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Abstract 

The Old Woman-Piute Range Batholith (OWPB) in the Mojave Desert of south-

eastern California is a suite of metaluminous and peraluminous Cretaceous granites that 

intrudes Proterozoic basement. The peraluminous Sweetwater Wash, Painted Rock and 

North Piute plutons were sampled to investigate geochemical heterogeneity. Zircon and 

monazite crystals were analysed for U–Pb & Lu–Hf and U–Pb & Sm–Nd isotopes, 

respectively, using the high-spatial resolution and the recently developed Laser Ablation 

Split Stream (LASS) approach. Inherited cores are widespread in zircon, limited in 

monazite, and yield U-Pb ages that range from 1800-1400 Ma, consistent with regional 

Proterozoic crustal building events. Zircon and monazite rims give a range of 

crystallisation ages between 70–75 Ma. The OWPB shows a large range in εHfi and εNdi in 

both inherited and magmatic populations, a characteristic that is derived primarily from 

the Proterozoic crustal source, but also influenced by the partial dissolution and 

preservation of inherited grains. 
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Chapter 1 - Introduction and Overview 

1.1 - Background 

In situ analyses of of accessory minerals at the sub-grain scale have proven to be 

effective tools for understanding the origins and evolution of magmatic systems, with 

studies often utilising multiple isotopic systems and minerals (e.g., Kemp et al., 2007; 

McFarlane & McCulloch, 2007; Xie et al., 2008). Improvements in in situ analytical 

methods such as SIMS (secondary ionisation mass spectrometry), LA-ICP-MS (laser 

ablation inductively coupled plasma mass spectrometry) and LA-MC-ICP-MS (laser 

ablation inductively coupled plasma multi collector mass spectrometry) have revealed 

details of magmatic processes at increasingly finer temporal and spatial scales. The 

majority of these isotopic studies have focused on zircon (Amelin et al., 2000; Harrison 

et al., 2005; Hawkesworth & Kemp, 2004). When U-Pb geochronology is combined with 

O and Lu-Hf isotopes (and in some cases trace elements), the integration of these 

isotopic systems can be a powerful petrogenetic tool for studying both granitic rocks 

(Crowley et al., 2008) and high grade metamorphic rocks (Schaltegger et al., 1999). 

Similar to zircon, the mineral monazite-(Ce) ([Ce,La,Nd,Th]PO4) is also a powerful tracer 

of crustal processes (Hawkins & Bowring, 1997; Tomascak et al., 1998; Iizuka et al., 

2011). The potential to simultaneously measure U-Pb and tracer (e.g., Lu-Hf and Sm-Nd) 

isotopes in zircon and monazite respectively by the laser ablation split stream (LASS) 

method (Yuan et al., 2008; Fisher et al., 2014; Goudie et al., 2014) in complex, 
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compositionally zoned, accessory minerals allows for a high-resolution spatial and 

temporal snapshot of the crystallisation history at a finer scale than would be achieved 

using whole mineral grain, or whole-rock, samples. This ability to resolve intra-crystalline 

heterogeneity is an important tool for geoscientists as geological processes are sought 

to be understood at ever smaller scales (Nemchin et al., 2013). 

The late Cretaceous Old Woman-Piute Batholith (OWPB) in the Mojave Desert of 

southeastern California is an excellent natural laboratory in which to utilise these 

techniques in order to understand the petrogenesis of peraluminous continental arc 

granites. Three such plutons (Sweetwater Wash, North Piute, and Painted Rock) were 

chosen for detailed analysis in this study. The Sweetwater Wash Pluton (SWP) is well 

characterised in terms of field relations and geochemistry (e.g., whole rock major, minor 

and trace elements, radiogenic tracer and stable isotopes) (Mittlefehldt & Miller, 1983; 

Miller et al., 1990; Wark & Miller, 1993) allowing for further detailed mineral-scale 

analysis. A preliminary study of monazite in the SWP by Fisher et al. (in preparation) 

documented the presence of significant isotopic heterogeneity. The North Piute Pluton 

(NPP) and the Painted Rock Pluton (PRP), both of similar age to the SWP, have received 

less attention, and so this study will act as the first dedicated work on these plutons. 

These plutons will also provide useful comparisons to the more extensive SWP and will 

allow potential heterogeneities in the OWPB to be investigated at the batholith scale. 

The current study aims to investigate and explain scales of heterogeneity of the 

OWPB and constrain its petrogenesis within a local and a regional context. Fieldwork 
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involved systematic sampling along a transect in the SWP allowing spatial and temporal 

variations to be investigated via the records preserved in the chemistry of accessory 

minerals. Samples were also collected from the NPP and PRP as part of this comparative 

study. This study is the first to thoroughly investigate the petrogenesis of a plutonic 

system by analysing monazite by the LASS method, and by combining this with zircon U-

Pb and Lu-Hf data, a high-spatial-resolution geochronological and chemical record will 

be revealed. Furthermore, verifying and understanding the isotopic heterogeneity 

observed in the OWPB will provide important insights into monazite and zircon isotope 

systematics and crustal evolution. 

1.2 – Aims  

 To investigate the variations in monazite and zircon isotope geochemistry 

throughout the SWP, NPP, and PRP. 

 To examine potential mineral-scale isotopic disequilibrium in the SWP, NPP, and PRP.  

 To compare the SWP to other peraluminous granites in the Old Woman-Piute Range 

batholith. 

 To use mineral-scale U-Pb and tracer isotope heterogeneity to understand magma 

chamber processes in a well-characterized plutonic system and to develop a model 

for the petrogenesis of the OWPRB. 
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1.3 - Methods 

 Description of rock types in the OWP through field observations, hand samples and 

thin section petrography 

 Use of BSE imaging (zircon and monazite), cathodoluminescence (zircon) and 

compositional X-ray mapping (monazite) to characterise zonation patterns  

 U-Pb dating of monazite and zircon grains by LA-ICP-MS, done at University of 

Portsmouth 

 Lu-Hf isotopic analysis of dated zircon grains by MC-ICP-MS, done at Washington 

State University 

 U-Pb and Sm-Nd isotopic analysis of monazite grains by LASS, done at Washington 

State University 

 Whole rock major and trace element geochemistry of all samples by ICP-MS, 

analysed by ACT-LABS 

 Whole rock Sr and Sm-Nd isotopic analysis of all samples by TIMS, done at Memorial 

University of Newfoundland 

 Whole rock Lu-Hf isotopic analysis of all samples by MC-ICP-MS, done at Memorial 

University of Newfoundland 
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1.4 - Geological overview 

1.4.1 - Regional geology 

The crust into which the OWPB intruded is long-lived and has a complex geologic 

history. The oldest rocks exposed today are of Proterozoic age (1.8 to 1.7 Ga), but U-Pb 

data for detrital and inherited zircon grains from Proterozoic supracrustal and intrusive 

rocks and Mesozoic plutons document the existence of an older component in the 

eastern Mojave Desert (very early Proterozoic to Late Archean, 2-3 Ga) (Wooden & 

Miller, 1990; Kapp et al., 2002; Barth et al., 2009; Strickland et al., 2013). Sm-Nd model 

ages from Proterozoic crystalline rocks also suggests the presence of 2.0-2.3 Ga crust 

under the area (Bennett & DePaolo, 1987). Whole rock Pb isotopic compositions at 1.7 

Ga are distinctive having high 207Pb/204Pb and very high 208Pb/204Pb relative to 

206Pb/204Pb (Wooden & Miller, 1990). This Nd and Pb isotopic character of the Eastern 

Mojave Desert crust is distinct from similar Proterozoic provinces of North America, 

probably reflecting input from Archean crust into Paleoproterozoic sedimentary 

sequences and mantle-derived magmas (e.g., Bennett & DePaolo, 1987). 

The oldest exposed rocks of the eastern Mojave Desert crust are immature 

clastic metasedimentary rocks derived from an adjacent arc terrane and deposited at 

1.79-1.75 Ga (Barth et al., 2009; Strickland et al., 2013). This supracrustal sequence was 

intruded by slightly younger mafic and granitic magmas and then metamorphosed at 

upper amphibolite to granulite facies, migmatized, and intruded by more granites in a 
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series of events that lasted until ca. 1.67 Ga (Wooden & Miller, 1990; Barth et al., 2009; 

Strickland et al., 2013). 

Moderate volumes of granite were emplaced in the Mojave crust at ~1.4 Ga and 

form part of the NE-SW trending “anorogenic” belt that runs from northern Europe, 

through Labrador, across the eastern and southern United States, and into Southern 

California (Anderson, 1983). Siliciclastic and carbonate-dominated shelf sedimentation 

occurred from the Neoproterozoic into the Cambrian recording the change from a stable 

passive margin into a rifting phase, and then into the establishment of passive margin 

sedimentation by the earliest Cambrian that continued to the Permian and Triassic 

(Walker, 1988; Miller et al., 1990; Barth et al., 2009). 

The OWPB is located to the east of the 0.706 87Sr/86Sr line (Kistler, 1990), and 

within a muscovite-granite belt that extends throughout the Cordillera (Figure 1.1). This 

geochemical boundary has been interpreted to represent either the margin of the 

Proterozoic crust (Miller & Bradfish, 1980; Kistler, 1990), or alternatively, the western 

edge of the North American lithospheric mantle (Miller et al., 2000). The strongly 

peraluminous nature of much of the OWPB is in contrast to that of other Mesozoic 

batholiths such as the Sierra Nevada and Peninsular Ranges, where muscovite-bearing 

plutons are much less common. 

Intense reactivation of the North American craton occurred in the Mesozoic 

during the Sevier Orogeny and continued through the Laramide Orogeny (Livaccari, 
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1991).  Plutonism in the Mojave began in the mid-Jurassic with the subduction of the 

Farallon Plate under the North American Plate, expressed in the vicinity of the OWPB by 

the emplacement of the synkinematic Clipper Mountains pluton at ~160 Ma and 

abundant 145 Ma dikes (Miller & Wooden, 1994). As subduction continued into the 

Cretaceous the tectonic style varied along the arc reflecting the complexities of oblique 

convergence of the subducting slab. Contractional orogenic forces caused the formation 

of the Fenner Shear zone to the east of the Piute Mountains, through which the ~85 Ma 

East Piute pluton was emplaced (Karlstrom et al., 1993). 

The major episode of magmatism in the Eastern Mojave occurred between 75-70 

Ma, proposed to be due to the collapse of the inland orogenic belt after the tectonically 

thickened crust encountered the lithosphere of the Colorado Plateau (Livaccari, 1991). 

During the Late Cretaceous two distinct types of magma were emplaced: earlier 

metaluminous- to weakly peraluminous (MG) granodiorites and later peraluminous 

granites (PG). These peraluminous and metaluminous intrusions account for ~85% of the 

total exposed intrusive mass in the Mesozoic upper crust in the OWPB (Miller & 

Wooden, 1994).  

Rapid unroofing of the OWPB from mid-crustal levels occurred during the Late 

Cretaceous and into the early Tertiary. 40Ar/39Ar thermochronology and apatite fission 

track data suggest that the Old Woman Mountains area initially cooled rapidly at a rate 

of 100°C/m.y. between 73 and 70 Ma through conduction of heat to surrounding rocks, 

and then by 10-30°C/m.y. until after 60 Ma (Foster et al., 1989; Foster et al., 1990; 
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Foster et al., 1992). Ductile shear zones, expressed as mylonitization and penetrative 

deformation of the deeper granitoids, are thought to be responsible for the unroofing in 

this region, in a similar fashion to other Cordilleran metamorphic core-complexes (Carl & 

Miller, 1991). 
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Figure 1.1 – Location of the OWPB in relation to regional geological features. 

After Miller & Bradfish (1980). 
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1.4.2 - Nature of the Old Woman-Piute batholith 

The country rocks into which the Old Woman-Piute (OWP) batholith intrudes are 

part of the Proterozoic complex of the eastern Mojave Desert. Towards the margins of 

the SWP there is a clear intrusive relationship between the granite and the gneiss, with 

intrusive veining, small scale migmatisation and dynamic mobilisation of gneiss blocks 

within the granite (Figure 1.2.).  

The OWPB includes both of the Cretaceous magma series: the MG Old Woman 

and Goffs plutons and the strongly PG Sweetwater Wash (SWP), Painted Rock (PRP), 

North Piute (NPP), and Lazy Daisy plutons (Figure 1.3). The peraluminous granites, which 

are the focus of this study, occur in discrete plutons and show the temporal sequence 

muscovite-biotite granite  muscovite-biotite-garnet granite  muscovite-garnet 

granite  aplite and pegmatite (Mittlefehldt & Miller, 1983). Peraluminous granitoid 

rocks are uniformly felsic (70-76 wt. SiO2) with sodic plagioclase > K-feldspar. Biotite is 

present in all but the most felsic aplites, becoming subordinate with evolution and the 

appearance of garnet. Zircon and monazite are important accessory minerals, both 

minerals being more abundant in the biotite-rich samples. 

Regional tilting exposes deeper structural levels of the Old Woman batholith 

towards the south (Figure 1.4). Roof contacts are typically sharp with injections of 

aplite/pegmatite dikes being common. The roof and floor sections of the Sweetwater 

Wash pluton are sheet like, and whilst enclaves are sparse in the roof zone the lower 

parts of the pluton grade into floor material with increasing proportions of country rock. 
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Beneath this heavily injected zone is a sheared heterogeneous zone of gneissic country 

rock below which is the sheet-like MG Old Woman granodiorite (Miller et al., 1990). A 

similar sheared zone is present at its base with extensive migmatisation present at 

depth. The PRP, which is completely enclosed by the Old Woman pluton, encloses large 

blocks of the Old Woman granodiorite. At the cm-scale there is evidence of interaction 

between the two rock types, possibly assimilation or mixing having occurred. Dikes 

observed to cut the Old Woman pluton above the PRP may represent feeder dikes for 

the shallower Sweetwater Wash pluton (Miller et al., 1990). Multiple mineral 

barometers suggest that the NPP was emplaced at ~10 km and the SWP at ~15km 

(Foster et al., 1992). 

Garnet-bearing granite facies occur in the SWP and PRP, which has been mapped 

along the margins of the SWP (Figure 1.5). Garnet-bearing aplite/pegmatite facies also 

occur sporadically in the SWP and tend to be located towards the centre of the pluton. 

The NPP is the most homogeneous of the three plutons, being composed of very 

uniform 2-mica granite.   
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Figure 1.2 – Intrusive relationship of the SWP granite and the Fenner Gneiss. 

Facing south along Carbonate Gulch, at the south east margin of the Sweetwater Wash 

Pluton. The light coloured granite of the SWP in this boulder is seen to intrude the dark 

Fenner Gneiss unit. Metre sized rotated blocks have been incorporated into, and been 

intruded by the granite, reflecting the dynamic emplacement of the pluton. Figure b) is a 

zoomed-in image of Figure a). Photo by Stacy Phillips.   
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Figure 1.3 – Geological map of the OWPB. 

Inset shows location of the OWPB relative to Los Angeles and Las Vegas. 

After Miller & Wooden (1994) 



Page 14 
 

Figure 1.4 – Schematic cross section of the OWPB. 

After Miller et al., (1990).
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Figure 1.5 – Geological map of the SWP. 

After Mittlefehldt & Miller (1983). 
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1.4.3 - Previous petrochemical investigations 

The SWP has been well characterised petrochemically. Whole rock major and 

trace element analyses by Mittlefehldt & Miller (1983) show smooth geochemical 

evolutionary trends that are consistent with fractional crystallisation of the observed 

mineral assemblages.  An increase in SiO2 content between the 2-mica granite and the 

aplite/pegmatite samples is accompanied by a decrease in Ba and Sr and an increase in 

Rb, due to feldspar fractionation, while a decrease in LREE abundances is explained by 

monazite fractionation. 

In situ ion probe U-Pb analyses of zircon crystals from the Old Woman 

granodiorite and Sweetwater Wash two-mica granite yield concordant analyses of 74 ± 3 

Ma (2σ), and 40Ar/39Ar analyses of hornblende from the Old Woman granodiorite yield 

an age of 73 ± 2 Ma (2σ) (Foster et al., 1989). The SWP granite was found to contain 

numerous inherited zircon grains with ~50% of the zircon crystals showing anhedral 

Proterozoic cores and thin magmatic Cretaceous rims with well-formed growth zoning 

revealed in cathodoluminescence (CL) and back-scattered electron (BSE) imaging (Miller 

et al., 1992; Hanchar & Miller 1993). The dates for these inherited zircon cores span 

1800-1100 Ma, consistent with the eastern Mojave Desert crust as described above 

(Bennett & DePaolo, 1987). The presence of these inherited zircon cores in the SWP is 

one of the driving forces behind using in situ techniques in accessory minerals such as 

zircon and monazite, as inter- and intra-crystal variations can reveal important insights 
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into crustal evolution and magma chamber processes that otherwise cannot be resolved 

at the whole-rock scale. 

Further studies of the SWP have investigated monazite and other accessory 

minerals. Kingsbury et al., (1993) identified the presence of discordant inherited 

monazite grains that record U-Pb dates of 1800-1700 Ma, consistent with dates from 

inherited zircon crystals as described above (Foster et al., 1989). Wark & Miller (1993) 

investigated monazite, zircon, and xenotime in order to trace the geochemical evolution 

in the SWP as recorded in those accessory minerals. Differentiation of rock units from 

granite to aplite is accompanied by flattening of REE patterns in monazite, increasing 

concentrations of Hf and Y in zircon, and a slight increase in Gd/Ho ratios in xenotime, 

with U and Th increasing in each of the three phases. Accessory minerals also showed 

well-developed compositional zonation patterns of Hf, U, Th and REE within grains that 

reflect changing melt compositions with time. 

The whole-rock major element, trace element and isotopic data presented in 

Miller et al. (1990), Miller et al. (1992), and Miller & Wooden (1994) (as detailed below) 

constrain the petrogenesis of the two magma series present in the OWPB, with 

differences between the metaluminous and peraluminous rock types being a function of 

source composition. High 87Sr/86Sr (MG = 0.7095-0.7115 vs PG = 0.7014-0.719) and low 

εNd (MG = -10 to -12 vs PG = -16 to -17) indicate major contributions from the 

Proterozoic crust. Assuming that the both magma series were entirely derived from 

Proterozoic crust, time averaged Rb/Sr ratios for MG and PG rocks suggest a mafic-
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intermediate igneous source for the MG and an intermediate-felsic igneous source for 

the PG series. This is also consistent with their whole-rock δ18O values that rule out 

dominant contributions from either the mantle or sediments (e.g., δ18O = 7.2 to 9.3‰). 

