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ABSTRACT

A vertex-deleted subgraph (or simply a card) of graph G is an induced sub-
graph of G containing all but one of its vertices. The deck of G is the multiset
of its cards. One of the best-known unanswered questions of graph theory
asks whether G can be reconstructed in a unique way (up to isomorphism)
from its deck. The likely positive answer to this question is known as the
Reconstruction Conjecture.

In the first part of the thesis two basic equivalence relations are considered
on the set of vertices of the graph G to be reconstructed. The one is card
equivalence, better known as removal equivalence, by which two vertices are
equivalent if their removal results in isomorphic cards. The other equivalence
is similarity, also called automorphism equivalence. Two vertices u and v

are automorphism-equivalent (similar) if there exists an automorphism of G
taking u to v. These relations are analyzed on various examples with special
attention to vertices that are card-equivalent but not similar. Such vertices
are called pseudo-similar, and they have been studied very extensively in the
literature. The first result of the thesis is a structural characterization of
card equivalence in terms of automorphism equivalence. A similar result was
obtained by Godsil and Kocay in 1982 on the characterization of pseudo-
similar vertices, which result is proved in the thesis as a corollary to the
characterization theorem on card equivalence.

In the second part of the thesis, the concept of relative degree-sequence
is introduced for subgraphs of a graph G. By “relative” it is meant that each
degree in the degree-sequence of the subgraph is coupled up with the original
degree of the corresponding vertex in G. A new conjecture is formulated,
which says thatG is uniquely determined (up to isomorphism) by the multiset
of the relative degree-sequences of its induced subgraphs. The new conjecture
is then related to the Reconstruction Conjecture in a natural way.

The third part of the thesis contains an original new result on graph
reconstruction. Card-minimal graphs are investigated, the deck of which is
a set. Thus, the deck of such graphs is free from duplicate cards. It is shown
that every card-minimal graph G is reconstructible, provided that G does
not have pseudo-similar couples of vertices. This condition is recognizable,
that is, it can be checked by looking at the deck of G only.

The results of this thesis have been partially published in [1].
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Chapter 1

Introduction

1.1 Historical overview

The Reconstruction Conjecture is generally regarded as one of the foremost

unsolved problems in graph theory. Frank Harary [9] has even classified it

as a graphical disease because of its contagious nature. Some sources say

that the problem was discovered in Wisconsin in 1941 by Kelly and Ulam,

and claimed its first victim (P. J. Kelly) in 1942. Indeed, Kelly’s doctoral

dissertation [13], which he wrote under the supervision of Ulam, appeared in

that year. Later, in 1957, Kelly published the first relevant result on graph

reconstruction, showing that trees are reconstructible [14].

Others say that Stanis law Ulam knew about the ideas that later became

the Reconstruction Conjecture as early as 1929 when, along with Stanis law

Mazur, Stefan Banach, Kazimierz Kuratowski, and others, he was a member

of the Lwów School of Mathematics in Poland. (Today Lviv, Ukraine, also

known as Lemberg, Galicia, Austria-Hungary.) Ulam had spent many years

collecting problems that were posed by fellow graduate students and profes-

sors during his years in graduate school in Lwów. These problems have been

recorded in the famous Scottish Book, which was a thick notebook used by

mathematicians of the Lwów School of Mathematics for jotting down prob-

lems meant to be solved. The notebook was named after the ”Scottish Café”
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in Lwów where it was kept. Ulam himself contributed 40 problems as a sin-

gle author to the Scottish Book, another 11 with Banach and Mazur, and an

additional 15 with others.

Even though the Reconstruction Conjecture cannot be found in the Scot-

tish Book, it does appear in the first part of a monograph written by Ulam

in 1960 under the title “A Collection of Mathematical Problems” [27], and

Ulam does say in the preface:

In spirit, the questions considered in the first part of this collec-

tion belong to a complex of problems represented in the Scottish

Book.. . . Many of the problems contained here were indeed first

inscribed in the Scottish Book, but the greater part of the mate-

rial is of later origin . . . Many of the problems originated through

conversations with others and were stimulated by the transistory

interests of the moment in various mathematical centers.

The uncertainties above have created a difficulty in trying to determine

who should have credit for creating this beautiful problem in graph theory.

The commonly accepted solution to this dispute is to call the problem the

Kelly-Ulam conjecture. The conjecture itself, as specified below, was given

the name “an inductive lemma in combinatorial analysis” by Ulam. The

reader should keep in mind that this version of the conjecture is presented

here for purely historical reasons; we will never actually use the original

metric terminology by Ulam.

Ulam’s Statement of the Reconstruction Conjecture [27]

Suppose that in two sets A and B, each containing n elements,

there is defined a distance function ρ for every pair of distinct

points, with values either 1 or 2, and ρ(p, p) = 0. Assume that

for every subset of n − 1 points of A, there exists an isometric

system of n − 1 points of B, and that the number of distinct
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Figure 1.1: Pseudo-similar vertices.

subsets isometric to any given subset of n− 1 points is the same

in A and in B. Are A and B isometric?

Interestingly, the problem of graph reconstruction has yet another impor-

tant historical aspect, which is related to the concept of pseudo-similarity.

According to the survey [20] by Josef Lauri, graph theorists seem to have

stumbled on this concept quite by accident. If two vertices u and v in a

graph G are similar, that is, there is an automorphism of G which maps

one into the other, then it is clear G − u and G − v are isomorphic graphs.

However, the converse is not true, because G − u and G − v can be iso-

morphic without u and v being similar in G. The smallest graph for which

this can happen is shown in Fig. 1.1. Nobody seems to have given this phe-

nomenon any thought until (as reported by Harary and Palmer [11]) someone

apparently found a proof of the celebrated Reconstruction Conjecture which

depended on the assumption that if G − u and G − v are isomorphic, then

u and v must be similar. To Harary and Palmer goes the credit of taking

what could simply have remained a curious counter-example, and turning it

into a graph theoretic concept worthy of investigation. Their 1965 and 1966

papers proved the first results and set the scene for further studies.

1.2 Basic terminology

In this section we present the collection of basic definitions in graph theory

that will be used throughout the thesis. Additional terminology specifically
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related to the problem of graph reconstruction will follow in later chapters.

An undirected graph (or simply a graph) G consists of a finite non-empty

set V (G) of vertices and a set of unordered pairs E(G) of edges . Notice that,

by this definition, multiple edges are not allowed to occur in G. Indeed, E(G)

is not a multiset. By an unordered pair of vertices we in fact mean a couple

{u, v} ⊆ V (G), even though we shall simply write (u, v) ∈ E(G). Loops (i.e.,

edges connecting vertices with themselves) are therefore excluded from E(G)

as well. An edge (u, v) is said to connect the vertices u and v, to be incident

with these two vertices, and vertices u and v are said to be adjacent.

Even though it is not consistent with the above definition of graphs,

in some situations it is inevitable to accept the “empty graph” also as a

graph. This abstraction has no vertices and no edges, so that it is indeed

completely empty. Its presence is useful in some graph operations, e.g., in

taking the disjoint union of graphs. The relevance of the empty graph is that

it becomes a unit element for this operation, rendering the corresponding

algebraic structure on graphs a classical (commutative) monoid.

