, their ancestors are the tasks

in RDT'. In addition, they must either terminate or are ongoing. (A task instance

not started yet is never involved in ad-hoc recovery.) Since RDT' is supplied by

the initiator, the stub can retrieve the required information by issuing queries to the

DB:\18.

Chapter 6

Implementation and an example

The prototype is implemented in a pure Java environment. The Graphical Workflow

Designer, the 'Workflow Server, and the Task :\t[anagers all run on RedHat Linux

(Distribution 5.1 \Vith Linux kernel 2.0.34). The database server runs on V3.2 62

alpha. The JDK version used is 1.1.6 and the JDBC driver is mSQL-JDBC l.Ob3.

6.1 Java features for enterprise computing

In :\!lay 1996, .Java celebrated the inaugural JavaOne conference. The conference's

underlying theme was Java's transition from an applet language to a hard-core com

puting environment. Since that conference, that theme has been growing into a

reality: Java as a language for enterprise computing.

Enterprise computing traditionally refers to the mission-critical systems on which

a business depends. At the heart of Java's enterprise computing philosophy lie the

distributed computing and database access APis- R:.n and JDBC, respectively. Older

6.1 Java features for enterprise computing 75

languages require third-party APis to provide this kind of support. Java, on the other

hand, includes these features into the central .Java distribution that can be found on

every Java platform.

6.1.1 Java DataBase Connectivity (JDBC™)

JDBC allows developers to write applications that access relational databases with

out considering which particular database they are using. When they write a Java

database program, that same program will run against Oracle, Sybase, Ingres, rnSQL,

or any other database that supports this API [22]. The following is a piece of code

showing the JDBC connection from the vVorkftow Server.

public String 0 getltem(String my_taskjd, String agent) throws RemoteException {

String 0 display;

display= new String(SO];

try {

Class. for X arne("com.imaginary.sql.msql .:\fsql Driver");

String url = "jdbc:msql:/ jwww.cs.mun.ca: lll4/workflow_db" ;

Connection con = Driver:\fanager.getConnection(url, "xuemin", "");

Statement stmt = con.createStatement();

ResultSet rs =

stmt.executeQuery("SELECT wjd, wiJd, tjd, tUd, name, status, state, oper, pickup FRO:\f worklist

\VTIER.E tjd="' + my.taskjd+'" AXD (agent="' +agent+ '" OR agent=") AXD get = O");

while(rs.next()) {

String workflowjd = rs.getString("wjd");

String workflowjnsjd = rs.getString("wUd");

int pickup = rs.getTnt("pickup") ;

} catch(Exception e) {

System .out.println("error in msql: "+e.get:\fessage());

e.printStackTrace() ;

6.1 Java features for enterprise computing 76

}

return display;

}

In the above example, the vVorkfiow Server asks the JDBC Driverlvfanager to

hand it the proper database implementation based on a database URL. The database

URL looks similar to other Internet URLs. The actual content of the URL is loosely

specified as jdbc:subprotocol:subname. The subprotocol identifies which driver to use,

and the subname provides the driver with any required connection information. For

the imaginary JDBC implementation for mSQL that we used in the prototype, the

URL is jdbc:msql:/ jwww. cs. mun. ca: 1114/workfiow_db. In other words, this URL says

to use the mSQL JDBC driver to connect to the database workflow _db on the server

running at port 1114 on www.cs.mun.ca. After the connection is set up, the Java code

creates a statement object stmt and executes a query on the database. The query

result is returned and stored in a class called ResultSet. ResultSet class provides a set

of methods to extract the information from the query. For example, getString("w_id")

extracts field w_id of the first row of table worklist during the first iteration of the

loop ..

6.1.2 Remote Method Invocation (RMI™)

R\1! allows Java programs to call certain methods on a remote server. Remote server

implements a remote interface that specifies which of its methods can be invoked by

clients. Clients can invoke the methods of the remote server almost exactly as they

invoke local methods.

