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Abstract

In this thesis, we study the unit graph G(R) and the unitary Cayley graph Γ(R)

of a ring R, and relate them to the structure of the ring R.

Chapter 1 gives a brief history and background of the study of the unit graphs and

unitary Cayley graphs of rings. Moreover, some basic concepts, which are needed in

this thesis, in ring theory and graph theory are introduced.

Chapter 2 concerns the unit graph G(R) of a ring R. In Section 2.2, we first

prove that the girth gr(G(R)) of the unit graph of an arbitrary ring R is 3, 4, 6 or ∞.

Then we determine the rings R with R/J(R) semipotent and with gr(G(R)) = 6 or

∞, and classify the rings R with R/J(R) right self-injective and with gr(G(R)) = 3

or 4. The girth of the unit graphs of some ring extensions are also investigated.

The focus of Section 2.3 is on the diameter of unit graphs of rings. We prove that

diam(G(R)) ∈ {1, 2, 3,∞} for a ring R with R/J(R) self-injective and determine

those rings R with diam(G(R)) = 1, 2, 3 or ∞, respectively. It is shown that, for

each n ≥ 1, there exists a ring R such that n ≤ diam(G(R)) ≤ 2n. The planarity of

unit graphs of rings is discussed in Section 2.4. We completely determine the rings

whose unit graphs are planar. In the last section of this chapter, we classify all finite

commutative rings whose unit graphs have genus 1, 2 and 3, respectively.

Chapter 3 is about the unitary Cayley graph Γ(R) of a ring R. In Section 3.2, it is
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proved that gr(Γ(R)) ∈ {3, 4, 6,∞} for an arbitrary ring R, and that, for each n ≥ 1,

there exists a ring R with diam(Γ(R)) = n. Rings R with R/J(R) self-injective are

classified according to diameters of their unitary Cayley graphs. In Section 3.3, we

completely characterize the rings whose unitary Cayley graphs are planar. In Section

3.4, we prove that, for each g ≥ 1, there are at most finitely many finite commutative

rings R with genus γ(Γ(R)) = g. We also determine all finite commutative rings R

with γ(Γ(R)) = 1, 2, 3, respectively.

Chapter 4 is about the isomorphism problem between G(R) and Γ(R). We prove

that for a finite ring R, G(R) ∼= Γ(R) if and only if either char(R/J(R)) = 2 or

R/J(R) = Z2 × S for some ring S.
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Chapter 1

Introduction

1.1 Motivation and Background

Associating a graph with an algebraic object is an active research subject in alge-

braic graph theory, an area of mathematics in which methods of abstract algebra are

employed in studying various graph invariants and tools in graph theory are used in

studying various properties of the associated algebraic structure. Research in this sub-

ject has attracted considerable attention and has a very long history. For instances,

the Cayley graph of a finite group was first considered by Arthur Cayley in 1878 [17],

and Max Dehn in his unpublished lectures on group theory from 1909-10 reintroduced

Cayley graphs of groups under the name Group Diagram, which led to the geometric

group theory of today. This thesis concerns graphs associated with rings. Research

on graphs associated with rings was started in 1988. In 1988, being the first to asso-

ciate a graph to a ring, Beck [10] introduced and studied the zero-divisor graph of a

commutative ring. Since then, the zero-divisor graphs have been extensively studied,

with various investigations on coloring, chromatic number, clique number, diameter,

girth, cyclic structure, genus, planarity and the isomorphism problem. Today, there
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has been a very rich literature on zero-divisor graphs of rings. For a survey and recent

results concerning zero-divisor graphs, we refer the reader to [1]. In the literature,

there are some other graphs associated with rings, such as the comaximal graph of a

ring [52], the total graph of a ring [2], the annihilator-ideal graph of a ring [15] and

the Jacobson graph of a ring [4].

Generally speaking, studying the zero divisor graph is a way to investigate the

ring through the properties of its zero divisors. This is applicable especially when the

zero divisors of the ring can be easily identified. This may explain why most of the

publications on the zero divisor graph just concern the finite rings. The units of a

ring are key elements in determining the structure of the ring, and many properties

of a ring are closely connected to these of its units. So it is natural to associate a

ring with a graph whose edge relationships rely on units of the ring instead of zero

divisors. The unit graph and the unitary Cayley graph of a ring are such two graphs,

which are the topics in this thesis. The study of these graphs has brought out many

new and interesting questions to algebraists working in the newly developing area of

studying rings by associating various graphs to the ring via its algebraic structure.

Next, we recall the definitions of the unit graph and unitary Cayley graph of a

ring, and give a brief account of the various works known about them. The unit

graph of a ring R, denoted G(R), is the simple graph defined on the elements of R

with an edge between distinct vertices x and y if and only if x + y is a unit of R. In

1990, the unit graph was first investigated by Grimaldi for Zn, the ring of integers

modulo n, in [27] where the author considered the degree of a vertex, the Hamilton

cycles, the covering number, the independence number and the chromatic polynomial

of the graph G(Zn). In 2010, Ashrafi, et al. [8] generalized the unit graph G(Zn) to

G(R) for an arbitrary ring R and obtained various characterization results for finite



3

(commutative) rings regarding connectedness, chromatic index, diameter, girth, and

planarity of G(R). Maimani et al. gave the necessary and sufficient conditions for

unit graphs to be Hamiltonian in [51]. Heydari and Nikmehr investigated the unit

graph of a left Artinian ring in [33]. Afkhami and Khosh-Ahang studied the unit

graphs of rings of polynomials and power series in [7]. Akbari et al. concerned the

unit graph of a noncommutative ring in [5].

Determining the genus γ(G) of a graph G is one of the fundamental problems in

topological graph theory. Until recently it was unknown if the question “Given a graph

G and a natural number k, is γ(G) ≤ k?” could be answered using a polynomial-

time algorithm. In a recent paper [61] Thomassen announced that the graph genus

problem is NP-complete. Das et al. studied the nonplanarity of unit graphs and

classified the toroidal ones for finite commutative rings in [21]. Khashyarmanesh and

Khorsandi generalized the unit graph of a commutative ring in [38], and later in [3]

Asir and Chelvam studied the genus of generalized unit and unitary Cayley graphs of

a commutative ring. Many other papers are devoted to this topic (see [48], [49] and

[50]). A survey of the study of unit graphs can be found in [47].

Let us turn to unitary Cayley graphs of rings. The unitary Cayley graph of a ring

R, denoted Γ(R), is the simple graph defined on the elements of R with an edge

between vertices x and y if and only if x − y is a unit of R. Unitary Cayley graphs

are highly symmetric. These graphs have integral spectrum and play an important

role in modeling quantum spin networks supporting the perfect state of transfer.

The unitary Cayley graph of a ring was initially investigated for Zn by Dejter and

Giudici in [20] where some properties of Γ(Zn) are presented. For instances, if n is

prime, then Γ(Zn) is the complete graph on n vertices; if n is even, then Γ(Zn) is

bipartite; if n is a power of 2, then Γ(Zn) is complete bipartite and so on. Many
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publications are devoted to the unitary Cayley graph of Zn (see, for example, [12],

[13], [24] and [39]).

In 2009, Akhtar, et al. [6] generalized the unitary Cayley graph Γ(Zn) to Γ(R) for

a finite ring R and obtained various characterization results regarding connectedness,

chromatic index, diameter, girth, and planarity of Γ(R). In [43], Lucchini and Maróti

proved that the clique number and the chromatic number of Γ(R) are equal for an

Artinian ring R. In [44], Lanski and Maróti considered the unitary Cayley graph of

an Artinian ring R and showed that Γ(R) contains 2k−1 connected components, each

of which is a bipartite graph, where k is the number of summands isomorphic to Z2

in R/J(R). Recently, Kiani and Aghaei [36] investigated the isomorphism problem

for unitary Cayley graphs associated with finite (commutative) rings. They proved

that if Γ(R) ∼= Γ(S) where R,S are finite rings, then Γ(R/J(R)) ∼= Γ(S/J(S)), and

if, in addition, R and S are commutative, then R/J(R) ∼= S/J(S). They also proved

that if Γ(Mn(F )) ∼= Γ(R) where F is a finite filed, then R ∼= Mn(F ). A number

of other papers considered the spectral properties and the energy of unitary Cayley

graphs of rings (see [19], [35], [37], [45], [55], [57]). Khashyarmanesh and Khorsandi

generalized the definition of the unitary Cayley graphs of rings in [38] and studied

the properties of the resulting graph and extended some results in the unit graphs

and unitary Cayley graphs. For example, they classified all commutative finite rings

whose generalized unitary Cayley graphs are planar.

1.2 Preliminaries

In this section, we state some concepts in graph theory and ring theory, which are

needed in the sequel.

A graph is a pair G = (V (G), E(G)), where V (G) is the vertex set and E(G) is the
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edge set. The edge set consists of unordered pairs of distinct elements of V (G). All

graphs G in this thesis are simple. That is, there are no loops and no repeated edges

in a graph. The neighborhood of a vertex x in a graph G, denoted N(x), is the set

of all vertices adjacent to x. The closure of the neighborhood is N(x) = N(x) ∪ {x}.

For any vertices x, y in a graph G, we write x—y to mean that x and y are adjacent.

The degree of a vertex x in a graph G, denoted deg(x), is the number of vertices of

G adjacent to x, that is the cardinality of N(x). If all vertices in a graph G have the

same degree k, then we say that G is k-regular.

A walk is a sequence of vertices and edges, where each edge’s endpoints are the

preceding and following vertices in the sequence. The length of a walk is the number

of edges that it uses. A path in a graph is a walk that has all distinct vertices (except

the endpoints). A path that starts and ends at the same vertex is called a cycle. The

length of a cycle is defined as the number of its edges. The girth of a graph G, denoted

gr(G), is the length of a shortest cycle contained in the graph G. If a graph does not

contain any cycle, its girth is defined to be ∞. Obviously, the girth of a graph is at

least 3.

A graph G is connected if there is a path between each pair of the vertices of G;

otherwise, G is disconnected. The distance between two vertices x and y, denoted

d(x, y), is the length of the shortest path in G beginning at x and ending at y. The

largest distance between all pairs of vertices of G is called the diameter of G, and is

denoted by diam(G).

A complete k-partite graph is one whose vertex set can be partitioned into k subsets

so that no edge has both ends in any one subset, and each vertex in a subset is adjacent

to every vertex in other subsets. A complete k-partite graph with partitions of size

m1, m2, . . . ,mk is denoted by Km1,m2,...,mk
. The complete bipartite (i.e., 2-partite)

graph is denoted by Km,n, where the set of partition has sizes m and n. A complete
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graph is a graph where each vertex is adjacent to all other vertices. We denote by Kn

the complete graph on n vertices.

An isomorphism of graphs G1 and G2 is a bĳection φ between the vertex sets of

G1 and G2 such that for any two vertices x and y of G1, x and y are adjacent in G1 if

and only if φ(x) and φ(y) are adjacent in G2. If an isomorphism exists between two

graphs G1 and G2, then the graphs are called isomorphic and we write G1
∼= G2.

A graph is said to be planar if it can be drawn in the plane so that its edges intersect

only at their ends. A classical result of Kuratowski says that a graph is planar if and

only if it does not contain a subdivision of K5 or K3,3 (see [66, Theorem 6.2.2]), where

a subdivision of a graph G is a graph obtained from G by subdividing some of the

edges. A quick consequence of Kuratowski’s Theorem is that if the maximal degree

of a graph is less than 3, then this graph must be planar. If a planar graph is finite,

then the minimal degree of the graph is at most five. For an infinite graph, however,

the situation is quite different. In fact, there exists a k-regular planar infinite graph

for any positive integer k (see [26]). Of course, any subgraph of a planar graph is

planar.

An orientable surface Sg is said to be of genus g if it is topologically homeomorphic

to a sphere with g handles. A graph G that can be drawn without crossing on a

compact surface of genus g, but not on one of genus g − 1, is called a graph of genus

g. We write γ(G) for the genus of the graph G. A planar graph is a graph with

genus zero and a toroidal graph is a graph with genus one. It is clear that if H is

a subgraph of a graph G, then γ(H) ≤ γ(G). Each closed surface in the sense of

geometric topology can be constructed from an even-sided oriented polygon, called

a fundamental polygon, by pairwise identification of its edges. For example, a torus

(genus one) can be constructed from a quadrangle as shown below.
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For other graph theoretical notions and notations adopted in this thesis, please refer

to [14] and [70].

All rings R are associative with identity, but not necessarily commutative. If R

has finitely many elements, then R is a finite ring. If xy = yx for all x, y ∈ R, then

R is called commutative. A subring of a ring shares the same multiplicative identity

and any ring homomorphism preserves the identity. An element u ∈ R is said to be a

unit if there exists an element v ∈ R such that uv = vu = 1. We use J(R), U(R) and

char(R) to denote the Jacobson radical, the group of units, and the characteristic of

a ring R, respectively. We write R = R/J(R) and ā = a + J(R) ∈ R for a ∈ R.

As usual, we write Zn for the ring of integers modulo n and Fp for the field of p

elements. The n× n upper triangular matrix ring and the n× n matrix ring over R

are denoted by Tn(R) and Mn(R), respectively. The polynomial ring over a ring R in

the indeterminate t is denoted by R[t]. The power series ring over a ring is denoted

by R[[t]]. The cardinal of a set X is denoted |X|. Let c = |R| be the cardinality of

the continuum. By a regular ring, we mean a von Neumann regular ring, that is, for

each a ∈ R, there is an element b ∈ R such that a = aba. Let x ∈ R. If there exists

0 6= y such that xy = yx = 0, then x is called a zero divisor of R. We use Z(R) for

the set of zero divisors of R. An element a is idempotent if a2 = a. If all elements in

R are idempotent, then R is called a Boolean ring. An element a is nilpotent if an = 0

for some positive integer n. A ring is right Artinian if it satisfies the descending chain

condition on right ideals. It is clear that finite rings are Artinian rings. However, the
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converse is not true in general. For example, any infinite field is an Artinian ring that

is not finite. A ring R is a local ring if R/J(R) is a division ring. A ring is said to be

(left) semisimple if it is semisimple as a left module over itself. A ring is semisimple

if and only if it is Artinian and its Jacobson radical is zero. A semilocal ring R is a

ring for which R/J(R) is a semisimple ring. Recall that a ring R is called right self-

injective if, for any (principal) right ideal I of R, every homomorphism from IR to RR

extends to a homomorphism from RR to RR. A ring R is called semipotent if every

left (respectively, right) ideal not contained in J(R) contains a nonzero idempotent.

If R is a right Artinian ring, then R/J(R) is a right self-injective ring. Right Artinian

rings and right self-injective rings are semipotent. We refer the reader to the book

[42] for other basic notations in ring theory.

We also need a few concepts in group theory. Let H be a group. If |H| = pn for

some prime p and integer n ≥ 0, then H is called a finite p-group. For a prime number

p, a Sylow p-subgroup of a group H is a maximal p-subgroup of H. We use Sn, An, Dn

and Cn to denote the symmetric group of degree n, the alternating group of degree

n, the dihedral group of degree n and the cyclic group of order n, respectively.



Chapter 2

Unit Graphs of Rings

2.1 Introduction

This chapter concerns the unit graph associated with a ring. Recall that the unit

graph of a ring R, denoted G(R), is the simple graph defined on the elements of R

with an edge between distinct vertices x and y if and only if x + y is a unit of R. We

investigate several graph invariants of the unit graphs, including the girth, diameter,

genus and planarity, and relate them to the structure of rings.

In Section 2.2, our concentration is on the girth of the unit graph of a ring. Recall

that the girth of a graph G, denoted gr(G), is the length of a shortest cycle contained

in the graph. If the graph does not contain any cycles, its girth is defined to be ∞.

Here, we prove that the girth gr(G(R)) of the unit graph of an arbitrary ring R is 3, 4,

6 or ∞ (Theorem 2.2.1). This was known in [8] for a finite commutative ring, and in

[33] for a left Artinian ring. We also determine the rings R with R/J(R) semipotent

and with gr(G(R)) = 6 or ∞ (Theorem 2.2.7), and classify the rings R with R/J(R)

right self-injective and with gr(G(R)) = 3 or 4 (Theorem 2.2.12). The girth of unit

graphs of some ring extensions is also considered in this section. Especially, we prove

9
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that gr(G(R)) = gr(G(R[x])) for a commutative ring R (Proposition 2.2.20).

In Section 2.3, we study the diameter of the unit graph of a ring. We first determine

when diam(G(R/J(R))) equals diam(G(R)) (Corollary 2.3.3). It was shown that

diam(G(R)) ∈ {1, 2, 3,∞} in [8] for a finite ring R and later in [33] for a left Artinian

ring R. We extend this result to rings R with R/J(R) self-injective (Theorem 2.3.11)

and determine those rings R with diam(G(R)) = 1, 2, 3 or ∞, respectively (Theorem

2.3.12). We show that there exists a ring R such that 3 < diam(G(R)) < ∞ (Corollary

2.3.9).

Recall that a graph is said to be planar if it can be drawn on the plane in such a way

that its edges intersect only at their endpoints. The planarity is an important invariant

in graph theory. In [8], Ashrafi, et al. completely determined the finite commutative

rings whose unit graphs are planar. In section 2.4, we completely characterize the

rings (not necessarily finite, and not necessarily commutative) whose unit graphs are

planar (Theorem 2.4.2). In section 2.5, we classify all finite commutative rings whose

unit graphs have genus 1, 2 and 3, respectively (Theorem 2.5.9).

2.2 The Girth of Unit Graphs

It was proved that gr(G(R)) ∈ {3, 4, 6,∞} for any finite commutative ring R by

Ashrafi, Maimani, Pournaki and Yassemi in [8] and for any one-sided Artinian ring R

by Heydari and Nikmehr later in [33]. We now prove this for an arbitrary ring.

Theorem 2.2.1. Let R be a ring. The following statements hold:

(1) If |U(R)| = 1, then gr(G(R)) = ∞.

(2) If |U(R)| = 2, then gr(G(R)) ∈ {4, 6,∞}.

(3) If |U(R)| ≥ 3, then gr(G(R)) ∈ {3, 4}.
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Therefore, gr(G(R)) ∈ {3, 4, 6,∞}.