Let G and H be graphs. A one-to-one correspondence φ mapping V (G)

onto V (H) is called an isomorphism if for every pair u, v of vertices in V (G),

(u, v) ∈ E(G) iff (φ(u), φ(v)) ∈ E(H). If such an isomorphism exists, then

the graphs G and H are said to be isomorphic, in notation G ∼= H. An

isomorphism of graph G onto itself is called an automorphism of G.

The number of edges in graph G incident with a concrete vertex v is called

the degree of v and denoted by dG(v) (d(v), if G is understood). The degree-

sequence of G is the sequence of degrees of G’s vertices in a non-decreasing

order. A graph in which all degrees are equal to k is said to be k-regular,

and if G is k-regular for some k, we simply say that G is regular. A complete

graph is one in which every two distinct vertices are connected by an edge.

An alternating sequence of vertices and edges, beginning and ending with

vertices such that each edge in the sequence is incident with the vertex im-

mediately preceding it and with the one immediately following it, is called a
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walk. If all edges in a walk are distinct, then the walk is a trail, and if, in

addition, the vertices are also distinct, then the trail is a path. The length of

a walk is the number of occurrences of edges in it. A walk or trail in which

the first vertex coincides with the last one is called closed. A cycle is a closed

trail of length at least three that consists of a path together with an edge

connecting the first and last vertices of the path. A graph not containing

cycles is called a tree.

If G and H are graphs such that V (H) ⊆ V (G) and E(H) ⊆ E(G),

then H is called a subgraph of G. If H is a subgraph of G and if every edge

(u, v) ∈ E(G) is also in E(H), provided that its endpoints u and v are in

V (H), then we call H an induced subgraph of G. If Y ⊆ V (G), then G[Y ],

the subgraph of G induced by Y , is the induced subgraph of G having Y

as its vertices. With some ambiguity, for X ⊆ V (G) we shall simply write

G − X to denote the induced subgraph G[V (G) \ X]. Sometimes we even

write G − x or G − x − y to mean G − {x} or G − {x, y} if x and y are

individual vertices of G.

A graph is connected if every two vertices are joined by a path. A maximal

connected subgraph of G is called a component of G. A disconnected graph

is one that has more than one components.

If the edges of a graph have a direction assigned to them, then we speak

of a directed graph. More precisely, a directed graph, or digraph for short, G

consists of a set V (G) of vertices and a set E(G) of ordered pairs of vertices,

called edges. The definition of walk, trail, path, and cycle must be modified

somewhat in digraphs, saying that each edge e = (u, v) in these constructs

(as alternating sequences of vertices and edges) connects the vertex u before

e to the vertex v after e. An acyclic digraph is one containing no directed

cycles. A digraph is strongly connected if for every ordered pair (u, v) of

vertices there is a (directed) path joining u to v.

A tournament is a digraph obtained by assigning a direction for each

edge in an undirected complete graph. In other words, a tournament is an
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orientation of a complete graph, or equivalently, a directed graph in which

every pair of distinct vertices is connected by a single directed edge. A

tournament T is called transitive if (u, v) ∈ E(T ) and (v, w) ∈ E(T ) imply

(u, w) ∈ E(T ) for all distinct vertices u, v, w. If (u, v) ∈ E(T ), then we also

say that vertex u dominates vertex v in T .

At the end of Chapter 4 we shall also need to use some basic linear al-

gebraic terminology to address the connection between the Reconstruction

Conjecture and our new conjecture on sets of relative degree-sequences. Since

the introduction of this terminology would take us too far in this short in-

troduction, we just refer the reader to any standard text in linear algebra for

the concepts involved in those arguments.
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Chapter 2

Definitions, and some easily
recoverable data

In this chapter we review the most important definitions relating to the

problem of graph reconstruction, and provide a brief summary of some of

the best-known elementary results.

2.1 Definitions

Definition 2.1.1 For a graph G and vertex v ∈ V (G), G − v is called a

vertex-deleted subgraph of G, or the card associated with vertex v in G. We

do not distinguish between isomorphic cards, though. The multiset of cards

collected from G in this way is called the deck of G, denoted D(G).

See Fig 2.1 for the deck of a small graph G.

In the language of modern graph theory, the Reconstruction Conjecture,

introduced in Section 1.1 as the Kelly-Ulam conjecture, states that an arbi-

trary graph G having at least three vertices can be reconstructed in a unique

way (up to isomorphism) from its deck.

Ever since its inception, this problem has remained a mystery. Trying to

solve it is similar to conducting a criminal investigation. There is a suspect,

the graph G, who leaves plenty of evidence (i.e., the deck D(G)) on the crime
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Figure 2.1: Constructing the deck of a graph.

scene. Yet, no brilliant detective has been able to track down the suspect

for over 70 years, and the number of works on the case is rapidly decreasing

year by year. The reconstruction problem was, however, very popular in the

past. According to [25], more than 300 research papers had been published

on graph reconstruction between 1950 and 2004.

Definition 2.1.2 Two vertices u, v ∈ V (G) are called hypomorphic or card-

equivalent (c-equivalent, for short) if the card associated with u is identical

to the one associated with v, i.e., G − u ∼= G − v. (Remember that we do

not distinguish between isomorphic cards.)

Yet another name for card equivalence is removal equivalence, which is often

used in the literature. Card equivalence will be denoted by ∼c. Clearly, ∼c

is indeed an equivalence relation on V (G).

Definition 2.1.3 Two graphs G and H are hypomorphic if D(G) and D(H)

are identical as multisets, that is, each card appears in D(G) and D(H) the
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Figure 2.2: The smallest card-minimal graph.

same number of times. (Recall that D(G) denotes the deck of G.) If G

and H are hypomorphic, then a hypomorphism of G onto H is a bijection

φ : V (G)→ V (H) such that G− v ∼= H − φ(v) holds for every v ∈ V (G).

A reconstruction of G is a graph G′ such that G and G′ are hypomorphic, or,

equivalently, there exists a hypomorphism of G onto G′. Using this terminol-

ogy, the Reconstruction Conjecture simply says that two graphs G and H are

hypomorphic iff they are isomorphic. In other words, all reconstructions of

G are isomorphic (to G, of course). Clearly, every isomorphism of G onto H

is a hypomorphism, but the converse is not true, even if the Reconstruction

Conjecture holds. Indeed, the Reconstruction Conjecture only says that if

there is a hypomorphism between G and H, then there is one which is also

an isomorphism.

Definition 2.1.4 Graph G is called card-minimal if D(G) is a set, that is,

each card is unique in D(G).

Our aim in this thesis is to show that the Reconstruction Conjecture holds

true for a large subclass of card-minimal graphs. Notice that both graphs

on two vertices have two identical cards, therefore every card-minimal graph

has at least three vertices. In fact it is easy to see by trying out all graphs

on five or less vertices that the smallest card-minimal graph has six vertices.