6.1 Java features for enterprise computing 77

Remote Procedural Calls (RPC) is an older technology Sun developed that does

much the same thing as R:VIL RPC is language- and processor-independent; R\-II is

processor-independent by nature, but limited to programs written in Java. RPC will

eventually be made available in .Java.

To get the cross-platform portability that Java provides, RPC requires a lot more

overhead than R..\11. RPC has to convert arguments between architectures, so that

each computer can use its native data types. Furthermore, RPC can only send

primitive data types, while R..\11 can send objects.

In short, R\'II is a good solution for communication between Java programs on

different hosts. However, if connection with programs written in other languages is

needed, it is better to investigate RPC, or look into CORBA [17]. A piece of code

containing R2\t!I in the prototype is as follows.

try {

WFServer "'.f.server:::: (\VFServer) ;\aming.lookup("rmi:/ fjay.cs.mun .caf\VFServerTmpl");

String D message = new String(50];

for (i=O; i<50; i++) message(i]::::'"';

message = '1'.-f.server.getTtem("03" ,parent .parent. parent.parent.u name);

} catch (Exception e I) {

System.out.println("Exception in getXewitem: " + el);

}

In this example, the client looks for the workflow server registered and bound to

WFServerlmpl on host jay. cs. mun. causing protocol rrni. Then it invokes the method

getltem() on the server side and captures the returned value in message.

6.2 Some implementation details 78

6.2 Some implementation details

In the ad-hoc recovery procedure, the two most important functions are doneinAH()

and donePostAH(). Function donelnAH() finds the next item(s) to be undone, while

donePostAH() finds the next item(s) to be invoked. They are ca;.led when the user

performs Done operation on the selected work items in the Task).;lanager GUI.

DoneinAH() is called for an item with tag <undo> in Todo list; DonePostAH()

is called for an item in Redo list or a Comp-for-redo list. Figure 6.1 and 6.2 are the

flow charts of doneinAH() and donePostAH().

set up connection to worlctlow _db

~
oper=post -AH operation

~
change state to "Done" for this item

!
make all its ancestors which need to be

undone :wailable

~
If an item in RDT is reached,

make its post-Al-l item available

~
close connection and return oper)

Figure 6.1: Flow chart of donelnAH()

When the decision is made, the \Vorkfiow Server looks for the involved tasks and

generates all the undo(redo) items in the worklist. However, only the least general

descendent tasks are made available to the user. They are elements in RDF. After

6.3 .4..d-hoc recovery in a hospital workflow 79

Scr up connecrion ro work.llow _db

'f

I Change sralc lo "Done" for rhis irem

close connL-clion otnd return

no

no

Figure 6.2: Flow chart of donePostAH()

the undo phase is finished, the items in RDT whose status are 'post-AH' become

available. These items are fetched to the Task .\!Ianager GUI during the getltem()

call.

6.3 Ad-hoc recovery in a hospital workflow

The example workflow has four tasks as depicted in Figure 5 .6. The Register task is

responsible for registering the patients' personal information and initiating a workflow

6.3 Ad-hoc recovery in a hospital workflow 80

instance. The Nurse task and the Doctor task perform examinations on the patients

and record the results into the patient database. The patients pay their examination

fees at the cashier's desk where the Payment task is executed.

Suppose there are two patients coming to the hospital, Tom and :Yiike. After they

are registered: two work items are created for Nurse task. The patients' names are

used to identify the work items. When a nurse logs on to the Nurse Task ::Vfanager:

the two new items are fetched into the Todo list, as can be seen from Figure 6.3.

The structure of each entry is < itemname >@< status >< state >< pickup >.

The default value for < state > is null which represents initiate state. The default

value for < status > is null too which represents pre-AH status in Todo list. Value

of pickup can be 0 or 1.

The nurse picks up Tom and activates the real task, examining pulse and blood

pressure. After the examination, he records the results and submits his work by

selecting ':Done" operation. The output window is popped up where he enters 1,

indicating the doctor's examination is required. The scenario of the above operations

is shown in Figure 6.4.