Proof. (1) If |U(R)| = 1, then G(R) does not contain a cycle, so gr(G(R)) = ∞.

(2) Let U(R) = {1, u}. Then u2 = 1. If G(R) does not contain a cycle, then

gr(G(R)) = ∞. So we can assume that G(R) contains a cycle. We claim that any

cycle in G(R) must be an even cycle. Assume to the contrary that a1— a2—· · ·—

a2k+1—a1 is an odd cycle in G(R). Then a1 + a2 = 1, a2 + a3 = u, . . . , a2k + a2k+1 =

u, a2k+1 + a1 = 1, showing that a2 = a2k+1, a contradiction.

So we can assume gr(G(R)) = 2m + 2 where m ≥ 1. If r := 1 + u 6= 0, then

0—(−1)—r—(−u)—0 is a 4-cycle, so gr(G(R)) = 4. So we can further assume that

u = −1. Let

x—a1—a2—a3—· · ·—am—y—bm—· · ·—b3—b2—b1—x

be a cycle of length 2m + 2. Then

0—(a1 + x)—(a2 − x)—(a3 + x)—· · ·—(b3 + x)—(b2 − x)—(b1 + x)—0

is also a cycle of length 2m + 2. Hence, we may assume

0—a1—a2—a3—· · ·—am—y—bm—· · ·—b3—b2—b1—0

is a cycle of length 2m + 2, where a1 = 1, b1 = −1. Since ai + ai+1 = (−1)i and

bi + bi+1 = (−1)i+1, we have ai = (−1)i+1i and bi = (−1)ii. As am + y and bm + y

are distinct units, (am + y) + (bm + y) = 0. Thus 2y = 0. As am + y = (−1)m, we

have y = (−1)m− am = (−1)m− (−1)m+1m = (−1)m(1 + m). So 2y = 0 implies that

2m + 2 = 0 in R. Next we show that m ≤ 2. Assume to the contrary that m ≥ 3.

Case 1: m = 2k + 1. In this case, am = 2k + 1, so a2
m = k(4k + 4) + 1 =

k · (2m + 2) + 1 = k · 0 + 1 = 1. Thus am is a unit, a contradiction.

Case 2: m = 4k+2. Then we have a2k+1a4k+1 = (2k+1)(4k+1) = k(8k+6)+1 =

k·(2m+2)+1 = k·0+1 = 1. This shows that a2k+1 and a4k+1 are units, a contradiction.
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Case 3: m = 4k. Then we have a2k+1b4k−1 = (2k+1)(−4k+1) = −k(8k+2)+1 =

−k · (2m + 2) + 1 = −k · 0 + 1 = 1. This shows that a2k+1 and b4k−1 are units, also a

contradiction.

Therefore, m ≤ 2. It follows that gr(G(R)) = 2m + 2 = 4 or 6.

(3) By hypothesis, there exist two distinct elements u, v ∈ U(R) such that a := u+v 6=

0. Then 0—(−u)—a—(−v)—0 is a 4-cycle in G(R) and hence gr(G(R)) ≤ 4. Note

that if a = −u (or a = −v), then 0, a, −v (or 0, −u, a) form a triangle.

In conclusion, gr(G(R)) ∈ {3, 4, 6,∞}. This completes our proof.

Next we classify the rings according to the girth of their unit graphs. We need

the following lemmas.

Lemma 2.2.2. The following statements hold for a ring R:

(1) If J(R) 6= 0 or R contains a nonzero nilpotent element, then gr(G(R)) ∈ {3, 4}.

(2) If there exist u, v ∈ U(R) such that u 6= v and u + v ∈ U(R), then gr(G(R)) = 3.

Proof. (1) If J(R) 6= 0, take 0 6= j ∈ J(R). Then 0—1—j—(1 + j)—0 is a 4-cycle, so

gr(G(R)) ≤ 4. If R contains a nonzero nilpotent element, then there exists 0 6= a ∈ R

such that a2 = 0. Thus 0—1—a—(1− a)—0 is a 4-cycle, so gr(G(R)) ≤ 4.

(2) If there exist u, v ∈ U(R) such that u 6= v and u + v ∈ U(R), then 0—u—v—0

forms a triangle. So gr(G(R)) = 3.

Lemma 2.2.3. If D is a division ring with |D| ≥ 4, then gr(G(D)) = 3.

Proof. If D is a division ring with |D| ≥ 4, then there are distinct non-zero elements

u, v in D such that u + v 6= 0. So gr(G(D)) = 3 by Lemma 2.2.2(2).

Lemma 2.2.4. Let R be a ring. Then gr(G(Mn(R))) = 3 for all n ≥ 2.
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Proof. We show that, for all n ≥ 2, the following condition (Pn) is satisfied:

(Pn) there exist u, v ∈ U(Mn(R)) such that u 6= v and u + v ∈ U(Mn(R)).

We see that (P2) holds by letting u =

 1 0

0 1

 and v =

 0 1

1 −1

 and that

(P3) holds by taking u =


0 1 0

0 0 1

1 0 0

 and v =


1 0 0

0 1 0

0 1 1

. For any even number

n = 2k, as Mn(R) ∼= M2(Mk(R)), (Pn) holds as above. Let n ≥ 5 be an odd number.

Write n = l+3 with l even. As (Pl) and (P3) hold, there exist u1, v1 ∈ U(Ml(R)) such

that u1 6= v1 and u1 + v1 ∈ U(Ml(R)), and u2, v2 ∈ U(M3(R)) such that u2 6= v2 and

u2 + v2 ∈ U(M3(R)). Then u :=

 u1 0

0 u2

 and v :=

 v1 0

0 v2

 are distinct units

of Mn(R) with u + v ∈ U(Mn(R)). So (Pn) holds. For any n ≥ 2, we have proved

that (Pn) holds, so gr(G(Mn(R))) = 3 by Lemma 2.2.2(2).

Lemma 2.2.5. Let R be a ring and let R = R/J(R). Then the following hold:

(1) gr(G(R)) ≤ gr(G(R)).

(2) If gr(G(R)) = 3, then gr(G(R)) = gr(G(R)).

(3) If gr(G(R)) = 6 or ∞, then gr(G(R)) = gr(G(R)) iff J(R) = 0.

(4) If gr(G(R)) = 4, then gr(G(R)) = gr(G(R)) iff J(R) = 0 or 2 /∈ U(R).

Proof. (1) If gr(G(R)) = ∞, there is nothing to prove. Suppose gr(G(R)) = n < ∞

and let x1—x2—· · ·—xn—x1 be an n-cycle in G(R). Then x1—x2—· · ·—xn—x1 is a

cycle in G(R), so gr(G(R)) ≤ n.

(2) If gr(G(R)) = 3, then gr(G(R)) = 3 by (1), so gr(G(R)) = gr(G(R)).



14

(3) This is by Lemma 2.2.2(1).

(4) Suppose gr(G(R)) = gr(G(R)). If J(R) 6= 0 and 2 ∈ U(R), then take 0 6= r ∈ J(R)

and we see 0—1—(1 + r)—0 is a triangle in G(R), contradicting the assumption that

gr(G(R)) = 4. Thus 2 /∈ U(R).

For the converse, assume gr(G(R)) = 3 < gr(G(R)) = 4. Then J(R) 6= 0, and

G(R) contains a triangle, say a1—a2—a3—a1. Since a1—a2—a3—a1 is a walk in

G(R), gr(G(R)) = 4 ensures that ai = aj for some i 6= j. We can assume that

a1 = a2. Then a1 − a2 ∈ J(R), but a1 + a2 ∈ U(R). So 2a1 ∈ U(R) and hence

2 ∈ U(R).

A ring R is called semipotent if every left (respectively, right) ideal not contained

in J(R) contains a nonzero idempotent. A ring R is called directly finite if ab = 1 in

R implies ba = 1. A ring is reduced if it contains no nonzero nilpotent elements. It is

clear that a reduced ring is directly finite, and has all the idempotents central.

Lemma 2.2.6. Let R be a semipotent ring that is reduced with J(R) = 0. If |U(R)| =

1, then R is a Boolean ring.

Proof. Assume a2 6= a for some a ∈ R. As R is semipotent with J(R) = 0, there exists

0 6= e2 = e ∈ (a− a2)R. Write e = (a− a2)b. Since e is central, e = ae · (1− a)e · be.

Since eR is directly finite, ea and e(1 − a) are units of eR. But |U(R)| = 1 implies

|U(eR)| = 1. So it follows that ea = e and e(1 − a) = e. This shows that e = 0, a

contradiction. So R is a Boolean ring.

We are ready to determine the rings R with R/J(R) semipotent and gr(G(R)) = 6

or ∞.

Theorem 2.2.7. Let R/J(R) be a semipotent ring. Then:

(1) gr(G(R)) = 6 iff R ∼= Z3 ×B where B is a nontrivial Boolean ring.
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(2) gr(G(R)) = ∞ iff R ∼= Z3 or R is a Boolean ring.

Proof. (1)(=⇒). Suppose gr(G(R)) = 6. Then R is a reduced ring with J(R) = 0 by

Lemma 2.2.2 and |U(R)| = 2 by Theorem 2.2.1. Thus U(R) = {1, u} with u2 = 1.

Since 1− u 6= 0, there exists 0 6= e2 = e ∈ (1− u)R. Write e = (1− u)a with a ∈ R.

We can assume that a = ae. Since eR is a reduced ring, it is directly finite. Thus

e = (1−u)e ·a implies e = a(1−u)e = a(1−u). So a(1−u) = (1−u)ea = (1−u)a. As

u2 = 1, we now have e = e2 = (1−u)a(1−u)a = (1−u)2a2 = 2(1−u)a2 = 2ea = 2a.

As 2e 6= 0, |U(eR)| ≥ 2. Since R = eR×(1−e)R, |U(R)| = 2 implies that |U(eR)| = 2

and |U((1− e)R)| = 1.

Next, we show that eR ∼= Z3. First assume that eR is not a division ring. As eR

is semipotent with J(eR) = 0, eR contains a nontrivial idempotent, say f ; that is,

f 6= 0 and f 6= e. As f = fe = f(2a) = (2f)a, 2f 6= 0. Similarly, 2(e − f) 6= 0. So

|U(fR)| ≥ 2 and |U((e−f)R)| ≥ 2. This implies that |U(eR)| ≥ 4. This contradiction

shows that eR is a division ring, and hence eR ∼= Z3 as |U(eR)| = 2.

Since gr(G(Z3)) 6= 6 (indeed, gr(G(Z3)) = ∞), we see 1 − e 6= 0. As (1 − e)R is

semipotent with J((1−e)R) = 0, |U((1−e)R)| = 1 implies that (1−e)R is a Boolean

ring by Lemma 2.2.6.

(1)(⇐=). As |U(R)| = 2, gr(G(R)) ∈ {4, 6,∞} by Theorem 2.2.1. Since (0, 0)—

(1, 1)—(1, 0)—(0, 1)—(2, 0)—(2, 1)—(0, 0) is a cycle in G(R), gr(G(R)) ≤ 6. Assume

that (a1, b1)—(a2, b2)—(a3, b3)—(a4, b4)—(a1, b1) is a 4-cycle in G(R). Let u, v be the

two units of Z3. Then, a1 + a2 = u, a2 + a3 = v, a3 + a4 = u, a4 + a1 = v. Thus,

2u = (a1 + a2) + (a3 + a4) = (a2 + a3) + (a4 + a1) = 2v, so u = v, a contradiction.

Therefore, gr(G(R)) = 6.

(2)(=⇒). Suppose gr(G(R)) = ∞. Then R is a reduced ring with J(R) = 0 by

Lemma 2.2.2. By Theorem 2.2.1, either |U(R)| = 1 or |U(R)| = 2. If |U(R)| = 1,

then R is a Boolean ring by Lemma 2.2.6. So let us assume that |U(R)| = 2. Thus
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U(R) = {1, u} with u2 = 1. As argued in the proof of (1), there exists e2 = e ∈ R

such that eR is a division ring with |U(eR)| = 2 and |U((1− e)R)| = 1. So eR ∼= Z3.

If 1− e 6= 0, then (1− e)R is a Boolean ring by Lemma 2.2.6, so gr(G(R)) = 6 by

(1). Hence e = 1. Thus, R ∼= Z3.

(2)(⇐=). It is clear that gr(G(Z3)) = ∞. For a Boolean ring R, |U(R)| = 1, so

gr(G(R)) = ∞ by Theorem 2.2.1.

We remark that the class of the rings R with R/J(R) semipotent is quite large. It

contains any ring R with R/J(R) right self-injective. Next we consider the rings R

with gr(G(R)) = 3 or 4.

Lemma 2.2.8. Let R be a ring. If gr(G(R)) = 3, then |R| ≥ 4 and R has no factor

ring isomorphic to Z2.

Proof. Suppose gr(G(R)) = 3. Then |R| ≥ 4 by Theorem 2.2.1. Moreover, G(R)

contains a triangle a1—a2—a3—a1. Then u := a1 + a2, v := a2 + a3, w := a1 + a3 are

units of R. Thus, u + v + w = 2(a1 + a2 + a3). This shows that R has no factor ring

isomorphic to Z2.

Lemma 2.2.9. Let R = A×B be a direct product of nontrivial rings. Then gr(G(R)) =

3 iff gr(G(A)) = 3 or 2 ∈ U(A), and gr(G(B)) = 3 or 2 ∈ U(B).

Proof. (=⇒). Suppose gr(G(R)) = 3 and let (a1, b1)—(a2, b2)—(a3, b3)—(a1, b1) be a

triangle in G(R). If a1, a2 and a3 are distinct, then they form a triangle in G(A) and

hence gr(G(A)) = 3. If a1, a2 and a3 are not distinct, say a1 = a2, then 2a1 is a unit

in A and so 2 ∈ U(A). Similarly, one can show that gr(G(B)) = 3 or 2 ∈ U(B).

(⇐=). If gr(G(A) = 3 and gr(G(B) = 3, then G(A) contains a triangle a1—a2—

a3—a1 and G(B) contains a triangle b1—b2—b3—b1; so (a1, b1)—(a2, b2)—(a3, b3)—

(a1, b1) is a triangle in G(R).
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If gr(G(A) = 3 and 2 ∈ U(B), then G(A) contains a triangle a1—a2—a3—a1; so

(a1, 0)—(a2, 1)—(a3, 1)—(a1, 0) is a triangle in G(R).

Similarly, the assumption that 2 ∈ U(A) and gr(G(B)) = 3 implies that G(R)

contains a triangle.

If 2 ∈ U(A) and 2 ∈ U(B), then (1, 0)—(0, 1)—(1, 1)—(1, 0) is a triangle in G(R).

Therefore, gr(G(R)) = 3.

A reduced regular ring is called a strongly regular ring.

Lemma 2.2.10. Let R be a strongly regular right self-injective ring. Then gr(G(R)) =

3 iff |R| ≥ 4 and R has no factor ring isomorphic to Z2.

Proof. (=⇒). This follows from Lemma 2.2.8.

(⇐=). First let us assume that 2 ∈ U(R). If R is a division ring, then the assumption

|R| ≥ 4 together with Lemma 2.2.3 show that gr(G(R)) = 3. If R is not a division

ring, then R contains a nontrivial idempotent e, as R is strongly regular. Since

R = eR × (1 − e)R and 2e ∈ U(eR) and 2(1 − e) ∈ U((1 − e)R), gr(G(R)) = 3 by

Lemma 2.2.9.

Next we assume that 2 /∈ U(R); that is, 2R 6= R. Hence R = 2R×S, where S 6= 0.

Since R has no factor ring isomorphic to Z2, S is not Boolean, so |U(S)| ≥ 2. Take

1S 6= u ∈ U(S), and there exists 0 6= f 2 = f ∈ (1S − u)S. Write f = (1S − u)a

with a ∈ S. So f = (1S − u)f · af . Since fS = fR is directly finite, it follows that

(1S − u)f ∈ U(fS). Note uf ∈ U(fS). As 2S = 0, uf 6= (1S − u)f . Thus G(fS)

contains a triangle 0—uf—(1 − u)f—0, so gr(G(fR)) = gr(G(fS)) = 3. If f = 1,

then gr(G(R)) = 3. So we may assume that 1 − f 6= 0. Then R = fR × (1 − f)R

with (1 − f)R 6= 0. Note that (1 − f)R is a right self-injective ring which has

no factor ring isomorphic to Z2. So, by [40, Lemma 4], 1 − f = v1 + v2 where
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v1, v2 ∈ U((1−f)R). Thus, G(R) contains a triangle (0, 0)—(uf, v1)—((1−u)f, v2)—

(0, 0), so gr(G(R)) = 3.

A nonzero regular right self-injective ring is called purely infinite if eRe is not

directly finite for all 0 6= e2 = e ∈ R.

Lemma 2.2.11. [40, Lemma 2] Let R be a regular right self-injective ring. Then

R = S × T , where S = 0 or S is a direct product of matrix rings of size ≥ 2 and

where T = 0 or is a strongly regular right self-injective ring.

Proof. By the proof of [40, Lemma 2], R = S × T where S = A × B with A = 0 or

A being purely infinite regular right self-injective and with B = 0 or B being a direct

product of matrix rings of size ≥ 2 and where T = 0 or T is strongly regular right self-

injective. By [28, 10.21], RR
∼= (R⊕R)R, so R ∼= End(RR) ∼= End((R⊕R)R) ∼= M2(R).

So S = 0 or is a direct product of matrix rings of size ≥ 2.

We now classify the rings R with R/J(R) right self-injective such that gr(G(R)) = 3

or 4. Note that R right self-injective implies that R/J(R) is right self-injective (see

[63]).

Theorem 2.2.12. Let R be a ring with R/J(R) right self-injective. Then:

(1) gr(G(R)) = 3 iff |R| ≥ 4 and R has no factor ring isomorphic to Z2.

(2) gr(G(R)) = 4 iff R satisfies the following conditions:

(i) |R| ≥ 4 and R has a factor ring isomorphic to Z2, and

(ii) R is not a Boolean ring, and

(iii) R is not a direct product of Z3 and a Boolean ring.
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Proof. (1)(=⇒). This follows from Lemma 2.2.8.