See Fig. 2.2.

One might think that card-minimal graphs are trivially reconstructible,

since there is a unique hypomorphism between any two hypomorphic card-
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minimal graphs G and H. While this is certainly true, we have no direct

information on E(G) and E(H), therefore the given unique hypomorphism

may not be an isomorphism. Reconstructing G from D(G) is still a very com-

plex issue for such graphs. As we shall see, any duplication of cards in D(G)

indicates a kind of symmetry in the internal structure of G. Consequently,

the class of card-minimal graphs is really large. Our result is therefore in

accordance with the observation in [3] saying that the probability that a ran-

domly chosen graph on n vertices is not reconstructible goes to 0 as n goes

to infinity.

Definition 2.1.5 A function defined on a class G of graphs is reconstructible

if, for each graph G in G, it takes the same value on all reconstructions of G.

Definition 2.1.6 A class (or property) G of graphs is recognizable if, for

each G-graph G, every reconstruction of G is also in G.

Definition 2.1.6 essentially says that a property of graphs is recognizable if

its presence is already indicated by the deck of such graphs. For example,

as we shall immediately see, the degree-sequence of graphs is a recognizable

property. To spell it out, the class of graphs having the same concrete degree-

sequence (as a property) is recognizable. By the same token, according to

Definition 2.1.5, the degree-sequence is a reconstructible function of (gen-

eral) graphs. Definitions 2.1.5 and 2.1.6 are therefore somewhat ambiguous,

and the words “reconstructible” and “recognizable” can be interchanged, de-

pending on the context (namely, the class G of graphs in hand). To add even

more to the confusion, we shall sometimes say that a property or some data

obtained about graph G is recoverable if it can be recovered from D(G).

2.2 A few known elementary results

In general, it is trivial that |V (G)|, the number of vertices of G, is recoverable

from D(G). It is still easy to see that |E(G)| is also recoverable. Indeed, add
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up the numbers of edges appearing on the cards of D(G), and observe that

this sum is equal to

(|V (G)| − 2) · |E(G)|.

See [23, Theorem 2.1] for the details of this simple combinatorial argument.

Once |E(G)| is given, calculating the degree d(v) of vertex v for card

G− v is straightforward:

d(v) = |E(G)| − |E(G− v)|.

Clearly, the degree of any vertex c-equivalent with v is the same as that of

v. We thus have managed to recover the degree-sequence of G from D(G).

(Recall that the degree-sequence ofG is the sequence of degrees ofG’s vertices

in a non-decreasing order.)

A similar combinatorial argument leads to the following result, known as

Kelly’s Lemma [14], see also [23, Theorem 2.4].

Proposition 2.2.1 For any graph Q, let sQ(G) denote the number of sub-

graphs of G isomorphic to Q. Then sQ(G) = sQ(H) whenever G and H are

hypomorphic and |V (Q)| < |V (G)|.

Proof. There exists a hypomorphism φ of G onto H. Since each subgraph of

G isomorphic to Q is contained in |V (G)| − |V (Q)| vertex-deleted subgraphs

of G, and a similar remark applies to H, and since G − v ∼= H − φ(v) for

every v ∈ V (G), it follows that

sQ(G) · (|V (G)| − |V (Q)|) =
∑

v∈V (G)

sQ(G− v)

=
∑

v∈V (G)

sQ(H − φ(v)) =
∑

w∈V (H)

sQ(H − w)

= sQ(H) · (|V (H)− |V (Q)|),

from which we infer that sQ(G) = sQ(H), since |V (Q)| < |V (G)| = |V (H)|.

�

The following result is also due to Kelly [14].
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Theorem 2.2.2 Regular graphs are reconstructible.

Proof. Let G be a k-regular graph. Since the degree-sequence is recognizable

(reconstructible/recoverable), all reconstructions of G are k-regular. Also, all

k-regular reconstructions of G are isomorphic, because each can be obtained,

up to isomorphism, from an arbitrary card G − v by adding a vertex and

connecting it to every vertex of degree k − 1 in G− v. �

Kelly [14] also applied his lemma (Proposition 2.2.1 above) to show that

disconnected graphs and trees are reconstructible. The reader is referred to

either of the surveys [4] or [23] for a proof of these results.

Nash-Williams [23] has shown that the so-called degree-sequence sequence

of G is recoverable from D(G). Essentially this means that, not only d(v) can

be read from the card G− v as above, but also the degrees of the neighbors

of v are recoverable in this way. We shall reformulate Nash-Williams’ proof

in Chapter 4 in terms of relative degree-sequences. A natural question to ask

at this point is whether the degrees of the neighbors of the neighbors of v are

also recoverable, and so on, moving away further and further from vertex v.

This question is already a lot more difficult to answer, mainly because the

desired degrees and degree-sequences are no longer c-equivalence invariant.

In other words, the answer depends on the representant vertex v chosen for

the card G − v. For card-minimal graphs, however, these data should be

recoverable, even though probably very difficult to obtain.

One of the last true champions of graph reconstruction was F. Harary.

He suggested a natural analogue [8] of the Reconstruction Conjecture, which

says that every graph having at least four vertices is uniquely reconstructible

from the deck of its edge-deleted subgraphs. Others have come up with

similar conjectures for directed graphs, cf. [24, 26], and have obtained partial

results proving or disproving them. See again [23] and [4] for more details.
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Chapter 3

Card equivalence and
pseudo-similarity

3.1 Characterizing card equivalence

The simple results discussed so far are of a strictly combinatorial nature, and

they do not even touch on the structural properties of card equivalence. In

this section we present a real structural characterization of this equivalence

relation, which is our first main result. In this characterization, card equiv-

alence is compared with another important equivalence relation on V(G),

namely automorphism equivalence.

Definition 3.1.1 Two vertices u, v ∈ V (G) are automorphism-equivalent

(a-equivalent, for short) if there exists an automorphism of G taking u to v.

The (vertex-)orbits of G are the equivalence classes of V (G) by automorphism

equivalence.

Automorphism equivalence will be denoted by ∼a. In the literature, two

automorphism-equivalent vertices are usually called similar. It is obvious

that ∼a is an equivalence relation, but its relationship to ∼c is not clear for

the first sight. Remember that ∼c denotes card-equivalence.
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u2
u3u1

Figure 3.1: The graph of Example 3.1.2.

Example 3.1.2 Let G be the graph in Fig. 3.1, and consider the vertices

u1, u2, u3 in G. It is easy to see that ui ∼c uj and ui ∼a uj both hold for any

1 ≤ i, j ≤ 3.

In general, it is clear by the definitions that ∼a⊆∼c. Example 3.1.3 below

shows, however, that ∼c 6⊆∼a.

Example 3.1.3 Let G be the graph of Fig. 3.2, and consider again the

vertices u1, u2, u3. As it turns out, u1 ∼c u3, but u1 6∼a u3. Furthermore, G

has no automorphisms other than the identity.

Vertices that are c-equivalent but not a-equivalent are called pseudo-similar

in the literature. See [20] for an extensive survey on pseudo-similarity. Ver-

tices u1 and u3 in the graph G of Fig. 3.2 are typical pseudo-similar ones.