Now a new work item is created for the Doctor task. vVhen the doctor gets

new items from the Doctor Task ::vfanager: he observes Tom waiting for his exami

nation and activates the real task, reading the nurse's testing results and ex:amines,

prescribes, etc. The doctor's screen looks like Figure 6.5.

Before the doctor finishes his examination on Tom, the nurse finds out he entered

the wrong pulse rate on Tom's record. Then he requests for an external ad-hoc

recovery for Tom. The workflow server receives the request and is supposed to lock the

6.3 Ad-hoc recovery in a hospital workflow 81

Figure 6.3: The initial Nurse Task Manager window

workflow instance. (The lock mechanism is not implemented in the current version.)

Then the server asks the nurse for the restart-from (RDT') tasks, which is Nurse task

in the example. Then the Workflow Server detects all the affected tasks, which are

Nurse task and Doctor task, and returns the agents'ids to the nurse. The sequence

of steps are depicted in Figure 6.6.

Now, the nurse talks to the doctor about how to recover the two tasks. They

may decide to undo their work then redo them. Thus the decision window looks like

Figure 6.7.

After the decision is sent to the workflow server, the undo phase of the recovery

starts. First, undoing the work item Tom in the Doctor task. Then undoing it in the

Nurse task. The undo items appear in the Todo list with tag <undo>. The undo

procedure of each item includes two steps. First, the DBMS performs a backward

scan and restores the database states to the previous point. Then the agents undo

the real work if it is not covered by the DBMS recovery and it is deemed necessary.

6.3 Ad-hoc recovery in a hospital workflow 82

Figure 6.4: Processing work item Torn in the Nurse Task Manager window

Undoing Doctor Task is shown in Figure 6.8. After the doctor finishes undo, an undo

item is available in Nurse task. This roll back procedure will go on until a restart

from task is reached. The undo process for Torn in the Nurse Task Manager window

is shown in Figure 6.9.

After the undo phase, a redo work item Torn in the Nurse Task manager window

is created. It is now put into the Redo list. After the nurse records the correct testing

results again for Torn, the scheduler finds the next task to be run according to the

new output, which might be '1' or '0'. In this example, the output is the same as

before. Thus the next task is Doctor task. Redoing Nurse task and Doctor task is

shown in Figure 6.10 and 6.11.

6.4 Discussion about availability and scalability 83

Figure 6.5: Processing work item Tom in the Doctor Task Manager window

6.4 Discussion about availability and scalability

In the client-server architecture, the server is always thought as the bottleneck of

communication. If the server is down or overloaded, it is possible that the clients

are blocked in processing. Although not implemented completely, we tried multiple

Workflow Server structure in the prototype. When the initial server is down, another

server takes its place. The piece of code for the two-server version is as follows.

public class Adhocl extends Applet {

public String uname,passwd,main.server="lark" ,back.server="auk";

public void init() {

try {

WFServer wf.server = (WFServer) Naming.lookup("rmi:/ /" +main.server+ ".cs.mun.ca/WFServerlmpl");

}

catch (Exception el) {

System.out.println("Server "+main .server+

"is down, try "+back.server+" ... ");

6.4 Discussion about availability and scalability 84

}

}

}

Figure 6.6: External ad-hoc request and choose restart-from tasks

try {

WFServer wf._server = (WFServer) Naming .lookup("rmi:/ /" +back...server+ ".cs.mun.cajWFServerlmpl");

}

catch (Exception e2) {

System.out.println("Exception in login: "+e2);

e2. printStackTrace();

}

6.4 Discussion about availability and scalability 85

Figure 6.7: The decision

Figure 6.8: Undo Doctor task

6.4 Discussion about availability and scalability 86

Figure 6.9: Undo Nurse task

6.4 Discussion about availability and scalability 87

Figure 6.10: Redo Nurse task

Figure 6.11: Redo Doctor task

;:arfi<>lcl > show_taskl show_arrow

Welcome to the miniSQL monitor. T~pe \h for helf'.