(1)(⇐=). Since R is right self-injective, it is a regular right self-injective ring (see

[63]). By Lemma 2.2.11, R = S × T , where S = 0 or is a direct product of matrix

rings of size ≥ 2 and where T = 0 or is a strongly regular right self-injective ring.

Case 1: S = 0. Then R is a strongly regular right self-injective ring that has no

factor ring isomorphic to Z2. So |R| 6= 2. If |R| ≥ 4, then gr(G(R)) = 3 by Lemma

2.2.10, so gr(G(R)) = 3 by Lemma 2.2.5(2).

If |R| = 3, then 2 ∈ U(R) and J(R) 6= 0 as |R| ≥ 4. Take 0 6= j ∈ J(R). Then

G(R) contains a triangle 0—1—(1 + j)—0. So gr(G(R)) = 3.

Case 2: S 6= 0. It can easily be shown that the girth of the unit graph of a direct

product of rings whose unit graphs all have girth 3 must be 3. In view of Lemma

2.2.4, we have gr(G(S)) = 3. If T = 0, then gr(G(R)) = 3, and so gr(G(R)) = 3 by

Lemma 2.2.5(2). So we can assume that T 6= 0. Since R has no factor ring isomorphic

to Z2, |T | 6= 2.

If |T | ≥ 4, then gr(G(T )) = 3 by Lemma 2.2.10 since T has no factor ring iso-

morphic to Z2. Hence gr(G(R)) = 3 by Lemma 2.2.9, so gr(G(R)) = 3 by Lemma

2.2.5(2).

If |T | = 3, then 2 ∈ U(T ). So gr(G(R)) = 3 by Lemma 2.2.9. Hence gr(G(R)) = 3

by Lemma 2.2.5(2).

(2) This follows from (1) and Theorems 2.2.1 and 2.2.7.

In the rest of this section, we consider the girth of the unit graphs of some extensions

of rings.

Proposition 2.2.13. Let R be a subring of a ring S with 1S ∈ R. Suppose that R is

isomorphic to a factor ring of S and J(S) 6= 0. Then:

(1) gr(G(S)) ∈ {3, 4}.
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(2) gr(G(S)) = 3 iff gr(G(R)) = 3 or 2 ∈ U(R).

(3) gr(G(S)) = 4 iff gr(G(R)) 6= 3 and 2 /∈ U(R).

Proof. Let θ : S → R be an onto ring homomorphism.

(1) Since J(S) 6= 0, gr(G(S)) ∈ {3, 4} by Lemma 2.2.2(1).

(2) It is clear that gr(G(R)) = 3 implies gr(G(S)) = 3. If 2 ∈ U(R), take 0 6= j ∈ J(S)

and we see 0—1—(1 + j)—0 is a 3-cycle in G(S); so gr(G(S)) = 3. Conversely,

suppose gr(G(S)) = 3 and let s1—s2—s3—s1 be a 3-cycle in G(S). If θ(s1), θ(s2)

and θ(s3) are distinct, then θ(s1)—θ(s2)—θ(s3)—θ(s1) is a 3-cycle in G(R) and hence

gr(G(R)) = 3. If θ(s1), θ(s2) and θ(s3) are not distinct, say θ(s1) = θ(s2), then

2θ(s1) = θ(s1 + s2) ∈ U(R), so 2 ∈ U(R).

(3) It is clear from (1) and (2).

Proposition 2.2.13 has some quick consequences.

Corollary 2.2.14. Let R[[x]] be the power series ring over a ring R. Then:

(1) gr(G(R[[x]])) ∈ {3, 4}.

(2) gr(G(R[[x]])) = 3 iff gr(G(R)) = 3 or 2 ∈ U(R).

(3) gr(G(R[[x]])) = 4 iff gr(G(R)) 6= 3 and 2 /∈ U(R).

The trivial extension of a ring R by an R-bimodule M is R ∝ M := {(a, x) :

a ∈ R, x ∈ M} with addition defined componentwise and multiplication defined by

(a, x)(b, y) = (ab, ay + xb). In fact, R ∝ M is isomorphic to the subring {(a x
0 a) : a ∈

R, x ∈ M} of the formal triangular matrix ring (R M
0 R ).

Corollary 2.2.15. Let M be a nontrivial bimodule over a ring R and let T = R ∝ M .

Then:

(1) gr(G(T )) ∈ {3, 4}.
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(2) gr(G(T )) = 3 iff gr(G(R)) = 3 or 2 ∈ U(R).

(3) gr(G(T )) = 4 iff gr(G(R)) 6= 3 and 2 /∈ U(R).

Corollary 2.2.16. Let R be a ring and let S := Tn(R) be the upper triangular matrix

ring where n ≥ 2. Then:

(1) gr(G(S)) ∈ {3, 4}.

(2) gr(G(S)) = 3 iff gr(G(R)) = 3 or 2 ∈ U(R).

(3) gr(G(S)) = 4 iff gr(G(R)) 6= 3 and 2 /∈ U(R).

Proof. By Proposition 2.2.13, we only need to show that (2) holds. Let Rn denote the

direct product of n copies of R. Then gr(G(S)) = 3 iff gr(G(Rn)) = 3 or 2 ∈ U(Rn)

(by Proposition 2.2.13) iff gr(G(R)) = 3 or 2 ∈ U(R) (by Lemma 2.2.9).

Corollary 2.2.17. Let A, B be rings and M be a nontrivial (A, B)-bimodule. Let

S :=

A M

0 B

 be the formal triangular matrix ring. Then:

(1) gr(G(S)) ∈ {3, 4}.

(2) gr(G(S)) = 3 iff gr(G(A)) = 3 or 2 ∈ U(A), and gr(G(B)) = 3 or 2 ∈ U(B).

(3) gr(G(S)) = 4 iff gr(G(A)) 6= 3 and 2 /∈ U(A), or gr(G(B)) 6= 3 and 2 /∈ U(B) .

Proof. By Proposition 2.2.13, we only need to show that (2) holds. Then gr(G(S)) = 3

iff gr(G(A × B)) = 3 or 2 ∈ U(A × B) (by Proposition 2.2.13) iff gr(G(A)) = 3 or

2 ∈ U(A), and gr(G(B)) = 3 or 2 ∈ U(B) (by Lemma 2.2.9).

The group ring of a group H over a ring R is denoted RH.

Proposition 2.2.18. Let R be a ring, F be a field and H be a nontrivial group. Then:
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(1) gr(G(RH)) ∈ {3, 4}.

(2) gr(G(ZH)) = 4.

(3) (i) gr(G(FH)) = 3 iff |F | > 2.

(ii) gr(G(FH)) = 4 iff |F | = 2.

Proof. (1) Take 1 6= h ∈ H. Then 0— (−1)—(1+h) —(−h)—0 is a 4-cycle in G(RH),

so gr(G(RH)) ∈ {3, 4}.

(2) Assume gr(G(ZH)) = 3 and let α— β—γ—α be a 3-cycle in G(ZH). Write

α =
∑n

i=1 aihi, β =
∑n

i=1 bihi and γ =
∑n

i=1 cihi. As α + β, β + γ, γ + α are units of

ZH, it follows that

n∑
i=1

ai +
n∑

i=1

bi = ±1,
n∑

i=1

bi +
n∑

i=1

ci = ±1,
n∑

i=1

ci +
n∑

i=1

ai = ±1.

Adding the equalities yields 2
∑n

i=1(ai + bi + ci) = ±1 or ±3. This is a contradiction.

So gr(G(ZH)) = 4 by (1).

(3) Suppose |F | > 2. Let 1 6= h ∈ H. If 0 6= 2 ∈ F , then 1—(−1 + h)—(−1− h)—1

is a triangle in G(FH). If 2 = 0 in F , take a ∈ F such that a 6= 0 and a 6= 1. Then

1—(1 + ah)—(1 + (1 + a)h)—1 is a triangle in G(FH). So gr(G(FH)) = 3.

Suppose |F | = 2. Assume that gr(G(FH)) = 3 and that α— β—γ—α is a 3-cycle in

G(FH). Write α =
∑n

i=1 aihi, β =
∑n

i=1 bihi and γ =
∑n

i=1 cihi. As α+β, β+γ, γ+α

are units of FH, it follows that

n∑
i=1

ai +
n∑

i=1

bi =
n∑

i=1

bi +
n∑

i=1

ci =
n∑

i=1

ci +
n∑

i=1

ai = 1.

This shows that 0 = 2
∑n

i=1(ai+bi+ci) = 3 = 1, a contradiction. So gr(G(FH)) = 4

by (1). Hence (3) holds by (1).
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Proposition 2.2.19. Let V be a nontrivial (right) vector space over a division ring

D, and let R = EndD(V ) be the ring of linear transformations of V . Then:

(1) gr(G(R)) ∈ {3,∞}.

(2) gr(G(R)) = 3 iff either dim(V ) = 1 with |D| > 3, or dim(V ) ≥ 2.

(3) gr(G(R)) = ∞ iff dim(V ) = 1 and |D| = 2 or 3.

Proof. Let n = dim(V ).

Case 1: n = 1. Then R = D. If |D| = 2 or 3, then gr(G(R)) = ∞ by Theorem

2.2.7(2). If |D| ≥ 4, then gr(G(R)) = 3 by Lemma 2.2.3.

Case 2: 2 ≤ n < ∞. Then R ∼= Mn(D). By Lemma 2.2.4, gr(G(R)) = 3.

Case 3: n = ∞. Then we have VD
∼= (V ⊕ V )D, so R = EndD(V ) ∼= EndD(V ⊕

V ) ∼= M2(EndD(V )) = M2(R). Thus gr(G(R)) = gr(G(M2(R)) = 3 by Lemma 2.2.4.

The claims have been proved.

For any polynomial f(x) ∈ R[x], let f(0) stand for the constant term of f(x). Note

that for a commutative ring R,
∑n

i=0 aix
i ∈ R[x] is a unit if and only if a0 ∈ R is a

unit and ai is nilpotent for all i ≥ 1.

Proposition 2.2.20. Let R be a commutative ring. Then gr(G(R[x])) = gr(G(R)).

Proof. It is clear that gr(G(R)) ≥ gr(G(R[x])).

Case 1: gr(G(R[x])) = 3. Let f1(x)—f2(x)—f3(x)—f1(x) be a triangle in G(R[x]),

where fi(x) = ai0 + ai1x + · · · . If f1(0), f2(0) and f3(0) are distinct, then f1(0)—

f2(0)—f3(0)—f1(0) is a 3-cycle in G(R), so gr(G(R)) = 3. Therefore, without loss

of generality we can assume f1(0) = f2(0). It follows that 2f1(0) ∈ U(R), and hence

2 ∈ U(R).

If R is reduced, then a1i + a2i, a2i + a3i and a1i + a3i are all zero (being nilpotent)

for all i ≥ 1. Thus 2a1i = 2(a1i + a2i + a3i) = (a1i + a2i) + (a2i + a3i) + (a1i + a3i) = 0.
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This shows a1i = 0 and hence a2i = 0 for all i ≥ 1. We deduce f1(x) = f2(x),

a contradiction. So R contains a nonzero nilpotent element, say b. Hence 0—1—

(1 + b)—0 is a 3-cycle in G(R), so gr(G(R)) = 3.

Case 2: gr(G(R[x])) = 4. Let f1(x)—f2(x)—f3(x)—f4(x)—f1(x) be a 4-cycle in

G(R[x]), where fi(x) = ai0 + ai1x + · · · . If J(R) 6= 0 or R contains nonzero nilpotent

elements, then, by Lemma 2.2.2 (1), gr(G(R)) ≤ 4 and hence gr(G(R)) = 4. So we

can assume that J(R) = 0 and R is a reduced ring. Then a1i + a2i, a2i + a3i, a3i + a4i

and a4i + a1i are all zero (being nilpotent) for i ≥ 1. Thus a1i = −a2i = a3i = −a4i

for all i ≥ 1. It follows that f1(0) 6= f3(0) and f2(0) 6= f4(0).

If f1(0), f2(0), f3(0) and f4(0) are not distinct, we can assume without loss of

generality that f1(0) = f2(0). Then f1(0)—f3(0)—f4(0)—f1(0) is a triangle, contra-

dicting the assumption that gr(G(R[x])) = 4. So f1(0), f2(0), f3(0) and f4(0) are

distinct. Then we see that f1(0)—f2(0)—f3(0)—f4(0)—f1(0) is a 4-cycle in G(R); so

gr(G(R)) ≤ 4 and hence gr(G(R)) = 4.

Case 3: gr(G(R[x])) = n > 4. Then R[x], and hence R is reduced by Lemma

2.2.2(1). Let f1(x)—f2(x)—· · ·—fn(x)—f1(x) be an n-cycle in G(R[x]). If there

do not exist three distinct elements in f1(0), f2(0), . . . , fn(0), then we can assume

without loss of generality that f1(0) = f2(0) = · · · = fn−1(0). Since R is reduced,

a1i+a2i, a2i+a3i and a1i+a3i are all zero (being nilpotent) for i ≥ 1. Thus a1i = a3i for

all i ≥ 1. So we have f1(x) = f3(x), a contradiction. Hence there exist three distinct

elements in f1(0), f2(0), . . . , fn(0). Thus the walk f1(0)—f2(0)—· · ·—fn(0)—f1(0) in

G(R) reduces to a cycle of length between 3 and n; so gr(G(R)) ≤ n and hence

gr(G(R)) = n. This completes the proof.

Remark 2.2.21. (1) Let R = Z6[x]. As gr(G(Z6)) = 6, gr(G(R)) = 6 by Proposition

2.2.20. But in contrast to Theorem 2.2.7(1), R is not a direct product of Z3 and

a Boolean ring.
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(2) Let R = Z2[x]. As gr(G(Z2)) = ∞, gr(G(R)) = ∞ by Proposition 2.2.20. But in

contrast to Theorem 2.2.7(2), R 6∼= Z3 and R is not Boolean.

(3) Let R = Z3[x]. As gr(G(Z3)) = ∞, gr(G(R)) = ∞ by Proposition 2.2.20. But

|R| ≥ 4 and R has no factor ring isomorphic to Z2. This shows that the converse

of Lemma 2.2.8 is false
(
also see Theorem 2.2.12(1)

)
.

(4) Again consider R = Z6[x]. Then gr(G(R)) = 6 6= 4. But in contrast to Theorem

2.2.12(2), |R| ≥ 4 and R has a factor ring isomorphic to Z2, R is not a Boolean

ring, and R is not a direct product of Z3 and a Boolean ring.

We remark that the results in this section has been published in from [60].

2.3 The Diameter of Unit Graphs

In this section, we study the diameter of unit graphs. Recall that the distance

between two vertices x and y in a graph G, denoted d(x, y), is the length of the

shortest path in G beginning at x and ending at y. The diameter of a graph G,

denoted diam(G), is the longest distance between two vertices in graph G. In [33,

Remark 1], the authors have pointed out that diam(G(R)) ≤ diam(G(R)) for any

ring R. Here, we first determine when the inequality is strict.

Lemma 2.3.1. Let R be a ring. If diam(G(R)) ≥ 3, then diam(G(R)) = diam(G(R)).

Proof. Suppose that diam(G(R)) = ∞. We need to show that diam(G(R)) = ∞.

Assume to the contrary that diam(G(R)) = m < ∞. For any x, y ∈ R, if x = y, then

x− y ∈ J(R) and hence 1 + x− y ∈ U(R). So we get a walk x—(1− y)—y from x to

y, and so d(x, y) ≤ 2. If x 6= y, then a path from x to y deduces a path from x to y,

which implies that d(x, y) ≤ d(x, y) ≤ m. So diam(G(R)) < ∞, a contradiction.
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Suppose that diam(G(R)) is finite and diam(G(R)) = k ≥ 3. By [33, Remark

1], we only need to show that diam(G(R)) ≥ k. There exist x, y ∈ R, such that

d(x, y) = k. First we claim that x 6= y. For otherwise, if x = y, then as proved above,

so d(x, y) ≤ 2, a contradiction. Assume that d(x, y) = l < k and x—x1—x2—· · ·—

xl−1—y is a path from x to y. Then x—x1—x2—· · ·—xl−1—y is path of length l, so

d(x, y) ≤ l < k, a contradiction. Thus, d(x, y) ≥ k. This implies diam(G(R)) ≥ k.

Therefore, diam(G(R)) = diam(G(R)).

Now, we determine when diam(G(R)) < diam(G(R)).

Theorem 2.3.2. Let R be a ring. Then the following conditions are equivalent:

(1) diam(G(R)) < diam(G(R)).

(2) R is a local ring with J(R) 6= 0 and 2 ∈ J(R).

(3) diam(G(R)) = 2 and diam(G(R)) = 1.

Proof. (1) ⇒ (2). Suppose that diam(G(R)) < diam(G(R)). By Lemma 2.3.1,

diam(G(R)) ≤ 2. Note that diam(G(R)) = 1 implies diam(G(R)) = 1. Thus, we

have diam(G(R)) = 2 and diam(G(R)) = 1. So J(R) 6= 0, and by [8, Theorem 3.4],

R is a division ring with char(R) = 2. Therefore, R is a local ring with J(R) 6= 0 and

2 ∈ J(R).

(2) ⇒ (3). Suppose that R is a local ring with J(R) 6= 0 and 2 ∈ J(R). Then R/J(R)

is a division ring and char(R) = 2. By [8, Theorem 3.4], it follows that G(R) is a

complete graph and hence diam(G(R)) = 1. On the other hand, for any r ∈ R, either

r ∈ J(R) or r ∈ U(R). For any two distinct elements a, b ∈ R, if a + b ∈ U(R),

then d(a, b) = 1. Suppose that a + b ∈ J(R). If a ∈ J(R), then b ∈ J(R), and we

have a path a—1—b, so d(a, b) = 2 (note that since J(R) 6= 0, such a, b do exist); if
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a ∈ U(R), then b ∈ U(R), and we have a path a—(a + b)—b, so d(a, b) = 2. Hence

diam(G(R)) = 2.

(3) ⇒ (1). It is clear.

Corollary 2.3.3. Let R be a ring. Then diam(G(R)) = diam(G(R)) if and only if

one of the following holds:

(1) R is not a local ring.