The graph G itself arises from deleting a leaf vertex u4 from an appropriate

graph H — shown in Fig. 3.3 — in which u4 is the “natural continuation”

of the sequence of vertices u1, u2, u3. The graph H has a non-trivial auto-

morphism θ, which extends an appropriate automorphism ψ of the “kernel”

subgraph G − {u1, u2, u3} in such a way that the vertices ui, 1 ≤ i ≤ 4, are

mapped by θ into each other in the cyclic order

ui 7→ u(i (mod 4))+1.

14



u2
u3u1

Figure 3.2: The graph of Example 3.1.3.

The vertices u1 and u3 must of course be at the two ends of the “tail” sequence

u1, u2, u3 of G in order to maintain card equivalence.

The following example is somewhat different, yet it illustrates the same

kernel-tail decomposition idea with the kernel subgraph being disconnected.

Example 3.1.4 Consider the graph G of Fig. 3.4. Clearly, the vertices u1

and u2 are pseudo-similar. At the first glance it appears that one cannot ex-

tend G to a graph H having an automorphism that builds on an appropriate

automorphism of the kernel G−{u1, u2} in such a way that u1 is mapped to

u2. A look at Fig. 3.5, however, shows immediately that this is possible, and

the solution follows the exact same pattern as in Example 3.1.3.

The above examples show that the equivalence ∼c is rather inconvenient

to deal with in a direct way. We need to find a characterization of ∼c that

brings it in line with the much better structured equivalence ∼a. The basis

of this characterization is the following lemma.

Lemma 3.1.5 Let u and v be two distinct vertices of G. Then u ∼c v iff

there exists a sequence of vertices x0, x1, . . . , xk (k ≥ 1) in G satisfying the

conditions (i) and (ii) below.
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u2
u3u1

u4

Figure 3.3: The graph H of Example 3.1.3.

u u1 2

Figure 3.4: The graph of Example 3.1.4.
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u1
u 2

u 3 u 4 u
5

u 6

Figure 3.5: The graph of Example 3.1.4 extended.
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(i) x0 = v and xk = u;

(ii) there exists an isomorphism φ of G−u onto G−v such that φ(xi) = xi+1

for every 0 ≤ i < k.

Proof. Notice first that the graphs G−u and G− v are not separated in the

lemma, they both use the vertices of the common supergraph G. The lemma

therefore establishes a link between two c-equivalent vertices u and v in G

through a sequence of (necessarily distinct) vertices x1, . . . , xn−1 in G−u−v.

These vertices, however, need not be c-equivalent with u or each other in G.

For example, in the graph of Fig. 3.2, if v = u1 and u = u3, then k = 2,

x1 = u2, and φ can be derived from the automorphism of G − {u1, u2, u3}

that determines a cyclic permutation of the four small cycles of G from left

to right. Clearly, u1 6∼c u2.

Sufficiency of condition (ii) alone for having u ∼c v is trivial. Assuming

that u ∼c v, choose an arbitrary isomorphism φ : G − u → G − v. Let

x1 = φ(v), x2 = φ(x1), and so on, until u = xk = φ(xk−1) is reached.

Vertex u must indeed be encountered at some point along this line, since φ,

being an isomorphism, is an injective mapping V (G) \ {u} → V (G) \ {v}.

Consequently, the vertices x1, . . . , xk−1 in V (G) \ {u, v} will all be different

until xk = u stops this necessarily finite sequence. Mind that xi+1 = φ(xi) 6=

v, since v is not a vertex of G− v. Therefore the sequence x0, . . . , xk cannot

return to itself. The proof is complete. �

Theorem 3.1.6 Let u and v be two distinct vertices of G. Then u ∼c v iff

there exists a sequence of pairwise distinct vertices x0, x1, . . . , xk (k ≥ 1) and

an automorphism ψ of the subgraph G − {x0, x1, . . . , xk} which satisfy the

following three conditions.

(i) x0 = v and xk = u;

(ii) if X = {x0, x1, . . . , xk}, then for every 0 ≤ i < k and vertex wi ∈

V (G) \ X adjacent to xi in G (or, equivalently, in G − u), the vertex
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wi+1 = ψ(wi) is adjacent to xi+1 in G (i.e., in G− v);

(iii) for every 0 ≤ i < j < k,

xi is adjacent to xj iff xi+1 is adjacent to xj+1

(in G, of course).

Vertices u and v are a-equivalent iff the sequence of vertices x0, . . . , xk and the

automorphism ψ can be chosen in such a way that the assignments xi 7→ xi+1,

u 7→ v extend ψ to an automorphism of G.

Proof. Intuitively, condition (ii) says that for every 0 ≤ i < k, the neighbors

of xi in G−X are matched up with those of xi+1 in G−X by the automor-

phism ψ. Condition (iii) settles the issue of how the vertices xi themselves

are connected in G. Clearly, the question whether u is connected to v is

irrelevant.

The first statement of the theorem, regarding the existence of X and

ψ, is in fact a simple consequence of Lemma 3.1.5. Concerning sufficiency,

if ψ is an automorphism of G − X satisfying (ii), then by (i) and (iii) it

can be extended to an isomorphism φ of G − u onto G − v satisfying (ii)

of Lemma 3.1.5. Thus, u ∼c v. Conversely, if u ∼c v, then the required

automorphism ψ can be chosen as the restriction of the isomorphism φ –

guaranteed by Lemma 3.1.5 – to G − X. Notice that the subgraph G − X

may turn out to be empty.

As to the second statement of the theorem (regarding the a-equivalence

of u and v), if the given extension of ψ becomes an automorphism of G, then

clearly u ∼a v. On the other hand, if χ is an automorphism of G taking u to

v, then the restriction of χ to the vertices V (G)−{u} defines an isomorphism

φ of G − u onto G − v. Apply Lemma 3.1.5 to obtain the vertices X from

φ, and construct the automorphism ψ of G − X by restricting φ to that

subgraph. Clearly, the assignments xi 7→ xi+1 and u 7→ v, when extending

ψ, will simply reconstruct the original automorphism χ. �
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At this point the reader may want to have a second look at Examples 3.1.2

and 3.1.3, and identify the underlying automorphism ψ in the graphs of

Fig. 3.1 and Fig. 3.2. One important point is that, given the fact v ∼a u

(and therefore u ∼c v), one must not jump to the conclusion that x0 = v

and x1 = u will do for X = {x0, x1} in Theorem 3.1.6, and then be taken

by surprise that the desired automorphism ψ cannot be located in G − X.

For example, in the graph G of Fig. 3.1, if v = u1 and u = u2, then x1 = u3!

Consequently, X = {u1, u2, u3}, and the automorphism ψ is just the one

taking the three small cycles into one another following a cyclic permutation

with offset 2 from left to right.