mSQL > ->
QuE.'r~ OK, G row<sl Moclified or retrieved,

+------+------+-----------------------t------------+----------------------+----------------------·------·------------+------------+------------+----------+----------+
I w_id I t_!d I """'" I t!:jf'E> I AH_prop I host I join I rol" I input I output I 1< I i:j I
+------+------+----------------------+-------------+-------------------+-------------- ... ------+------+------------+------------+------------+----------+----------+

01 I 01 I Start I I I I I I 48 89 I
01 I 02 Ree;!st..r I NT undoable I dove I I "'"tister I I I 131 91 I
01 I 03 Nur!><' I NT undo<~bl" I lark I I nurso I I Plag I 212 93 I
01 1 o4 Doctor I NT uncloabl<? I e;ogle I I doctor I I I 293 218 I
01 I 05 Pa,..<>nt I T undoable I garfield I or I cashier I I I 383 94 I
01 I 06 I Stop I I I I I I 465 % I

+------+------+----------------------·------------·----------------------+----------------------+------·------------+------------+------------+----------+----------+

W~>lcom" to th" miniSQL monitor-, T~l"" \h for helJO,

mSQL > ->
QLler~ OK. 7 row<:r.l modil'iea or retrievecl,

+----------------------+----------------------+------------------------------+----------+----------+----------+----------+
I from_ task I to_ task I condition I anchor _x I anchor-~ I @nd_x I end_~ I
+---------------------·----------------------+--------------------------------+----------·----------+----------+----------+

0101 I 0102 I I 85 I 106 I 131 I 106 I
0102 I 0103 I don" I 168 I 106 I 211 I 106 I
0103 I 0104 I clone U f lag=1 I 230 I 130 I 291 I 232 I
0103 I 01013 I clone U flag~O I 24~ I 107 I 382 I 107 I
0104 I 0105 I done I 330 I 234 I 399 I 132 I
0105 I 0106 I commit I 420 I 109 I 464 I 109 I
0102 I 0102 I I 149 I 116 I 149 I 116 I

+----------------------+----------------------+--------------------------------+----------+----------+----------+----------+

mSQL > ->
B~e 1

garfield >

00
00

c:arfield > show_workl ist ; show_decision

Welcol'l'le to the l'l'liniSQL ~itor. T~pe \h for hl>lp.

mSQL > ->
Quer~ OK. 10 row(s) ftlodified or retrieved.

+------+-------+------+-------+----------------------+----------------------+------------+------------+----------------------+------------+----------------------+----------+----------+
I w_id I wi_id I t_id I ti_id I naM&o I agent I state I status I oper I output I host I c:et I pickup I
+------+-------+------+-------+---------------------+----------------------+------------+------------+----------------------+------------+----------------------+----------+----------+
I 01 01 I 02 I 01 Toll'! I register I Donao I pre-AH I I I dove I 0 I 0 I
I 01 01 I 03 I 01 ToM I nurse I Done 1 pre-AH I I 1 I lark I 1 I 1 I
I 01 02 I 02 I 01 Hik• I regist•r I Done I prao-AH I I I dove I 0 I 0 I
I 01 02 I 03 I 01 Hike I nurse I I pre-AH I I I lark I 0 I 0 I
I 01 01 I 04 I 01 ToPI I doctor I Active I pre-AH I I I eagle I 0 I 1 I
I 01 01 I 03 I 01 Torq I I Don• 1 ln-AH I undo I I I 1 I 1 I
I 01 01 I 03 I 01 Torq I nurse I Done I pos.t-AH I redo I I I 1 I 1 I
I 01 01 I 04 I 01 ToPI I doctor I Done I in-AH I undo I I I 1 I 1 I
I 01 01 I 04 I 01 ToPI I doctor I Done I post-AH I redo I I I 1 I 1 I
I 01 01 I 05 I 01 Tom I I I pre-AH I I I garfield I 0 I 0 I
+------+-------+------+------+----------------------+--------------------+------------·-----------+--------------------+------------+---------------------·----------+--------+

mSQL > ->
B~e!

mSQL > ->
Quaor~ OK. 2 row(s) ll'!odified or retri&oved.