(2) R is a local ring with 2 ∈ U(R).

(3) R is a division ring.

As shown in [8], the connectedness of G(R) is relative to whether the ring R is

generated additively by its units. So we first recall the following definitions. Let

R be a ring and k be a positive integer. An element r ∈ R is said to be k-good if

r = u1 + · · · + uk with ui ∈ U(R) for each 1 ≤ i ≤ k. A ring is said to be k-good if

every element of R is k-good. The unit sum number of a ring R, denoted by u(R), is

defined to be

(1) min{k ∈ N| R is a k-good }, if R is k-good for some k ≥ 1;

(2) ω, if R is not k-good for every k ≥ 1, but each element of R is k-good for some k;

(3) ∞, some element of R is not k-good for any k ≥ 1.

For example, u(Z3) = 2, u(Z) = ω and u(Z[t]) = ∞. It is clear that if 2 ∈ U(R),

then r ∈ R being k-good implies that r is l-good for all l ≥ k. The investigation of

rings generated additively by their units started in 1953-1954 when Wolfson [65] and

Zelinsky [71] proved independently that every linear transformation of a vector space

V over a division ring D is the sum of two nonsingular linear transformations, except

when dimV = 1 and D = Z2. For the unit sum number of rings, we refer the reader

to [30], [40], [41] and [64].
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Lemma 2.3.4. Let R be a ring and r ∈ R. Then the following hold:

(1) If r is k-good, then d(r, 0) ≤ k;

(2) If r 6= 0 and d(r, 0) = k, then r is k-good but not l-good for all l < k.

Proof. (1) Let r = u1 + · · ·+ uk, where each ui ∈ U(R). If k is odd, then

0—u1—(−u1 − u2)—· · ·—(−u1 − · · · − uk−1)—(u1 + · · ·+ uk) = r

is a walk of length k. If k is even, then

0—(−u1)—(u1 + u2)—· · ·—(−u1 − · · · − uk−1)—(u1 + · · ·+ uk) = r

is a walk of length k. Therefore, d(r, 0) ≤ k.

(2) Let r = x0—x1—x2—· · ·—xk = 0 be a path from r to 0. Then ui := xi−1 + xi ∈

U(R) for 1 ≤ i ≤ k, so r =
∑k

i=1(−1)i+1ui. Thus, r is k-good. By part (1), we know

that r is not l-good for all l < k.

Proposition 2.3.5. Let R be a ring that is not a division ring. If u(R) = k, then

diam(G(R)) = k.

Proof. Let x, y ∈ R. If k is odd, we set x + y = u1 + u2 + · · ·+ uk, where each ui is a

unit in R. Then there exists a walk

x—(−x + u1)—(x− u1 − u2)—· · ·—(x− u1 − · · · − uk−1)—(−x + u1 + · · ·+ uk) = y

between x and y, so d(x, y) ≤ k. If k is even, we set y− x = u1 + u2 + · · ·+ uk, where

each ui is a unit in R. Then there exists a walk

x—(−x− u1)—(x + u1 + u2)—· · ·—(x− u1 − · · · − uk−1)—(x + u1 + · · ·+ uk) = y

between x and y, so d(x, y) ≤ k. Thus, diam(G(R)) ≤ k.

On the other hand, as u(R) = k ≥ 2 and R is not a division ring, there exists

an element 0 6= r ∈ R, such that r is k-good but not l-good for any l < k. Then

d(r, 0) = k by Lemma 2.3.4. Thus, diam(G(R)) = k.
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The converse of Proposition 2.3.5 is not true in general. For example, diam(G(Z4)) =

2, but u(Z4) = ω.

Proposition 2.3.6. Let R be a ring with diam(G(R)) = k ≥ 2. If 2 ∈ U(R), then

u(R) = k.

Proof. By [8, Theorem 3.4], R is not a division ring with char(R) = 2. If R is a

division ring with char(R) 6= 2, then diam(G(R)) = 2. Note that, in this case,

u(R) = 2. So the result holds.

Now we assume R is not a division ring. Let 0 6= r ∈ R. If d(r, 0) = l ≤ k, then

by Lemma 2.3.4(2), we know that r is l-good. Since 2 is a unit of R, r is k-good and

hence R is k-good. By Proposition 2.3.5, R is not l-good for l < k, so u(R) = k.

Proposition 2.3.7. Let R be a ring and 2 ∈ U(R). Then diam(G(R)) = k ≥ 2 if

and only if u(R) = k.

Proof. The “only if” part comes from Proposition 2.3.6. Foe the “if” part, if R is not

a division ring, then the result follows from Proposition 2.3.5. If R is a division ring,

then diam(G(R)) ≤ 2. As 2 ∈ U(R), we have 1 6= −1. As d(1,−1) = 2, we have

diam(G(R)) = 2.

We note that, however, in the previous example, every element in Z4 can be ex-

pressed as a sum of at most two units. So we recall another slightly different definition

which was introduced in [34]. Let usn(R) be the smallest positive integer n such that

every element can be written as the sum of at most n units. If some element of R is

not k-good for any k ≥ 1, then usn(R) is defined to be ∞. Note that usn(R) and

u(R) are different. For example, u(Z2) = ω and usn(Z2) = 2.

In [33], Heydari and Nikmehr proved that diam(G(R)) ∈ {1, 2, 3,∞} for an Ar-

tinian ring R. It is interesting to know whether there exists a ring R such that
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3 < diam(G(R)) < ∞. In [34, Corollary 4], the authors proved that there exists a

ring R such that usn(R) = n for each given n ≥ 2. This result can be used to show

that there exists a ring R such that 3 < diam(G(R)) < ∞.

Theorem 2.3.8. Let R be a ring but not a division ring. If usn(R) = n, then

n ≤ diam(G(R)) ≤ 2n.

Proof. We can assume usn(R) = n ≥ 2. Since, R is not a division ring, there exists

an element 0 6= r ∈ R, such that r is a sum of n units but not a sum of m units for

any m < n. We claim that d(r, 0) ≥ n. If d(r, 0) = k < n, then, by Lemma 2.3.4(2), r

is k-good, a contradiction. So d(r, 0) ≥ n and hence diam(G(R)) ≥ n. On the other

hand, let x, y ∈ R. Suppose that x is k-good and y is l-good. By Lemma 2.3.4(1),

d(x, 0) ≤ k ≤ n and d(y, 0) ≤ l ≤ n, so d(x, y) ≤ k + l ≤ 2n. This implies that

diam(G(R)) ≤ 2n.

Corollary 2.3.9. There exists a ring R such that 3 < diam(G(R)) < ∞.

Proof. This follows from Theorem 2.3.8 and [34, Corollary 4].

The condition that R is not a division ring is necessary in Theorem 2.3.8. For

example, usn(F4) = 2, but diam(G(F4)) = 1.

Next, we focus on a self-injective ring. In [8], Ashrafi et al. proved that diam(G(R))

is 1, 2, 3 or ∞ for a finite (commutative) ring R, In [33], the authors generalized the

result to an Artinian ring R and classified all Artinian rings according to the diameter

of their unit graphs. We generalize these results to rings R with R/J(R) self-injective.

Lemma 2.3.10. Let R be a regular right self-injective ring. Then diam(G(R)) ∈

{1, 2, 3,∞}.
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Proof. By [40, Theorem 6], u(R) = 2, ω or ∞. Suppose that u(R) = 2. If R is not a

division ring, then diam(G(R) = 2 by Proposition 2.3.5. If R is a division ring, then

diam(G(R)) ≤ 2.

Suppose that u(R) = ω. Then, by [40, Theorem 6(2)], we may assume that

R = R1 × Z2, where u(R1) = 1 or 2. If u(R1) = 1, R1 is a trivial ring and R = Z2

and so diam(G(R)) = 1. Now suppose that u(R1) = 2 and let x, y ∈ G(R). If

x = (x1, 0) and y = (y1, 0), then there exists z1 ∈ R1, such that x1 + z1 and z1 + y1

are units in R1. So a path (x1, 0)—(z1, 1)—(y1, 0) from (x1, 0) to (y1, 0) deduces

d(x, y) ≤ 2; if x = (x1, 1) and y = (y1, 1), a similar argument shows that d(x, y) ≤ 2;

if x = (x1, 0) and y = (y1, 1), then there exists z1 ∈ R1, such that x1 + z1 is a unit

in R1. With a similar argument, we have a path (x1, 0)—(z1, 1)—(w1, 0)—(y1, 1) and

hence d(x, y) ≤ 3. So diam(G(R)) ≤ 3 always holds.

Suppose that u(R) = ∞. By [8, Theorem 4.3], we know that G(R) is disconnected.

So diam(G(R)) = ∞. The proof is complete.

Theorem 2.3.11. Let R be a ring with R/J(R) right self-injective. Then diam(G(R)) ∈

{1, 2, 3,∞}.

Proof. We know that in this case R = R/J(R) is a regular right self-injective ring. By

Lemma 2.3.10, we have diam(R) ∈ {1, 2, 3,∞}. By Lemma 2.3.1, we get diam(G(R)) ∈

{1, 2, 3,∞}.

Theorem 2.3.12. Let R be a ring with R/J(R) right self-injective. Then the follow-

ing statements hold:

(1) diam(G(R)) = 1 if and only if R is a division ring with char(R) = 2.

(2) diam(G(R)) = 2 if and only if R is not a division ring with char(R) = 2 and one

of following holds:
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(i) R has no nonzero Boolean ring as a ring direct summand.

(ii) R ∼= Z2.

(3) diam(G(R)) = 3 if and only if R � Z2 and R has Z2, but no Boolean ring with

more than two elements, as a ring direct summand.

(4) diam(G(R)) = ∞ if and only if R has a Boolean ring with more than two elements

as a ring direct summand.

Proof. (1) This follows from [8, Theorem 3.4].

Next, we assume that R is not a division ring with char(R) = 2 and prove (2), (3)

and (4) together. Note that R is a regular right self-injective ring. So u(R) = 2, ω

or ∞ by [40, Theorem 6]. To complete the proof, we determine the diameter of G(R)

for each case.

Case 1: u(R) = 2. In this case, R has no nonzero Boolean ring as a ring direct

summand or R ∼= Z2 by [40, Theorem 6]. Note that diam(G(R)) ∈ {1, 2}. So

diam(G(R)) = 2 by Lemma 2.3.1.

Case 2: u(R) = ω. If R ∼= Z2, then G(R) is a complete bipartite graph. So

diam(G(R)) = 2. If R � Z2, in this case, we claim that diam(G(R)) = 3. To see

this, in view of the proof of Lemma 2.3.10, we know that diam(G(R)) ≤ 3. Note that

d((0, 0), (x, 1)) = 3 if x is not a unit. So diam(G(R)) = 3. By Lemma 2.3.1, we have

diam(G(R)) = 3.

Case 3: u(R) = ∞. Then G(R) is disconnected by [8, Theorem 4.3], so diam(G(R)) =

∞. Thus diam(G(R)) = ∞ by Lemma 2.3.1.
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2.4 The Planarity of Unit Graphs

The concentration, in this section, is on the planarity of the unit graph of a ring.

Recall that a graph is said to be planar if it can be drawn on the plane in such a

way that its edges intersect only at their endpoints. The planarity is an important

invariant in graph theory. This work is motivated by the following result of Ashrafi,

et al. [8] who completely determined the finite commutative rings whose unit graphs

are planar.

Theorem 2.4.1. [8] Let R be a finite commutative ring. Then G(R) is planar if and

only if R is isomorphic to one of the following rings:

Z3, F4, Z5, Z3 × Z3, B, Z3 ×B, F4 ×B, Z4,
Z2[t]
(t2)

, Z4 ×B, Z2[t]
(t2)

×B,

where B is a finite Boolean ring. �

A natural question is to characterize the rings (not necessarily finite, and not

necessarily commutative) whose unit graphs are planar. This question is settled in

this section. Our main result is the following characterization of rings with planar

unit graphs.

Theorem 2.4.2. Let R be a ring. Then G(R) is planar if and only if one of the

following holds:

(1) |U(R)| ≤ 3 and |R| ≤ c.

(2) |U(R)| = 4, char(R) = 0 and |R| ≤ c.

(3) R ∼= Z5.

(4) R ∼= Z3 × Z3.

�
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To prove Theorem 2.4.2, we proceed with a series of lemmas. The first one is a

quick consequence of Theorem 2.4.1.

Lemma 2.4.3. Let R be a finite commutative ring. If G(R) is planar, then 2 ≤

char(R) ≤ 6. Furthermore,

(1) If char(R) = 2, then |U(R)| ≤ 3.

(2) If char(R) = 3, then |U(R)| ≤ 4.

(3) If char(R) = 4, then |U(R)| ≤ 2.

(4) If char(R) = 5, then |U(R)| ≤ 4.

(5) If char(R) = 6, then |U(R)| ≤ 2.

�

The next lemma was proved in [8, Proposition 2.4] for a finite ring R and it can

be shown by the same argument there.

Lemma 2.4.4. Let R be a ring with |U(R)| = k < ∞. If 2 /∈ U(R), then G(R) is

k-regular.

Proof. Let x ∈ R. As 2 /∈ U(R), u − x 6= x for u ∈ U(R). Thus, φ : U(R) → N(x)

given by φ(u) = u− x is a bĳection. So, deg(x) = |N(x)| = |U(R)| = k. So G(R) is

k-regular.

Lemma 2.4.5. Let R be a ring. If G(R) is planar, then |U(R)| < ∞.

Proof. Assume to the contrary that |U(R)| = ∞. Take u1 ∈ U(R) and u2 ∈

U(R)\{u1,−u1}. We show next that there is a contradiction.

Case 1: u1 6= −u1−u2 6= u2. In this case, we take u3 ∈ U(R)\{u1, u2,−u1,−u2,−u1−

u2}.



35

Subcase 1.1: u1 6= −u1 − u3 6= u3 and u2 6= −u2 − u3 6= u3. Then the following

graph is a subgraph of G(R):
·

· ·
·

· ·
·
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−u1 − u3

u3 I u1
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−u2 − u3 −u1 − u2

u2

II III

Now, take v ∈ U(R)\S, where S = {u1, u2, u3,−u1,−u2,−u3,−u1 − u2,−u1 −

u3,−u2 − u3, u1 + u2 − u3, u1 + u3 − u2, u2 + u3 − u1}. Since G(R) is planar and v

is adjacent to 0, v must be in one of the regions (I), (II) and (III). Without loss of

generality, put v into region (I). Note that −v − u2 is adjacent to both v and u2.

As G(R) is planar, −v − u2 must be one of the vertices 0, u1, u3,−u1 − u3. But this

contradicts the choice of v.

Subcase 1.2: u1 6= −u1 − u3 6= u3 and −u2 − u3 = u2 or u3. Then the following

graph is a subgraph of G(R):
·
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Now, take v ∈ U(R)\S, where S = {u1, u2, u3,−u1,−u2,−u3,−u1−u2,−u1−u3, u1 +

u2−u3, u1 +u3−u2}. Since G(R) is planar and v is adjacent to 0, v must be in one of

the regions (I), (II) and (III). Without loss of generality, put v into region (I). Note

that −v − u2 is adjacent to both v and u2. As G(R) is planar, −v − u2 must be one

of the vertices 0, u1, u3,−u1 − u3. But this contradicts the choice of v.
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Subcase 1.3: −u1 − u3 = u1 or u3, and u2 6= −u2 − u3 6= u3. Then the following

graph is a subgraph of G(R):

· ·
·
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u3 I
u1

0
−u2 − u3 −u1 − u2

u2

II III

Now, take v ∈ U(R)\S, where S = {u1, u2, u3,−u1,−u2,−u3,−u1 − u2,−u2 −

u3, u1 + u2− u3, u2 + u3− u1}. Since G(R) is planar and v is adjacent to 0, v must be

in one of the regions (I), (II) and (III). Without loss of generality, put v into region

(I). Note that −v−u2 is adjacent to both v and u2. As G(R) is planar, −v−u2 must

be one of the vertices 0, u1, u3. But this contradicts the choice of v.

Subcase 1.4: −u1 − u3 = u1 or u3, and −u2 − u3 = u2 or u3 (of course, it cannot

occur that −u1−u3 = u3 and −u2−u3 = u3). Then the following graph is a subgraph

of G(R):
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Now, take v ∈ U(R)\S, where S = {u1, u2, u3,−u1,−u2,−u3,−u1−u2, u1+u2−u3}.

Since G(R) is planar and v is adjacent to 0, v must be in one of the regions (I), (II)

and (III). Without loss of generality, put v into region (I). Note that −v − u2 is

adjacent to both v and u2. As G(R) is planar, −v − u2 must be one of the vertices

0, u1, u3. But this contradicts the choice of v.
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Case 2: −u1 − u2 = u1 or u2. Take u3 ∈ U(R)\{u1, u2,−u1,−u2}. A similar

argument as in Case 1 yields a contradiction.

Lemma 2.4.6 is a self-strengthening of Lemma 2.4.5.

Lemma 2.4.6. Let R be a ring. If G(R) is planar, then |U(R)| ≤ 4.

Proof. Assume to the contrary that |U(R)| ≥ 5. To get a contradiction, we proceed

with two cases.

Case 1: char(R) = 0. Then R contains Z as a subring. Since |U(R)| < ∞ by

Lemma 2.4.5, n /∈ U(R) for all ±1 6= n ∈ Z. Take ±1 6= u ∈ U(R).

Subcase 1.1: 2u 6= −2 and 2u 6= 2. That is, −1− u 6= 1 + u and u − 1 6= 1 − u.

In this case, the following graph is a subgraph of G(R):

· · ·

· · ·

· · ·

u− 1 1 −1− u

−u
0

u

1 + u −1 1− u

I II

III IV

Now, take v ∈ U(R)\{1,−1, u,−u}. Since G(R) is planar and v is adjacent to 0,

either v is in one of the regions (I), (II), (III) and (IV), or v is one of the vertices

u− 1, −1− u, 1− u and 1 + u.