Similarly, the high Rb and Ba contents of MG rocks also precludes derivation from a 

solely mantle source, while the low Rb/Ba of PG rocks rules out a dominantly 

supracrustal pelitic source. 

A suite of lower-crustal xenoliths from a Tertiary dike found in the northern Piute 

Mountains have Pb, Sr and Nd compositions that are consistent with derivation from a 

Proterozoic Mojave crust (Miller et al., 1992; Hanchar et al., 1994). Major and trace 

elements and radiogenic isotopic characteristics of the xenoliths suggest they represent 

the depleted residue (i.e., restite) after extraction of felsic melt. This Proterozoic Mojave 

crust is deemed to be heterogeneously composed of intermediate to felsic igneous rocks 

as well as diverse clastic sedimentary rocks. Modelling of the extracted melt yields 

compositions that are consistent with that of OWPB granitoids.  Calculated melt 

fractions are variable (0-70%) and must have led to diverse melt compositions. 

1.5 - LASS technique 

This study serves as the first dedicated investigation into both monazite and 

zircon in magmatic systems using the laser ablation split stream (LASS) technique. The 

recently developed LASS method involves the simultaneous determination of U-Pb and 

Lu-Hf isotopes in zircon (Yuan et al., 2008; Fisher et al., 2014) and U-Pb and Sm-Nd 

isotopes simultaneously in monazite (Goudie et al., 2014). The ablated sample material 
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is split into two streams as it exits the ablation cell and U-Pb isotopes are measured by a 

magnetic sector high resolution (HR) ICP-MS and Sm-Nd or Lu-Hf isotopes are measured 

by a multicollector (MC-ICP-MS). This method allows for accurate determinations of 

initial isotopic compositions by using corresponding the U-Pb ages. The primary 

advantage of the LASS approach is that is allows a robust method of detecting mixed age 

analyses, which are possible in cases where multiple generations of growth are present 

in a single crystal. This is especially important in this study as monazite and zircon grains 

often have complex zoning patterns that reflect different isotopic compositions, and it is 

imperative that the tracer isotopes are measured in age zone of interest. If, for example, 

two age components are present in an analysis, sampling both components 

simultaneously will yield a discordant result and lie on a mixing line between the two 

ages on a conventional Concordia diagram. Non-split-stream methods involve the 

determination of U-Pb isotopes first, followed by analysis of tracer isotopes, which does 

not allow detection of multiple components in the trace isotope analysis. Further, the 

relatively small spot sizes (20-30 μm) used in this study also help to overcome, but not 

eliminate completely, issues with mixing different age and isotopic domains  (Goudie, et 

al., 2014; Fisher, et al., 2014).  

This method is therefore a powerful tool with which to understand the isotopic 

systematics of accessory minerals. The accuracy of the LASS method was examined in 

the above studies by analyses of a multitude of monazite and zircon reference standards 

that cover a wide range of ages and elemental compositions. It was found that LASS 
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results are in excellent agreement with accepted and in house reference values and the 

precision of the LASS technique is often comparable with that of analyses of single 

isotopic systems. Goudie et al. (2014) reported that the loss in sensitivity from splitting 

the ablation stream to the two mass spectrometers is ~14%, clearly less than might be 

expected by splitting the ablation stream into two parts. 

1.6 - Presentation 

This thesis is presented in manuscript format. Chapter 1 serves as an 

introduction to the project, an overview regional geology of the area, and a review of 

previous work. Chapter 2 is a manuscript for a peer-reviewed article that will be 

submitted as a paper (High-spatial-resolution Sm-Nd & U-Pb and Lu-Hf & U-Pb isotope 

geochemistry of monazite and zircon in Old Woman-Piute Batholith, Mojave Desert, 

California).  

This paper describes the results of this study into the geochemistry of the Old 

Woman-Puite Batholith. A summary of the project is presented in Chapter 3, as well as 

proposed future work. Detailed methods for data analysis and reduction are presented 

in Appendix A, analyses of standard reference materials are presented in Appendix B, 

and full data tables are presented in Appendix C. 
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2.1 - Abstract 18 

The Old Woman-Piute Range Batholith (OWPB) in the Mojave Desert of south-19 

eastern California consists of a number of discrete metaluminous and peraluminous 20 

plutons that intruded a long-lived and complex Proterozoic basement. Three strongly 21 

peraluminous plutons were chosen to investigate isotopic heterogeneity at the sample-, 22 

pluton- and batholith-scale. Zircon and monazite crystals were analysed for U–Pb & Lu–23 

Hf and U–Pb & Sm–Nd isotopes respectively, primarily using the laser ablation split 24 

stream (LASS) approach. This approach allows for a detailed assessment of geochemical 25 

changes in both Hf and Nd compositions in the magmatic system at a fine spatial scale, 26 

while also ensuring only relevant growth domains are sampled.  27 

The U–Pb data show widespread inheritance in zircon cores, yielding ages 28 

between ~1800 and ~1400 Ma, while only four monazite grains yield “old” inherited 29 

cores (~1700 Ma), these ages being consistent with the regional Proterozoic 30 

geochronology. Zircon and monazite rims give “young” Cretaceous crystallisation ages, 31 

and ages between samples and between plutons are within uncertainty of each other. 32 

The magmatic zircon and monazite crystals record the Hf and Nd isotopic ratios of their 33 

crustal sources and display a strikingly large range in εHfi (young = -8.2– -19.2) and εNdi 34 

(young = -12.6 – -21.8). This heterogeneity is thought to be derived directly from the 35 

heterogeneous source, and is further controlled by the extent of dissolution and the 36 

preservation of inherited zircon and monazite. Isotopic data are consistent with 37 
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derivation of the OWPB Batholith from the ancient crust into which it intrudes, which is 38 

spatially coincident with the inferred edge of Precambrian North America. 39 

2.2 - Introduction 40 

In situ analyses of the radiogenic tracer isotope and trace element composition 41 

of accessory minerals at the sub-grain scale have proven to be effective tools for 42 

understanding the origins and evolution of magmatic systems, with studies often 43 

utilising multiple isotopic systems and minerals (Kemp et al., 2007; McFarlane & 44 

McCulloch, 2007; Xie et al., 2008). Improvements in in situ analytical methods such as 45 

SIMS (secondary ionisation mass spectrometry), LA-ICP-MS (laser ablation inductively 46 

coupled plasma mass spectrometry) and LA-MC-ICP-MS (laser ablation inductively 47 

coupled plasma multi collector mass spectrometry) have revealed details of magmatic 48 

processes at increasingly finer temporal and spatial scales. The majority of these isotopic 49 

studies have focused on zircon (Amelin et al., 2000; Harrison et al., 2005; Hawkesworth 50 

& Kemp, 2004), where U-Pb geochronology is combined with O and Lu-Hf (and in some 51 

case trace elements).  The integration of these isotopic systems has proven to be a 52 

powerful petrogenetic tool for studying both granitic rocks (Crowley et al., 2008) and 53 

high grade metamorphic rocks (Schaltegger et al., 1999). Monazite-(Ce) 54 

([Ce,La,Nd,Th]PO4) is also a useful tracer of crustal processes (Hawkins & Bowring, 1997; 55 

Tomascak et al., 1998; Iizuka et al., 2011), but has not received near the amount of 56 

attention as zircon. The potential to simultaneously measure U-Pb and tracer (e.g., Lu-Hf 57 

and Sm-Nd) isotopes in zircon and monazite respectively by the laser ablation split 58 
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stream (LASS) method (Yuan et al., 2008; Fisher et al., 2014; Goudie et al., 2014) from 59 

compositionally zoned accessory minerals allows for a high-resolution spatial and 60 

temporal snapshot of crystallisation history, and avoids complications inherent in 61 

sampling complexly zoned grains, as concomitant ages provide an effective means to 62 

monitor inadvertent sampling of crystal domains which are not of interest (e.g., 63 

inherited domains, and younger overgrowths). This ability to resolve intra-crystalline 64 

heterogeneity is an important tool for geoscientists as geological processes are sought 65 

to be understood at ever smaller scales (Nemchin et al., 2013). 66 

Due to its extensive exposure, the late Cretaceous Old Woman-Piute Batholith 67 

(OWPB) in the Mojave Desert of southeastern California has served as an excellent 68 

natural laboratory in which to understand the petrogenesis of continental arc granites 69 

(Mittlefehldt & Miller, 1983; Miller et al., 1990; Wark & Miller, 1993). Three 70 

peraluminous granitic plutons from this batholith were chosen for detailed study. The 71 

Sweetwater Wash Pluton (SWP) is well characterised in terms of field relations 72 

geochemistry (e.g., whole rock major, minor and trace elements, radiogenic tracer and 73 

stable isotopes) (Mittlefehldt & Miller, 1983; Miller et al., 1990; Wark & Miller, 1993), 74 

allowing for further detailed mineral-scale analysis. A preliminary study of monazite in 75 

the SWP by Fisher et al. (in preparation) demonstrated the presence of significant 76 

isotopic heterogeneity. The North Piute Pluton (NPP) and the Painted Rock Pluton (PRP), 77 

both of similar age to the SWP, have received less attention, and so this study will act as 78 

the first dedicated work on these plutons. These plutons will also provide useful 79 



Page 27 
 

comparisons to the more extensive SWP and will allow potential heterogeneities in the 80 

OWPB to be investigated at the batholith scale. 81 

The current study aims to investigate scales of heterogeneity of the OWPB and 82 

constrain its petrogenesis within a local and a regional context. Fieldwork involved 83 

systematic sampling along a transect in the SWP allowing pluton-scale spatial and 84 

temporal variations to be investigated via the records preserved in the chemistry of 85 

accessory minerals. Samples were also collected from the NPP and PRP for comparison 86 

with the SWP. We employ the combination of Lu-Hf isotopes in zircon and Sm-Nd 87 

isotopes and REE in monazite, to obtain constraints on the petrogenesis of the SWP 88 

through assessment of the degree of isotopic heterogeneity recorded in accessory 89 

minerals. Most analyses reported were done using the LASS method, which allows 90 

concurrent age analysis along detection of mixed domains and thus ensures that only 91 

the crystal domain of the age of interest are considered. Understanding the mechanisms 92 

responsible for producing the isotopic heterogeneity or homogeneity observed in the 93 

OWPB will help constrain the petrogenesis of peraluminous plutons in general, as well as 94 

provide important insights into monazite and zircon isotope systematics, crustal 95 

evolution, and the fate of inherited accessory minerals under changing melt conditions. 96 
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2.3 - Geological overview 97 

2.3.1 - Regional geology 98 

The crust into which the OWPB intruded is long-lived and has a complex geologic 99 

history. The oldest rocks exposed today are of Proterozoic age (1.8 to 1.7 Ga), but U-Pb 100 

data for detrital and inherited zircon grains from Proterozoic supracrustal and intrusive 101 

rocks and Mesozoic plutons document the existence of an older component in the 102 

eastern Mojave Desert (very early Proterozoic to Late Archean, 2-3 Ga) (Wooden & 103 

Miller, 1990; Kapp et al., 2002; Barth et al., 2009; Strickland et al., 2013). Sm-Nd model 104 

ages from Proterozoic crystalline rocks also suggest the presence of 2.0-2.3 Ga crust 105 

under the area (Bennett & DePaolo, 1987).  Whole rock Pb isotopic compositions at 1.7 106 

Ga are distinctive having high 207Pb/204Pb and very high 208Pb/204Pb relative to 107 

206Pb/204Pb (Wooden & Miller, 1990). This Nd and Pb isotopic character of the Eastern 108 

Mojave Desert crust is distinct from similar Proterozoic provinces of North America, 109 

probably reflecting input from Archean crust into Paleoproterozoic sedimentary 110 

sequences and mantle-derived magmas (e.g., Bennett & DePaolo, 1987). 111 

The oldest exposed rocks of the eastern Mojave Desert crust are immature 112 

clastic metasedimentary rocks interpreted to have been derived from an adjacent arc 113 

terrane and deposited 1.79-1.75 Ga (Barth et al., 2009; Strickland et al., 2013). This 114 

supracrustal sequence was intruded by slightly younger mafic and granitic magmas and 115 

then metamorphosed at upper amphibolite to granulite facies, migmatized, and 116 
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intruded by more granites in a series of events that lasted until ca. 1.67 Ga (Wooden & 117 

Miller, 1990; Barth et al., 2009; Strickland et al., 2013). 118 

Moderate volumes of granite were emplaced in the Mojave crust at ~1.4 Ga and 119 

form part of the NE-SW trending “anorogenic” belt that runs from northern Europe, 120 

through Labrador, across the eastern and southern United States, and and  into 121 

Southern California (Anderson, 1983). Siliciclastic and carbonate-dominated shelf 122 

sedimentation occurred from the Neoproterozoic into the Cambrian recording the 123 

change from a stable passive margin into a rifting phase, and then into the 124 

establishment of passive margin sedimentation by the earliest Cambrian that continued 125 

to the Permian and Triassic (Walker, 1988; Miller et al., 1990; Barth et al., 2009). 126 

The OWPB is located to the east of the 0.706 87Sr/86Sr line (Kistler, 1990), and 127 

within a muscovite-granite belt that extends throughout the Cordillera (Figure 2.1a). This 128 

geochemical boundary has been interpreted to represent either the margin of the 129 

Proterozoic crust (Miller & Bradfish, 1980; Kistler, 1990), or alternatively, the western 130 

edge of the North American lithospheric mantle (Miller et al., 2000). The strongly 131 

peraluminous nature of much of the OWPB is in contrast to that of other Mesozoic 132 

batholiths such as the Sierra Nevada and Peninsular Ranges, where muscovite-bearing 133 

plutons are much less common. 134 

Intense reactivation of the North American craton occurred in the Mesozoic 135 

during the Sevier Orogeny and continued through the Laramide Orogeny (Livaccari, 136 
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1991).  Plutonism in the Mojave began in the mid-Jurassic with the subduction of the 137 

Farallon Plate under the North American Plate, expressed in the vicinity of the OWPB by 138 

the emplacement of the synkinematic Clipper Mountains pluton at ~160 Ma and 139 

abundant 145 Ma dikes (Miller & Wooden, 1994). As subduction continued into the 140 

Cretaceous the tectonic style varied along the arc reflecting the complexities of oblique 141 

convergence of the subducting slab. Contractional orogenic forces caused the formation 142 

of the Fenner Shear zone to the east of the Piute Mountains, through which the ~85 Ma 143 

East Piute pluton was emplaced (Karlstrom et al., 1993). 144 

The major episode of magmatism in the Eastern Mojave occurred between 75-70 145 

Ma, proposed to be due to the collapse of the inland orogenic belt after the tectonically 146 

thickened crust encountered the strong lithosphere of the Colorado Plateau (Livaccari, 147 

1991). During the Late Cretaceous two distinct types of magma were emplaced: earlier 148 

metaluminous- to weakly peraluminous (MG) granodiorites and later peraluminous 149 

granites (PG). These peraluminous and metaluminous intrusions account for ~85% of the 150 

total exposed intrusive mass in the Mesozoic upper crust in the OWPB (Miller & 151 

Wooden, 1994).  152 

2.3.2 - Nature of the Old Woman-Piute batholith 153 

The OWPB includes both of the Cretaceous magma series: the MG Old Woman 154 

and Goffs plutons and the strongly PG Sweetwater Wash (SWP), Painted Rock (PRP), 155 

North Piute (NPP), and Lazy Daisy plutons (Figure 2.1b). The peraluminous granites, 156 

which are the focus of this study, occur in discrete plutons and show the temporal 157 
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sequence muscovite-biotite granite  muscovite-biotite-garnet granite  muscovite-158 

garnet granite  aplite and pegmatite (Mittlefehldt & Miller, 1983). Peraluminous 159 

granitoid rocks are uniformly felsic (70-76 wt. SiO2) with sodic plagioclase > K-feldspar. 160 

Biotite is present in all but the most felsic aplites, becoming subordinate with evolution 161 

and the appearance of garnet. Zircon and monazite are important accessory minerals, 162 

both minerals being more abundant in the biotite-rich samples. 163 

Regional tilting exposes deeper structural levels of the Old Woman batholith 164 

towards the south. Roof contacts are typically sharp with injections of aplite/pegmatite 165 

dikes being common. The PRP, which is completely enclosed by the Old Woman pluton, 166 

encloses large blocks of the Old Woman granodiorite. At the cm-scale there is evidence 167 

of interaction between the two rock types, possibly assimilation or mixing having 168 

occurred. Dikes observed to cut the Old Woman pluton above the PRP may represent 169 

feeder dikes for the shallower Sweetwater Wash pluton (Miller et al., 1990). Multiple 170 

mineral barometers suggest that the NPP was emplaced at ~10 km and the SWP at 171 

~15km (Foster et al., 1992). 172 

2.3.3 - Previous work 173 

The SWP has been well characterised petrochemically. Whole rock major and 174 

trace element analyses by Mittlefehldt & Miller (1983) show smooth geochemical 175 

evolutionary trends that are consistent with fractional crystallisation of the observed 176 

mineral assemblages.  An increase in SiO2 content between the 2-mica granite and the 177 

aplite/pegmatite samples is accompanied by a decrease in Ba and Sr and an increase in 178 
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Rb, due to feldspar fractionation, while a decrease in LREE abundances is explained by 179 

monazite fractionation. 180 

In situ ion probe U-Pb analyses of zircon crystals from the Old Woman 181 

granodiorite and Sweetwater Wash two-mica granite yield concordant analyses of 74 ± 3 182 

Ma (2σ), and hornblende from the Old Woman granodiorite yields an age of 73 ± 2 Ma 183 

(2σ) (Foster et al., 1989). The SWP granite was found to contain numerous inherited 184 

zircon grains with ~50% of the zircon crystals showing anhedral Proterozoic cores and 185 

thin magmatic Cretaceous rims with well-formed growth zoning revealed in 186 

cathodoluminescence (CL) and back-scattered electron (BSE) imaging (Miller et al., 1992; 187 

Hanchar & Miller, 1993). The dates for these inherited zircon cores span 1800-1100 Ma, 188 

consistent with the eastern Mojave Desert crust as described above (Bennett & DePaolo, 189 