+------+-------+------+-------+----------------------+------------+----------------------+----------------------+----------------------+----------------------+----------+----------+
I w_id I wi_id l t_id I ti_id I tnall'l• I state I inall'le I a,ent I in_AH_opaor I post_AH_op•r I fla' I l~taf
+------+------+------+-------+----------------------+------------+----------------------+---------------------+----------------------+----------------------+----------+----------+
I 01 I 01 I 03 I 01 I Nursao I Donl' I ToPI I nurse I undo I redo I 1 I 0 I
I 01 I 01 I 04 l 01 I Doctor I Active I Toll't I doctor I undo I redo I 1 I 1 I
+------+-------+------+-------+----------------------+------------+---------------------+----------------------+----------------------+----------------------+--------+----------+

mSQL > ->
B~e!

c~rfi•ld)

Chapter 7

Conclusions and future work

This thesis focuses on the modeling in workflow applications and architectural aspects

of the ad-hoc recovery of workflow management systems. The contributions of the

research presented in this thesis at the modeling level are as follows:

• A generic workflow model is refined based on the workflow reference model.

Besides the typical concepts like task and task instance, in-depth concepts like

the local state, legal set, and normal execution are formalized. A definition

graph is also given to represent the workflow schema graphically.

• Based on the generic workflow model, the ad-hoc recovery model is proposed.

A third dimensional concept in the workflow execution, the run, is abstracted

and its behavior studied during redirections.

• A set of concepts are defined, such as peers, redirected executions, well defined

sequence of redirected executions, etc .. Two sets, RDT and RDF and the six

Conclusions and future work 91

constraints on them are given to characterize the redirections involved in ad-hoc

recoveries.

• An execution graph, concise representation of the workflow execution is pro

posed for the first time. Compared with other literatures, our model is more

accurate in depicting normal executions of a workflow and is original in depict

ing workflow executions when exceptions occur.

The contributions of this thesis at the system development and implementation

level include the following:

• A client-server WF~S architecture is given and the components handling ad

hoc recovery are embedded into the architecture. It can be used to manage

both normal workflow executions and backward ad-hoc recoveries.

• A protocol is given to handle backward ad-hoc recoveries. It is also demon

strated with an example hospital workflow.

• Java features for enterprise computing are experimented in the system design

and implementation. Availability and scalability issues are discussed briefly.

The current model and implementation can be refined in many dimensions. The

forward ad-hoc recovery is not formalized in the model. It is almost symmetric

with the backward recovery model except that there are no peers in the forward

redirected executions. The RDT and RDF associated with forward recovery should

have different constraints. We feel that the constraints on RDT and RDF in forward

recovery are simpler than those of the backward recovery.

Conclusions and future work 92

The ad-hoc recovery model does not deal with the dynamic changes made to

the workflow definition. It is not a fully dynamic model. In order to provide more

flexibility, other modeling concepts can be incorporated.

In the system implementation, we dealt only with External Collaboration Pro

tocol. The other two are not implemented and their run time performance is not

evaluated. Also the whole system is not implemented in a fully scalable fashion.

These work are to be continued in the future.

Bibliography

[1] A. Bonner, A. Shruf, and S. Rozen. LabFlow-1: A Database Benchmark for

High Throughput Workflow Ylanagement. Proc. of the 5th. Intl. Conference on

Extending Database Technology, pages 25- 29, A vignon, France, ::VIarch 1996.

[2] A. Elmagarmid, Y. Leu, W. Litwin, and Yr. Rusinkiewicz. A ::VIultidatabase

Transaction ::VIodel for InterBase. Proc. of the 16th. Intl. Conf on Very Large

Data Bases, pages 507-518, August 1990.

[3] A. Forst, E. Kuhn, and 0. Bukhres. General Purpose vVorkfl.ow Languages.