If v is in region (I), consider the vertices 1− v and −u− v. As 1− v is adjacent to

both v and −1, we have 1− v = −u or 1− v = u− 1. As −u− v is adjacent to both v

and u, we have −u−v = 1 or −u−v = u−1. Thus, we must have a contradiction: If

1− v = −u and −u− v = 1, then 2v = 0, i.e. 2 = 0; If 1− v = u− 1 and −u− v = 1,

then 3 = 0; If 1−v = −u and −u−v = u−1, then 3u = 0, i.e. 3 = 0; If 1−v = u−1

and −u− v = u− 1, then u = −1.
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If v is in region (II), consider the vertices 1 − v and u − v. Arguing as above, we

have 1 − v = −1 − u or 1 − v = u, and u − v = 1 or u − v = −1 − u. This clearly

leads to a contradiction.

If v is in region (III), consider the vertices −1 − v and −u − v. Then we have

−1− v = −u or −1− v = 1 + u, and −u− v = 1 + u or −u− v = −1. This also leads

to a contradiction.

If v is region in (IV), consider the vertices −1 − v and u − v. Then we have

−1− v = u or −1− v = 1− u, and u− v = −1 or u− v = 1− u, and this also leads

to a contradiction.

If v is one of the vertices u − 1, −1 − u, 1 − u and 1 + u, we can assume that

v = u − 1 (the other cases are similar). Note that 1 is adjacent to −u. So we have

the following subgraph of G(R):
· ·

·
·
· · ·

· ·

�
�

�
�

�
�

�
�

�
��

���@
@

v

1 −1− u

−u
0

u

1 + u −1 1− u

u− 1

As −u − v is adjacent to both v and u, we must have −u − v = 1. As 1 − v is

adjacent to both v and −1, we must have 1 − v = −u. Thus, 2v = 0, i.e. 2 = 0, a

contradiction.

Subcase 1.2: 2u = −2, i.e. −1 − u = 1 + u. In this case, u − 1 6= 1 − u, so the

following graph is a subgraph of G(R):
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Take v ∈ U(R)\{1,−1, u,−u}. Then either v is in one of the regions (I), (II), (III)

and (IV) or v ∈ {1− u, u− 1, 1 + u}.

If v is in region (I), consider the vertices −1− v and u− v. As −1− v is adjacent

to both v and 1, we have −1− v = u. As u− v is adjacent to both v and −u, we have

u− v = −1. It follows that −2v = 0, i.e. 2 = 0, a contradiction.

If v is in region (II), consider the vertices 1 − v and u − v. Arguing as above, we

have 1− v = u and u− v = 1, which gives −2v = 0, i.e. v = 0, a contradiction.

If v is in region (III), consider the vertices 1−v and −u−v and we have 1−v = −u

and −u− v = 1, giving −2v = 0, i.e. v = 0, a contradiction.

If v is in region (IV), consider the vertices −1−v and −u−v and we have −1−v =

−u and −u− v = −1, giving −2v = 0, i.e. v = 0, a contradiction.

Now assume v ∈ {1− u, u− 1, 1 + u}. If v = 1 + u, then 0 is adjacent to 1 + u and

1 is adjacent to u. This is impossible.

If v = 1− u, then G(R) has the following subgraph:
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In this case, we consider the vertices −1− v and u − v. As −1− v is adjacent to
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both 1 and v, we have −1 − v = u; as u − v is adjacent to both −u and v, we have

u− v = −1. So −2v = 0, i.e. 2 = 0, a contradiction.

If v = u− 1, G(R) has the following subgraph:
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In this case, we consider the vertices 1 − v and −u − v. As 1 − v is adjacent to

both −1 and v, we have 1− v = −u; as −u− v is adjacent to both u and v, we have

−u− v = 1. So −2v = 0, i.e. 2 = 0, a contradiction.

Subcase 1.3: 2u = 2, i.e. u − 1 = 1 − u. In this case, −1 − u 6= 1 + u. By a

similar process as Subcase 1.2, we also can get a contradiction.

Case 2: char(R) = n ≥ 2. Then R contains Zn as a subring. Since G(Zn) is

planar, we have n ≤ 6 by Lemma 2.4.3. We need two notations. For any a ∈ R, let

Zn[a] be the subring of R generated by Zn ∪ {a}. Note that G(Zn[a]) is also planar.

For u ∈ U(R), let o(u) be the order of u in the multiplicative group U(R). Then

o(u) < ∞ for all u ∈ U(R) by Lemma 2.4.5.

Subcase 2.1: n = 6. Take ±1 6= u ∈ U(R). As o(u) < ∞, Z6[u] is a finite

commutative ring. So, by Lemma 2.4.3(5), |U(Z6[u])| ≤ 2. But Z6[u] has at least

three units, a contradiction.

Subcase 2.2: n = 5. Take u ∈ U(R)\U(Z5). Then Z5[u] is a finite commutative

subring of R. So, by Lemma 2.4.3(4), |U(Z5[u])| ≤ 4. But Z5[u] has at least five

units, a contradiction.

Subcase 2.3: n = 4. Take ±1 6= u ∈ U(R). Then Z4[u] is a finite commutative
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subring of R. So, by Lemma 2.4.3(3), |U(Z4[u])| ≤ 2. But Z4[u] has at least three

units, a contradiction.

Subcase 2.4: n = 3. Take±1 6= u ∈ U(R). As above, Z3[u] is a finite commutative

subring of R. So, by Lemma 2.4.3(2), we have |U(Z3[u])| ≤ 4. In particular, o(u) ≤ 4.

If o(u) = 4 and u2 = −1, then Z3[u] contains at least 8 units: 1,−1, u,−u, 1 + u, 1−

u,−1 + u and −1 − u, a contradiction. If o(u) = 4 and u2 6= −1, then 1, 2, u, u2, u3

are five distinct units of Z3[u], a contradiction. If o(u) = 3, then 1, 2, u, 2u, u2, 2u2 are

six distinct units of Z3[u], a contradiction.

Hence o(u) = 2, and in this case, U(Z3[u]) = {1, 2, u, 2u}. Note that the same

argument as above shows that v2 = 1 for all v ∈ U(R). So the group U(R) is abelian.

As |U(R)| ≥ 5, take v ∈ U(R)\U(Z3[u]). Consider the subring Z3[u, v] of R generated

by Z3[u]∪ {v}. Then Z3[u, v] is a finite commutative ring containing at least 5 units:

1, 2, u, 2u, v. This contradicts Lemma 2.4.3(2).

Subcase 2.5: n = 2. Let H = U(R). For u ∈ H, Z2[u] is a finite commutative

ring. So, by Lemma 2.4.3(1), we have |U(Z2[u])| ≤ 3. In particular, o(u) ≤ 3. Thus,

we have proved that o(u) ≤ 3 for all u ∈ H.

If H ∼= S3, the symmetric group of degree 3, then the subring Z2[H] of R generated

by Z2∪H is a finite ring containing exactly six units such that 2 is not a unit of Z2[H].

Hence, by Lemma 2.4.4, G(Z2[H]) is 6-regular. In particular, G(Z2[H]) is not planar,

and so G(R) is not planar. This contradiction shows that H is not isomorphic to S3.

To finish the proof, we need the following claim.

Claim: There exist u, v ∈ H\{1} such that uv = vu and 〈u〉 ∩ 〈v〉 = {1}.

Proof of Claim. As above, we have |H| = 2k3l, where k, l ≥ 0. Note that |H| ≥ 5

by hypothesis. If k = 0 or l = 0, there is nothing to prove because any finite p-group

has nontrivial center. If k > 1, consider a Sylow 2-subgroup P of H. Being a finite p-

group, P contains a non-trivial central element, say u. As |〈u〉| ≤ 3 and |P | ≥ 2k ≥ 4,
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we can take v ∈ P\〈u〉. Then uv = vu and 〈u〉 ∩ 〈v〉 = {1}. If l > 1, we can consider

a Sylow 3-subgroup and a similar argument also shows the existence of such elements

u and v. If k = l = 1, then |H| = 6. As H � S3, H is a cyclic group of order 6.

But this is impossible, as every element of H has order less than or equal to 3. This

completes the proof of the Claim.

Now by the Claim, take u, v ∈ H\{1} such that uv = vu and 〈u〉 ∩ 〈v〉 = {1}.

Then the subring Z2[u, v] of R generated by Z2 ∪ {u, v} is a finite commutative ring,

containing at least four distinct units 1, u, v, uv. This contradicts Lemma 2.4.3(1).

The proof is now complete.

The next lemma is about the genus of a simple graph, which will be used frequently

in Section 2.5 and Section 3.4. A surface is said to be of genus g if it is topologically

homeomorphic to a sphere with g handles. A graph G that can be drawn without

crossing on a compact surface of genus g, but not on one of genus g − 1, is called a

graph of genus g. The genus of a graph G is denoted by γ(G). Note that a graph is

planar if and only if it has genus zero.

Lemma 2.4.7. [70, Corollaries 6.14, 6.15] Suppose that a simple graph G is connected

with p ≥ 3 vertices and q edges. Then γ(G) ≥ q
6
− p

2
+ 1. Furthermore, if G has no

triangles, then γ(G) ≥ q
4
− p

2
+ 1. �

Now we are ready to prove our main result in this section.

Proof of Theorem 2.4.2. (=⇒). Suppose that G(R) is planar. Then R embeds

in R×R as sets, so |R| ≤ c. By Lemma 2.4.6, |U(R)| ≤ 4. If |U(R)| = 3, we are done.

So we can assume that |U(R)| = 4, and we can further assume n := char(R) > 0.

Then R contains Zn as a subring. Being a subgraph of G(R), G(Zn) is planar, so

2 ≤ n ≤ 6 by Lemma 2.4.3. Take ±1 6= u ∈ U(R). Then Zn[u] is a finite commutative

subring of R, and hence G(Zn[u]) is planar. If n = 4 or n = 6, then Zn[u] contains
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at least three units; this is impossible by Lemma 2.4.3(3,4). So n 6= 4 and n 6= 6.

Next we prove that n 6= 2. Assume that n = 2. Then, for any 1 6= u ∈ U(R), Z2[u]

is a finite commutative subring of R, and hence o(u) ≤ 3 by Lemma 2.4.3(1). If

o(u) = 3, take v ∈ U(R)\{1, u, u2} and we see 1, u, u2, v, uv are five distinct units of

R, contradicting that |U(R)| = 4. Hence o(u) ≤ 2 for all u ∈ U(R). So U(R) is a

commutative multiplicative group. Take 1 6= u ∈ U(R) and v ∈ U(R)\{1, u}. Then

Z2[u, v] is a finite commutative subring of R containing four units 1, u, v, uv. But this

is impossible by Lemma 2.4.3(1). Hence n 6= 2. Thus, we have proved that n = 3 or

n = 5.

Suppose n = 3. We prove that R ∼= Z3 × Z3. Take ±1 6= u ∈ U(R). Then Z3[u]

is a finite commutative subring of R, and U(Z3[u]) = {1, 2, u, 2u} (as |U(R)| = 4).

If R 6= Z3[u], take a ∈ R\Z3[u] and consider the subring Z3[u, a] of R generated by

Z3 ∪ {u, a}. Note that

a—(1 + 2a)—(1 + a)—2a—(u + a)—(u + 2a)—a

and

a—(2 + 2a)—(2 + a)—2a—(2u + a)—(2u + 2a)—a

are two 6-cycles in G(Z3[u, a]). By symmetry, essentially there are two ways to draw

the subgraph below:
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For the subgraph on the left, as u + 2 + 2a is adjacent to both 1 + a and 2u + a,

the planarity of G(R) ensures that u + 2 + 2a = a. On the other hand, as u + 2 + a is

adjacent to both 1+2a and 2u+2a, the planarity of G(R) ensures that u+2+a = 2a.

So, it follows that a = −a, i.e., 2a = 0 or a = 0, a contradiction. For the subgraph

on the right, as u + 1 + 2a is adjacent to both 2 + a and 2u + a, the planarity of

G(R) ensures that u + 1 + 2a = a. On the other hand, as u + 1 + a is adjacent to

both 2 + 2a and 2u + 2a, the planarity of G(R) ensures that u + 1 + a = 2a. So, it

follows that a = −a, i.e., 2a = 0 or a = 0, a contradiction. Therefore, R = Z3[u] with

Z3[u] ∼= Z3 × Z3.

Suppose n = 5. We prove that R ∼= Z5. We see that R contains Z5 as a subring.

Assume to the contrary that R 6= Z5. Take a ∈ R\Z5. The following graph H is a

subgraph of G(Z5[a]), and hence of G(R):
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a 1 + a 2 + a 3 + a 4 + a

4a 1 + 4a 2 + 4a 3 + 4a 4 + 4a

Note that H has 10 vertices and 20 edges with no triangles. So γ(H) ≥ 1 by

Lemma 2.4.7. This shows that H is not planar, giving a contradiction that G(R) is

planar.

(⇐=). We have |R| ≤ c. If R ∼= Z5 or R ∼= Z3×Z3, then G(R) is planar by Theorem

2.4.1. If |U(R)| ≤ 2, then the maximal degree of G(R) is at most two, so G(R) must

be planar.

Suppose that |U(R)| = 3. Then we easily see that 2 = 0 in R. So G(R) is 3-

regular by Lemma 2.4.4. Let U(R) = {u1, u2, u3}. For a given r ∈ R, r is adjacent
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to ui − r (i = 1, 2, 3). If u1 − r is adjacent to one of ui − r (i = 2, 3), say u2 − r,

then (u1 − r) + (u2 − r) = u1 + u2 is a unit of R, so it must be that u1 + u2 = u3.

Thus u1 − r is also adjacent to u3 − r and u2 − r is adjacent to u3 − r. Hence, the

vertices r, u1− r, u2− r, u3− r form a complete graph K4. As G(R) is 3-regular, G(R)

must be a disjoint union of copies of K4, so G(R) is planar. Therefore, we can let

the neighborhoods of u1 − r be r, a, b, where a, b /∈ {u2 − r, u3 − r}. We may assume

u1−r+a = u2 and u1−r+b = u3. Then u2−r+a = u1 and u3−r+b = u1. This means

that a is adjacent to u2−r and b is adjacent to u3−r. Let c be the third neighborhood

of u2 − r. Then u2 − r + c = u3, so u3 − r + c = u2. This means that c is also a

neighborhood of u3 − r. Now consider the vertex a. Let the neighborhoods of a be

u1−r, u2−r, x. Then a+x = u3. As b+x = b+u3−a = r+u1−a = u1−r+a = u2, x is

adjacent to b. Similarly, x is adjacent to c. So, the vertices r, u1−r, u2−r, u3−r, a, b, c

and x form a cube, which is 3-regular. As G(R) is 3-regular, G(R) must be a disjoint

union of copies of a cube. As a cube is a planar graph, G(R) is planar.

Finally, suppose that |U(R)| = 4 and char(R) = 0. Then R contains Z as a

subring. Take ±1 6= u ∈ U(R). As |U(R)| = 4, we have U(R) = {1,−1, u,−u}. By

Lemma 2.4.4, both G(Z[u]) and G(R) are 4-regular. It follows that G(R) is a disjoint

union of G(Z[u]). As shown below, G(Z[u]) is planar, so G(R) is planar.

−2 + 2u 2− u −2 2 + u −2− 2u

1− 2u −1 + u 1 −1− u 1 + 2u

2u −u 0 u −2u

−1− 2u 1 + u −1 1− u −1 + 2u

2 + 2u −2− u 2 −2 + u 2− 2u

Graph G(Z[u])

�



46

We end the section by giving some examples of rings with planar unit graphs.

Example 2.4.8. Let T2(Z2) be the 2 × 2 upper triangular matrix ring over Z2 and

let B be the zero ring or a finite Boolean ring. Then R = T2(Z2) × B has a planar

unit graph. �

A ring R is semilocal if R/J(R) is semisimple Artinian, where J(R) is the Jacobson

radical of R. The next example gives a countable non-semilocal ring whose unit graph

is planar. Let D be a ring and C be a subring of D. With addition and multiplication

defined componentwise, R[D, C] := {(d1, · · · , dn, c, c, · · · ) : di ∈ D, c ∈ C, n ≥ 1}

becomes a ring.

Example 2.4.9. Let S = R ∝ R/I where R = R[Z2, Z2] and I = R[Z2, 0]. Then S

is not semilocal, but G(S) is planar.

Proof. We easily see that J(S) = {(0, x) : x ∈ R/I}, so |J(S)| = |R/I| = 2, and

S/J(S) ∼= R is Boolean. Since S/J(S) is an infinite Boolean ring, S is not semilocal.

As |U(S)| = 2, G(S) is planar by Theorem 2.4.2.

Some other examples of rings with planar unit graphs can be constructed through

polynomial rings. In [7], the authors determined the finite rings R with G(R[t]) planar.

By Theorem 2.4.2, we now can characterize the rings R with G(R[t]) planar. Remark

that, for a reduced ring R, U(R[t]) = U(R) (we cannot find a reference for this, but

it can be easily proved).

Corollary 2.4.10. Let R be a ring, and let t1, t2, . . . , tn be commuting indeterminates

over R. Then G(R[t1, t2, . . . , tn]) is planar if and only if R is reduced with |R| ≤ c

such that either |U(R)| ≤ 3, or |U(R)| = 4 with char(R) = 0.

Proof. Without loss of generality, we can assume that n = 1.

(⇐=). This follows from Theorem 2.4.2 and the Remark above.
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(=⇒). As G(R[t]) is planar, R is reduced by [7, Proposition 6.1(ii)], and |R[t]| ≤ c.

So |R| ≤ c. Moreover, by Theorem 2.4.2, either |U(R[t])| ≤ 3, or |U(R[t])| = 4 with

char(R) = 0. Since R is reduced, U(R[t]) = U(R). So the result follows.

We remark that the results in this section were taken from [59].