The pair (s, ψ), where s is the sequence (x0, . . . xk) constructed in

Lemma 3.1.5 and ψ is the automorphism of the graph G − X according

to Theorem 3.1.6, is called a kernel-tail decomposition of G with respect to

the c-equivalent pair of vertices (u, v). The sequence s is the tail and the

subgraph G−X is the kernel of this decomposition. Clearly, the decompo-

sition is not unique regarding the sequence s. Moreover, even with s being

fixed, the corresponding automorphism ψ of the kernel G − X may not be

uniquely determined.

Following [20], for the rest of this chapter we shall concentrate on the

concept of pseudo-similarity in graphs. The most general construction from

which all pairs of pseudo-similar vertices can be obtained was found by Godsil

and Kocay [7], who showed that such pairs can in fact always be captured

by destroying some circular symmetry in a larger graph. We have already

elaborated on this idea to some extent in Examples 3.1.3 and 3.1.4. Below

we give a proof of [7, Theorem 2.2] as a corollary to our Theorem 3.1.6. The

reader is advised to follow the main steps of the proof on Figures 3.3 and 3.4.

Corollary 3.1.7 ([7]) Let G be a graph with pseudo-similar vertices u and

v. Then there is a graph H with the following properties:

(i) G is an induced subgraph of H.
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(ii) There exists an automorphism θ of H which maps G−u onto G− v in

such a way that u = θk(v) for some k ≥ 1.

(iii) V (H) \ V (G) = {y1, . . . , yr}, where yi = θk+i(v) and θ(yr) = v.

Proof. By Theorem 3.1.6, G has a kernel-tail decomposition (s, ψ) with

respect to (u, v), where s = (x0, . . . , xk), k ≥ 1 is the tail with v = x0

and u = xk, and ψ is an appropriate automorphism of the kernel G − X

(X = {x0, . . . , xk}). Let M denote the set of neighbors of v belonging to the

kernel. Even though it is an aside at this point, observe that M cannot be

empty. Indeed, if M = ∅, then Theorem 3.1.6 (iii) would imply that that the

vertices xi and xk−i are exchange-equivalent for each 0 ≤ i ≤ k, contradicting

the fact that x0 = v and xk = u are pseudo-similar. For the same reason, it

cannot happen either that M is a singleton and ψ(M) = M . Nevertheless,

the construction we are going to present will extend G to an appropriate H

in these two special cases as well. As we shall see, the chiral symmetry of

the vertices xi will simply be turned into a circular one by adding an extra

vertex xk+1.

Consider the sets of vertices M,ψ(M), ψ2(M), . . . , where by definition,

ψ(M) = {ψ(w)|w ∈ M}. By Theorem 3.1.6 (ii) we know that these sets of

vertices, up to power k, are exactly the kernel-neighbors of x0, . . . , xk. Since

G − X is finite and ψ is an automorphism, there exists a smallest integer

j ≥ 1 such that ψj(M) = M and the sets ψi(M), 1 ≤ i ≤ j are pairwise

distinct. Consequently, there exists a smallest l > k such that ψl+1(M) = M .

Notice that the choice l > k is crucial. Choosing l = k – if at all possible –

would allow G to be extended to a seemingly appropriate graph H by adding

edges connecting some of x0, . . . , xk only, and so missing the requirement

that G be an induced subgraph of the extension. For example, in the graph

of Fig. 3.1, connect u1 with u2 and u2 with u3 to obtain graph G. Then u1

and u3 are no longer a-equivalent, but they are still pseudo-similar. If v = u1

and u = u3, then the number j in the argument above is clearly 3. Simply

connecting u3 with u1 by a new edge in this situation would result in a graph
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u=x 2v=x 1
x 3

Figure 3.6: Extending graph G to H, a small example.

H satisfying the requirements of the theorem, except for the condition that

G be an induced subgraph of H.

Let r = l − k, and adjoin to V (G) r new vertices y1, . . . , yr. For each

1 ≤ i ≤ r, install a new edge from yi to each vertex of ψk+i(M). See Fig. 3.5.

Finally, by letting xk+1 = y1, . . . xk+r = yr in the sequence of vertices

x0, x1, . . . , xk, xk+1, . . . xk+r,

add new edges between xi and xj recursively to the minimum extent in order

to maintain the condition (iii) of Theorem 3.1.6 in a circular fashion. That

is, the condition:

xi is adjacent to xj iff xi+1 (mod (k+r)) is adjacent to xj+1 (mod (k+r))

must hold for each 0 ≤ i < j ≤ k+ r. The details of this recursive procedure

are straightforward, and left to the reader. See Fig. 3.6 for a small example.

The resulting graph after the above extensions is H. It is obvious that G is

a proper induced subgraph of H, and H satisfies the conditions (i) and (ii) of

the corollary with the extension θ of ψ by which the vertices x0, x1, . . . , xk+r

are mapped to each other in the way:

xi 7→ xi+1 (mod (k+r)), 1 ≤ i ≤ k + r. �
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A reader familiar with the original proof of [7, Theorem 2.2] by Godsil

and Kocay will notice that their proof (for a finite graph G) is essentially the

combination of our Theorem 3.1.6 and Corollary 3.1.7, just as we presented

them above. For this reason, Theorem 3.1.6 cannot be considered a com-

pletely new contribution. There is, however, a major difference in the nature

of these two results. While our Theorem 3.1.6 is primarily a decomposition

tool, [7, Theorem 2.2] tends to blow up the graph, sometimes quite signifi-

cantly. Refer to Fig. 3.5 for an evidence of this fact. The importance of the

kernel-tail decomposition lies in the fact that it could be used as a lemma in

inductive reasonings about the structure of symmetries in G.

One disturbing observation arising from Theorem 3.1.6 is that it does not

reflect the transitivity of card equivalence. Indeed, if (s, ψ) and (t, χ) are

kernel-tail decompositions of G with respect to c-equivalent pairs (u, v) and

(v, w), respectively, then the theorem provides no clue for finding a kernel-

tail decomposition with respect to (u, w). Working out such a method will

be the subject of a future study.

3.2 Mutually pseudo-similar sets of vertices

According to [20], the most interesting open questions on pseudo-similarity

are related to the issue of finding large sets of mutually pseudo-similar vertices

in graphs. Lauri does not explain in his survey why one must say “mutually

pseudo-similar” in this context. The reason is that pseudo-similarity by itself

is not an equivalence relation on V (G) as one might suspect, and it is not true

that card equivalence is simply the union of automorphism equivalence and

pseudo-similarity. Mutually pseudo-similar therefore means pairwise pseudo-

similar in standard mathematical terms.

The problem of finding graphs with more than two mutually pseudo-

similar vertices has been investigated by a number of authors [6, 15, 16, 17,

18, 19, 21, 22]. Among these, the construction of [16] is particularly simple
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to describe in terms of our kernel-tail decomposition. The basic idea of the

construction is the observation that coming up with a number of mutually

pseudo-similar vertices is much easier in directed graphs. Notice that the

concept of card equivalence and that of of pseudo-similarity is meaningful in

directed graphs, literally by the original definition of these concepts.