Distributed and Parallel Databases, 3(2):119- 154, April 1995.

[4] A. Reuter and H. Wachter. The ConTract ::vfodel. IEEE Data Engineering

Bulletin, 14(1), ::VIarch 1991.

[5] A. Sheth, D. Worah, K. Kochut, J . ::Vliller, K. Zheng, D. Palaniswarni, and S.

Das. The ::vfETEOR Workflow ::vfanagement System and its Use in Prototyping

Significant Healthcare Applications. Proc. of the 13th. Towards an Electronic

Patient Record {TEPR '97} Conference, :Medical Records Institute, Apri11997.

BIBLIOGRAPHY 94

(6] A. Sheth, K. J. Kochut, J. Miller, D. \i\Torah, S. Das, C. Lin, D. Palaniswami, J.

Lynch, and I. Shevchenko. Supporting State-Wide Immunization Tracking Using

:Y!ulti-Paradigm vVork:flow Technology. Proc. of the 22nd. Intl. Conference on

Very Large Data Bases, Bombay, India, September 1996.

(7] A. Sheth, Krys J. Kochut. vVorkflow Applications to Research Agenda:

Scalable and Dynamic Workflow Coordination and Collaboration Systems.

http:jjlsdis. cs. uga.edujworkfiow/index.html, 1997.

(8] A. Sheth,).1. Rusinkiewicz. On Transactional Workflows. ACM SIGMOD

Record, 22(3), September 1993.

(9] Action Technologies. Collaborative Business Application. Presentations,

http:/ jwww. actiontech. com/default. cfm ?area=ProductsjDevelopers 'Center/,

1998.

[10] Amit Sheth and Krys J. Kochut. vVorkfiow Applications to Re-

search Agenda: Scalable and Dynamic Work Coordination and Col

laboration Systems. Large Scale Distributed Information Systems Lab,

http:/ jlsdis.cs. uga. edujworkfiowjindex.htrnl, 1997.

[11] D. Barbara, S. Mehrotra, and M. Rusinkiewicz. INCAs: :Yianaging Dynamic

Workflows in Distributed Environments. Journal of Database Management, Spe

cial Issue on Multidatabases, 7(1):5- 15, Winter 1996.

BIBLIOGRAPHY 95

[12] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of vVorkfl.ow Man

agement: From Process Modeling to vVorkflow Automation Infrastructure. Dis

tributed and Parallel Databases, 3(2):119-154, April 1995.

[13] D. vVorah, A. Sheth. \.Yhat Do Advanced Transaction Models Have to Offer

for Workfl.ows? Proc. of Intl. Workshop on Advanced Transaction Models and

Architectures, Goa, India, 1996.

[14] D. vVorah, A. Sheth. Transactions in Transactional Workfl.ows. Advanced Trans

action Models and Architectures, Kluwer Academic Publishers, S. Jajodia and

L. Kerschberg, editors, 1997.

[15] Dave Ensor and Ian Stevenson. Oracle Design. O'Reilly Associates, Inc., First

edition, March 1997.

[16] David Hollingsworth. The Workflow Reference :\tlodel.

http://w'llnl.J.aiim.orgfwfmc/, TC00-1003(Issue 1.1), November 1994.

[17] Elliotte Rusty Harold. JAVA Network Programming. O'Reilly Associates, Inc.,

First edition, February 1997.

[18] F. Leymann, H. J. Schek, and G. Vossen. Transactional VVorkflows. Dagstuhl

seminar 9629, 1996.

[19] G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan. Functionality and Limitations

of Current Workflow Management Systems. IEEE Expert, 12(5), October 1997.

BIBLIOGRAPHY 96

[20] G. Alonso, H.J. Schek. Research Issues in Large Workflow Management Systems.

Proc. of the NFS Workshop on Workflow and Process Automation in Information

Systems, University of Georgia, Athens, GA, May 1996.