2.5 Higher Genus Unit Graphs for Finite

Commutative Rings

All rings considered in this section are commutative. A planar graph is a graph

with genus zero and a toroidal graph is a graph with genus one. Determining the genus

of a graph is one of the most fundamental problems in topological graph theory. In

[61], Thomassen proved that the graph genus problem is indeed NP-complete. This

means that the problem can be solved in Polynomial time using a non-deterministic

Turing machine. The genus of graphs associated with rings is the topic of a number

of publications. For instances, the planarity of zero divisor graphs were studied in

[9], [11] and [56]. The rings with toroidal zero divisor graphs were classified in Wang

[67] and Wickham [68, 69]. Genus of two zero divisor graphs of local rings were

investigated by Bloomfield and Wickham in [16]. Recently, Maimani et al. [53]

determined all isomorphism classes of finite rings whose total graphs have genus at

most one, and Tamizh Chelvam and Asir [62] characterized all isomorphism classes

of finite rings whose total graphs have genus two. For a finite ring R, the unit graph

G(R) is the complement of the total graph of the ring R. In [8, Theorem 5.14], all

finite rings having planar unit graphs are completely classified, and in [21] toroidal

ones are completely determined. The goal of this section is to classify all finite rings

R with γ(G(R)) = 1, 2, and 3, respectively.
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We state some needed basic facts in graph theory and on finite rings. If H is a

subgraph of a graph G, then γ(H) ≤ γ(G). The well-known Euler’s formula says

that, if G is a finite connected graph with p vertices, q edges and genus g, then

p − q + f = 2 − 2g, where f is the number of faces created when G is minimally

embedded on a surface of genus g. We refer the reader to [70] for the details on

embedding a graph in a surface.

By Ganesan [25], if R is a ring containing n zero divisors with n > 0, then |R| ≤ n2.

For a finite local ring R with maximal ideal m, there exists a prime p such that

|R/m| = pt for some integer t ≥ 1 and hence |R| = pn for some integer n ≥ t.

According to [18, P.687], all local rings having order 4, 9, 8 are, respectively, F4,

Z4, Z2[X]/(X2), and F9, Z9, Z3[X]/(X2), and F8, Z8, Z2[X]/(X3), Z2[X,Y ]/(X,Y )2,

Z4[X]/(2X, X2), Z4[X]/(2X,X2 − 2).

The first two lemmas from graph theory will be frequently used.

Lemma 2.5.1. [70, Theorems 6.37, 6.38] Let m ≥ 2, n ≥ 3, p ≥ 2 be integers. Then

γ(Kn) = d 1
12

(n − 3)(n − 4)e, γ(Km,p) = d1
4
(m − 2)(p − 2)e, where dxe is the least

integer that is greater than or equal to x.

Lemma 2.5.2. [70, Corollary 6.19] The genus of a graph is the sum of the genera of

its components.

The following result, which is of interest in its own right, is needed for the proof of

our main theorem.

Theorem 2.5.3. Let G be the complete 5-partite graph K2,2,2,2,1. Then γ(G) = 3.

Proof. We know that G is a subgraph of the complete graph K9, so γ(G) ≤ γ(K9) = 3.

On the other hand, γ(G) ≥ 32
6
− 9

2
+ 1 = 11

6
by Lemma 2.4.7, so 2 ≤ γ(G) ≤ 3. We

use the following two facts.
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Fact 1: [31, Theorem 1.7] There is no simple triangulation with 9 vertices on S2.

Fact 2: [54, Theorem 1.1] K7 has only one embedding on S1 up to homeomorphism.

Moreover, K7 −K2 has only two embeddings on S1 up to homeomorphism. When x

and y are non-adjacent pair, one has a quadrangle face x ∗ y∗ and the other has a

quadrangle face ∗ ∗ ∗∗ (i.e. x and y do not appear).

We suppose that there exists an embedding of G = K2,2,2,2,1 on S2. By Euler’s

formula, such an embedding has 20 triangles and 1 quadrangle.

Let V (G) = {0, 1, 2, 3, 4, 5, 6, 7, 8} and 01x7 be a quadrangle face. We may assume

that 0 and x have degree seven. Suppose that the consecutive neighbors of 0 are

{1, 2, 3, 4, 5, 6, 7}. By Fact 1, we see that x is not 8. By symmetry, we can separate

to two cases: x = 4 and x = 3.

Case 1: x = 4. By symmetry, we may assume that vertex 4 has neighbors 7∗503∗1

(if not, it will result in the case x = 3). We may also assume that the neighbors are

7250384. Now we see that (0,8) and (4,6) are non-adjacent pairs.

Cut the double torus by essential closed curve 404 (40 is an edge of G and 04 is a

diagonal of a quadrangle face of G). Omitting the vertices 0,4 and covering two holes,

we then get K7−2K2 on the torus which has two quadrangle faces 3812 and 5276. (It

is obvious that the closed curve is not a separating curve.) By connections of edges,

we see that 2K2 are (13, 57) or (15, 37) (notice that 17 cannot be a non-adjacent pair

by Fact 1).

If 2K2 are (13, 57), we can get K7 by adding two edges in quadrangle faces, but it

contradicts to Fact 2 (K7 on the tours cannot have such four triangle faces: 381,812,

527 and 726). If 2K2 are (15, 37), vertex 1 has neighbors 48∗ ∗ ∗20, but contradicts

wherever 3 is.

Case 2: x = 3. Separate to two cases: 3 has neighbors 7y402z1, and 3 has

neighbors 7402yz1.
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Subcase 2.1: 3 has neighbors 7y402z1. We see that y = 8 by connections of edges

(notice neighbors of vertex 4 if y = 5). Cut the double torus by essential closed curve

303 (30 is an edge of G and 03 is a diagonal of a quadrangle face of G). Omitting the

vertices 0,3 and covering two holes, we then get K7− 2K2 on the torus which has two

faces 2z1 and 48765.

If z = 6, we see that non-adjacent pairs are 08, 35, 27 and 14 or 46. If 14 is,

neighbors of 6 must be 05813247. Then neighbors of 2 must be 0185463. Then

neighbors of 1 must be 863028∗, a contradiction. If 46 is, we can add an edge 46

in the face 48765. The remaining non-adjacent pair 27 and quadrangle face 4876

contradict Fact 2.

If z = 5, we see that non-adjacent pairs are 08, 36. The others are (14, 27) or (14,

57) or (24, 57). If (14, 27) is, we can get a contradiction by searching neighbors of 5,

7 and 8. If (14, 57) is (resp. (24, 57)), we can add the edge 57 in the face 48765. The

remaining nonadjacent pair 14 (resp. 24) and quadrangle face 4875 contradict Fact 2.

Subcase 2.2: 3 has neighbors 7402yz1. Cut the double torus by essential closed

curve 303. Omitting the vertices 0,3 and covering two holes, we then get K7 − 2K2

on the torus which has two quadrangle faces 2yz1 and 4765. Separate to three cases:

(y, z) = (8,6), (5,8) or (8,5) ((6,8) and (8,5) are the same by symmetry).

If (y, z) = (8, 6), we see that non-adjacent pairs are 08, 35. The others are (14,26),

(14,27) or (27,46). If (14,27) is, we can get a contradiction by noticing neighbors of

6. If (14,26) is (resp. (27,46)), we can add edge 26 (resp. 46) in the face 2861 (resp.

4765). The remaining nonadjacent pair 14 (resp. 27) and quadrangle face 4765 (resp.

2861) contradict Fact 2.

If (y, z) = (5, 8), we see that non-adjacent pairs are 08, 36. The others are (15,24),

(14,27), (15,27), (14,57) or (24,57). If (14,27) is, we can get a contradiction by noticing

neighbors of 5. If (15,24) is (resp. (15,27)), we can add the edge 15 in the face 2581.
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The remaining nonadjacent pair 24 (resp. 27) and quadrangle face 4765 contradict

Fact 2. If (14,57) (resp. (24,57)), we can add the edge 57 in the face 4765. The

remaining nonadjacent pair 14 (resp. 24) and quadrangle face 2581 contradict Fact 2.

If (y, z) = (8, 5), we see that non-adjacent pairs are 08, 36. The others are (14,25),

(14,27), (14,57), or (24,57). If (14,27) is, we can get a contradiction by noticing

neighbors of 5. If (14,25) is, we can add the edge 25 in the face 2851. The remaining

nonadjacent pair 14 and quadrangle face 4765 contradict Fact 2. If (14,57) is (resp.

(24,57)), we can add the edge 57 in the face 4765. The remaining nonadjacent pair

14 (resp. 24) and quadrangle face 2851 contradict Fact 2.

All cases result in a contradiction. The proof is complete.

The next five lemmas are further preparation for proving our main theorem.

Lemma 2.5.4. The following statements hold:

(1) Let R = Z2 × Fq. Then γ(G(R)) ≥ 5 for q ≥ 7, γ(G(R)) = 1 for q = 5, and

γ(G(R)) = 0 for q ≤ 4.

(2) Let R = Z2 × S, where S is a local ring of order eight which is not a field. Then

γ(G(R)) = 2.

(3) Let R = Z2 × S, where S is a local ring of order nine which is not a field. Then

γ(G(R)) ≥ 6.

Proof. (1) By Lemma 2.4.4, G(R) is (q − 1)-regular since 2 /∈ U(R). By [8, Theorem

3.5], G(R) is a bipartite graph, so it contains no triangles. As G(R) contains 2q

vertices and q(q − 1) edges, γ(G(R)) ≥ (q−1)(q−4)
4

by Lemma 2.4.7. If q ≥ 7, then

γ(G(R)) ≥ 5. If q = 5, then R ∼= Z2 × Z5, and we see that γ(G(R)) ≥ 1. On

the other hand, we can embed G(Z2 × Z5) into S1 as shown in Figure 1. Hence,

γ(G(Z2 × Z5)) = 1. If q ≤ 4, γ(G(R)) = 0 by Theorem 2.4.1.
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Figure 1: G(Z2 × Z5)

(2) It is clear that |U(S)| = 4 and |J(S)| = 4. So |U(R)| = |J(R)| = 4. Note that

each element in J(R) is adjacent to every element in U(R) and G(R) is 4-regular.

Thus, G(R) is two copies of K4,4. By Lemmas 2.5.1 and 2.5.2, γ(G(R)) = 2.

(3) It is clear that |U(S)| = 6 and 2 /∈ U(R). By Lemma 2.4.4, G(R) is 6-regular. As

G(R) contains no triangles, the claim follows from Lemma 2.4.7.

Lemma 2.5.5. The following statements hold:

(1) Let R = Z3 × S, where S is a local ring of order four which is not a field. Then

γ(G(R)) = 1.

(2) Let R = Z3 × F4. Then γ(G(R)) = 3.

(3) Let R = Z3 × Z5. Then γ(G(R)) ≥ 6.

Proof. (1) Note that G(Z3×Z4) and G(Z3×Z2[X]/(X2)) have the same graph struc-

ture. It is clear that G(R) is 4-regular and it contains no triangles. By Lemma 2.4.7,
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γ(G(R)) ≥ 1. On the other hand, we can embed G(R) into S1 as shown in Figure 2.

Hence, γ(G(R)) = 1.

Figure 2: G(Z3 × Z4)

(2) Write F4 = {0, 1, x, x + 1}. Let G = G(Z3 × F4) and G′ = G − E, where

E = {(1, 1)—(1, x), (1, 1)—(1, 1+x), (1, x)—(1, x+1), (2, 1)—(2, x), (2, 1)—(2, 1+x),

(2, x)—(2, x + 1)}. So G′ has 30 edges and 12 vertices and has no triangles. Thus

γ(G′) ≥ 3 by Lemma 2.4.7. Hence G has genus at least three. On the other hand, we

can embed G into S3 as shown in Figure 3. Therefore, γ(G) = 3.
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Figure 3: G(Z3 × F4)

(3) Let G′ = G(R) − E, where E = {(1, 1)—(1,2), (1,1)—(1,3), (1,2)—(1,4), (1,3)—

(1,4), (2,1)—(2,2), (2,1)—(2,3), (2,2)—(2,4), (2,3)—(2,4)}. Then G′ has 48 edges and

no triangles, so γ(G′) ≥ 6 by Lemma 2.4.7. Hence, γ(G(R)) ≥ 6.

Lemma 2.5.6. The following statements hold:

(1) Let R = S × T , where S and T are local rings of order four which are not fields.

Then γ(G(R)) = 2.

(2) Let R = F4 × S, where S is a local ring of order four which is not a field. Then

γ(G(R)) ≥ 5.

Proof. (1) It is clear that |U(S)| = |U(T )| = 2 and |J(S)| = |J(T )| = 2. So |U(R)| =

|J(R)| = 4. Note that each element in J(R) is adjacent to every element in U(R) and
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that G(R) is 4-regular. Thus, G(R) is two copies of K4,4, so γ(G(R)) = 2 by Lemmas

2.5.1 and 2.5.2.

(2) Since 2 /∈ U(R) and |U(R)| = 6, G(R) is 6-regular by [8, Proposition 2.4]. As

G(R) contains no triangles, γ(G(R)) ≥ 5 by Lemma 2.4.7.

Lemma 2.5.7. The following statements hold:

(1) Let R be a local ring of order nine which is not a field. Then γ(G(R)) = 2.

(2) Let R = Z2 × Z3 × Z3. Then γ(G(R)) = 1.

Proof. (1) We see R ∼= Z9 or R ∼= Z3[X]/(X2) (see [18, P. 687]). The unit graphs of

the two rings have the same graph structure. Without loss of generality we assume

that R = Z9. According to [8, Proposition 2.4], G(R) has 24 edges, so γ(G(R)) ≥ 1 by

Lemma 2.4.7. Assume to the contrary that γ(G(R)) = 1. Then, by Euler’s formula,

G(R) has 15 faces as G(R) has 9 vertices and 24 edges. Fix a representation of G(R)

on the surface of a torus and let {F1, . . . , F15} be the set of faces of G(R) corresponding

to the representation. Let G′ = G(R)−E1, where E1 = {1—4, 1—7, 4—7, 2—5, 2—

8, 5—8}. Suppose that {F ′
1, . . . , F

′
n} is the set of faces of G′ from the representation

corresponding to {F1, . . . , F15}. Note that G′ ∼= K3,6 and K3,6 has 9 faces, so n = 9.

Furthermore, all face boundaries in K3,6 are 4-cycles. This means that the boundary

of each F ′
i is a 4-cycle. Now {F1, . . . , F15} can be recovered by adding all edges in E1

into the representation corresponding to {F ′
1, . . . , F

′
9}. There are two triangles in E1,

and it is easily seen that the edges in E1 cannot be linked into G′ without crossings,

a contradiction. Therefore, we can conclude that γ(G(R)) ≥ 2. On the other hand,

we can embed G(Z9) into S2 as shown in Figure 4. Hence, γ(G(R)) = 2.
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Figure 4: G(Z9)

(2) We have R = Z2 × Z3 × Z3
∼= Z3 × Z6. By [8, Proposition 2.4], G(R) is 4-

regular since 2 /∈ U(R). As G(R) has no triangles, γ(G(R)) ≥ 1 by Lemma 2.4.7.

On the other hand, we can embed G(Z3 × Z6) into S1 as shown in Figure 5, so

γ(G(Z2 × Z3 × Z3)) = 1.

Figure 5: G(Z3 × Z6)
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Lemma 2.5.8. Let R = Z2×Z2× S, where S is a ring. Then G(R) is two copies of

G(Z2 × S).

Proof. It is straightforward.

The finite rings with planar unit graph were classified in [8] (see Theorem 2.4.1).

We now prove the main result of this section.

Theorem 2.5.9. Let R be a finite commutative ring. Then:

(1) γ(G(R)) = 1 if and only if R is isomorphic to one of the following rings:

Z7, Z8, Z2[X]/(X3), Z4[X]/(2X, X2), Z4[X]/(2X, X2 − 2), Z2[X, Y ]/(X, Y )2,

Z2 × Z5, Z2 × Z3 × Z3, Z3 × Z4, Z3 × Z2[X]/(X2).

(2) γ(G(R)) = 2 if and only if R is isomorphic to one of the following rings:

F8, Z9, Z3[X]/(X2), Z2 × Z8, Z2 × Z2[X]/(X3), Z2 × Z2[X, Y ]/(X, Y )2, Z2 ×

Z4[X]/(2X, X2), Z2 × Z4[X]/(2X, X2 − 2), Z2 × Z2 × Z5, Z2 × Z2 × Z3 × Z3,

Z2 × Z3 × Z4, Z2 × Z3 × Z2[X]/(X2).

(3) γ(G(R)) = 3 if and only if R ∼= F9 or R ∼= Z3 × F4.

Proof. Assume γ(G(R)) ≤ 3. If |J(R)| ≥ 6, pick up six distinct elements in J(R),

say xi, i = 1, 2, . . . , 6. Then 1 − xi ∈ U(R) for i = 1, 2, . . . , 6, so G(R) contains a

complete bipartite subgraph K6,6, and this gives γ(G(R)) ≥ γ(K6,6) = 4. Therefore,

|J(R)| ≤ 5. On the other hand, by [8, Proposition 2.4], the minimum degree of

vertices of G(R) is |U(R)| − 1. If |U(R)| ≥ 10, then the number of edges ≥ 9
2
|R|, and

so γ(G(R)) ≥ 1
4
|R| + 1 ≥ 4 by Lemma 2.4.7. Hence, |U(R)| ≤ 9. To complete the

proof, we consider only the finite rings R satisfying |J(R)| ≤ 5 and |U(R)| ≤ 9, and

we determine the genus of the unit graph of each of such rings.



58

We first assume that R is a finite local ring. Let m = J(R) be the unique maximal

ideal of R. We proceed with five cases.

Case 1: |m| = 1; that is, R is a field. Only the following rings need be considered:

Z2, Z3, F4, Z5, Z7, F8, F9. Since the genus of a complete graph K9 equals 3, the unit

graphs of these rings have genus at most 3.

After simply checking, we can conclude that γ(G(Z2)) = γ(G(Z3)) = γ(G(F4)) =

γ(G(Z5)) = 0 and γ(G(F8)) = γ(K8) = 2. For R = Z7, G(R) is a subgraph of

K7, so γ(G(R)) ≤ γ(K7) = 1. On the other hand, γ(G(R)) ≥ 1
2

by Lemma 2.4.7.

Thus, γ(G(Z7)) = 1. For R = F9, G(R) is the complete 5-partite graph K2,2,2,2,1, so

γ(G(F9)) = 3 by Theorem 2.5.3.

Case 2: |m| = 2. Then |R| ≤ 4 and |R| = 2t, so |R| = 4. Thus, R ∼= Z4 or

R ∼= Z2[X]/(X2). In either case, γ(G(R)) = 0.