The transitive tournament Tk on k vertices {1, . . . k}, in which vertex

i dominates vertex j iff i < j, is a perfect example of a directed graph

having all of its vertices mutually pseudo-symmetric. The problem of finding

an undirected graph with k mutually pseudo-symmetric vertices therefore

reduces to transforming (i.e., blowing up) Tk into an undirected graph while

preserving the pseudo-similarity of the old vertices {1, . . . , k}. We shall work

out the solution for the simplest case k = 3 below.

Take an arbitrary graph H with two pseudo-similar vertices u, v, so that

H has a kernel-tail decomposition (s, ψ) with s = (v, u). The graph H with

its distinguished ordered pair (v, u) of vertices can be considered as a directed

(meta-)edge in any graph, connecting two (not necessarily distinct) vertices x

and y, so that the source x of the meta-edge is identified with v and the target

y is identified with u. If x = y, then vertices u and v will be joined in H,

which might lead to a multigraph. The exact mathematical formalism that

corresponds to this technique is the general operation of graph composition

described e.g. in [2, 5]. For our present purposes, however, the heuristic idea

of creating a meta-edge from H is completely adequate.

Take, for example, the graph of Fig. 3.7 as H, and assemble the transitive

triangle T3 from three “H-edges” as shown in Fig. 3.8. The “direction” of

each edge in the resulting graph G is v → u. It is now obvious that the

vertices x, y, z corresponding to the three vertices of T3 are pseudo-similar.

As proved in [16], this technique works for an arbitrary k ≥ 3. One could

as well use Theorem 3.1.6 to provide an independent proof of this fact. It is

essential, however, that the tail s of the decomposition (s, q) of H has length

two, otherwise the construction does not work.
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v u

Figure 3.7: The graph H used as a meta-edge.

x y

z

v

v u

v

u

u

Figure 3.8: The triangle T3 built up from three H-edges.
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As a generalization of Corollary 3.1.7, Kocay [17] has obtained the fol-

lowing result on mutually pseudo-similar vertices.

Theorem 3.2.1 ([17]) Let G be a graph with a set U = {u0, u1, . . . uk−1} of

k mutually pseudo-similar vertices. Let φi : G−ui → G−u0 be isomorphisms

for 1 ≤ i ≤ k − 1. Then G can be extended to a graph H, and each φi to an

endomorphism θi of H such that:

(i) G is an induced subgraph of H;

(ii) the vertices of U , together with those in V (H)\V (G), are in the same

orbit in H.

Theorem 3.2.1 is an analogue of Corollary 3.1.7 with one important difference:

the graph H in Theorem 3.2.1 is infinite, even when G is finite. The full

analogue of Corollary 3.1.7, as well as that of our Theorem 3.1.6 regarding

the kernel-tail decomposition of a graph relative to a complete c-equivalence

class of vertices is still unknown.

We end this section by a definition that will be used in Chapter 5. A

2-vertex-deleted subgraph of a graph G having at least three vertices is an

induced subgraph of G containing all but two of its vertices. On the analogy

of cards, a 2-vertex-deleted subgraph of G is called a 2-card, and the multi-

set of G’s 2-cards is called the 2-deck of G. As in the case of cards, we do

not distinguish between isomorphic 2-cards. Clearly, the 2-deck of G is com-

putable from D(G). Indeed, one must include each vertex-deleted subgraph

of every card in D(G), and correct by observing that each 2-card has thus

been counted twice.

Definition 3.2.2 Let {u, v} and {x, y} be two couples of vertices in V (G).

These two couples are 2-card-equivalent if they generate the same 2-card, that

is, G− u− v ∼= G− x− y. The couples {u, v} and {x, y} are pseudo-similar

if they are 2-card-equivalent, but none of u, v is similar (i.e., a-equivalent) to

any of x, y.
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Observe that, by definition, if {u, v} and {x, y} are pseudo-similar, then the

vertices u, v, x, y must be pairwise distinct.

The creation of the 2-deck of G raises the following natural question: is

it possible to mark each 2-card G− u− v of G with the cards of the vertices

u and v? The question is not ambiguous, since the correspondence between

the multiset of 2-cards and pairs of vertices {u, v} in G is a bijection. It

may happen, though, that a given pair of (not necessarily distinct) 1-cards

will mark several distinct 2-cards, and different instances of the same 2-card

will be marked by different pairs of 1-cards. As we shall see in Chapter 4,

answering the above question is very difficult, almost as hard as proving the

Reconstruction Conjecture itself.
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Chapter 4

Relative degree-sequences

4.1 A few combinatorial observations

Recall from Chapter 1 that the degree-sequence of graph G is the sequence

of degrees of its vertices in a non-decreasing order. Let Q be a subgraph of

G. The degree of a vertex v ∈ V (Q) relative to G is a pair (r, d), where d

(r) is the degree of v in G (respectively, Q). We shall use the notation rd for

the pair (r, d), and say that v has relative degree r out of d.

Definition 4.1.1 The relative degree-sequence of subgraph Q (with respect

to G) is the sequence of relative degrees rd of its vertices in an order that

is non-decreasing regarding the superscripts d and also non-decreasing in r

among those degrees that have the same superscript d.

The degree-sequence of G and the relative degree-sequence of Q with respect

to G will be denoted by ds(G) and rdsG(Q), respectively. In order to ensure

that ds(G) and rdsG(Q) have the same length, we shall include a relative

“degree” ∅d in rdsG(Q) for each vertex v ∈ V (G) \ V (Q) with degree d. The

“number” ∅ is treated as 0, but the notation ∅ will distinguish between a

vertex that has been deleted and one that is still present but isolated. This

distinction is purely technical, however, because one can easily fill in the ∅d

relative degrees in rdsG(Q) once ds(G) is known.
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Figure 4.1: Graph G and its subgraph Q.

Example 4.1.2 Consider the graph G and its subgraph Q in Fig. 4.1. The

degree-sequence of G is 2, 2, 3, 3, while the relative degree sequence of Q with

respect to G is 12, 12, 13, 33.

The following simple combinatorial observation is equivalent to Nash-

Williams’ result [23, Corollary 3.5] on degree-sequence sequences, also dealt

with in Chapter 1.

Proposition 4.1.3 For every vertex v ∈ V (G), rdsG(G − v) is recoverable

from D(G).

Proof. We have seen in Chapter 1 that d(v) and ds(G) are recoverable from

D(G). Write the sequence ds(G − v) underneath ds(G) by inserting the

“degree” ∅ in ds(G − v) right under the position of the first occurrence of

d(v) in ds(G). For example:

ds(G) : 2 2 2 3 3 4 4
ds(G− v)) : 1 1 2 2 3 ∅ 3
rdsG(G− v) : 12 12 22 23 33 ∅4 34

Observe that the “true” degrees in ds(G− v) will lag behind those in ds(G),

so that the difference between two degrees in aligned positions is at most 1.

Therefore it is trivial to fill out the missing superscripts in ds(G−v), so that

the resulting sequence becomes rdsG(G− v). �

Proposition 4.1.3 basically says that, for every card G − v, the degrees

of the vertices adjacent to v in G are uniquely determined by ds(G) and
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ds(G−v). Indeed, these are exactly the degrees r+1 appearing in rdsG(G−v)

as rr+1. Of course, we still have no information about the actual position of

v’s neighbors in G− v.