1987). The presence of these inherited zircon cores in the SWP is one of the driving 190 

forces behind using in situ techniques in accessory minerals such as zircon and monazite, 191 

as inter- and intra-crystal variations can reveal important insights into crustal evolution 192 

and magma chamber processes that otherwise cannot be resolved at the whole-rock or 193 

whole-grain scale. 194 

Further studies of the SWP have since investigated monazite and other accessory 195 

minerals. Kingsbury et al., (1993) identified the presence of discordant inherited 196 

monazite grains that record U-Pb dates of 1800-1700 Ma, consistent with dates from 197 

inherited zircon crystals as described above (Foster et al., 1989). Wark & Miller (1993) 198 

investigated monazite, zircon, and xenotime in order to trace the geochemical evolution 199 
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in the SWP as recorded in those accessory minerals. Differentiation of rock units from 200 

granite to aplite is accompanied by flattening of REE patterns in monazite, increasing 201 

concentrations of Hf and Y in zircon and a slight increase in Gd/Ho ratios in xenotime, 202 

with U and Th increasing in each of the three phases. Accessory minerals also showed 203 

well-developed compositional zonation patterns of Hf, U, Th and REE within grains that 204 

reflect changing melt compositions with time. 205 

The whole-rock major element, trace element and isotopic data presented in 206 

Miller et al. (1990), Miller et al. (1992), and Miller & Wooden (1994) constrain the 207 

petrogenesis of the two magma series present in the OWPB, with differences between 208 

the metaluminous and peraluminous rock types being a function of source composition. 209 

High 87Sr/86Sr (MG = 0.7095-0.7115 vs PG = 0.7014-0.719) and low εNd (MG = -10 to -12 210 

vs PG = -16 to -17) indicate major contributions from the Proterozoic crust. Assuming 211 

that the magmas were entirely derived from Proterozoic crust, time averaged Rb/Sr 212 

ratios for MG and PG rocks suggest a mafic-intermediate igneous source for the MG and 213 

an intermediate-felsic igneous source for the PG series. This is also consistent with their 214 

whole-rock δ18O values that rule out dominant contributions from either the mantle or 215 

sediments (e.g., δ18O = 7.2 to 9.3‰). Similarly, the high Rb and Ba contents of MG rocks 216 

also precludes derivation from a solely mantle source, while the low Rb/Ba of PG rocks 217 

rules out a dominantly supracrustal pelitic source. 218 

A suite of lower-crustal xenoliths from a Tertiary dike found in the North Piute 219 

Mountains have Pb, Sr and Nd compositions that are consistent with derivation from a 220 
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Proterozoic Mojave crust (Miller et al., 1992; Hanchar et al., 1994). Major and trace 221 

elements and radiogenic isotopic characteristics of the xenoliths suggest they represent 222 

the depleted residue (i.e., restite) after extraction of felsic melt. This Proterozoic Mojave 223 

crust is deemed to be heterogeneously composed of intermediate to felsic igneous rocks 224 

as well as diverse clastic sedimentary rocks. Lower crustal xenoliths collected locally 225 

contain zircon populations indicative of both igneous and sedimentary protoliths and 226 

contain zircon overgrowths of ~75 Ma which is suggestive of a close relationship with 227 

these similar age granites (C.M. Fisher & J.M. Hanchar, unpublished results). Modelling 228 

of this extracted melt yields compositions that are consistent with that of OWPB 229 

granitoids, however calculated melt fractions are variable (0-70%) and must have led to 230 

diverse melt compositions. 231 

2.3.4 - Sample descriptions 232 

Sample locations are shown in Figure 2.1b and 2.1c and coordinates are given in 233 

Table 2.1. Six SWP samples were collected following a ~7km transect from SW-NE that 234 

included both garnet-poor and garnet-bearing varieties (Figure 2.1c) as well as an 235 

unmapped outcrop of aplite/pegmatite. Two PRP samples were taken within 200m of 236 

each other and again included garnet-poor and garnet-bearing varieties. Three NPP 237 

samples were taken 500m apart to investigate potential lateral changes along the roof 238 

section of the batholith. All NPP samples are 2-mica granites. 239 

Three types of peraluminous rock types occur in the OWPB, and are largely 240 

independent of pluton type. The most abundant lithology is the two-mica granite that is 241 
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ubiquitous in each of the three plutons. The unit is largely equigranular, and is 242 

composed of quartz, plagioclase, K-feldspar (plagioclase > K-feldspar), biotite and 243 

muscovite, representing the least evolved granite facies. A more evolved garnet-bearing 244 

granite exists in the SWP where it is extensive enough to be mapped (Figure 2.1c), and in 245 

the PRP where it has a variable distribution. Garnets are up to 1mm in size and are 246 

sporadic in distribution but abundant when they are present, often occurring as sub-cm 247 

clusters in the PRP. Aplite-pegmatite dikes occur in the SWP and represent the most 248 

chemically differentiated unit. This unit is biotite-free but garnet-bearing, and the aplite 249 

sampled has a heterogeneous texture, varying between “sugary” texture aplite, to fine-250 

grained (mm-scale) granite, to cm-scale feldspar megacrystic pegmatite. A petrological 251 

summary of the samples is given in Table 2.1.   252 
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Table 2.1 –Location and petrological summary of OWPB samples. 253 

Sample Pluton Coordinates Rock type 

SWP-12-01 

Sweetwater 

Wash 

N34° 33' 30.9" W115° 12' 43.2" 2-mica granite 

SWP-12-02 N34° 32' 59.1" W115° 14' 3.7" 2-mica granite 

SWP-12-03 N34° 32' 35.1" W115° 15' 03.6" 
Garnet-bearing  

2-mica granite 

SWP-12-04 N34° 35' 01.6" W115° 10' 54.8" 2-mica granite 

SWP-12-05 N34° 36' 01.5" W115° 10' 57.4" 2-mica granite 

SWP-13-01 N34° 34' 45.3" W115° 10' 36.7" 
Garnet bearing  

aplite, no biotite 

PRP-12-01 
Painted Rock 

N34° 31' 06.2" W115° 06' 56.8" 
Garnet bearing  

2-mica granite 

PRP-13-01 N34° 31' 07.5" W115° 07' 03.8" 2-mica granite 

NPP-12-01 

North Piute 

N34° 50' 45.5" W115° 01' 15.1" 2-mica granite 

NPP-12-02 N34° 50' 45.5" W115° 01' 15.1" 2-mica granite 

NPP-13-01 N34° 50' 31.0" W115° 01' 26.2" 2-mica granite 

 254 

2.4 - Analytical Methods 255 

All samples collected were analyzed for whole-rock major and trace elements, 256 

radiogenic isotopes (e.g., Sr, Sm-Nd, and Lu-Hf) and in situ monazite and zircon isotopic 257 

analysis (U-Pb and Sm-Nd, and U-Pb and Lu-Hf). Weathered material was removed by 258 

sawing. The samples were then processed using a jaw crusher, disk mill, and tungsten 259 

carbide shatter box to produce the pulverized material for geochemical analyses. Major 260 

and trace elements were analysed from rock powders at Activation Laboratories Ltd., 261 
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Ontario, Canada. Sm, Nd, Lu-Hf and Sr were separated from whole-rock powders by 262 

conventional column chemistry techniques. Subsequent isotopic analysis of Sm, Nd and 263 

Sr was done by ID-TIMS (Isotope Dilution Thermal Ionisation Mass Spectrometry), with 264 

Lu and Hf analysed by MC-ICP-MS, all at Memorial University.  265 

Zircon and monazite grains were separated from the crushed material after the 266 

disk mill step with the material sieved to retain the size fractions less than 500 µm and 267 

greater than 63 µm, using standard heavy liquid and Frantz magnetic separation. 268 

Monazite and zircon grains were then hand-picked in ethanol under a binocular 269 

microscope, cast in epoxy resin, and then polished to reveal the crystal centres. They 270 

were then imaged with BSE (zircon and monazite) and CL (zircon) imaging techniques 271 

using the Quanta 400 scanning electron microscope at the CREAIT MAF-IIC, Memorial 272 

University of Newfoundland. A subset of monazite grains were then qualitatively 273 

analysed by EPMA to produce elemental X-ray maps. The EPMA analyses were done 274 

using a Jeol JXA-8230 at the Memorial University of Newfoundland CREAIT TERRA EPMA-275 

SEM facility with operating conditions of at 15 kV, 250 nA, 0.5 µm step increments, with 276 

a dwell time per step of 200 milliseconds. 277 

All in situ analyses were done using LA-ICP-MS and LA-MC-ICPMS techniques. 278 

Zircon U-Pb analyses were done at Portsmouth University. Dated grains were then 279 

analysed on the same analysis locations used for U-Pb by Lu-Hf at Washington State 280 

University (WSU). Monazite U-Pb and Sm-Nd analyses were done using the LASS method 281 

at WSU. Additional U-Pb and Lu-Hf zircon LASS analyses were also done at WSU on 282 
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grains not previously dated by LA-ICPMS. This is summarised in Table 2.2. Only details of 283 

the LASS methodology will be presented here. Details of all other analytical techniques 284 

are provided in Appendix A along with analyses of standards done to assess accuracy 285 

and precision of data in Appendix B. 286 

Table 2.2 – Summary of radiogenic isotopic analyses done on OWPB samples. 287 

Sample 

Whole Rock 
In situ 

Zircon Monazite 

Sm-Nd Sr Lu-Hf U-Pb & Lu-Hf LA-ICP-MS LA-ICP-MS 

TIMS 
MUN 

TIMS  
MUN 

MC-ICP-MS 
MUN 

LA-ICP-MS 
UoP & WSU 

LASS 
WSU 

LASS 
WSU 

SWP-12-01 X X X X  X 

SWP-12-02 X X X X  X 

SWP-12-03 X X X X  X 

SWP-12-04 X X X X  X 

SWP-13-01 X X X X X X 

PRP-12-01 X X X X X X 

PRP-13-01 X X X X  X 

NPP-12-01 X X X X  X 

NPP-12-02 X X X X  X 

NPP-13-01 X X X X  X 

Notes: TIMS = Thermal Ionisation Mass Spectrometry, MC-ICP-MS = Multi-collector 288 

Inductively-Coupled Mass-Spectrometry, LA-ICP-MS = Laser-Ablation Inductively-289 

Coupled Mass-Spectrometry, LASS = Laser Ablation Sprit Stream. MUN = Memorial 290 

University of Newfoundland, UoP = University of Portsmouth, WSU = Washington State 291 

University.  292 
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2.4.1 - LASS method  293 

This study will also serve as the first dedicated investigation into both monazite 294 

and zircon in magmatic systems using the laser ablation split stream (LASS) technique. 295 

The recently developed LASS method involves the simultaneous determination of U-Pb 296 

and Lu-Hf isotopes in zircon (Yuan et al., 2008; Fisher, et al., 2014) and U-Pb and Sm-Nd 297 

isotopes simultaneously in monazite (Goudie, et al., 2014). The ablated sample material 298 

is split into two streams as it exits the ablation cell and U-Pb isotopes are measured by a 299 

magnetic sector high resolution (HR) ICP-MS and Sm-Nd or Lu-Hf isotopes are measured 300 

by a multicollector (MC-ICP-MS). This method allows for accurate determinations of 301 

initial isotopic compositions by using corresponding the U-Pb dates. A further advantage 302 

of the LASS approach is that is allows a robust method of detecting mixed age analyses, 303 

which are possible in cases where multiple generations of growth are present in a single 304 

crystal. This is especially important in this study as monazite and zircon grains often have 305 

complex zoning patterns that reflect different isotopic compositions, and it is imperative 306 

that the tracer isotopes are measured in the same spot as the U-Pb analyses. If, for 307 

example, two age components are present in an analysis, sampling both components 308 

simultaneously will yield a discordant result and lie on a mixing line between the two 309 

ages on a conventional Concordia diagram. Non-split-stream methods involve the 310 

determination of U-Pb isotopes first, followed by analysis of tracer isotopes, which does 311 

not allow detection of multiple components in the trace isotope analysis. Further, the 312 

relatively small spot sizes (20-30 μm) used in this study also help to overcome, but not 313 
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eliminate completely, this complex zonation problem (Goudie, et al., 2014; Fisher, et al., 314 

2014).  315 

All monazite samples and some zircon samples were analysed using the LASS 316 

technique at Washington State University. A New Wave 213nm Nd:YAG laser was used 317 

to ablate the sample, which is carried from the laser cell using He, as well as N2 in order 318 

to increase the sensitivity and minimize oxide formation. The ablated sample is split 319 

using a baffled “Y” connector and transported by Tygon tubing to the Element 2 HR-ICP-320 

MS where U-Pb isotopes are measured, and the Neptune MC-ICP-MS where Sm and Nd 321 

or Lu and Hf isotopes are measured (Figure 2.2). The relative elemental concentrations 322 

of Ce, Eu and Gd were also simultaneously measured in monazite using the MC-ICP-MS.  323 

The laser was operated at 8Hz, ~7J/cm2, with a spot size of 20 µm for monazite LASS 324 

analyses, and in both zircon Lu-Hf analyses and LASS analyses the laser operated at 10 325 

Hz and a fluence of ~8 – 10 J/cm3, using a 30-40µm spot size. 326 

The operating parameters and data reduction scheme for the in situ LASS 327 

analyses follow that presented in (Goudie et al., 2014; Fisher et al., 2014) and are 328 

summarised in Appendix A. This also includes information regarding the isobaric 329 

interference corrections applied (Yb correction for Hf data, and Sm correction for Nd 330 

data). 331 
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2.5 - Results 332 

2.5.1 - Major and trace element geochemistry 333 

Whole rock major, minor and trace element geochemistry data for the OWPB 334 

samples are presented in Table 2.3. Granitoids show a restricted range from 335 

leucogranite to high-silica granite, with SiO2 ranging from 71-76% (Figure 2.3). Harker 336 

plots show consistent trends with increasing silica, with 2-mica granite samples having 337 

the lowest SiO2 content and the aplite sample having the highest. Al2O3, CaO, MgO, 338 

Fe2O3, TiO2, Ba and Sr all decrease in concentration with increasing silica, as do La/Lu 339 

and Zr/Hf. Rb shows an increase in concentration as silica increases. 340 

Chondrite-normalised rare earth element (REE) patterns of the OWPB granitoids 341 

broadly correlate with the mineralogy of each sample (Figure 2.4). Two-mica granite 342 

samples show a “typical” granitic pattern, with light rare earth element (LREE) 343 

enrichment and low heavy rare earth element (HREE) concentrations. With evolution 344 

towards the garnet-bearing granite samples and the aplite sample LREE contents 345 

decreases, there is a flattening in the LREE slope, and HREE contents increases. All 346 

samples show a negative Eu anomaly, which increases as SiO2 content increases towards 347 

the aplite sample. With evolution of the melt it is also observed that overall REE 348 

contents decreases.  349 
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Table 2.3 – Whole rock major and trace element data for the OWPB samples. 350 

Sample SWP-12-01 SWP-12-02 SWP-12-03 SWP-12-04 SWP-12-05 SWP-13-01 PRP-12-01 PRP-13-01 NPP-12-01 NPP-12-02 NPP-13-01 

Rock  
Type 

2 mica 2 mica Garnet 2 mica 2 mica Aplite Garnet 2 mica 2 mica 2 mica 2 mica 

SiO2 71.81 75.1 74.12 72.16 71.52 76.68 75.62 73.96 72.37 73.6 74.05 

Al2O3 14.61 14.2 13.71 14.72 14.26 13.73 13.42 13.3 14.56 14.34 14.2 

Fe2O3 2.58 1.52 1.52 2.76 2.07 1.26 1.36 1.36 2.25 2.02 1.93 

MnO 0.035 0.022 0.044 0.04 0.037 0.042 0.063 0.04 0.04 0.036 0.029 

MgO 0.38 0.19 0.08 0.42 0.3 0.11 0.1 0.1 0.32 0.2 0.2 

CaO 1.9 1.1 0.76 1.88 1.54 0.84 0.92 0.86 1.37 1.11 1.08 

Na2O 3.69 3.29 3.44 3.58 3.38 3.8 3.5 3.35 3.71 3.83 3.65 

K2O 3.75 4.85 4.57 3.77 3.94 3.85 4.61 4.73 3.89 3.87 4 

TiO2 0.187 0.092 0.039 0.216 0.17 0.048 0.057 0.067 0.166 0.157 0.16 

P2O5 0.07 0.05 0.05 0.05 0.05 0.03 0.02 0.03 0.06 0.07 0.07 

Rb 121 138 154 141 116 235 198 209 123 119 124 

Sr 485 196 84 419 406 36 131 155 383 293 297 

Ba 1376 728 252 1288 1329 53 470 588 1100 924 1005 

Cs 2.5 2.3 1.6 3.5 1.3 1.8 2.6 2.5 0.9 2.2 1.6 

Ta 3.59 3.72 3.21 5.83 2.81 5.57 3.33 4.16 3.21 3.23 3.49 

Nb 9.7 14.9 11.7 15 8.9 31.7 18.4 19.2 13.9 15.4 10.2 

351 
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Table 2.3 (Continued) 352 

Sample SWP-12-01 SWP-12-02 SWP-12-03 SWP-12-04 SWP-12-05 SWP-13-01 PRP-12-01 PRP-13-01 NPP-12-01 NPP-12-02 NPP-13-01 

Tl 0.58 0.62 0.65 0.69 0.58 1.01 0.92 1.06 0.58 0.54 0.58 

Pb 26 35 30 30 26 39 29 34 21 21 23 

Hf 2.5 2.5 1.4 4.2 3 1.4 1.8 2.2 2.7 3 2.9 

Zr 102 75 34 164 116 28 49 59 109 105 104 

Y 7.4 19.9 15.1 17.7 12.1 39.8 24 35.1 11.1 16.9 11.8 

Sc 3 4 4 5 3 6 4 5 2 3 3 

U 1.04 2.05 2.31 2 0.99 4.72 2.84 2.83 0.94 1.61 0.82 

Th 10.3 11 4.06 14.8 9.89 16.3 8.52 10.7 6.46 12.8 7.39 

Ga 17 18 21 20 17 25 20 21 19 20 19 

La 30 29.6 8.92 46.3 33.9 9.74 16.5 20 25.3 24.2 23.7 

Ce 57.2 58.7 18.3 88.7 64.5 22.2 32.9 40.9 49.8 51.8 48.4 

Pr 5.98 6.34 2.03 9.3 6.62 2.9 3.61 4.46 5.12 5.14 4.85 

Nd 21.3 22.6 7.38 33.8 23.8 11.9 13.4 17.2 18.4 18.6 17.5 

Sm 3.6 5.01 1.97 5.98 3.9 4.77 3.34 4.11 3.23 3.61 3.1 

Eu 0.899 0.761 0.266 0.937 0.804 0.239 0.476 0.568 0.729 0.628 0.626 

Gd 2.78 3.96 1.93 4.65 3.14 5.43 3.17 4.36 2.33 2.91 2.48 

Tb 0.34 0.66 0.38 0.63 0.42 1.09 0.61 0.88 0.37 0.5 0.38 

 353 
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Table 2.3 (Continued) 354 