Case 3: |m| = 3. Then |R| ≤ 9 and |R| = 3t, so |R| = 9. Thus, R ∼= Z9 or

R ∼= Z3[X]/(X2). By Lemma 2.5.7(1), γ(G(R)) = 2.

Case 4: |m| = 4. Then |R| ≤ 16 and |R| = 2t, so |R| = 8 or 16. The condition

that |R| = 16 would give |U(R)| = 12 > 9. Hence |R| = 8. As mentioned in the

introduction, we know that R is one of the following rings:

Z8, Z2[X]/(X3), Z4[X]/(2X, X2), Z4[X]/(2X, X2 − 2) and Z2[X, Y ]/(X, Y )2.

In all these cases, R is a local ring with maximal ideal m and R/m = Z2. Thus

G(R) = Km,n, where m = |m| and n = |R −m|. So G(R) = K4,4, which implies that

γ(G(R)) = 1.

Case 5: |m| = 5. Then |R| ≤ 25 and |R| = 5t, so |R| = 25. This gives |U(R)| =

20 > 9. Thus, this case is ruled out.

We next assume that R is not a finite local ring. Write R = R1 × · · · × Rs, where

each Ri is local and s ≥ 2. We proceed with five cases.
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Case A: |J(R)| = 1. Then Ri is a field for all i. We can assume that |U(R1)| ≤

|U(R2)| ≤ · · · ≤ |U(Rs)|. Since |U(R)| ≤ 9, we have |U(Ri)| ≤ 9 for all i. Thus, R is

isomorphic to one of the following rings:

(i) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×S, where l ≥ 1 and S ∈ {Z2, Z3, F4, Z5, Z7, F8, F9}.

(ii) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z3 × Z3, where l ≥ 0.

(iii) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z3 × F4, where l ≥ 0.

(iv) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z3 × Z5, where l ≥ 0.

(v) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×F4 × F4, where l ≥ 0.

(vi) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z3 × Z3 × Z3, where l ≥ 0.

If R is isomorphic to one of the rings that appear in (i), then G(R) is a union of

2l−1 copies of vertex-disjoint graph G(Z2×S) by Lemma 2.5.8. Therefore, γ(G(R)) =

2l−1γ(G(Z2×S)) by Lemma 2.5.2. If |S| ≤ 4, i.e., S ∼= Z2, S ∼= Z3 or S ∼= F4, we have

γ(G(R)) = 0 by Lemma 2.5.4(1). If S ∼= Z5, we have γ(G(R)) = 2l−1γ(G(Z2×Z5)) =

2l−1 by Lemma 2.5.4(1). As γ(G(R)) ≤ 3, l ≤ 2. If l = 1, then R ∼= Z2 × Z5, so

γ(G(R)) = 1. If l = 2, then R ∼= Z2 × Z2 × Z5, so γ(G(R)) = 2. If S ∼= Z7, S ∼= F8,

or S ∼= F9, then γ(G(R)) ≥ 5 by Lemma 2.5.4(1).

Let R be a ring appearing in (ii). For l = 0, G(R) = G(Z3 × Z3) is planar.

For l = 1, γ(G(R)) = γ(G(Z2 × Z3 × Z3)) = 1 by Lemma 2.5.7(2). For l = 2,

γ(G(R)) = γ(G(Z2 × Z2 × Z3 × Z3)) = 2 by Lemma 2.5.2. Consequently, l ≤ 2 by

Lemma 2.5.2.

For a ring R appearing in (iii), since G(Z3×F4) has genus three by Lemma 2.5.5(2),

l must be zero. So, γ(G(R)) = γ(G(Z3 × F4)) = 3.

The graph G(Z3 × Z5) has genus at least 6 by Lemma 2.5.5(3). Thus, all rings

appearing in (iv) are ruled out.

The graph G(F4×F4) is 9-regular, and has genus at least 5 by Lemma 2.4.7. Thus,
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all rings appearing in (v) are ruled out.

The graph G(Z3×Z3×Z3) has 104 edges, so has genus at least 5 by Lemma 2.4.7.

Thus, all rings appearing in (vi) are ruled out.

Case B: |J(R)| = 2. We may assume that Ri is a field for all 1 ≤ i ≤ s−1 and Rs

is a local ring with |J(Rs)| = 2. Then Rs
∼= Z4 or Rs

∼= Z2[X]/(X2). As |U(R)| ≤ 9

and |U(Rs)| = 2, R is isomorphic to one of the following rings:

(i) Z2 × · · · × Z2︸ ︷︷ ︸
l+1 times

×S;

(ii) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z3 × S;

(iii) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×F4 × S;

(iv) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z5 × S;

(v) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z3 × Z3 × S,

where l ≥ 0 and S ∈ {Z4, Z2[X]/(X2)}.

If R is a ring appearing in (i), then γ(G(R)) = 0 for all l ≥ 0 by [8, Theorem 5.14].

Let R be a ring appearring in (ii). Then l ≤ 1 by Lemma 2.5.5(1) and Lemma 2.5.8.

If l = 0, then γ(G(R)) = 1; in this case, R ∼= Z3×Z4 or R ∼= Z3×Z2[X]/(X2). If l = 1,

then γ(G(R)) = 2; in this situation, R ∼= Z2×Z3×Z4 or R ∼= Z2×Z3×Z2[X]/(X2).

For R ∼= F4 × S, γ(G(R)) ≥ 5 by Lemma 2.5.6(2). For R ∼= Z5 × S, G(R) is 8-

regular and so γ(G(R)) ≥ 5 by Lemma 2.4.7. For R ∼= Z3×Z3×S, G(R) is 8-regular

and so γ(G(R)) ≥ 7 by Lemma 2.4.7. Note that for rings R appearring in (iii), (iv)

and (v), G(R) is some copies of G(F4×S), G(Z5×S) and G(Z3×Z3×S), respectively.

Thus, all rings appearing in (iii), (iv) and (v) are ruled out.

Case C: |J(R)| = 3. We may assume that Ri is a field for all 1 ≤ i ≤ s − 1

and Rs is a local ring with J(Rs) = 3. Thus, Rs
∼= Z9 or Rs

∼= Z3[X]/(X2). Since

|U(R)| ≤ 9 and |U(Rs)| = 6, we have R ∼= Z2 × · · · × Z2︸ ︷︷ ︸
l times

×S, where l ≥ 1 and S ∼= Z9

or S ∼= Z3[X]/(X2). Thus, by Lemma 2.5.4(3), G(R) has genus at least 6. So this
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case is ruled out.

Case D: |J(R)| = 4. There are two subcases for consideration.

Subcase D.1: Suppose that Ri is a field for all 1 ≤ i ≤ s−1 and Rs is a local ring

with |J(Rs)| = 4. Since |U(R)| ≤ 9, we have |U(Rs)| ≤ 9. Thus, |Rs| ≤ 13. It follows

that |Rs| = 8. There are five rings satisfying this condition, namely, Z8, Z2[X]/(X3),

Z4[X]/(2X, X2), Z4[X]/(2X, X2−2) and Z2[X,Y ]/(X, Y )2. In all cases, |U(Rs)| = 4.

Therefore, R is isomorphic to one of the following rings:

(i) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×S, where l ≥ 1 and S is one of Z8, Z2[X]/(X3), Z4[X]/(2X, X2),

Z4[X]/(2X, X2 − 2) and Z2[X,Y ]/(X,Y )2.

(ii) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z3×S, where l ≥ 0 and S is one of Z8, Z2[X]/(X3), Z4[X]/(2X,X2),

Z4[X]/(2X, X2 − 2) and Z2[X,Y ]/(X,Y )2.

If R is a ring appearing in (i), then l = 1 and γ(G(R)) = 2 by Lemmas 2.5.4(2)

and 2.5.8.

If R ∼= Z3 × S, where S is given in (ii), then G(R) is 8-regular, and so γ(G(R)) ≥
96
6
− 24

2
+ 1 = 5 by Lemma 2.4.7. Thus, all rings appearing in (ii) are ruled out.

Subcase D.2: Suppose that Ri is a field for all 1 ≤ i ≤ s − 2, and Rs−1, Rs are

local rings with |J(Rs−1)| = |J(Rs)| = 2. Then Rs−1, Rs ∈ {Z4, Z2[X]/(X2)}. Since

|U(R)| ≤ 9 and |U(Rs−1)| = |U(Rs)| = 2, R is isomorphic to one of the following

rings:

(i) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×S × T , where l ≥ 0 and S and T are local rings of order 4.

(ii) Z2 × · · · × Z2︸ ︷︷ ︸
l times

×Z3 × S × T , where l ≥ 0 and S and T are local rings of order 4.

If R is a ring appearing in (i), then l = 0 and γ(G(R)) = 2 by Lemmas 2.5.6(1)

and 2.5.8.

If R ∼= Z3×S×T , where S and T are local rings of order 4, then G(R) is 8-regular,

and so γ(G(R)) ≥ 192
6
− 48

2
+ 1 = 9 by Lemma 2.4.7. Thus, all rings appearing in (ii)
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are ruled out.

Case E: |J(R)| = 5. Then Ri is a field for all 1 ≤ i ≤ s− 1 and Rs is a local ring

with J(Rs) = 5. Since |U(R)| ≤ 9, we have |U(Rs)| ≤ 9. Thus, |Rs| ≤ 14. But no

local ring satisfies this condition, so this case is ruled out.

The proof is now complete.

We remark that the results in this section were taken from [58].



Chapter 3

Unitary Cayley Graphs of Rings

3.1 Introduction

This chapter concerns the unitary Cayley graphs of rings. Let R be a ring. Recall

that the unitary Cayley graph of the ring R, denoted Γ(R), is the simple graph with

vertex set R, where two vertices x and y are adjacent if and only if x− y is a unit of

R.

Section 3.2 is about the girth and the diameter of unitary Cayley graphs. It is

proved that gr(Γ(R)) ∈ {3, 4, 6,∞} for an arbitrary ring R (Theorem 3.2.1), and that

for each integer n > 0, there exists a ring R with diam(Γ(R)) = n (Theorem 3.2.4).

We also show that diam(Γ(R)) ∈ {1, 2, 3,∞} for a ring R with R/J(R) self-injective

(Theorem 3.2.10) and classify all those rings with diam(Γ(R)) = 1, 2, 3 and ∞,

respectively (Theorem 3.2.11).

In [6] Akhtar et al. gave a list of finite commutative rings whose unitary Cayley

graphs are planar (see [6, Theorem 8.2]). However, in view of the proof of [6, Theorem

8.2], the rings Z2[t]
(t2)

and Z2[t]
(t2)

× B (where B is a finite Boolean ring) should be added

to the list. We restate the result as follows.

63
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Theorem 3.1.1. [6] Let R be a finite commutative ring. Then Γ(R) is planar if and

only if R is isomorphic to one of the following rings:

Z3, F4, B, Z3 ×B, F4 ×B, Z4,
Z2[t]
(t2)

, Z4 ×B, Z2[t]
(t2)

×B,

where B is a finite Boolean ring.

Theorem 3.1.1 is the motivation of Section 3.3, where we completely characterize

the rings (not necessarily finite and not necessarily commutative) whose unitary Cay-

ley graphs are planar (Theorem 3.3.6). If a finite graph G is planar, then the minimal

degree of G is at most five. However, by Theorem 3.3.6, there exist 6-regular planar

unitary Cayley graphs.

In Section 3.4, motivated by Theorem 3.1.1, we study finite commutative rings

with higher genus unitary Cayley graphs. It is proved that for each integer g ≥ 1,

there are at most finitely many finite commutative rings whose unitary Cayley graphs

have genus g (Theorem 3.4.6). We also determine all finite commutative rings whose

unitary Cayley graphs have genus 1, 2, 3, respectively (Theorem 3.4.16).

3.2 The Girth and Diameter of Unitary Cayley

Graphs

It was proved by Akhtar et al. in [6, Theorem 3.2] that gr(Γ(R)) ∈ {3, 4, 6,∞} for

any finite commutative ring R. In fact, this is true for an arbitrary ring.

Theorem 3.2.1. Let R be a ring. Then gr(Γ(R)) ∈ {3, 4, 6,∞}.

Proof. If |U(R)| = 1, then Γ(R) does not contain a cycle and hence gr(Γ(R)) = ∞. If

|U(R)| ≥ 3, then there exist two distinct elements u, v ∈ U(R) such that r := u+ v 6=

0. Then 0—u—r—v—0 is a 4-cycle in Γ(R) and hence gr(Γ(R)) ≤ 4.
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So we may assume that |U(R)| = 2 and Γ(R) contains a cycle. Let U(R) = {1, u}.

If u 6= −1, i.e., r := 1+u 6= 0, then 0—1—r—u—0 is a 4-cycle in Γ(R), so gr(Γ(R)) ≤

4. So we can further assume U(R) = {1,−1}. Let a1—a2—· · ·—ak—a1 be a cycle in

Γ(R).

Case 1: k = 2m + 1 is odd. Then ai− ai+1 = 1 for all 1 ≤ i ≤ k or ai− ai+1 = −1

for all 1 ≤ i ≤ k ( we let ak+1 = a1). Either case gives k = 2m + 1 = 0. So 2 is a unit

in R, and hence 2 = −1. So 0—1—2—0 is a cycle in Γ(R) and thus gr(Γ(R)) = 3.

Case 2: k is even. Let k = 2m + 2 and

x—a1—a2—a3—· · ·—am—y—bm—· · ·—b3—b2—b1—x

be a cycle of length 2m + 2. Then

0—(a1 − x)—(a2 − x)—(a3 − x)—· · ·—(b3 − x)—(b2 − x)—(b1 − x)—0

is also a cycle of length 2m + 2. Hence, we may assume that

0—a1—a2—a3—· · ·—am—y—bm—· · ·—b3—b2—b1—0

is a cycle of length 2m + 2, where a1 = 1, b1 = −1. In this case, we must have

ai+1 − ai = 1 and bi+1 − bi = −1 for all 1 ≤ i ≤ m − 1. It follows that ai = i and

bi = −i for i = 1, 2, . . . ,m. As y − am = 1 and y − bm = −1, we have 2m + 2 = 0 in

R. Next we show that m ≤ 2. Assume on the contrary that m ≥ 3.

Subcase 2.1: m = 2k + 1. Then am = 2k + 1, so a2
m = k(4k + 4) + 1 =

k · (2m + 2) + 1 = k · 0 + 1 = 1. Hence, am is a unit, a contradiction.

Subcase 2.2: m = 4k + 2. Then we have a2k+1a4k+1 = (2k + 1)(4k + 1) =

k(8k + 6) + 1 = k · (2m + 2) + 1 = k · 0 + 1 = 1. This shows that a2k+1 and a4k+1 are

units, a contradiction.

Subcase 2.3: m = 4k. Then we have a2k+1b4k−1 = (2k + 1)(−4k + 1) = −k(8k +

2) + 1 = k · (2m + 2) + 1 = k · 0 + 1 = 1. This shows that a2k+1 and b4k−1 are units,

also a contradiction.



66

Therefore, m ≤ 2. It follows that gr(Γ(R)) = 4 or 6. In conclusion, gr(Γ(R)) ∈

{3, 4, 6,∞}. This completes our proof.

Similarly, as did in Section 2.2, we can classify the semipotent rings with gr(Γ(R)) =

6 or ∞, and determine the self-injective rings with gr(Γ(R)) = 3 or 4. We omit the

details here.

Next, we investigate the diameter of unitary Cayley graphs of rings. We first show

that, for each integer n ≥ 1, there exists a ring R such that diam(Γ(R)) = n. Some

lemmas are needed.

Lemma 3.2.2. Let R be a ring and r ∈ R. Then the following statements hold:

(1) If r is k-good, then d(r, 0) ≤ k in Γ(R).

(2) If r 6= 0 and d(r, 0) = k in Γ(R), then r is k-good but not l-good for all l < k.

(3) For any x, y, z ∈ R, d(x, y) = k if and only if d(x + z, y + z) = k.

Proof. (1) Let r = u1 + u2 + · · ·+ uk with each ui ∈ U(R) and let xi = u1 + · · ·+ ui,

i = 1, . . . , k. Then 0—x1—x2—· · ·—xk−1—xk = r is a path from 0 to r, so d(r, 0) ≤ k.

(2) Let 0 = x0—x1—x2—· · ·—xk = r be a path from 0 to r. Then ui := xi − xi−1 ∈

U(R) for 1 ≤ i ≤ k. It is easy to check that r =
∑k

i=1 ui. So, r is k-good. By part

(1), we know that r is not l-good for all l < k.

(3) Let d(x, y) = k. Suppose that x = x0—x1—x2—· · ·—xk = y is a path from x to

y. Then x + z = (x0 + z)—(x1 + z)—(x2 + z)—· · ·—(xk−1 + z)—(xk + z) = y + z is a

path from x+ z to y + z. So d(x+ z, y + z) ≤ k. Similarly, d(x+ z, y + z) = k implies

d(x, y) ≤ k. Thus, d(x, y) = k if and only if d(x + z, y + z) = k.

Lemma 3.2.3. Let R be a ring and k ≥ 3 be an integer. Then usn(R) = k if and

only if diam(Γ(R)) = k.
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Proof. (=⇒). For x 6= y ∈ R, as usn(R) = k, x − y can be expressed as a sum

of m (≤ k) units. Let x − y = u1 + u2 + · · · + um with each ui ∈ U(R). Set

xi = u1 + · · ·+ ui + y, i = 1, . . . ,m. Then y—x1—x2—· · ·—xm = x is a walk from y

to x, so d(x, y) ≤ m ≤ k, implying diam(Γ(R)) ≤ k.

By assumption, there exists an element r ∈ R, such that r is a sum of k units but

not a sum of m units for any m < k. Then d(r, 0) ≤ k. We claim that d(r, 0) = k. If

d(r, 0) = l < k, then, by Lemma 3.2.2(2), r is l-good, a contradiction. So d(r, 0) = k.

Hence diam(Γ(R)) = k.