We immediately generalize Proposition 4.1.3 to find out the relative

degree-sequence of all 2-vertex-deleted subgraphs of G. Notice that, for two

distinct vertices u, v ∈ V (G), the subgraph G−u−v is no longer determined

by the cards G−u and G− v in a unique way, since the cards themselves do

not uniquely identify the vertices u, v. Moreover, the subgraph G − u − v,

too, can be isomorphic to other subgraphs G− u′− v′ in which u′ and v′ are

associated with some different cards.

Theorem 4.1.4 Let u and v be two distinct vertices of G. Given the degree-

sequence of the subgraph G−u−v, rdsG(G−u−v) is uniquely determined by

the data ds(G), ds(G−u), and ds(G− v). Moreover, the question whether u

and v are adjacent in G or not turns out from the data ds(G), ds(G−u−v),

d(u) and d(v).

Proof. We use the same alignment argument as in the proof of Proposi-

tion 4.1.3. Write the degree-sequences ds(G), ds(G−u), and ds(G−v) under

each other, inserting the ∅ symbol in the appropriate positions of ds(G− u)

and ds(G− v). Furthermore, insert two ∅’s in ds(G−u− v) aligned with the

ones already inserted in ds(G− u) and ds(G− v). If d(u) = d(v) = d, then

insert two consecutive ∅’s aligned with the beginning of the block marked by

degree d in ds(G). For example:

ds(G) : 2 2 2
ds(G− u) : 1 1 2
ds(G− v) : 1 2 2
ds(G− u− v) : 0 1 1

→
rdsG(G− u− v) : 02 12 22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 3
2 3
2 2
2 2
←
13 23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 4 . . . . . . . . . . . .

4 4 . . . ∅ . . . . . .

3 4 . . . . . . ∅ . . .

3 4 . . . ∅ ∅ . . .

34 44 . . . ∅ ∅ . . .

Let nG(d) (nG,Q(rd)) denote the number of occurrences of d (rd) in ds(G)

(respectively, rdsG(Q)). Assume, for simplicity, that the smallest degree in
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G is d0 ≥ 2. Then, clearly:

nG,Q((d0 − 2)d0) = nQ(d0 − 2).

It follows that:

nG,Q((d0 − 1)d0) = nG−u(d0 − 1) + nG−v(d0 − 1)− 2 · nQ(d0 − 2), and

nG,Q(dd00 ) = nG(d0)− nG,Q((d0 − 2)d0)− nG,Q((d0 − 1)d0),

provided that neither of the degrees d(u) and d(v) equals d0. If either or both

does, then the above calculation changes in a straightforward way regarding

the numbers nG,Q((d0 − 1)d0) and nG,Q(dd00 ). Observe that some adjacent

degrees d−1 and d (d ≥ 1) in ds(G−u−v), showing up as relative degrees (d−

1)d+1 and dd in rdsG(G−u−v), must be interchanged in the latter sequence,

since the ascending order with respect to the superscripts has priority over

that of the actual subgraph degrees. See the example above regarding the

relative degrees 13 and 22.

One can then carry on in the same way, calculating the numbers

nG,Q((d0 − 1)d0+1), nG,Q(dd0+1
0 ), nG,Q((d0 + 1)d0+1), and so on. Details are

left to the reader.

As to the second statement of the theorem, if

|E(G)| − |E(G− u− v)| = d(u) + d(v),

then u and v are not connected in G, otherwise they are. The numbers |E(G)|

and |E(G−u− v)| are determined by ds(G) and ds(G−u− v), respectively.

The proof is complete. �

4.2 The relative degree-sequence conjecture

Proposition 4.1.3 and Theorem 4.1.4 show that the concept of relative degree-

sequence is rather fundamental in the study of graph reconstruction. To pro-

vide yet another evidence of this observation, let Rds(G) denote the multiset

{rdsG(Q)|Q is an induced subgraph of G}.
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Thus, relative degree-sequences of subgraphs count with multiplicity in

Rds(G). We put forward the following conjecture, which is very closely

related to the Reconstruction Conjecture.

Conjecture 4.2.1 For every graph G, Rds(G) identifies G up to isomor-

phism.

Conjecture 4.2.1 is especially interesting for several reasons.

1. It appears to hold for all graphs with no exceptions.

2. It provides a characterization of graph isomorphism, which has been

sought for a very long time.

3. Algebraically, if G = G1+G2, where + denotes disjoint union of graphs,

then

Rds(G) = Rds(G1)×Rds(G2). (4.2.1)

In equation 4.2.1 above, × stands for concatenation of sets of relative degree-

sequences in the formal language sense (taking the quotient of the product

by commutativity). In terms of polynomials, one can think of a relative

degree rd as a formal variable. Let X denote the set of all such variables.

Then Rds(G) becomes a polynomial PG of the variables X over the integer

ring Z, in which all coefficients are non-negative. Indeed, the coefficient of

a term x
p1
1 . . . x

pk
k in PG is the number of times the relative degree-sequence

x
p1
1 . . . x

pk
k , that is, the sequence:

(x1, . . . , x1, x2, . . . , x2, . . . , xk, . . . , xk),

comes up in Rds(G). The polynomial PG itself is simply the sum of these

terms for all relative degree-sequences. Notice that the empty graph trans-

lates into the polynomial 1, that is, the empty sequence (product) of vari-

ables, and not to 0. The polynomial 0 is not the image of any graph at

all.
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Let Z[X] denote the commutative Z-module (in fact algebra) of X-

polynomials over Z. (Mind that addition of polynomials is commutative

in Z[X].) Our fundamental observation is that the operation × in equa-

tion 4.2.1 translates naturally into product of polynomials in the algebra

Z[X]. This product makes the algebra Z[X] associative and commutative,

therefore a commutative ring. In this way we could establish an embedding

of the additive commutative monoid structure of graphs with disjoint union

into the multiplicative structure of the commutative ring Z[X], which would

be a very strong result, indeed.

Conjecture 4.2.1 was the starting point of the present study, and the

observation in the previous paragraph served as a motivation for it. Even

more generally, our ambitious goal is to find an embedding of the free traced

monoidal category [12] of flowchart schemes, which is practically a graph

structure with the tensor operation being disjoint union of graphs, into the

compact closed category of free modules over the commutative ring Z[X], in

which tensor and trace are the standard matrix operations. Conjecture 4.2.1

is the key to this very general result. We do not wish to elaborate on al-

gebraic and category theoretic issues in the present study, however, and the

arguments above are included for the sake of revealing the real motives in

formulating Conjecture 4.2.1 only. As it turned out very soon, the key to

Conjecture 4.2.1 is in fact the Reconstruction Conjecture, therefore the focus

of research has changed from algebra to combinatorics.