Sample SWP-12-01 SWP-12-02 SWP-12-03 SWP-12-04 SWP-12-05 SWP-13-01 PRP-12-01 PRP-13-01 NPP-12-01 NPP-12-02 NPP-13-01 

Dy 1.59 3.79 2.44 3.43 2.1 6.78 3.93 5.58 2.14 3.02 2.11 

Ho 0.27 0.73 0.5 0.63 0.4 1.39 0.84 1.15 0.4 0.6 0.4 

Er 0.76 2.05 1.56 1.74 1.14 4.14 2.53 3.47 1.14 1.77 1.12 

Tm 0.114 0.281 0.255 0.247 0.168 0.647 0.39 0.525 0.165 0.271 0.168 

Yb 0.78 1.72 1.81 1.58 1.12 4.56 2.54 3.54 1.08 1.8 1.16 

Lu 0.138 0.259 0.326 0.266 0.182 0.787 0.389 0.572 0.178 0.3 0.196 

Zr/Hf 40.80 30.00 24.29 39.05 38.67 20.00 27.22 26.82 40.37 35.00 35.86 

Rb/Sr 0.25 0.70 1.83 0.34 0.29 6.53 1.51 1.35 0.32 0.41 0.42 

La/Lu 217.39 114.29 27.36 174.06 186.26 12.38 42.42 34.97 142.13 80.67 120.92 

Notes: Oxides in wt%, trace elements in ppm. 355 
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2.5.2 - Whole rock saturation temperature calculations 356 

Zircon saturation temperatures (TZr) were calculated according to Watson & 357 

Harrison (1983), 358 

TZr=12900/([2.95+0.85M+ ln (496,000/Zrmelt )] ) 359 

Where M is the cation ratio (Na + K + 2•Ca)/(Al•Si) that takes into account the 360 

effect of aluminosity and Si content on zircon saturation, and Zrmelt is the Zr content in 361 

melt; when working with granites, whole-rock compositions are used as a proxy for melt 362 

composition (see Miller et al., 2003, regarding limitations on interpretation of TZr based 363 

on whole-rock granite compositions). A recent calibration by Boehnke et al. (2013) yields 364 

temperatures that are generally lower by ~50°C for compositions like those of OWP 365 

peraluminous granites. Whole-rock TZr for the OWPB samples using both Watson and 366 

Harrison (1983) and Boehnke et al. (2013) models are presented in Table 2.4. In the text 367 

that follows, we cite values calculated using Watson & Harrison as these temperatures 368 

appear to be more geologically reasonable and consistent with monazite saturation 369 

temperatures. Zircon saturation temperatures for our peraluminous granite samples 370 

range from 664-793°C, with the more evolved aplite and garnet-bearing granites 371 

showing the lowest temperatures.  372 

Monazite saturation temperatures (TMnz) were calculated using the equation of 373 

(Montel, 1993) whereby 374 
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ln(𝑅𝐸𝐸𝑡) = 9.50 + 2.34𝐷 + 0.3879√𝐻2𝑂 −
13318

𝑇
  where 375 

𝑅𝐸𝐸𝑡 ∑
𝑅𝐸𝐸 𝑖 (𝑝𝑝𝑚)

𝑎𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔 𝑚𝑜𝑙−1)
  and 376 

𝐷 =
(𝑁𝑎 + 𝐾 +  𝐿𝑖 + 2𝐶𝑎)

𝐴𝑙
∙

1

(𝐴𝑙 + 𝑆𝑖)
 

Na, K, Li, Ca, Al, Si are in atomic %; H2O is in wt. %. The REE considered are from 377 

La to Gd, excluding Eu. Water contents here are estimated to be 6%, which is deemed 378 

reasonable for differentiated granites (Montel, 1993). Water content is thought to only 379 

play a limiting role in the saturation temperature of monazite, however this effect is 380 

important at low water contents, and it is thought to affect the rate of dissolution of 381 

monazite (Rapp & Watson, 1986; Montel, 1993). 382 

Monazite saturation temperatures range between 690-779°C (Table 2.4), a 383 

similar range to that observed in zircon. In general the samples with the hottest TZr also 384 

have the hottest TMnz, TMnz is lower than TZr, with exceptions, and the difference 385 

between saturation temperatures for both minerals in a given sample is between 0 and 386 

27 °C. TZr and TMnz are broadly within 5% error of each other. 387 

  388 
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Table 2.4 – Whole rock zircon (TZr) and monazite (TMnz) saturation temperatures for the OWPB samples. 389 

Notes: (a) Zircon saturation temperatures calculated using calibration from Watson & Harrison (1983). 390 

(b) Zircon saturation temperature calculated using calibration from Boehnke et al., (2013). 391 

Sample 
SWP-12-

01 
SWP-12-

02 
SWP-12-

03 
SWP-12-

04 
SWP-12-

05 
SWP-13-

01 
PRP-12-

01 
PRP-13-

01 
NPP-12-

01 
NPP-12-

02 
NPP-13-

01 

Zr (ppm) 102 75 34 164 116 28 49 59 109 105 104 

M 1.37 1.27 1.24 1.34 1.29 1.22 1.30 1.30 1.28 1.26 1.24 

TZr (°C) (a) 750 732 676 793 767 664 698 713 762 760 761 

TZr (°C) (b) 699 681 617 748 720 604 641 657 714 714 714 

Inheritance % 50 50 20 50 50 10 20 20 30 30 30 

TZr (a) minus inheritance 
(°C) 

697 681 660 735 712 656 682 696 733 731 732 

H2O (wt%) 6 6 6 6 6 6 6 6 6 6 6 

Total REE 121 126 41 189 136 57 73 91 104 106 100 

D 1.10 1.04 1.02 1.08 1.04 1.01 1.08 1.07 1.04 1.02 1.01 

TMnz (°C) 735 750 663 779 757 690 698 718 735 739 736 
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2.5.3 - Whole-rock isotopes (Sr, Sm-Nd and Lu-Hf) 392 

Whole-rock Sr, Sm-Nd and Lu-Hf isotopic data are presented in Table 2.5 and 393 

Figure 2.5. Initial 87Sr/86Sr (calculated for 70 Ma) is heterogenous, ranging from 0.71184 - 394 

0.72338, with SWP-12-03 being an extreme outlier with 87Sr/86Sri = 0.73540. This outlier 395 

is a garnet-bearing granite and has the highest Rb/Sr elemental ratio. 396 

Initial 143Nd/144Nd ratios show a relatively narrow range from 0.51160-0.51174, 397 

with corresponding εNdi values of (-14.9 - -17.2). Excluding the anomalous SWP-12-03 398 

analysis, Sr and Nd show an inverse relationship; those with the lowest 87Sr/86Sri have 399 

the highest εNdi (Figure 2.5a). 400 

Both Sr and Nd initial isotopic compositions from this study overlap with but 401 

show a larger range than OWPB 2-mica granites from Miller et al. (1990) (Figure 2.5). 402 

There is also good agreement with data from Fisher et al., (in preparation). Sample SW-1 403 

is a 2-mica granite sample taken nearby to SWP-12-04, and NPG is a 2-mica granite from 404 

the NPP, approximately 200m west of the NPP-12-01 and NPP-12-02 samples. In both 405 

this study and Fisher et al., (in preparation) NPP has a less negative εNdi than SWP (Figure 406 

2.5) 407 

Hf analyses yield a large range in εHfi (-18.1 to -7.0) with initial 176Hf/177Hf ratios 408 

ranging between 0.282228–0.282543. Hf data can be split into two groups that 409 

correspond to rock type; the two garnet-bearing samples (SWP-12-03 and PRP-12-01) 410 

have the most radiogenic initial isotope ratios compared to the two-mica granite 411 
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samples. The garnet-bearing aplite sample (SWP-13-01), however, plots in the same 412 

range as the two-mica samples which have a narrow range in εHfi values, but are much 413 

more variable in 87Sr/86Sri (Figure 2.5b) and εNdi values (Figure 2.5c).    414 
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Table 2.5 – Whole rock Sm-Nd, Sr and Lu-Hf data for the OWPB samples. 415 

Sample SWP-12-01 SWP-12-02 SWP-12-03 SWP-12-04 SWP-12-05 SWP-13-01 PRP-12-01 PRP-13-01 NPP-12-01 NPP-12-02 NPP-13-01 
87Rb/86Sr* 

(1) 
0.848 2.394 6.234 1.144 0.972 22.198 5.14 4.585 1.092 1.381 1.42 

87Sr/86Sr 0.71919 0.72576 0.74160 0.71767 0.71510 0.74096 0.72069 0.71988 0.71302 0.71324 0.71325 
87Sr/86Sri (2) 0.71835 0.72338 0.73540 0.71653 0.71413 0.71888 0.71558 0.71532 0.71193 0.71186 0.71184 

2σ 14 9 9 10 10 10 10 10 10 10 10 
147Sm/144Nd 0.1038 0.1183 0.151 0.104 0.1001 0.1981 0.1343 0.1353 0.1024 0.107 0.1058 
143Nd/144Nd 0.511708 0.511723 0.511828 0.511776 0.511766 0.511817 0.511770 0.511769 0.511821 0.511818 0.511818 

143Nd/144Ndi(2)  0.511660 0.511669 0.511759 0.511728 0.511720 0.511726 0.511709 0.511707 0.511774 0.511769 0.511770 

2σ 8 10 7 8 7 7 7 8 7 7 7 

εNd (3) -18.1 -17.8 -15.8 -16.8 -17.0 -16.0 -16.9 -17.0 -15.9 -16.0 -16.0 

εNdi (3) -17.3 -17.2 -15.4 -16.0 -16.2 -16.0 -16.4 -16.4 -15.1 -15.2 -15.2 

2σ 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
176Lu/177Hf 0.01 0.015 0.029 0.008 0.009 0.05 0.013 - 0.015 0.012 - 
176Hf/177Hf 0.282300 0.282260 0.282471 0.282316 0.282303 0.282369 0.282560 - 0.282271 0.282244 - 

176Hf/177Hfi (2) 0.282286 0.282240 0.282433 0.282306 0.282291 0.282303 0.282543 - 0.282251 0.282228 - 

2σ 8 10 8 12 21 15 7  11 13  

εHf (4) -17.2 -18.6 -11.1 -16.6 -17.1 -14.7 -7.9 - -18.2 -19.1 - 

εHfi (4) -16.1 -17.7 -10.9 -15.4 -15.9 -15.5 -7.0 - -17.3 -18.1 - 

2σ 0.5 0.5 0.5 0.6 0.8 0.7 0.5 - 0.6 0.6 - 

Notes:  416 

(1) 87Rb/86Sr* were measured using the method of Faure & Mensing (2005).  417 

(2) All initial compositions are calculated using an age of 70Ma. Decay constants used: 87Rb λ = 1.42 X 10 -11 (Steiger & Jäger, 1977), 147Sm λ 418 

= 6.539 × 10 −12 (Begemann et al., 2001), 176Lu λ = 1.867 X 10 -11 (Söderlund et al., 2004). 419 

(3) εNd values were calculated using the present day CHUR values of 143Nd/144Nd = 0.512630 and 147Sm/144Nd = 0.1960 (Bouvier et al., 420 

2008). 421 

(4) εHf values were calculated using the present day CHUR values of 176Hf/177Hf = 0.282785 and 176Lu/177Hf = 0.0336 (Bouvier et al., 2008).   422 
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2.5.4 - Accessory mineral characterisation 423 

Due to chemical zonation that is inherent in zircon and monazite complete 424 

characterisation of the internal morphology of these minerals is crucial in order to guide 425 

in situ analyses. A combined approach utilising BSE for monazite and zircon, CL for zircon 426 

(Hanchar & Miller, 1993), and EPMA X-ray elemental maps for monazite (Williams et al., 427 

2007) were used in order to fully describe zonation in these complex accessory minerals.  428 

2.5.4.1 - Zircon morphology 429 

Figure 2.6 shows the range of zircon morphologies observed in the OWPB 430 

samples. Zircon grains range in shape from thin acicular morphologies to stubbier 431 

tabular shapes. Zircon grains are typically 100-200µm but can be as small as 75µm and 432 

as large as 450µm. 433 

Grain morphology is linked to zonation style; acicular zircon with aspect ratios of 434 

~5:1 typically have fine scale igneous growth zoning (Figure 2.6a), whereas more tabular 435 

and equant grains are more likely to contain large rounded core regions surrounded by 436 

rims (Figure 2.6b). Rim regions vary in size between thin overgrowths of <10 µm to those 437 

large enough to be analysed ~40 µm, up to 100 µm in large grains. Many crystals show 438 

multiple “rims”, that is, differently coloured growth zoned rims that surround rounded 439 

inherited cores (Figure 2.6c-d). Sector zoning is also observed (Figure 2.6e) in some 440 

zircon grains. Core regions in the interior of the grains are irregularly shaped and often 441 

show embayments where zircon has been resorbed in the new melt (Figure 2.6f). Cores 442 
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are also typically dark in BSE with rims being lighter, and where zones are dark in BSE 443 

they are light in CL (Figure 2.6g). CL images reveal the growth zoning best, with fine 444 

banding being less than 10µm wide. Colour changes (i.e., changes in chemistry when the 445 

zircon was growing) observed in CL also suggests numerous periods of growth, or 446 

discontinuous growth. Where possible, large enough different colour bands within a 447 

single zircon were preferentially selected for U-Pb and Lu-Hf analysis. The rims are often 448 

inclusion-rich, particularly when rims are light in BSE, with cores containing sparse but 449 

larger inclusions (all being <10 µm). Inclusions are mainly composed of apatite or thorite 450 

(brighter than zircon in BSE). 451 

There are some noticeable differences between the zircon crystals separated 452 

from different samples in this study. Samples from the SWP contain more “inherited” 453 

cores than NPP, with the least inheritance observed in the PRP. Quantifying the amount 454 

of inheritance in a sample however is problematic, due to sampling bias when picking for 455 

larger zircon grains that are more likely to contain inherited cores (which as noted above 456 

typically have larger surface area for the rims which makes them preferable for the La-457 

ICP-Ms and LA-MC-ICP-MS analyses). These cores are also assumed to be inherited 458 

based on zircon texture, but without U-Pb dating this assumption must be taken with 459 

caution. 460 

2.5.4.2 - Monazite morphology 461 

Figure 2.7 shows the range of monazite morphologies observed in the OWPB 462 

samples. Monazite crystals are typically equant to prismatic in morphology and are 150- 463 
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200µm in length, though the sizes range from between 50- to 300µm. Crystals tend to 464 

be larger in the SWP > PRP > NPP samples. 465 

Monazite crystals from the OWPB show a range of zonation styles and will be 466 

classified here according to the scheme outlined in Catlos (2013). Many grains show 467 

weak zoning, with BSE showing no greyscale intensity contrast (Figure 2.7a). Patchy 468 

zonation is a common feature with irregular areas showing a difference in brightness 469 

(Figure 2.7b). More regular brightness contrasts are often observed near cracks, or 470 

where previous cracks could be interpreted to have annealed, giving rise to a veining 471 

texture (Figure 2.7c). Many crystals show simple zoning involving single cores, 472 

sometimes with embayments, and single rims (Figure 2.7d), whereas others show 473 

concentric, oscillatory (Figure 2.7e) and sector growth zoning. Monazite crystals from 474 

sample SWP-13-01 are distinctive in that they only show oscillatory zonation. 475 

The monazite grains are often inclusion rich, occurring in both core and rim 476 

regions and inclusion trails are common (Figure 2.7f). Inclusions are more abundant and 477 

inclusion trails are particularly common in the PRP and NPP samples. Inclusion size varies 478 

between sub-micron size up to 50µm. Inclusions are typically composed of acicular 479 

needles of zircon or rounded and irregular apatite. Allanite inclusions were also 480 

observed. 481 

A small number of monazite crystals from the SWP samples show bright, Th-rich 482 

regions, but these themselves do not have a consistent morphology (Figure 2.8). Some 483 
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crystals comprise distinct yet irregular bright core regions, with varying amounts of 484 

inclusions in the core (Figure 2.8a-8d). Others show highly irregular small patches of Th-485 

rich areas (Figure 2.8b) whereas other grains have Th-rich regions that extend across 486 

most of the crystal (Figure 2.8c). 487 

X-ray maps of selected monazite grains show the relative abundance, and 488 

variations, of element concentrations (Figure 2.9). X-ray element maps generally show 489 

more variation than is visible in BSE images. The zoning in BSE appears to be primarily 490 

controlled by variations in Y, Th and U; darker areas in BSE are typically low in Th and U 491 

and Y versus lighter areas. Ca shows little intra-grain variation, however faint zonation 492 

may be observed that cannot be observed in BSE. The same can be generally said for Nd. 493 

However, for the grains where a discrete Th-rich core is observed it is accompanied by a 494 

sharp increase in Nd concentration. 495 

2.5.5 - In situ data 496 

2.5.5.1 - Zircon U-Pb isotopes 497 

In total, in situ zircon U-Pb analyses yielded 185 concordant analyses, 152 498 

analyses being done by U-Pb only methods and 34 analyses by the LASS method. 499 

Concordia plots are shown in Figure 2.10a, and data tables are presented in Appendix C. 500 

Two distinct age populations were identified from the OWPB samples, an “old” 501 

Proterozoic population and a “young” Cretaceous population. All samples show evidence 502 

of the inherited Proterozoic ages, although not all samples yield concordant old 503 

analyses. Zircon rims range from 70-75 Ma based on 206Pb/238U ages (Figure 2.10b) with 504 
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weighted average 206Pb/238U ages for each of the samples being indistinguishable within 505 

error. While there is little difference in weighted average ages within error between any 506 

of the plutons, the NPP appears the oldest and the SWP is the youngest (NPP = 77.2 ± 507 

1.9 Ma, PRP = 74.7 ± 1.4 Ma, SWP = 72.2 ± 1.0 Ma, 2σ). These calculated weighted 508 

averages also have high MSWD values (typically >2). Concordant old inherited cores 509 

yield 206Pb/207Pb ages that range from 1784 Ma to 1399 Ma, with a peak age of ~1700 510 

Ma (Figure 2.10c). 511 

2.5.3.2 - Monazite LASS-U-Pb isotopes 512 

250 in situ monazite analyses were done using the LASS technique (data 513 

presented in Appendix C).  The young monazite analyses tend to plot along dischords on 514 

Tera-Wasserburg plots (Figure 2.11a), suggesting some incorporation of common Pb, an 515 

observation also made by Fisher et al., (in preparation). Similar to that observed in the 516 

zircon data there is no distinction within error between crystallisation ages for samples 517 

at the hand-sample or the pluton scale. Young monazite grains range in age from 68-75 518 