(21] G. Alonso, :YL Kamath, D. Agrawal, A. El Abbadi, R. Guenthoer and C. Mo

han. Failure Handling in Large Scale vVorkflow Management Systems. Research

Report, IBM Almaden Research Center(RJ 9913), November 1994.

(22] George Reese. Database Programming with JDBC and JAVA. O'Reilly Asso

ciates, Inc., First edition, June 1997.

(23] Hector Garcia-:Molina, Kenneth Salem.

5/87/0005/0249, pages 249-259, 1987.

Sagas. ACM 0-89791-236-

[24] J. Tang, J. Veijalainen. Enforcing Inter-task Dependencies in Transactional

Workflows. Proc. of the 3rd Intl. Conf. on Cooperative Information Systems,

pages 72- 86, Yfay 1995.

(25] Jian Tang and .Jari Veijalainen. Transaction-oriented Work-flow Concepts in

Inter-organizational Environments. Proc. of 4th Intl. Conference on Information

and Knowledge Management, November 1995.

(26] Jian Tang and Xuemin Xing. A Workflow Management Systems Architecture

that Supports Ad-hoc Recoveries. 1999 International Database Engineering and

Applications Symposium, pages 332- 340, August 1999.

BIBLIOGRAPHY 97

[27} L. Fischer. The Workflow Paradigm - The Impact of Information Technology on

Business Process Reengineering. Future Strategies, Inc., Alameda, CA, Second

edition: 1995.

[28} :yr_ Ansari, L. Ness,).;1. Rusinkiewicz and A. Sheth. Using Flexible Transactions

to Support Multi-system Telecommunication Applications. Proc. of the 18th

Intl. Conf. on Very Large Data Bases, pages 65-76, Vancouver, Canada, August

1992.

[29}).;1. Duitshof. Workflow Automation in Three Administrative Organizations.

Master's thesis, University of Twente, The Netherlands, July 1994.

[30) :yr_ Hsu, C. Kleissner. Objectflow: Towards a Process :yfanagement Infrastruc

ture. Technical Report, Digital Equipment Corporation, 1995.

[31]).;1. Kamath, K. Ramamritham. Bridging the Gap Between Transaction :yfan

agement and vVorkflow Management. Proc. of the NFS Workshop on Workflow

and Process Automation in Information Systems, University of Georgia, Athens,

GA, May 1996.

[32] N. Krishnakumar, A. Sheth.).;fanaging Heterogeneous Multi-system Tasks

to Support Enterprise-wide Operations. Distributed and Parallel Databases,

3(2):155- 186, April 1995.

[33] P. Attie,).;f. Singh, A. Sheth, and :\1. Rusinkiewicz. Specifying and Enforcing

Intertask Dependencies. Proc. ofthe 19th Intl. Conf. on Very Large Data Bases,

pages 134-145, Dublin, Ireland 1993.

BIBLIOGRAPHY 98

[34] P. Chrysanthis, K. Ramamritham. Acta: A Framework for Specifying and Rea

soning about Transaction Structure and Behavior. Proc. of ACM SIG!v!OD Conf.

on !v!anagement of Data, pages 194- 203, 1990.

[35] S. Joosten, G. Aussems, M. Duitshof, R. Huffmeijer, and E. :Y1ulder. WA12:

An Empirical Study about the Practice of Workflow management. University of

Twente, Enschede, The Netherlands, July 1994.

[36] W. Jin, L. Ness, :\1. Rusinkiewicz, and A. Sheth. Concurrency Control and

Recovery of :\'lultidatabase Workflows in Telecommunication Applications. Proc.

of ACM SIGMOD Conference, :\fay 1993.

[37] Workflow Management Coalition. Workflow :\fanagement Coalition Terminology

and Glossary. http://www.aiim.orgfwfmcj, WFMC-TC-1001(Issue 2.0), June

1996.

[38} Y. Breitbart, A. Deacon, H. Schek, and A. Sheth. Merging Application

centric and Data-centric Approaches to Support Transaction-oriented :\fultisys

tem Workfiows. SIGMOD RecoTd, 22(3):23- 30, September 1993.