Naturally enough, Conjecture 4.2.1 also has an “edge” version, in which

Rds(G) is defined as the set of relative degree-sequences of all subgraphs of

G. This version, too, appears to hold for all graphs G with no exceptions.

The connection between Conjecture 4.2.1 and the Reconstruction Con-

jecture is the following. If one could compute Rds(G) from D(G), then

Conjecture 4.2.1 would imply the Reconstruction Conjecture. As our sec-

ond main result in Chapter 5 shows, however, computing the whole multiset

Rds(G) appears to be far too much work in order to reconstruct G. Therefore
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this reconstruction argument probably does not hold much water, indicating

that Conjecture 4.2.1 is even tougher than the Reconstruction Conjecture.

On the other hand, if, given Rds(G), one could isolate Rds(G−v) for each

vertex-deleted subgraph of G, then the Reconstruction Conjecture would im-

ply Conjecture 4.2.1 through a straightforward induction argument. Since

our concern is eventually Conjecture 4.2.1, and the construction of the mul-

tiset of multisets

{Rds(G− v)|v ∈ V (G)}

from Rds(G) looks promising, we shall try to prove the Reconstruction Con-

jecture first.
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Chapter 5

The reconstruction of
card-minimal graphs

In this chapter we present our second main result, which aims at the recon-

struction of card-minimal graphs not containing pseudo-similar couples of

vertices.

5.1 The role of pseudo-similar couples of ver-

tices in card-minimal graphs

Recall from Chapter 2 that graph G is card-minimal if D(G) is a set of |V (G)|

different cards. According to Definition 3.2.2, two couples of vertices {u, v}

and {x, y} in a card-minimal graph G are pseudo-similar iff:

G− u− v ∼= G− x− y,

and u, x, y, z are pairwise distinct. Indeed, given the fact that there are

no distinct a-equivalent vertices in a card-minimal graph (not even pseudo-

similar ones), the condition that neither of u, v is a-equivalent to any of x, y

is equivalent to the condition that these vertices are pairwise distinct.

To shed some light on the intuition behind pseudo-similarity between

couples of vertices in a card-minimal graph G, let Q be an arbitrary graph
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Figure 5.1: Graphs with and without pseudo-similar couples of vertices.

having |V (G)| − 2 vertices. Consider the set C of cards in D(G) in which Q

is isomorphic to at least one vertex-deleted subgraph. Construct the graph

GQ which has C as its set of vertices, and any two cards G − u, G − v are

connected in GQ iff G − u − v ∼= Q. (Remember that G is card-minimal,

therefore the definition of GQ is correct.) Then G is free from pseudo-similar

couples of vertices iff GQ is either a triangle or a star graph for every 2-card

Q of G. In other words, either |C| = 2 and GQ is a single edge, or |C| > 2

and the following two conditions are met:

1. the subgraph Q occurs k ≥ 2 times as a vertex-deleted subgraph in

some card G− u ∈ C;

2. |C| = k + 1 and the cards in C different from G − u all have a single

occurrence of Q in them, with the possible exception that k = 2 and

all the three cards in C have two occurrences of Q in them.

See Fig. 5.1a for a card-minimal graph G which does, and Fig. 5.1b for

one which does not contain pseudo-similar couples of vertices. The smallest

card-minimal graph of Fig. 2.2 does have a pair of pseudo-similar couples, as

shown by Fig. 5.2

It is clear by the above characterization that the property of not having

pseudo-similar couples of vertices is recognizable for card-minimal graphs,
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Figure 5.2: The smallest card-minimal graph, revisited.

i.e., the property is decidable by looking at the deck only. (Of course, the

property of being card-minimal is immediately recognizable.) Indeed, for

each 2-card Q of G, one must construct the graph GQ and check if it is a

triangle or a star graph. If so, then G is free from pseudo-similar couples of

vertices, otherwise it is not. Remember from Chapter 3 that the 2-deck of G

is constructible from D(G).

5.2 The reconstruction result

In this section we present our second main result on the reconstruction of

card-minimal graphs not containing pseudo-similar couples of vertices.

Theorem 5.2.1 Every card-minimal graph G free from pseudo-similar cou-

ples of vertices is reconstructible.

Proof. Let Q be an arbitrary 2-card of G, and find the set C of cards in

which Q is isomorphic to at least one vertex-deleted subgraph. Clearly, C

has at least two elements. If there are exactly two cards G− u and G− v in

C, then conclude that Q ∼= G− u− v, and use Theorem 4.1.4 to decide if u

and v are adjacent in G or not. If C has more than two elements, then two

cases are possible.

Case A: |C| = 3, and each card in C has two subgraphs isomorphic to Q.

Case B: there is exactly one card G − u ∈ C that contains more than one

subgraph isomorphic to Q.

37



In case A, Q ∼= G− u− v for any pair G− u, G− v of distinct cards in

C, while in case B, Q ∼= G−u− v for all vertices v 6= u such that G− v ∈ C.

Furthermore, in case B, Q is not isomorphic to any other 2-card of G. (In

other words, Q 6∼= G− u1 − u2, where G− u1 and G− u2 are both in C but

ui 6= u for either i = 1 or 2.) In both cases, use Theorem 4.1.4 to find out if

u is adjacent to v in G, knowing that Q ∼= G− u− v. It is evident that the

above procedure will decide for each pair of cards G−u, G−v in D(G) if the

vertices u and v are adjacent in G or not. Graph G is thus reconstructed,

and the proof is complete. �
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Chapter 6

Conclusion

Motivated by an independent study in algebra and category theory, we have

presented a structural analysis of graphs with the aim of being able to recon-

struct them from some partial information. The basis of the reconstruction

of graph G could either be the classical multiset of G’s vertex-deleted sub-

graphs, or the multiset of relative degree-sequences of all induced subgraphs

of G.

In order to better understand the problem of graph reconstruction, in

Chapter 3 we have considered two basic equivalence relations on the set

of vertices of a graph G: card equivalence and automorphism equivalence.

Card equivalence is the one that is directly related to the Reconstruction

Conjecture. Our examples have shown, however, that this equivalence is

sometimes rather inconvenient to deal with. Automorphism equivalence has

a much more transparent structure, and it has turned out to be very closely

related to card equivalence. To demonstrate this fact, we have worked out

a characterization theorem for card equivalence, which shows how to bring

card equivalence in line with automorphism equivalence.

With respect to relative degree sequences, in Chapter 4 we have pro-

vided a generalization of an earlier observation by Nash-Williams on the

degree-sequence sequence of graphs. Recognizing the importance of relative

degree-sequences in graph reconstruction, we have proposed a new conjec-
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ture saying that every graph G is uniquely determined (up to isomorphism)

by the multiset of relative degree-sequences of its induced subgraphs. This

conjecture directly connects the motivating algebraic study to the problem

of graph reconstruction, showing that the new conjecture is probably even

more difficult to prove than the Reconstruction Conjecture.

In Chapter 5 we have investigated the class of card-minimal graphs, the

deck of which is a set. We have also generalized the concept of peudo-

similarity to couples of vertices in any graph G. As a result we have shown

that every card-minimal graph G not having pseudo-similar couples of ver-

tices is reconstructible.
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