Ma based on 206Pb/238U ages, with NPP again yielding the oldest 206Pb/238U weighted 519 

average age (NPP = 74.8 ± 1.2 Ma, PRP = 68.4 ± 0.9 Ma, SWP = 70.7 ± 0.4 Ma, all 2σ) 520 

(Figure 2.11b). Similarly to the zircon data, weighted averages for individual samples and 521 

for each pluton yield ages with MSWD values generally >2. 522 

Young monazite crystallisation ages for a given sample are typically younger than 523 

their corresponding zircon ages. This discrepancy is not systematic and differences vary 524 

from between ~9 Ma to being indistinguishable within error. 525 
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Unlike the widespread inheritance observed in the zircon grains, only 4 monazite 526 

analyses yield Proterozoic ages. Analyses from the inherited monazite cores plot near to 527 

concordia on Tera-Wasserburg plots and give 207Pb/206Pb ages ranging from ~1700 to 528 

1600 Ma (Figure 2.11c). This monazite inheritance is only observed in the 2-mica 529 

granites of the SWP (samples SWP-12-01, SWP-12-04 and SWP-12-05). 530 

2.5.3.3 - Zircon Lu-Hf isotopes 531 

Two distinct populations of measured 176Hf/177Hf ratios are evident in the OWPB 532 

samples, these corresponding to the age of the zircon components (Figure 2.12). Young 533 

zircon grains have average 176Hf/177Hf = 0.282344 ± 35 (2σ) whilst old zircon grains have 534 

average 176Hf/177Hf = 0.281844 ± 35 (2σ). 176Lu/177Hf ratios overlap with old samples 535 

showing a more restricted range versus young samples, which range from ~0.001 – 536 

0.0037 (average2σ ± 45(± 37 average 2σ). 537 

Young zircon Hf compositions calculated at 70Ma show a wide range in negative 538 

crustal εHf (70Ma) signatures (-8.3 – -18.6). Old zircon grains have larger negative εHf(70Ma) 539 

values of -26.4 - -34.9. When compared at a pluton scale these ranges are slightly more 540 

restricted in the PRP and NPP versus the SWP (Table 2.6).  541 

2.5.3.4 - Monazite LASS Sm-Nd isotopes 542 

The 147Sm/144Nd ratios of the OWPB monazite grains range from 0.0689 – 0.2179 543 

(average2σ ± 0.0010) with an overlap between the young and the old monazite. 544 

Proterozoic monazite grains have lower 143Nd/144Nd ratios than the younger grains but 545 
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there is an overlap with the range observed for the young monazite grains (Figure 546 

2.13a). Average initial ratios for old monazite grains is 0.510329 ± 76, whereas young 547 

zircon has an average 143Nd/144Ndi = 0.511710 ± 62 (Figure 2.13b). 548 

Similar to the zircon grains, young monazite grains show a range of negative 549 

crustal εNd(70 Ma) signatures (-12.5 – -21.5). Old monazite grains also have negative 550 

εNd(70Ma) values, ranging between -20.1 and -30.5. At the pluton scale, the NPP shows 551 

the narrowest range of ε values (~4 epsilon units versus ~9 epsilon units for the PRP and 552 

SWP) (Table 2.6). 553 

Table 2.6 – In situ isotopic ranges of OWPB zircon and monazite grains. 554 

 Zircon εHf 

(70Ma) 
Monazite εNd 

(70Ma) 

NPP 

Young 
Maximum -10.4 -13.4 

Minimum -17.2 -17.3 

Old 
Maximum -28.6 - 

Minimum  -32.6 - 

PRP 

Young 
Maximum -9.6 -12.7 

Minimum -17.8 -21.5 

Old 
Maximum -30.3 - 

Minimum -32.9 - 

SWP 

Young 
Maximum -8.3 -12.5 

Minimum -18.6 -21.6 

Old 
Maximum -26.4 -20.1 

Minimum -34.9 -30.5 

 555 

2.5.3.5 - Monazite REE data 556 

In addition to analyses of Sm and Nd isotopes and elemental concentrations, the 557 

LASS method allows the determination of Ce, Gd and Eu (Fisher et al., 2011; Goudie et 558 

al., 2014). Ce/Gd versus Eu* (Figure 2.14a) shows a broadly positive correlation, with 559 
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monazite from the most evolved SWP-13-01 aplite sample showing the lowest Ce/Gd 560 

and Eu* values. The four “old” monazite grains show relatively high Ce/Gd and relatively 561 

low Eu* values, however there is overlap with the compositions of the “young” monazite 562 

grains. As discussed above (Section 2.6.5.4) εNdi data shows two distinct populations 563 

based on age, with the “young” monazite grains showing a large range in epsilon values. 564 

There is also considerable range in Eu* (Figure 2.14b) and in Ce/Gd (Figure 2.14c). While 565 

there is considerable overlap between the three plutons, monazite grains from NPP tend 566 

to show higher Ce/Gd and Eu* values. 567 

Trends observed above are in good agreement with in situ monazite REE data 568 

from Fisher et al., (in preparation) (Figure 2.14). Monazite from the SW-1 and NPG 569 

broadly overlap with the 2-mica data from the SWP and NPP respectively in εNdi, Ce/Gd 570 

and Eu*, however Ce/Gd in sample NPG is shows a much larger range, reaching a 571 

maximum of ~50. 572 

2.5 - Discussion 573 

2.5.1 - Differentiation trends in an evolving magma 574 

The whole-rock composition of the OWPB samples reflects the mineralogy and 575 

rock type of each sample, and the predictable geochemical trends represent an 576 

evolution in melt composition (Figure 2.3). Depletion in Al, Ca, Ba and Sr at higher silica 577 

contents is consistent with feldspar fractionation. The increase in Rb reflects the 578 

increase in incompatible elements as crystallisation progressed. The decrease in Mg and 579 
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Fe are due to the crystallisation of biotite as temperature drops in the evolving melt. 580 

Biotite is also removed from the melt due to the melt-crystal reaction of biotite + (Mn, 581 

Al)-rich liquid  garnet + muscovite. This reaction is thought to be controlled by the Mn 582 

content of in the melt (Miller & Stoddard, 1981). The decrease in La/Lu reflects 583 

progressive crystallization of monazite, which strongly prefers LREE and therefore 584 

depletes La contents of the melt while having little effect on Lu. 585 

The low Zr/Hf ratio in the most silicic rocks is consistent with zircon fractionation. 586 

Deviations from chondritic Zr/Hf ratios (~39) are characteristic of the most felsic, 587 

evolved rocks and this is thought to be due to the crystallisation and removal of zircon, 588 

the main reservoir of Zr and Hf in the crust (Claiborne et al., 2006). Although Hf 589 

substitutes effectively for Zr in zircon and Hf concentrations are very high, Zr is favoured 590 

over Hf in the zircon structure and therefore progressive crystallization results in 591 

decreasing Zr/Hf (Claiborne et al., 2006; Colombini et al., 2011). 592 

The whole rock REE behaviour during crystallisation of the OWPB samples (Figure 593 

2.4) can be explained by the fractionation of certain mineral phases, and follows the 594 

behaviour found by Mittlefehldt & Miller (1983) in their investigation of SWP rocks. The 595 

LREE depletion between the 2-mica granites and the aplite sample can be explained by 596 

monazite fractionation. The HREE enrichment seen in the differentiation sequence can 597 

be explained by the crystallisation of garnet, which changes the behaviour of the HREE 598 

from incompatible to compatible. The increase in magnitude of the negative Eu anomaly 599 

as the melt evolves is due to the crystallisation of feldspar. Furthermore, the decrease in 600 
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Ce/Gd and Eu* with evolution (Figure 2.14a) recorded in the OWPB monazite crystals is 601 

also consistent with the fractional crystallisation of monazite and feldspar, respectively 602 

(Mittlefehldt and Miller, 1983). 603 

2.5.2 - Saturation temperatures 604 

The average TZr temperature of the two-mica granite samples is interpreted to be 605 

the approximate temperature of melt generation (~755°C). The preservation of inherited 606 

zircon grains and their textural characteristics (inherited cores are often rounded or 607 

resorbed) in these samples indicate that the melt was Zr-saturated, or very near to Zr-608 

saturation at the source; otherwise the grains would have dissolved. The presence of 609 

magmatic rims on inherited cores indicates that not all of the Zr contents in the rock is 610 

from the melt fraction; therefore the TZr places an upper limit on the magma generation 611 

temperature. 612 

Using the CL and BSE images, supported by U-Pb ages, it is possible to visually 613 

estimate the amount (i.e., volume) of inherited zircon in each sample and thus correct 614 

the zircon saturation temperatures (Table 2.4). Corrected values account for between 615 

50% inheritance for 2-mica granite samples and 10% inheritance for aplite samples. This 616 

decreases zircon saturation temperatures by between 58°C and 7°C, respectively.  617 

Conversely the aplite TZr (~665 °C) represents the approximate solidus of the 618 

magma. Aplites represent segregated melt fractions, and effective melt segregation 619 

inhibits the entrainment of existing grains. The aplite sample (SWP-13-01) indeed 620 
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contains the lowest proportion of inherited grains (estimates at 10%; Table 2.4). This 621 

suggests that most of the Zr present is in the melt, thus whole-rock Zr concentrations 622 

best approximate the composition and therefore the minimum temperature of the 623 

initially emplaced magma (Miller et al., 2003). This low temperature is also likely 624 

influenced by the low Zr contents of this sample (28 ppm) due to prior zircon 625 

fractionation.  626 

If the same interpretations of TMnz is made as that for TZr, that TMnz of two-mica 627 

granites reflects the approximate temperature of melt generation, then the two 628 

thermometers are consistent in suggesting an initial melt temperature of between ~700-629 

750 °C. The amount of inherited monazite in the OWPB samples is negligible and thus 630 

correction of TMnz is not required. This temperature is broadly consistent with previous 631 

estimates using the same whole-rock saturation thermometry (Kingsbury et al., 1993), 632 

although the current study involves a wider range of rock types and also includes PRP 633 

and NPP as part of the magmatic system. It is important to note, however, that these 634 

calculated zircon and monazite saturation temperatures represent estimates that are 635 

limited by the imprecise knowledge of melt compositions; that is, whole rock elemental 636 

concentrations represent magmas that contain crystals as well as melt.  637 

2.5.3 - Whole rock radiogenic tracer isotopes 638 

The time-integrated initial tracer isotope ratios of the OWPB samples are 639 

consistent with derivation from an old crustal source; high 87Sr/86Sri, and strongly 640 

negative εHfi and εNdi (Figure 1.5). The whole rock samples show strong isotopic 641 
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heterogeneity preserved at the batholith scale, with εNdi values show a ~3ε unit variation 642 

while εHfi show a larger ~11 ε unit variation. This also suggests that the source may have 643 

been heterogeneous. Although the garnet bearing samples have the highest εHfi (Figure 644 

1.5b and 1.5c), as the garnet in these samples is magmatic (Miller & Stoddard, 1981) the 645 

observed variation in εHfi is believed to be a function of the source composition when 646 

the garnet formed. 647 

The Hf-Nd terrestrial array can be generally described by the equation εHf = 648 

1.8*εNd (Vervoort & Patchett, 1996; Vervoort & Blichert-Toft, 1999). Based on the OWPB 649 

Nd isotopic data, εHfi values are much too radiogenic and should be approximately -25 to 650 

-30. This disequilibrium between the Nd and Hf isotopic systems suggests that the 651 

source region must contain a large portion of unreacted residual zircon, which can either 652 

be retained at the source or entrained in the melt. The presence of abundant zircon 653 

grains with old cores found in the xenoliths that are proposed to represent the residual 654 

restite of the OWPB source (Miller et al., 1992; Hanchar et al., 1994; Fisher et al., in 655 

preparation), and in the zircon grains from the OWPB granites suggests that residual 656 

zircon was both retained and entrained. 657 

2.5.4 - U-Pb data  658 

The U-Pb dates from inherited zircon and monazite cores are consistent with 659 

ages found in the Proterozoic crust into which the OWPB intrudes (See Section 2.3.1). 660 

The range of ages preserved, from 1400-1800 Ma document a number of crustal 661 

building events in the Mojave and indicate that the source material for the OWPB melts 662 
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had undergone multiple episodes of crustal modification and thus was diverse in 663 

isotopic composition (Wooden & Miller, 1990; Barth et al., 2009; Strickland et al., 2013).  664 

All “young” samples of both zircon and monazite give U-Pb dates of ~70-75 Ma. 665 

This range is present at both sample-, pluton- and batholith-scale, precluding the 666 

calculation of weighted mean ages or concordia ages with MSWD values close to 1. 667 

Assigning such discrete crystallisation ages to magmatic systems is inconsistent, 668 

however, with current models of incremental pluton emplacement (Paterson & Tobisch, 669 

1992; Coleman et al., 2004; Glazner et al., 2004). High precision (<0.1%) CA-ID-TIMS 670 

analyses (Mattinson, 2005) are increasingly revealing zircon populations within 671 

individual hand samples that record multiple discrete pulses of zircon growth on the 672 

order of 104-106 years (Coleman et al., 2004; Matzel et al., 2006; Miller et al., 2007; 673 

Memeti et al., 2010; Schoene et al., 2012). At the lower precision of LA-ICP-MS U-Pb 674 

geochronology (1-2% r.s.d.) such magmatic pulses are not resolvable, leading to what 675 

appears to be a continuous range of ages. Furthermore, the ability for zircon to survive 676 

multiple melt generation events often leads to diverse zircon populations that sample 677 

preceding batches of melt, these zircon crystals being called “antecrysts” (Miller et al., 678 

2007). These fine temporal details of pluton growth, which are not the focus of this 679 

study, can only be recovered using high precision analytical techniques. 680 

2.5.5 - Tracer isotope data 681 

2.5.5.1 - Zircon Lu-Hf isotope composition 682 
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While there is considerable scatter in 176Lu/177Hf ratios, the 176Hf/177Hf ratios 683 

define two populations that correspond to the age of each of the grains (Figure 2.10a). 684 

Figure 2.10b shows that the “young” and “old” zircon grains formed in melts with two 685 

different initial isotopic ratios, the “young” population growing in a melt with a higher, 686 

more radiogenic 176Hf/177Hf composition. This indicates that the source of the 687 

Cretaceous zircons was high in Lu/Hf. 688 

2.5.5.2 - Monazite Sm-Nd isotope composition 689 

Figure 2.11a shows the isotopic ratio data for the OWPB monazite crystals and is 690 

similar to that of the zircon data presented in Figure 2.10a, in that there is considerable 691 

scatter in the 147Sm/144Nd ratios. A 75 Ma “reference isochron” is plotted and the 692 

isotopic evolution trend is consistent with monazite growth at 75 Ma but variation in 693 

143Nd/144Nd means this is not a true isochron. The “old” monazite grains however define 694 

a linear array that is consistent with a 1700 Ma reference isochron (Figure 2.11a) (also 695 

observed in Fisher et al., unpublished). While this isochron is defined by the four 696 

inherited grains there are multiple analyses with compositions consistent with growth 697 

along the 1700 Ma isochron. As these grains have been independently dated by U-Pb 698 

geochronology it is possible to know which isochron the analysis is part of.  699 

Initial 143Nd/144Nd ratios calculated for each monazite analysis (Figure 2.11b) are 700 

calculated in the same way as that described for the 177Hf/176Hf in zircon, and show the 701 

same trends; “young” grains are more radiogenic and formed in an isotopically different 702 

melt versus the preserved “old” grains.  703 
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2.5.6 - Epsilon-Time plots 704 

The isotopic compositions of zircon and monazite respectively at their time of 705 

crystallisation, as well as the evolution trends of the inherited components preserved, 706 

are shown Figure 2.15a and 2.15b. The oldest inherited zircon crystals, which formed at 707 

~1700-1800 Ma, have a juvenile (+ve) εHf isotopic signatures, with those forming at 708 

~1400 Ma being less juvenile, and potentially derived from rocks similar to those of 709 

1700-1800 Ma grains (Figure 2.15b and 2.15c). As the inherited monazite grains have 710 

negative εNdi compositions and are therefore not juvenile, this suggests that the crust in 711 

which they formed is older than the crystallisation age of the monazite grains. This is 712 

consistent with the regional Nd isotopic signature found in the Mojave by Bennett & 713 

DePaolo (1983). 714 

There is a large divergence between the εHfi composition of magmatic zircon at 715 

70-75Ma, which is between -8 and -20, and the expected εHfi composition of the “old” 716 

zircon grains at this age is ~ -28 and -36 (Figure 2.15a). The preservation or dissolution of 717 

t1 residual minerals has a large effect on the composition of the minerals that form at t2 718 

(Figure 2.15c). If all residual minerals undergo dissolution at t2 they will transfer their 719 

isotopic composition to the magmatic mineral. If there isn’t complete dissolution of 720 

residual minerals then there will be an offset between the composition that the 721 

expected residual composition and that of the magmatic mineral. The isotopic 722 

composition of the t2 magmatic minerals will lie in the region between the compositions 723 

of the whole rock granite and the residual t1 minerals. Undissolved residual minerals will 724 
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retain their t1 compositions (that have now developed a very negative epsilon value) 725 

and can either be left behind at the source as restite or entrained in the new melt as 726 

inherited grains. The offset observed in the OWPB zircon εHfi is therefore attributed to 727 

the large amount of inherited zircon grains preserved.  728 

The “old” monazite evolution trend however does overlap with the least 729 

radiogenic magmatic monazite compositions at an εNd of ~-21, suggesting that there is 730 

isotopic inheritance, is limited, if present at all (Figure 2.15b). Furthermore, the εNdi 731 

whole rock compositions of the OWPB granitoids only show a slight divergence from the 732 

expected evolution of the Mojave Proterozoic crust (Bennett & DePaolo, 1987), 733 

consistent with limited levels of inheritance. The Mojave Proterozoic crust is therefore a 734 

suitable source of the ~1700Ma inherited monazite grains and a source of the granitic 735 

melts at ~75Ma. 736 

No whole rock Hf data are available for potential Mojave crustal sources. As 737 

such, it is not possible to evaluate similar evolution trends in comparison with the zircon 738 

data. Given the expected isotopic systematics, however, the source rock composition 739 

can be estimated. Assuming that the “old” zircon cores retain the same initial 740 

composition as the source rock they formed from, and by using a typical crustal 741 

176Lu/177Hf = 0.015, crustal evolution trends can be calculated (Figure 15a). These 742 

evolution trends calculated using initial compositions from both 1800 Ma and 1400 Ma 743 

zircon crystals overlap with the range of Hf whole rock compositions observed in the 744 
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OWPB samples. This suggests that a crust with these compositions is a suitable source 745 

for both the inherited zircon grains and for the 75 Ma granites. 746 

The divergence in isotopic evolution between the composition of the whole rock 747 

and that of the minerals as seen in in Figure 2.15c is also an effect of the 748 

parent/daughter elemental ratios of the mineral in question. Zircon grains have low 749 

Lu/Hf meaning there is little ingrowth of radiogenic Hf over time, and therefore ancient 750 

zircon will preserve their initial Hf isotopic ratio and will diverge in composition away 751 

from any new zircons formed at t2. In contrast, monazite contains sufficient Sm that 752 

radiogenic Nd will form and the composition of monazite grains will “keep up” with any 753 

isotopic variations in the surrounding crust, and produce a smaller divergence in mineral 754 

compositions. This illustrates how the Hf isotopic system in zircon is a more sensitive 755 

tracer of isotopic changes over time than Nd is in monazite. 756 

2.5.7 - Levels of isotopic heterogeneity in the OWPB 757 

There is considerable isotopic heterogeneity preserved in ~75Ma domains in 758 

both Nd in monazite and Hf in zircon (Table 2.6). This heterogeneity in both systems 759 

exists at the whole rock sample-, pluton- and batholith-scale, and appears to be 760 

independent of age; the range of epsilon values observed in the inherited components is 761 

comparable to that seen in the magmatic components. The complex and heterogeneous 762 

nature of the crustal source material is further confirmed by the range of ages observed 763 

in the U-Pb ages in both inherited monazite and zircon.  764 
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The preservation of isotopic heterogeneity in the inherited mineral components 765 

suggests that the crustal source was heterogeneous at least at the mineral-scale. The 766 

crust is known to have experienced multiple crustal building events during the 767 

Proterozoic that have continuously modified the initial juvenile crust. This has then been 768 

sampled by the inherited zircon grains. Analyses of the 1400 Ma anorogenic granites of 769 

the Mojave by Goodge & Vervoort (2006) are consistent with the data presented in this 770 

study, in that by 1400 Ma there had been significant modification of the basement crust 771 

that created a heterogeneous lower crust, and mantle input at this time, if present at all, 772 

was minor. 773 

It follows then that melting of an isotopically heterogeneous source could 774 

produce isotopically heterogeneous granites. The Hf and Nd budget in felsic magmas will 775 

be controlled mainly, by the dissolution of zircon and monazite respectively. The 776 

composition of zircon and monazite formed in these magmas and the variability of these 777 

components is then controlled by magma chamber processes. If the melt domains have 778 

a high connectivity and the melt has the ability to mix and homogenise effectively then 779 

any heterogeneity derived from the source will be overcome. 780 

Depending on the efficiency or inefficiency of mixing, complete dissolution of a 781 

diverse assemblage of minerals can result in either a homogeneous isotope composition 782 

of all newly-crystallising minerals, or a range of compositions approximating the range of 783 

the source composition, respectively. Partial dissolution and inefficient mixing will also 784 
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produce isotope heterogeneity as the isotopic budget is partitioned into two 785 

components (Figure 2.15). 786 

This lack of homogenisation between the various melts and the ability or the 787 

source material to effectively transfer a large range of isotopic composition to these 788 

melts has also been noted in other granitic rock. Similar findings by Villaros et al. (2012) 789 

in the Pan-African Cape Granite Suite, and by Farina et al. (2014) in the Peninsular 790 

Pluton, South Africa suggest that heterogeneity in granites can originate from the 791 

source, and doesn’t have to reflect the mixing of melts from different sources, a view 792 

also presented by Clemens (2003), Clemens & Stevens (2012) and Tang et al., (2014). It is 793 

suggested by this study then that a heterogeneous crust could have produced a 794 

heterogeneous melt that has further diversified due to the variable dissolution of 795 

inherited components. As the OWPB source is well constrained and is consistent with 796 

derivation from the Mojave Proterozoic crust with little to no mantle-derived input, this 797 

study is an excellent test of this model. 798 

2.5.8 Petrogenesis of the OWPB 799 

Of the three plutons sampled, the NPP exhibits the most homogeneous 800 

composition, particularly in “young” monazite εNdi values (Table 2.6); a 4 epsilon unit 801 

range versus 9 epsilon units for both PRP and SWP. Textural observations supported by 802 

in situ U-Pb data suggest that the NPP contains the least amount of zircon inheritance. 803 

Assuming that all three plutons are derived from the same source (albeit a seemingly 804 
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heterogeneous one) the difference in levels of heterogeneity at the pluton-scale must be 805 

ascribed to magma chamber processes. Of the three plutons studied the NPP is the 806 

smallest in size, is at the present day shallowest structural level, and appears to be the 807 

oldest (although U-Pb data is not indistinguishable with confidence and higher precision 808 

TIMS U-Pb data are needed to date the zircon rims). A possible model of petrogenesis 809 

therefore is that the NPP represents the first partial melt(s) of the lower crust that 810 

ascended to shallower levels. Given the precision of the U-Pb data collected in this study 811 

it is not possible to determine how many discrete batches of melt formed the NPP, but 812 

the uniformity of the unit in the field and the lack of more evolved garnet-bearing units 813 

may suggest that only small volumes of compositionally homogenous melt(s) were 814 

emplaced. The small size of the pluton would enable a more thorough mixing of melts, 815 

promoting the dissolution of inherited grains in under-saturated conditions. 816 

Subsequently, larger volumes of melt were produced in the lower crust that could not 817 

ascend to depths as shallow as the NPP. These melts formed the PRP, SWP and other 818 

plutons of the OWPB and were likely emplaced incrementally. Over time these batches 819 

became more geochemically evolved, creating garnet-bearing batches of melt. These 820 

larger volumes were not able to mix efficiently, thus creating the isotopic heterogeneity 821 

observed in the accessory minerals. 822 

2.5.8 - Inheritance and growth of accessory minerals 823 

Monazite inheritance is thought to be a rare phenomenon (Copeland et al., 1988; 824 

Parrish, 1990, Crowley et al., 2008) and certainly in the OWPB, zircon inheritance is 825 
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much more abundant than monazite. While old zircon core regions are often somewhat 826 

rounded with truncated growth zoning, deep embayments are rare, and core regions 827 

can retain a subhedral shape upon which a young rim will grow epitaxially on the 828 

inherited core. This is in contrast to the inherited monazite core regions. Two of these 829 

grains (Figure 2.8a & 2.8d) have irregular cores that show clear evidence of partial 830 

dissolution. The other two grains (Figure 2.8b & 2.8c), however, show a much more 831 

patchy and diffuse core region respectively. These textures and the difference in amount 832 

of inheritance between zircon and monazite are indicative of the saturation state of the 833 

melt (i.e., temperature, composition) with respect to monazite and zircon, and that the 834 

rate of dissolution and growth was different for both minerals.  835 

In zircon, it appears that while some dissolution did occur when the old grain was 836 

entrained in the new melt during the Cretaceous, growth of the new young zircon was 837 

faster than the rate of dissolution. The presence of resorbed cores indicates that the 838 

melt was slightly undersaturated in zircon when it formed, and is also linked to the 839 

temperature: when the magma was at a higher temperature more zircon could dissolve. 840 

Conversely, the monazite inherited from the old crust was not in equilibrium with the 841 

melt that formed from it, this melt being largely undersaturated with respect to 842 

monazite. When the melt was emplaced the “old” monazite underwent rapid 843 

dissolution, and a large proportion of the ancient monazite was destroyed.  844 

When the melt becomes saturated with regard to zircon and monazite, 845 

dissolution of the inherited grains ceases and there is subsequent growth of “young” 846 
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zircon and monazite domains. Note that these saturation levels need not necessarily be 847 

attained at the same time. Indeed using OWPB U-Pb data, the observation that monazite 848 

yields slighter younger ages than zircon from the same sample does suggest that 849 

monazite saturation was reached after zircon saturation. A similar linkage between 850 

zircon and monazite saturation and their ages has also been suggested by Kelsey et al. 851 

(2008) 852 

In our model of mineral growth these “young” zircon and monazite domains are 853 

thought to grow freely in a melt when mineral saturation has been attained. Texturally, 854 

the “young” zircon and monazite is consistent with magmatic growth (Figures 2.6-2.9 855 

and Section 2.5.4). Where the new crystal has nucleated around an inherited grains that 856 

have not fully undergone dissolution (i.e., Ostwald coarsening, Watson et al., 1989) to 857 

form a rim, the boundary between the “old” and “young” crystal domains is always 858 

sharp. This contact is effectively a mineral scale “chemically eroded” unconformity 859 

between the inherited and new mineral. Where there is not an inherited grain upon 860 

which a new crystal can nucleate, the new crystals show similar magmatic zonation 861 

patterns to the new rims. 862 

The chemical contrast between “old” and “young” domains observed in both the 863 

X-ray maps (Figure 9) and the in situ data (Figures 12, 13 & 15) are also consistent with 864 

magmatic growth. The presence of two distinct age and isotope populations in both 865 

minerals confirms that the “young” magmatic domains grew in a melt of differing 866 

composition to that of the “old” inherited domains. 867 



Page 73 
 

An alternative model for the “young” mineral growth, which we do not prefer, is 868 

growth via a replacement mechanism. In other examples where inherited monazite has 869 

been observed (namely Hawkins & Bowring (1997) and Crowley et al., (2008)) the 870 

younger monazite domains have been explained by secondary alteration due to fluid-871 

mineral interaction with the pre-existing monazite. The mechanism implied, although 872 

not explicitly mentioned, in these studies is “simultaneous dissolution re-precipitation”, 873 

and has been invoked as the mechanism behind many replacement reactions in natural 874 

systems (Putnis, 2002; Putnis, 2009; Putnis & Ruiz-Agudo, 2013). When a mineral is in 875 

disequilibrium with a fluid, re-equilibration will occur in order to reduce the Gibbs free 876 

energy of the system. This is thought to involve the energetically favourable 877 

simultaneous dissolution of the original mineral and the precipitation of the new mineral 878 

that is in equilibrium with the fluid. This replacement mechanism progresses inwards 879 

from the grain boundary and outer regions of the crystals and produces sharp 880 

boundaries both texturally and compositionally. 881 

The evidence for this secondary alteration in the Hawkins & Bowring (1997) and 882 

Crowley et al., (2008) studies are the sharp contacts between primary and secondary 883 

domains, the presence of patchy zonation in the secondary domains, and the variable 884 

composition of these domains from EPMA data. While sharp contacts are observed in 885 

the OWPB monazite grains, the simple oscillatory zoning textures observed are clearly 886 

inconsistent with the replacement mechanism of mineral growth. 887 
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2.6 - Conclusions  888 

1) The OWPB was emplaced at ~750-700 °C at ~70-75 Ma and differentiated via 889 

 fractional crystallisation, consistent with the mineral assemblage observed. 890 

2) The range of U-Pb ages possibly suggests incremental growth of the batholith 891 

by several batches of coalescing magma and repeated cycles of fractionation, but 892 

distinct ages of crystallization cannot be confidently resolved by the LA-ICP-MS 893 

technique. 894 

3) The source of the OWPB is suggested to be the underlying Mojave Proterozoic 895 

crust into which the batholith intrudes. Inherited zircon and monazite grains 896 

found in the OWPB granites yield U-Pb ages from ~1800- 1400 Ma, and have Nd 897 

isotopic signatures that are consistent with derivation from this crust. 898 

4) This source region is indicated by inherited zircon Hf compositions to be 899 

heterogeneous. This isotopic characteristic was directly transferred to the 900 

Cretaceous melts via dissolution at the source, contributing to the resulting 901 

heterogeneity observed in the Cretaceous zircon domains. 902 

5) Variable dissolution of inherited components is also suggested to result in the 903 

heterogeneity observed in both zircon Hf and monazite Nd compositions. The 904 

preservation of this heterogeneity indicates that the melts that formed the 905 

OWPB did not successfully homogenise. 906 
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6) The NPP is the most homogenous of the three plutons studied and may 907 

represent the first, small volume melts that formed in the Cretaceous. The 908 

subsequent melts that formed the PRP and SWP were more heterogeneous, and 909 

experienced more extensive geochemical evolution, producing the wider range 910 

of granitic compositions observed. 911 
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Figure 2.1: a) Location of the Old Woman-Piute Batholith in relation to tectonic and 

geochemical features of the North American Cordillera. After (Miller & Bradfish, 1980). 

b) Geological map of the Old Woman-Piute Range Batholith. After (Miller & Wooden, 

1994). c) Geological map of the Sweetwater Wash Pluton. After (Mittlefehldt & Miller, 

1983). 
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Figure 2.2: Schematic diagram of the Laser Ablation Split Stream (LASS) analytical 

setup. After (Fisher, et al., 2014) 
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Figure 2.3: Whole rock Harker plots of major and trace elements of the OWPB 

samples. 
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Figure 2.4: Chondrite normalised whole rock rare earth element plots for the OWPB 

samples. Using normalising values of Sun & McDonough (1989). 
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Figure 2.5: Whole rock tracer isotope data for OWPB samples. a) εNdi vs. 87Sr/86Sri. b) 

εHfi vs. 87Sr/86Sri. c) εNdi vs. εHfi.  

Grey fields represent data from 2-mica granite samples from the OWPB of Miller et al., 

(1990). SW-1 and NPG data is from Fisher et al., (unpublished), with samples being from 

the SWP and NPP respectively. 
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Figure 2.6: CL & BSE images of zircon crystals from the OWPB exhibiting a range of 

internal features. a) Acicular zircon with oscillatory zoning. b) Small tabular crystal with 

a rounded core. c) – d) Large crystals with multiple rim regions. e) Equant crystal with 

sector zoning. f) Deep embayment into the core region. g) – h) Right – BSE image, Left- 

CL image. g) Dark regions in CL are light regions in BSE.  h) Zonation seen in CL is not 

seen in BSE image. 
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Figure 2.7: BSE images of monazite crystals from the OWPB exhibiting a range of 

internal features. a) Weak zoning and acicular zircon inclusions. b) Irregular patchy 

zoning. c) Veined zoning emanating from a central core. d) Simple zoning of core and rim 

with an embayment in the core. e) Concentric oscillatory zoning with zones parallel to 

the margin of the crystal. f) Inclusion trail extending throughout the crystal. 

 

  



Page 103 
 

Figure 2.8: Th-rich monazite crystals. a) and d) show distinct, bright core regions, 

whereas b) shows irregular patches and c) shows large bright area that extends across 

most of the grain.  
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Figure 2.9: X-ray maps of selected monazite grains. BSE images are shown alongside 

element maps of Ca, Y, Nd, Th and U. a) is from sample SWP-12-05 and is the same grain 

shown in Figure 2.8a. b) is from sample NPP-13-01. 



Page 105 
 

Figure 2.10: In situ zircon U-Pb isotopic data. a) Concordia diagrams for each of the 

plutons in the OWPB. Same scale used for each plot. b) Weighted mean plot of “young” 

zircon grains, showing average ages for each pluton and for the entire OWPB. MSWD = 

mean square weighted deviation. C) Weighted mean plot of “old” zircon grains. 
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Figure 2.11: In situ monazite U-Pb isotopic data. a) Terra-Wasserburg diagrams for each 

of the plutons in the OWPB. Same scale used for each plot. Lower intercept calculated 

for all OWPB samples. b) Weighted mean plot of “young” monazite grains, showing 

average ages for each pluton and for the entire OWPB. MSWD = mean square weighted 

deviation. c) Weighted mean plot of “old” monazite grains. 
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Figure 2.12: In situ zircon Lu-Hf isotopic data. a) 147Sm-144Nd – 143Nd/144Nd plot for all 

OWPB samples. b) 143Nd/144Ndi calculated for all OWPB samples.  
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Figure 2.13: In situ monazite Sm-Nd isotopic data. a) 176Lu-177Hf – 176Hf/177Hf plot for all 

OWPB samples. b) 176Hf/177Hfi calculated for all OWPB samples. 
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Figure 2.14: In situ monazite REE data. a) Ce/Gd vs. Eu*. b) εNdi vs. Eu*. c) εNdi 

vs.Ce/Gd.  

SW-1 and NPG data is from Fisher et al., (unpublished), with samples being from the 

SWP and NPP respectively. 
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Figure 2.15: Epsilon – time plots for OWPB in situ isotopic  data. a) Epsilon – time plot 

for in situ zircon data. Crustal evolution lines were calculated using initial ratios from 

zircon grains at 1800 Ma and 1400 Ma, and a typical crustal 176Lu/177Hf value of 0.015 b) 

Epsilon - time plot for in situ monazite data. Mojave Proterozoic Crust evolution line 

from Bennett & De Paolo (1987). c) Schematic diagram showing isotopic systematics of 

whole rock and mineral in situ samples and how their evolution varied depending on 

inheritance characteristics. 
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Chapter 3 - Summary 

3.1 - Usefulness of the LASS technique 

The analysis of multiple monazite and zircon reference materials attests to the 

accuracy of the LASS method (Goudie et al., 2014 and Appendix B). The high-spatial 

precision afforded by the laser-ablation technique suggests that it is the appropriate tool 

to use when there are intracrystal age variations that are larger than the analytical 

precision. In this study, therefore, LASS is an appropriate technique for distinguishing 

Proterozoic versus Cretaceous growth domains of minerals and to constrain the 

radiogenic tracer isotopic composition of the source region in which those minerals 

crystallized.  

Within the Cretaceous growth domains, however, it appears that the intracrystal 

age variation is unresolvable at a precision of ~1-2%. This is not criticism specifically of 

the LASS technique, but is part of the larger discussions currently being held in the earth 

science community about the advantages of high-precision versus high-resolution work 

(Schoene et al., 2013). This study was not aimed at gaining a crystallisation age(s) for the 

OWPB, nor was it specifically addressing the matter of incremental pluton assembly. The 

in situ Hf and Nd isotopes were of most interest, and as demonstrated in Figure 2.11, the 

correct attribution of an age to an isotopic analysis is critical to making interpretations 

about initial isotopic compositions. 
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As well as providing a high spatial resolution dataset of accessory minerals, the 

LASS method is simply a more efficient way to collect data; two isotopic systems from 

one ablation spot. This also improves the chances of being able to collect further data 

from analysed grains, such as oxygen isotopes. Further analysis however brings back the 

original sampling issues involved with zoned minerals. 

3.2 - Directions for future research 

While this study shows how the LASS technique is successful in allowing correct 

calculation and interpretation of initial tracer isotope ratios, further precision is required 

to fully understand the timing of geological events in the OWPB during the Cretaceous. A 

study using high-precision ID-TIMS U-Pb dating or ID-TIMS-TEA would be useful in 

determining 1) whether the pluton was emplaced incrementally, and 2) how this melt 

geochemically evolved over time, in terms of tracer isotopes and trace elements. This 

approach has proven to be particularly effective when applied to the Adamello 

batholith, Italy (Schoene et al., 2012). 

Bulk rock saturation temperatures are unable to fully resolve the thermal 

regimes of melt systems that are evolving in composition and potentially in temperature 

over time, and over a time period that may be associated with multiple injections of 

melt. Ti-in-zircon thermometry has proven useful in tracking such thermal perturbations 

(Claiborne et al., 2006, 2010a, 2010b; Ickert et al., 2010). These potential variations in 

the thermal regime within a magma body, along with compositional heterogeneities 
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within that body will have a large effect on the solubility of monazite (Montel, 1993). A 

more detailed model of saturation systematic could therefore provide useful constraints 

on the model presented in this paper regarding the effect of solubility of accessory 

minerals on the transfer of isotopic heterogeneity. 

Furthermore, the Hf isotopic composition of the Mojave Proterozoic crust should 

be determined as it has been for Nd, as this would further constrain the composition of 

the source region. An investigation into the Lu-Hf composition of the garnet crystals in 

the garnet-bearing rocks of the OWPB would also allow further insight into the complete 

Hf budget of the magmatic system. 

3.3 - Conclusions 

The Old Woman-Piute Batholith, Mojave Desert, California is partly composed of 

three plutons, the Painted Rock Pluton, Sweetwater Wash Pluton and North Piute 

pluton. These plutons exhibit predictable bulk rock geochemical trends that can be 

explained by the fractionation of the mineral assemblage observed, with feldspar, 

garnet, zircon and monazite being the minerals responsible. Whole rock saturation 

temperatures  calculated from Zr and REE contents indicate emplacement temperatures 

of ~700-750 °C.  

Zircon inheritance is widespread in the OWPB samples while only four monazite 

grains show inherited cores. U-Pb ages from both zircon and monazite yield ages 

between ~1400 - 1800 Ma, which is consistent with the regional geochronology of the 
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Proterozoic crust in the Mojave region. Emplacement of the plutons was during the 

Cretaceous, with zircon and monazite domains give a range of ages between ~70-75 Ma. 

Given the precision of the LA-ICP-MS it is not possible to resolve distinct crystallisation 

ages at the batholith-, pluton- or rock unit- scale. The range of ages preserved may be 

due to incremental emplacement of melt batches; however a higher precision technique 

such as ID-TIMS would be required to investigate this hypothesis further. 

The Proterozoic crust into which the OWPB is emplaced is suggested to be the 

source of these melts at depth. The preservation or dissolution of residual zircon and 

monazite crystals at the source during melting had a large effect on the composition of 

the resulting melt and the minerals that form from it. Dissolution of accessory minerals 

allows the transfer of isotopic compositions to the resulting melt. Variable amounts of 

dissolution of zircon and monazite therefore lead to a wide range of εHfi and εNdi 

respectively. While this transfer process is effective, the preservation of this 

heterogeneity indicates that the mixing and homogenisation of melt batches was 

limited. Furthermore, the source region is observed to be heterogeneous to begin with, 

as inherited zircon cores preserve a large range of Hf isotopic compositions. There is no 

evidence in the OWPB of interaction of crustal and mantle melts, therefore this study 

offers an alternative explanation for the cause of heterogeneity in granitic plutons. 

Observed textures in zircon and monazite suggest the magmatic growth of 

Cretaceous zircon and monazite grains. Where inherited cores are present they are 

often resorbed and show evidence of dissolution, with core-rim boundaries being 
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texturally and compositionally sharp. As these textures are indicative of the saturation 

level of the melt, it is suggested that the melt was approaching zircon saturation when it 

formed, but dissolution of zircon was required in order for the melt to attain 

equilibrium. The melt was strongly undersaturated with regards to monazite, meaning 

that most monazite that was present at the source dissolved and little residual monazite 

was available to be entrained in the melt. The lack of coherence between Hf and Nd as 

predicted by the terrestrial array also suggests that unreacted zircon remained at the 

source. When saturation levels were attained dissolution ceased and new zircon and 

monazite grew to form rims on inherited grains, or as new crystals without cores. 

Of the three plutons studied the NPP is the most homogenous, both in the field 

and in its geochemistry (at the whole rock- and mineral- scale), the smallest, and is 

suggested to be the oldest. It is therefore proposed that this pluton formed first from 

small volumes of homogeneous melt. The PRP and SWP formed subsequently from 

larger volumes of melt that were potentially emplaced incrementally.  These larger 

bodies were not able to undergo homogenisation and preserved their heterogeneous 

compositions. They were also able to develop geochemically resulting in a wider range in 

whole rock elemental compositions and rock types. 
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Appendix A - Analytical Methods 

A.1 - Analytical Methods: Whole Rock 

A.2 - Major and trace elements 

A.2.1 - Crushing 

Representative hand samples were kept for each sample and thin sections 

prepared. Between 0.5 and 1.0kg of material was crushed using a jaw crusher into mm-

sized chips and pulverised using a disk mill to <500 μm, with material >63 μm removed 

by sieving. Whole rock powders (~100μm) were then produced for all 11 samples using a 

tungsten carbide shatter box at Memorial University. Crushed samples were then split 

into three portions; one for archive, one for whole rock geochemistry and one for 

mineral separation. 

A.2.2 - Whole rock major and trace elements 

From the whole rock geochemistry portion, a further split was made for 

elemental and isotopic analysis. Major and trace elements were analysed at Activation 

Laboratories Ltd., Ontario, Canada in accordance with the 4Lithores protocol. A Lithium 

Metaborate/Tetraborate Fusion ICP and ICP-MS technique was used. Comparison with a 

variety of laboratory standards suggest an accuracy of < 3% for major elements and < 7% 

for trace elements. 
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A.3 - Whole rock isotopes 

A.3.1 - Whole rock isotope column chemistry (MUN) 

Sm, Nd, Sr, Lu & Hf were separated from whole rock powders using standard 

column chemistry techniques. Procedures follow a well established “in house” protocol 

and are described in brief below. 

A.3.2 - Sm-Nd & Sr column chemistry (MUN) 

To prepare samples for 147Sm-143Nd analysis a mixed 150Nd/149Sm spike is added 

to the whole rock samples, with spike weights based on the Nd elemental 

concentrations as determined above. Both spike and sample weights are measured 

using a high-precision balance. The spiked powders are then dissolved in Savillex © 

Teflon beakers in a 4:1 mixture of 29M Hf – 15M HNO3 and left on a hotplate to dissolve 

for five to six days. The solution is then evaporated to dryness and then redissolved in 

6M HCl for two to three days. After this solution has been dried down it is then finally 

redissolved in 2.5M HCl. Sm and Nd are then separated using a conventional two-

column chemistry technique. Samples are loaded into a column containing cation 

exchange resin Bio-Rad AG-50W-X8 (200-400 mesh). A Sr fraction is isolated before 

extraction of a bulk REE separation. This fraction is then dried down and redissolved in 

0.18M HCl before being loaded into a second column containing Eichrom © Ln resin (50-

100 mesh). Sm and Nd can then be isolated from the other REEs. The isolated Sr fraction 

is then further refined using micro-columns with Eichrom © Sr-spec resin and HNO3.  
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A.3.3 - Sm-Nd & Sr TIMS analysis (MUN) 

Sm and Nd, and Sr isotopic compositions and concentrations were determined 

using a multi-collector Finnigan Mat 282 mass spectrometer at Memorial University of 

Newfoundland, using static and dynamic modes respectively. Sm and Nd are loaded 

onto a double rhenium filament assembly while Sr utilizes a single tungsten filament 

with 2 L of Sr activator (Tantalum fluoride). Sm and Nd analyses were corrected for 

internal mass fractionation using a Rayleigh law relative to 146Nd/144Nd = 0.7219 and 

152Sm/147Sm = 1.783, as well as gain. Measured values were then adjusted to the JNdi-1 

standard isotopic value of 143Nd/144Nd = 0.512115 (Tanaka et al., 2000). Our current 

measurement of JNdi-1 yields an average of 0.512100 ± 7 (1 std, n=21). Sr ratios are 

normalized to 88Sr/86Sr = 8.375202 and measured values are adjusted to the NBS-987 

standard.  Our current measurement of this standard has a mean 87Sr/86Sr = 0.710233 ± 

15 (1 std, n=15). 

A.3.4 - Lu-Hf column chemistry (MUN) 

The procedures to prepare samples for 176Lu-176Hf analysis have been described 

in detail elsewhere (Patchett & Tatsumoto, 1981; Vervoort & Blichert-Toft, 1999; 

Vervoort et al., 2004) and will only be described briefly here. Whole rock powders are 

first spiked using 176Lu-180Hf mixed spikes as outlined in (Vervoort, et al., 2004) with 

spikes used i.e. mafic, felsic, garnet etc. dependant on the Lu/Hf ratio of the sample as 

determined as above.  These mixtures were then digested in a 3:1 mixture of 29M HF – 

15M HNO3 in steel jacketed PTFE dissolution vessels (Parr type) for five to seven days. 
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After acid digestion the samples were evaporated to dryness in Savilex © Teflon beakers 

before being redissolved in 6M HCl for two days, evaporated to dryness again, and 

further dissolved in 1M HCl – 0.1M HF. The samples are then ready for the first of a 

multiple stage column separation. The first column containing Bio-Rad AG 50W-X12 

resin involves the removal of the high field strength elements (HFSE, including Hf) from 

the heavy REEs (HREEs, including Lu and Yb). The HFSE split is then introduced to a 

second column containing LN Spec resin and Ti is removed from the samples using 

0.09Hcit-0.45M HNO3 + 1% H2O2. Hf is eluted using 6M HCl – 0.4M HF and is then dried 

down for a further Hf clean-up procedure using AG 50W-X12 resin. Yb is isolated from 

the HREE split in a column containing LN spec resin with Yb being removed by 2.5M HCl 

and Lu being eluted by 6.2M HCl. 

A.3.5 - Lu-Hf MC-ICP-MS analysis (MUN) 

Lu-Hf isotopic analyses were undertaken using a Thermo-Finnigan Neptune 

multi-collector (MC-ICP-MS) system at Memorial University of Newfoundland. Elements 

were measured in static mode and sample input rate was typically ~50µl/min. All 

solutions were run in 2% HNO3. Hf analyses consisted of one block of 75 cycles, whereas 

Lu analyses consisted of one block of 30 cycles, both using ~8 second integrations. After 

Hf analysis the spray chamber was rinsed first with 0.1% HF and then equilibrated in 

0.3N HNO3. If Hf signals were high 0.2N HCl was used additionally in between the HF and 

HCl steps. For Lu analysis the spray chamber was rinsed with 2N HCl and then 

equilibrated in 0.3N HNO3. 



Page 141 
 

Measurements were bracketed every five samples by three analyses of a 202ppb 

JMC-475 Hf standard, which averaged 176Hf/177Hf=0.282154 ± 12 (2 std, n=22) over two 

analytical sessions. Mass bias- and interference corrected were then adjusted to the 

JMC-475 accepted values of 176Hf/177Hf=0.282160, 178Hf/177Hf=1.467170 and 

180Hf/177Hf=1.886660 (Vervoort & Blichert-Toft, 1999). All Hf compositions were 

corrected for Lu and Yb interferences. Mass fractionation and interference corrections 

were applied to the Lu analyses following the protocol described in (Vervoort et al., 

2004). 

A.4 - Analytical Methods: In Situ 

In situ analyses of the OWPB accessory minerals were done using a combination 

of methods. Zircon analyses were done by analysing for U-Pb isotopes first and then 

locating Lu-Hf analyses in the same spot or zone. The LASS method (described below) 

was utilised to investigate the U-Pb and Sm-Nd isotopes in monazite. A U-Pb and Lu-Hf 

LASS approach was also used on some of the zircon samples. 

A.4.1 - LASS setup (WSU) 

The LASS method used in this study used a New Wave 213 nm Nd:YAG laser 

coupled to both a ICP-MS and a MC-ICP-MS, which measured the U-Pb isotopes and the 

Sm-Nd/Lu-Hf isotopes, respectively. The relative elemental concentrations of Ce, Eu and 

Gd were also simultaneously measured in monazite using the MC-ICP-MS. A baffled “Y” 

glass connector is used to split the ablated material after transportation from the 

sample cell to both mass spectrometers. He gas was used as the sample carrier, and N2 
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is added before the splitting of the sample in order to increase the sensitivity and 

minimize oxide formation. For both zircon and monazite LASS methods, the tracer 

isotopic data (Lu-Hf and Sm-Nd respectively) were acquired using continuous, single 

data files that contain a number of individual ablation analyses and baselines. This 

simplifies data collection and allows the user to focus primarily on the single-collector 

ICP-MS and the laser interfaces. 

A.4.2 - U-Pb zircon analysis (Portsmouth) 

U–Pb ages were measured by laser ablation quadrupole mass spectrometry (LA-

Q-ICP-MS) after (Jeffries, et al., 2003), using an Agilent 7500cs coupled to a New Wave 

Research UP-213 Nd:YAG laser at the University of Portsmouth. Spots 20-30 µm in 

diameter were rastered along lines 1.5-2x that length.  

Ratios were calculated using LamTool (Košler et al., 2008) normalized to 

Plešovice through sample-standard bracketing. Rims, as determined by CL imaging, were 

analysed preferentially to obtain a crystallisation age for the granite. The amount of 

204Pb in these analyses was below the detection limit, and no common Pb correction was 

undertaken. Only ages less than 5% discordant, from a single growth zone and avoiding 

irregular features such as cracks and inclusions were considered for 

interpretation. Instrument parameters are described in Table A.4.2.1. 
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Table A.4.2.1 –Zircon U–Pb operating parameters and data acquisition parameters 
(Portsmouth) 

Unit Parameter Settings 

ICP-MS 

Model Agilent 7500cs Quadrupole 

Forward power 1550W 

Coolant gas flow Ar, 15 L/min 

Auxiliary gas flow Ar, 1.0 L/min 

Carrier gas flow Ar, c. 1.25 L/min 

Laser 

Model NewWave Research UP213 Nd:YAG 

Wavelength 213 nm 

Pulse width 3 ns 

Fluence c. 4.4 J/cm2 

Repetition rate 10 Hz 

Spot size 30 μm 

Raster length 45-60 μm 

Raster speed 2 μm/s 

Cell format 'tear drop' low volume cell (c. 2.6 cm3) 

Carrier gas flow He, 0.3 L/min 

Analytical 
protocol 

Scanning mode Peak jumping, 1 point/peak 

Acquisition mode Time-resolved analysis 

Detection Single electron multiplier 

Masses measured 202, 204, 206, 207, 208, 235, 238 

Integration per peak 
20 ms on 202, 204, 207, 235;  
10 ms on 206, 232, 238 

Total integration per reading 0.134s 

Ablation duration 60s 

Gas blank 30s on-peak zero subtracted 

Calibration Plešovice (primary); GJ-1 (internal) 

Standard references: 

91500: (Wiedenbeck, et al., 1995); GJ-1: 

(Jackson, et al., 2004) Plešovice: (Sláma, et al., 
2008) 

Data processing package: LAMTRACE or LamTool 

Mass discrimination 
207Pb/206Pb and 206Pb/238U normalised to 
reference material 

Common-Pb correction, 
composition and uncertainty 

None applied 
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Uncertainty level and 
propagation 

Ages are quoted at 2σ absolute; propagation is by 
quadratic addition. Reproducibility and age 
uncertainty of reference materials are not 
propagated. 
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A.4.3 - Lu-Hf & LASS zircon analyses (WSU) 

Samples determined to have concordant U-Pb analyses were then analysed for 

Lu-Hf using a New Wave 213nm Nd:YAG laser coupled to a ThermoFinnigan Neptune 

MC-ICP-MS at Washington State University. Two samples (SWP-13-01 & PRP-12-01) 

were additionally analysed for both U-Pb and Lu-Hf at Washington using the LASS 

method. Operating parameters for the Neptune are the same for both the Lu-Hf 

analyses and the LASS method, as those reported in Fisher et al., (2014). For the zircon 

LASS analyses, after the sample was split to analyse Lu-Hf using a Neptune MC-ICP-MS, 

the U-Pb was measured simultaneously using a Thermo Element2 (parameters also 

outlined in (Fisher, et al., 2014)). In both Lu-Hf analyses and LASS analyses the laser 

operated at 10Hz and a fluence of ~8 – 10 J/cm3
, using a 30-40µm spot size. To further 

improve sensitivity of Lu-Hf analyses the Neptune is also fitted with a standard nickel 

sample cone and a nickel “X” skimmer cone, which has been shown to improve 

sensitivity by a factor of ~1.4 (Hu et al., 2012). The zircon LASS operating parameters are 

summarised in Table A.4.3.1. 
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Table A.4.3.1 – Zircon LASS operating parameters (WSU). 

(a) Cup Configuration and interferences 

 
L4 L3 L2 L1 Axial H1 H2 H3 H4 

 
171Yb 173Yb 175Lu 

176Hf 
176Yb 
176Lu 

177Hf 178Hf 179Hf 
180Hf 
180W 

182W 

REE-

oxides 
155Gd16O 157Gd16O 159Tb16O 160Gd16O 161Dy16O 

162Dy16O 
162Er16O 

163Dy16O 
164Dy16O 
164Er16O 

166Er16O 

(b) Instrument Operating Parameters 

 
MC-ICPMS 

Sector Field-Inductively Coupled Plasma Mass 

Spectrometer 

Model 
ThermoFinnigan 

Neptune 
ThermoFinnigan Element2 

Forward power 1200 W 
 

Mass resolution Low (400) Low 

Gas flows-laser ablation 

Cool/plasma (Ar) 16 l/min 0.85 l/min 

Auxiliary (Ar) 0.85 l/min 0.85 l/min 

Sample/nebulizer (Ar) ~0.60  l/min 1 l/min 

Carrier gas (He) ~1.2  l/min ~1.2  l/min 

Nitrogen 5 ml/min 5 ml/min 

Laser ablation 

Type 
New wave 213 nm 

(Nd:YAG) Masses 
204Pb, 206Pb, 208Pb, 232Th, 235U, 238U 

Points per peak 1 

Repetition rate 10 Hz 

Laser fluence ~8 J/cm2 

Spot size 30–40 µm 
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A.4.4 - Zircon data reduction  

A.4.4.1 - Lu-Hf 

Lu-Hf data reduction follows that of (Fisher et al., 2011; Fisher et al., 2014) using 

the Iolite software program (Paton et al., 2011) with a customized in-house protocol. 

The isobaric 176Yb interference on 176Hf is the most important correction that must be 

made for in situ Hf isotopic analysis (Woodhead et al., 2004) and a detailed explanation 

of this correction in discussed in Fisher et al., (2011) and Fisher et al., (2014). Samples 

are then further calibrated to 176Hf-176Hf value of 0.282507 ± 6 for the Mud Tank zircon 

standard (Woodhead & Hergt, 2005). 

A.4.4.2 - LASS U-Pb 

The U-Pb LASS zircon data were reduced using the data reduction protocol 

outlined by (Chang et al., 2006) and discussed in (Fisher et al., 2014). Analyses of 

unknowns were bracketed by analyses of standards, with ten unknowns followed by five 

analyses of two different zircon standards (FC-1 & Plešovice). To adequately account for 

the range of ages expected in the OWPB samples, the Plešovice standard (337 Ma; 

Sláma et al., 2008) was used to calibrate the 238U-206Pb ages, whereas the older FC-1 

standard (1099 Ma; Paces & Miller, 1993) was used for the 207Pb-206Pb ages. 

A.4.5 - Monazite LASS (WSU) 

All monazite samples were analysed using the LASS technique at Washington 

State University. Like for the LASS zircon analyses, the ablated sample is carried from the 

laser cell using He + N2 and then split to the Element 2 HR-ICP-MS where U-Pb isotopes 
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are measured, and the Neptune MC-ICP-MS where Sm and Nd isotopes are measured. 

The laser is operated at 8Hz, ~7J/cm2, with a spot size of 20 µm, allowing for high spatial 

resolution analyses. This is a higher laser power than that used in both Fisher et al., 

(2011) & Goudie et al., (2014) who used a lower power to minimise U and Pb elemental 

fractionation, and to conserve the amount of sample consumed. We experimented with 

using the laser at 4Hz however we did not see any difference in signal intensity or 

uncertainty, thus we continued to use the laser at 8Hz.  

Analysis of the LREE and JNdi glass standards required a spot size of 80 μm and 

60 μm respectively, due to the lower concentration of Sm and Nd present. While it is 

preferable to analyse standards and unknowns using the same spot size in order to 

eliminate and laser induced fractionation, it was not possible using these reference 

materials. The fractionation between Sm and Nd is thought to be negligible (<1%) 

however, therefore this difference in spot size does not cause any significant increases in 

uncertainty (Fisher et al., 2011). 

The operating parameters for the LASS monazite analyses are summarised in 

Table A.4.5.1. 
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Table A.4.5.1 – Monazite LASS operating parameters (WSU).  

(a) Cup Configuration and interferences 

 
L4 L3 L2 L1 Axial H1 H2 H3 H4 

Analyte 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 149Sm 153Eu 157Gd 

Interferences   144Sm      141Pr16O 

(b) Instrument Operating Parameters 

 
MC-ICPMS 

Sector Field-Inductively Coupled 
Plasma Mass Spectrometer 

Model ThermoFinnigan Neptune ThermoFinnigan Element2 

Forward power 1200 W 
 

Mass resolution Low (400) Low 

Gas flows-laser ablation 

Cool/plasma (Ar) 15 l/min 16 l/min 

Auxiliary (Ar) 0.80 l/min 0.85 l/min 

Sample/nebulizer (Ar) 0.7-0.8  l/min 1.21 l/min 

Carrier gas (He) ~1  l/min 1.12  l/min 

Nitrogen 5 ml/min 5 ml/min 

Laser ablation 

Type New wave 213 nm (Nd:YAG) 
Masses 

204Pb, 206Pb, 208Pb, 232Th, 235U, 
238U 

Points per peak 1 

Repetition rate 8 Hz 

Laser fluence ~7 J/cm2 

Spot size 20 µm 
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A.4.6 - Monazite LASS data reduction  

A.4.6.1 - Sm-Nd 

Monazite Sm-Nd data was reduced using Iolite software (University of 

Melbourne) with a customized in-house protocol that follows the scheme outlined in 

(Fisher et al., 2011). There are three main corrections required for precise and accurate 

Sm-Nd isotopic analyses by LA-ICP-MS, as discussed at length in Fisher et al., (2011). The 

isobaric interference of 144Sm on 144Nd is corrected using the measured 149Sm and the 

natural invariant ratio of 144Sm/149Sm (Iizuka et al., 2011; Fisher et al., 2011). Sm mass 

bias is corrected using an exponential law and the measured 147Sm/149Sm from the 

sample (Fisher et al., 2011; Goudie et al., 2014). The accurate determination of 

147Sm/144Nd is necessary when investigating variations in the initial Nd compositions of 

minerals, and this becomes increasingly important as sample age increases. This is 

achieved by calibration of measured Sm-Nd isotopic values to the LREE haploandesite 

glass standard (Fisher et al., 2011) that was analysed after every six unknowns, allowing 

for simultaneous correction of instrumental drift, elemental fractionation and mass bias. 

Correction of 143Nd/144Nd ratios was made in reference to the value of 0.512155 ± 7 

(Tanaka et al., 2000). 

A.4.6.2 - U-Pb 

The U-Pb LASS monazite data, like the U-Pb LASS zircon data, was reduced using 

the data reduction protocol outlined by Chang et al., (2006). Trebilcock (272 ± 2 Ma; 
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Tomascak et al., 1998) was used as U-Pb calibration material, as well as being used as a 

secondary standard to assess the accuracy of the Sm-Nd isotopic analyses. 

A.5 - Isotopic reservoir values 

CHUR and Depleted Mantle (DM) reservoir parameters used for both whole rock 

and in situ data are as follows. εHf values were calculated using the present day CHUR 

values of 176Hf/177Hf = 0.282785 and 176Lu/177Hf = 0.0336 (Bouvier et al., 2008).  εNd 

values were calculated using the present day CHUR values of 143Nd/144Nd = 0.512630 

and 147Sm/144Nd = 0.1960 (Bouvier et al., 2008). Depleted mantle lines were calculated 

using 176Hf/177Hf = 0.283225 and 176Lu/177Hf = 0. 038512 (Vervoort & Blichert-Toft, 1999), 

and 143Nd/144Nd = 0.513200 and 147Sm/144Nd = 0. 2140 (Rehkämper & Hofmann, 1997).   

Initial isotopic values for whole rock and in situ Nd and Hf isotopes were 

calculated using measured parent-daughter ratios. The corresponding in situ age 

information was provided by U-Pb measurements made by either the LASS method or by 

the U-Pb only method. For whole rock Sr isotopes, 87Rb/86Sr ratios were calculated using 

the method described in (Faure & Mensing 2005) using the Rb and Sr elemental 

concentrations as determined by ICP-MS as described above. Decay constants used were 

176Lu λ = 1.867 X 10 -11 (Söderlund et al., 2004), 147Sm λ = 6.539 × 10 −12 (Begemann et al., 

2001), and 87Rb λ = 1.42 X 10 -11 (Steiger & Jäger, 1977). Whole rock Sr, Sm-Nd and Lu-Hf 

initial compositions were calculated using an age of 70 Ma, as this allows easier 

comparison to previous datasets. There is no significant difference in initial compositions 
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if the crystallisation age of each sample, as determined by weighted average U-Pb in situ 

data, is used.  
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Appendix B - Analysis of reference standards 

B.1 - Whole rock isotopic standards 

To assess the precision of the Sm-Nd SIMS technique the USGS BCR-2 standard 

(143Nd/144Nd = 0.512633; Raczek et al., 2003) was measured throughout the analysis 

period, with each analysis comprising a separate dissolution. Our average measurement 

of the BCR-2 is 0.512636 ± 7 (2 std, n=11). Internal errors (2 standard errors of the 

mean) are typically <0.002% for Nd isotope compositions, and <0.1% for the 147Sm/144Nd 

ratios. The average total blank measured at the MUN TIMS laboratory was 100pg for Nd 

and therefore is considered negligible.  

Precision of the Sr TIMS procedure was assessed by analysis of the NBS 897 

standard, which has a reference value of 0.710240. 15 measurements of this standard at 

the MUN TIMS lab throughout the analysis period yielded an average 87Sr/86Sr = 

0.710233 ± 15 (2std, n=15, which is in excellent agreement with the accepted value. 

The precision of the Hf ICP-MS technique was assessed by analysis of the USGS 

BCR-2 standard (176Hf/177Hf = 0.282862; Vervoort et al., 2004) throughout the analysis 

period, with each analysis comprising a separate dissolution. Our average measurement 

of the BCR-2 is 0.282863 ± 3 (2 std, n=6).  
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B.2 - In situ isotopic standards 

B.2.1 - U-Pb only standards (UoP) 

The Plešovice standard was used in order to normalise U-Pb ratios, with analyses 

yielding an average 206Pb/238U age of 336.4 ± 1.0 Ma (n=64, 2SD) over 4 days, consistent 

with the published age of 337.1 ± 0.37 Ma (2SD; Sláma et al., 2008) (Figure B.2.1.1a). 

Internal zircon standard GJ-1 yielded an average 206Pb/238U age of 600.29 ± 0.96 Ma 

(n=192, 2SD), within uncertainty of the 600.4 ± 1.3 Ma published age (2SD; Jackson et 

al., 2004) (Figure B.2.1.1b). 

 

Figure B.2.1.1 – Weighted average plots of Plešovice and GJ-1 standard U-Pb analyses. 

Coloured bars represent accepted values of standards.  

B.2.2 - Lu-Hf only standards (WSU)  

For Lu-Hf only zircon analyses, two standards were measured during the 

analytical session at Washington State University. The Mud Tank standard was used as 

the internal normalising standard, using the values of 0.282507±6 (Woodhead & Hergt, 
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2005). The synthetic B144/MunZirc standard was also analysed to assess the accuracy of 

the technique. This yielded a weighted average of 176Hf-176Hf = 0.282139 ± 11 (n= 6, 2SE; 

accepted value = 0.282135 ± 7; (Fisher et al., 2011)) (Figure B.2.2.1). 

 

Figure B.2.2.1 – Weighted average plots of B144/MunZirc standard Lu-Hf analyses. 

Coloured bars represent accepted values of standards. 

B.2.3 - LASS zircon standards 

For the LASS zircon analyses a number of reference zircons were used covering 

the range of natural zircon compositions expected from the OWP samples. 

Plešovice was used as the U-Pb internal standard and therefore it is not possible 

to make an assessment of accuracy for its LASS age determinations. A weighted average 

of 176Hf-176Hf = 0.282460 ± 6 (n= 25, 2SE), which is in good agreement with the accepted 

value of 176Hf-176Hf = 0.282482 ± 13 (Sláma et al., 2008) (Figure B.2.3.1a). FC-1 was also 

used as a 207Pb/206Pb internal standard so it is only possible to assess the accuracy of its 

Lu-Hf analysis. A weighted average of 176Hf-176Hf = 0.282174 ± 11 (n= 7, 2SE), which is in 
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good agreement with the accepted value of 176Hf-176Hf = 0.282184 ± 16 (Woodhead & 

Hergt, 2005) (Figure B.2.3.1b). 

 

Figure B.2.3.1 – Weighted average plots of Plešovice and FC-1 standard Lu-Hf analyses. 

Coloured bars represent accepted values of standards. 

As for the Lu-Hf only zircon analyses, Mud Tank was used as the internal 

normalising standard for the LASS Lu-Hf analyses, and this yielded a weighted average 

176Hf-176Hf = 0.282507 ± 9 (n = 8, 2SE) (Figure B.2.3.2a). The currently accepted age for 

the Mud Tank zircon is an ID-TIMS age of 207Pb/235U = 732 ± 5 Ma (Black & Gulson, 1978). 

LASS analyses yield concordant or near concordant ellipses, and a weighted average age 

of 207Pb/235U = 760 ± 24 Ma (Figure B.2.3.2b). The spread in data and high uncertainty of 

the analyses is likely due to the low U and Pb contents of the zircon standard, which is 

from a carbonatite.  

The B144/MunZirc standard yielded a weighted average of 176Hf-176Hf = 0.282139 

± 16 (n= 4, 2SE; accepted value = 0.282135 ± 7; Fisher et al., 2011) (Figure B.2.3.3). 
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Although this synthetic zircon was analysed using the LASS setup it does not contain any 

U or Pb so no age determinations can be made. 

 

Figure B.2.3.2 – Concordia and weighted average plot of Mud Tank standard LASS 

analyses. a) Concordia and weighted average plots of U-Pb data. b) Weighted average 

plots of Lu-Hf data. Coloured bars represent accepted values of standards. 

 

Figure B.2.3.3 – Weighted average plot of B144/MunZirc standard Lu-Hf LASS analyses. 

Coloured bars represent accepted values of standards. 
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The 91500 zircon standard has been well characterised in terms of U-Pb and Lu-

Hf and thus serves as a good test of the LASS approach. The accepted 206Pb/238U ID-TIMS 

age for the 91500 zircon is 1063.4 ± 1. 4 Ma (Schoene et al., 2006). Eight LASS analyses 

yield concordant data, with a 206Pb/238U weighted average of 1106 ± 12Ma, which is 

slightly older than the ID-TIMS age. 207Pb/206Pb weighted average gives an age of 1077 ± 

27Ma, which compares well with the ID-TIMS 207Pb/206Pb age of 1066.4  ± 5 Ma 

(Schoene, et al., 2006) (Figure B.2.3.4a). A weighted average of 176Hf-176Hf = 0.282282 ± 

28 (n= 8, 2SE), which is in good agreement with the accepted value of 176Hf-176Hf = 0. 

282305 ± 6 (Blichert-Toft, 2008) (Figure B.2.3.4b). 

Figure B2.3.4 – Concordia and weighted average plot of 91500 standard LASS analyses. 

a) Concordia and weighted average plots of U-Pb data. b) Weighted average plots of Lu-

Hf data. Coloured bars represent accepted values of standards. 
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B.2.4 - LASS monazite standards 

Trebilcock was used as the U-Pb internal standard and therefore it is not possible 

to make an assessment of accuracy for its LASS age determinations. Trebilcock was 

measured 200 times during the 3 days of LASS monazite analysis and therefore provides 

an excellent check on the accuracy of Sm-Nd isotopic determinations throughout the 

analysis period. A weighted average of 143Nd-144Nd= 0.5126114 ± 42 (n= 187, 2SE), which 

is in excellent agreement with the accepted values of both the ID-TIMS and the LA-MC-

ICP-MS accepted values of 143Nd-144Nd = 0.512616 ± 11 and 0.512607 ± 26 respectively 

(Fisher et al., 2011) (Figure B.2.4.1a). 

For monazite LASS analyses the JNdi synthetic glass was used as the internal 

standard for Sm-Nd. Analyses of this standard yielded a weighted average 143Nd-144Nd = 

0.512111 ± 11 (n = 15, 2SE), which is in good agreement with the accepted values for 

both ID-TIMS and LA-MC-ICP-MS analyses of 143Nd-144Nd = 0.512115 ± 7 and 0.512089 ± 

23 respectively (Fisher et al., 2011) (Figure B.2.4.1b). 

The synthetic LREE glass was also used as an internal standard for Sm-Nd LASS 

analyses, yielding a weighted average of 143Nd-144Nd = 0.512112 ± 14 (n = 32, 2SE), which 

is in excellent agreement with the accepted values for both ID-TIMS and LA-MC-ICP-MS 

analyses of 143Nd-144Nd = 0.512115 ± 7 and 0.512097 ± 33 respectively (Fisher et al., 

2011) (Figure B.2.4.1c). 
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Figure B.2.4.1 – Weighted average plot of a) Trebilcock, b)JNdi glass and c)LREE glass 

standard Sm-Nd analyses. Coloured bars represent accepted values of standards. 
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The KMO monazite is used in this study as a check on both the U-Pb and Sm-Nd 

isotopic accuracy of the LASS method. Previous ID-TIMS by (Maclachlan et al., 2004) give 

as 207Pb/206Pb weighted average age of 1822 ± 1.5 Ma. LASS analyses of KMO are 

concordant on both conventional Concordia and Tera-Wasserburg  diagrams and yield a 

weighted average age of 1828 ± 14 Ma (n=11, 2SE) (Figure B.2.4.2a). The only published 

Sm-Nd isotopic composition of KMO is presented in Goudie et al., (2014), where the 

LASS 143Nd/144Nd weighted average is calculated to be 0.511433 ± 29. LASS analyses 

from this study give a 143Nd/144Nd weighted average of 0.511384 ± 40 (Figure B.2.4.2b), 

which is in agreement with the above value. 

Figure B.2.4.2 – Concordia and weighted average plot of KMO standard LASS analyses. 

a) Concordia, Terra-Wasserburg and weighted average plots of U-Pb data. b) Weighted 

average plots of Sm-Nd data. Coloured bars represent accepted values of standards. 
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Twelve analyses of the Thai monazite standard were performed throughout the 

analysis period. As this standard has been characterised for both U-Pb and Sm-Nd 

isotopes is serves as a useful check on the accuracy of the LASS method. Analyses yield 

concordant and near concordant results when plotted on Tera-Wasserburg  plots (Figure 

B.2.4.3Error! Reference source not found.a), with divergence from Concordia due to 

heir young age and insufficient in-growth of 207Pb. The weighted average 206Pb/238U age 

= 27.56 ± 0.79 Ma. This is consistent with the ID-TIMS age reported by (Dunning et al., 

1995) of 26.8 ± 0.5 Ma. The weighted average of Thai monazite by LASS is 143Nd-144Nd = 

0.512668 ± 20 (n = 12, 2SE), which is consistent with both the ID-TIMS and LA-MC-ICP-

MS values reported by (Fisher et al., 2011) of 143Nd-144Nd = 0.512646 ± 10 and 143Nd-

144Nd = 0.512578 ± 26 (Figure B.2.4.3b). 

Figure B.2.4.3 – Terra-Wasserburg and weighted average plot of Thai standard LASS 

analyses. a) Terra-Wasserburg and weighted average plots of U-Pb data. b) Weighted 

average plots of Lu-Hf data. Coloured bars represent accepted values of standards. 
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Appendix C – Supplementary data files 

Supplementary data files are presented here in digital format only. 

C1 – Zircon in situ U-Pb data 

C2 – Zircon in situ Lu-Hf data 

C3 – Zircon in situ LASS U-Pb – Lu-Hf data 

C4 – Monazite in situ LASS U-Pb – Sm-Nd data 