(⇐=). It is clear that 0 is 2-good. For any 0 6= r ∈ R, as diam(Γ(R)) = k, we

have d(r, 0) = l ≤ k. It follows that r is l-good by Lemma 3.2.2(2). Again as

diam(Γ(R)) = k, there exist x and y with d(x, y) = k. Then d(x − y, 0) = k. By

Lemma 3.2.2, x− y is k-good, but not l-good for any l < k. So usn(R) = k.

Theorem 3.2.4. For each integer n ≥ 1, there is a ring R such that diam(Γ(R)) = n.

Proof. In [34, Corollary 4], the authors proved that there exists a ring R such that

usn(R) = n for each n ≥ 2. So, the theorem holds for n ≥ 3 by Lemma 3.2.3. It is

clear that diam(Γ(Z2)) = 1 and diam(Γ(Z4)) = 2. This completes the proof.

Corollary 3.2.5. Let R be a ring. Then Γ(R) is connected if and only if u(R) ≤ ω.

In [6, Theorem 3.1], the authors proved that diam(Γ(R)) ∈ {1, 2, 3,∞} for a left

Artinian ring R and classified all left Artinian rings according to the diameter of their

unitary Cayley graphs. Next, we generalize the results to self-injective rings. To do

so, we first study the relationship between diam(Γ(R)) and diam(Γ(R)). Note that

r is a unit in R if and only if r is a unit in R. Using the idea of Remark 1 in [33],

we have diam(Γ(R) ≤ diam(Γ(R)). Indeed, suppose diam(Γ(R)) = m. Then for any

x 6= y ∈ R, we have d(x, y) ≤ m. As a path from x to y gives a walk from x to y,

d(x, y) ≤ d(x, y) ≤ m. Thus, diam(Γ(R)) ≤ m.
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Lemma 3.2.6. Let R be a ring. If diam(Γ(R)) ≥ 3, then diam(Γ(R)) = diam(Γ(R)).

Proof. It suffices to show that diam(Γ(R)) ≤ diam(Γ(R)) when diam(Γ(R)) ≥ 3.

Suppose diam(Γ(R)) = ∞. We show that diam(Γ(R)) = ∞. Assume to the

contrary that diam(Γ(R)) = m < ∞. For any x, y ∈ R, if x = y, then x − y ∈ J(R)

and hence 1 + x − y ∈ U(R). So we get a path x—(y − 1)—y from x to y. So

d(x, y) ≤ 2. If x 6= y, then a path form x to y deduces a path from x to y. This

implies that d(x, y) ≤ d(x, y) ≤ m. So, diam(Γ(R)) ≤ m, a contradiction.

Assume that diam(Γ(R)) is finite and k := diam(Γ(R)) ≥ 3. There exist x, y ∈ R,

such that d(x, y) = k. First we claim that x 6= y. In fact, if x = y, then as just shown

above, d(x, y) ≤ 2, a contradiction. Assume m := d(x, y) < k and x—x1—x2—· · ·—

xm−1—y is a path from x to y. Then x—x1—x2—· · ·—xm−1—y is path of length m,

so d(x, y) ≤ m < k, a contradiction. Thus, d(x, y) = k. This proves diam(Γ(R)) ≥ k.

Hence, diam(Γ(R)) = diam(Γ(R)).

Theorem 3.2.7. Let R be a ring. Then the following conditions are equivalent:

(1) diam(Γ(R)) < diam(Γ(R)).

(2) R is a local ring with J(R) 6= 0.

(3) diam(Γ(R)) = 2 and diam(Γ(R)) = 1.

Proof. (1) ⇒ (2). Suppose that diam(Γ(R)) < diam(Γ(R)). By Lemma 3.2.6,

diam(Γ(R)) ≤ 2. Since diam(Γ(R)) = 1 implies diam(Γ(R)) = 1, we have diam(Γ(R)) =

2 and diam(Γ(R)) = 1. It then follows that J(R) 6= 0. It is easy to see that R is a

division ring. Therefore, R is a local ring with J(R) 6= 0.

(2) ⇒ (3). Suppose that R is a local ring with J(R) 6= 0. Then R/J(R) is a division

ring. It is clear that Γ(R) is a complete graph and hence diam(Γ(R)) = 1. On the

other hand, for any r ∈ R, either r ∈ J(R) or r ∈ U(R). For any two distinct
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elements a, b ∈ R, if a − b ∈ U(R), then d(a, b) = 1. Suppose that a − b ∈ J(R). If

a ∈ J(R), then b ∈ J(R) too. So we have a path a—1—b and hence d(a, b) = 2 (note

that since J(R) 6= 0, such a, b do exist); if a ∈ U(R), then b ∈ U(R), we have a path

a—(a + b)—b, so d(a, b) = 2. Hence diam(Γ(R)) = 2.

(3) ⇒ (1). It is clear.

Corollary 3.2.8. Let R be a ring. Then diam(Γ(R)) = diam(Γ(R)) if and only if

one of the following holds:

(1) R is not a local ring.

(2) R is a division ring.

Lemma 3.2.9. Let R be a regular right self-injective ring. Then diam(Γ(R)) ∈

{1, 2, 3,∞}.

Proof. By [40, Theorem 6], u(R) = 2, ω or ∞.

If u(R) = 2, then diam(Γ(R)) ≤ 2 by Lemma 3.2.2.

If u(R) = ω, then, by [40, Theorem 6(2)], we may assume that R = R1 × Z2,

where u(R1) = 1 or 2. If u(R1) = 1, R1 is a trivial ring and R = Z2 and so

diam(Γ(R)) = 1. Now suppose that u(R1) = 2. For any vertices x, y ∈ Γ(R),

if x = (x1, 0) and y = (y1, 0), then there exists z1 ∈ R1, such that x1 − z1 and

z1−y1 are units in R1. So a path (x1, 0)—(z1, 1)—(y1, 0) from(x1, 0) to (y1, 0) deduces

d(x, y) ≤ 2; if x = (x1, 1) and y = (y1, 1), a similar argument shows that d(x, y) ≤ 2;

if x = (x1, 0) and y = (y1, 1), then there exists z1 ∈ R1, such that x1 − z1 is a unit

in R1. With a similar argument, we have a path (x1, 0)—(z1, 1)—(w1, 0)—(y1, 1) and

hence d(x, y) ≤ 3. So diam(Γ(R)) ≤ 3.

If u(R) = ∞, then Γ(R) is disconnected by Corollary 3.2.5, so diam(Γ(R)) = ∞.

The proof is complete.
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Theorem 3.2.10. Let R be a ring with R/J(R) right self-injective. Then diam(Γ(R)) ∈

{1, 2, 3,∞}.

Proof. We know that in this case R = R/J(R) is a regular right self-injective ring.

By Lemma 3.2.9, we have diam(Γ(R)) ∈ {1, 2, 3,∞}. By Lemma 3.2.6, we get

diam(Γ(R)) ∈ {1, 2, 3,∞}.

Theorem 3.2.11. Let R be a ring with R/J(R) right self-injective. Then the follow-

ing statements hold:

(1) diam(Γ(R)) = 1 if and only if R is a division ring.

(2) diam(Γ(R)) = 2 if and only if R is not a division ring and one of following holds:

(i) R has no nonzero Boolean ring as a ring direct summand.

(ii) R ∼= Z2.

(3) diam(Γ(R)) = 3 if and only if R � Z2 and R has Z2, but no Boolean ring with

more than two elements, as a ring direct summand.

(4) diam(Γ(R)) = ∞ if and only if R has a Boolean ring with more than two elements

as a ring direct summand.

Proof. (1) If diam(Γ(R)) = 1, then Γ(R) is a complete graph. For any nonzero element

r in R, the vertex 0 is adjacent to r, so r is a unit and hence R is a division ring.

Conversely, suppose that R is a division ring. Then for any two distinct vertices x

and y, 0 6= x− y ∈ R is a unit of R. So d(x, y) = 1 and hence diam(Γ(R)) = 1.

Next, we assume that R is not a division ring and prove (2), (3) and (4) together.

Note that R is a regular right self-injective ring. So u(R) = 2, ω or∞ by [40, Theorem

6]. To complete the proof, we determine the diameter Γ(R) for each case.
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Case 1: u(R) = 2. In this case, R has no nonzero Boolean ring as a ring direct

summand or R ∼= Z2 by [40, Theorem 6]. Note that diam(Γ(R)) ∈ {1, 2}. So

diam(Γ(R)) = 2 by Lemma 3.2.6.

Case 2: u(R) = ω. If R ∼= Z2, then Γ(R) is a complete bipartite graph. So

diam(Γ(R)) = 2. If R � Z2, in this case, usn(R) = 3 by [40, Theorem 6], so

diam(Γ(R)) = 3 by Lemma 3.2.3. Thus diam(Γ(R)) = 3 by Lemma 3.2.6.

Case 3: u(R) = ∞. Then Γ(R) is disconnected by Corollary 3.2.5. So diam(Γ(R)) =

∞. Thus diam(Γ(R)) = ∞ by Lemma 3.2.6.

Proposition 3.2.12. Let R be a commutative ring. Then diam(Γ(R)) = diam(Γ(R[[t]])).

Proof. We first prove that diam(Γ(R)) ≤ diam(Γ(R[[t]])). If diam(Γ(R[[t]])) = ∞,

there is nothing to prove. Suppose that diam(Γ(R[[t]])) = n < ∞. Let a, b ∈ R. Then

we have k := d(a, b) ≤ n in Γ(R[[t]]). Let

a—f1(t)—f2(t)—· · ·—fk(t) = b

be a path from a to b. Then

a—f1(0)—f2(0)—· · ·—fk(0) = b

is a walk from a to b in Γ(R). So, d(a, b) ≤ k ≤ n in Γ(R) and hence diam(Γ(R)) ≤ n.

Now we prove that diam(Γ(R)) ≥ diam(Γ(R[[t]])). If diam(Γ(R)) = ∞, there is

nothing to prove. Suppose that diam(Γ(R)) = n < ∞. Let f(t), g(t) ∈ R[[t]]. Then

we have k := d(f(0), g(0)) ≤ n in Γ(R). Let

f(0)—a1—a2—· · ·—ak—g(0)

be a path from f(0) to g(0) in Γ(R). Then

f(t)—a1—a2—· · ·—ak—g(t)
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is a path from f(t) to g(t) in Γ(R[[t]]). So, d(f(t), g(t)) = k ≤ n in Γ(R[[t]]) and

hence diam(Γ(R[[t]])) ≤ n.

3.3 The Planarity of Unitary Cayley Graphs

The study of groups admitting planar Cayley graphs can be traced back over almost

120 years, when Maschke [46] in 1896 proved that the only finite groups with planer

Cayley graphs are exactly Cn (the cyclic group of order n), C2 × Cn, Dn, A4, S4 and

S5. There is a long history for studying infinite planar Cayley graphs which satisfy

additional special conditions (see, for example, [22] and [29]). The authors of [6]

gave a list of finite commutative rings whose unitary Cayley graphs are planar (see

[6, Theorem 8.2]). This result only deals with finite graphs, and the main algebraic

tool used in its proof is the Wedderburn-Artin Theorem. In this section, the graphs

under consideration are mostly infinite, and they are the unitary Cayley graphs of

arbitrary rings. As one can expect, the techniques dealing with the planarity of a

finite graph and an infinite graph are quite different. For example, for a finite planar

graph, the minimal degree of the graph is at most five. However, there exists a k-

regular planar infinite graph for any positive integer k (see [26]). With Theorem

3.1.1 served as the starting point and through a thorough analysis of the (groups of)

units of the associated rings, we obtain a complete characterization of the rings whose

unitary Cayley graphs are planar (Theorem 3.3.6). As an application of this result,

the semilocal rings with planar unitary Cayley graphs are completely determined

(Corollary 3.3.8).

We first show that a ring with a planar unitary Cayley graph has either at most 4

units or exactly 6 units. This is the key to characterize the rings with planar unitary

Cayley graphs. Lemma 3.3.1 below is a consequence of Theorem 3.1.1.
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Lemma 3.3.1. Let R be a finite commutative ring such that Γ(R) is planar. Then

char(R) ∈ {2, 3, 4, 6}. Furthermore,

(1) If char(R) = 2, then |U(R)| = 1, 2 or 3.

(2) If char(R) ∈ {3, 4, 6}, then |U(R)| = 2.

Lemma 3.3.2. Let R be a ring. If Γ(R) is planar, then |U(R)| must be finite.

Proof. Assume to the contrary that |U(R)| = ∞. Take u1 ∈ U(R), u2 ∈ U(R)\{u1,−u1},

and u3 ∈ U(R)\{u1, u2,−u1,−u2, u2−u1, u1−u2, u1 +u2}. Then the following graph

is a subgraph of Γ(R):
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Now take v ∈ U(R)\S, where S = {±u1,±u2,±u3,±(u2 − u1),±(u3 − u2),±(u1 −

u3), u1 + u2, u1 + u3, u2 + u3, u1 + u2 − u3, u1 + u3 − u2, u2 + u3 − u1}. Since Γ(R)

is planar and v is adjacent to 0, v must be in one of the regions (I), (II) and (III).

Without loss of generality, we can assume that v is in region (I). Note that v + u2 is

adjacent to both v and u2. As Γ(R) is planar, v + u2 must be one of the vertices 0,

u1, u3 and u1 + u3. This contradicts our choice of v. Therefore, |U(R)| is finite.

Lemma 3.3.3. Let R be a ring with char(R) 6= 0. If Γ(R) is planar, then |U(R)| ≤ 3.

Proof. Suppose that char(R) = n ≥ 2. Then R contains Zn as a subring. As a

subgraph of Γ(R), Γ(Zn) is planar. Hence n ∈ {2, 3, 4, 6} by Lemma 3.3.1. We need

two notations. For a ∈ R, let Zn[a] be the subring of R generated by Zn ∪ {a}. For

u ∈ U(R), let o(u) be the order of u in the multiplicative group U(R). Then o(u) < ∞
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for all u ∈ U(R) by Lemma 3.3.2, and Γ(Zn[a]) is planar for all a ∈ R. Assume to

the contrary that |U(R)| ≥ 4. We proceed with two cases.

Case 1: n ∈ {3, 4, 6}. Take ±1 6= u ∈ U(R). Then Zn[u] is a finite commutative

subring of R. Since Γ(R) is planar, Γ(Zn[u]) is also planar. Thus, |U(Zn[u])| = 2 by

Lemma 3.3.1(2). But Zn[u] has at least three units, a contradiction.

Case 2: n = 2. Let H = U(R). For u ∈ H, Z2[u] is a finite commutative subring

of R. The planarity of Γ(Z2[u]) implies |U(Z2[u])| ≤ 3 by Lemma 3.3.1(1). Thus,

o(u) ≤ 3 for all u ∈ H, and we have |H| = 2k3l, where k, l ≥ 0.

If k > 1, consider a Sylow 2-subgroup P of H. Being a finite 2-group, P contains

a non-trivial central element, say u. As |P | = 2k ≥ 4, there exists v ∈ P\{1, u, u−1}.

Then the subring Z2[u, v] of R generated by Z2 ∪ {u, v} is a finite commutative ring,

containing at least four distinct units 1, u, v, uv. This contradicts Lemma 3.3.1(1), as

Γ(Z2[u, v]) is planar. So k ≤ 1. Similarly, l ≤ 1. Therefore, we must have k = l = 1,

i.e., |H| = 6. Since H is not a cyclic group of order 6, we deduce H ∼= S3, the

symmetric group of degree 3. Thus the subring Z2[H] of R generated by Z2 ∪H is a

finite ring containing m units with m ≥ 6. Hence, by [6, Proposition 2.2], Γ(Z2[H])

is m-regular. In particular, the minimum degree of Γ(Z2[H]) is m ≥ 6, and hence

Γ(Z2[H]) is not planar. It follows that Γ(R) is not planar, a contradiction.

Lemma 3.3.4. Let R be a ring with char(R) = 0. If Γ(R) is planar, then either

|U(R)| ≤ 4 or |U(R)| = 6.

Proof. By Lemma 3.3.2, U(R) is a finite set, say |U(R)| = n < ∞. Let u ∈ U(R).

Then un = 1 = (−u)n. If n is odd, then un = −un, which implies that 1 = −1,

i.e., 2 = 0. This contradiction shows that n is even. So it suffices to prove that

|U(R)| < 8. Assume to the contrary that U(R) = {u1, u2, . . . , un} with n ≥ 8.

Note that 0 is a vertex of degree n whose neighbor set is U(R). Without loss of
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generality, we may draw the vertices u1, u2, . . . , un in clockwise order, and may further

assume that u1 + u3 6= 0 (if u1 + u3 = 0, then un−1 + u1 6= 0, so we can relabel

un−1, un, u1, . . . , un−2 as u1, u2, u3, . . . , un). We next show that u1 + u3 = u2. First

we show that r := u1 + u3 ∈ U(R). In fact, if r /∈ U(R), then 0, u1, r, u3, 0 form a

bounded face F of the planar graph which either contains u2 or A = {u4, . . . , un} (but

not both). Since |A| ≥ 5, there exists some uj ∈ A such that u2 + uj /∈ {0, u1, u3, r}.

Thus, u2 + uj is adjacent to both u2 and uj, but, however, one cannot draw theses

edges without a crossing. Hence, u1 + u3 ∈ U(R). If u1 + u3 = ui for some i ≥ 4,

then 0, u1, ui, 0 form a bounded face F of the planar graph which either contains u2 or

B = {u4, u5, . . . , ui−1, ui+1, . . . , un} (but not both). Since |B| ≥ 4, there exists some

uj ∈ B such that u2 + uj /∈ {0, u1, u3}. Thus, u2 + uj is adjacent to both u2 and uj,

but, however, one cannot draw theses edges without a crossing. Therefore, we have

proved u1 + u3 = u2.

Now we consider u2 + u4. We first show u2 + u4 6= 0. Assume u2 + u4 = 0. Then

un + u2 6= 0. As argued above (with un replacing u1 and u2 replacing u3), we obtain

un + u2 = u1. It follows that u3 + un = 0, and so u3 + u5 6= 0. Again as above,

u3 +u5 = u4. Moreover, as u2 +u4 = 0, u4 +u6 6= 0. So, as above again, u4 +u6 = u5.

It follows that u3+u6 = 0. But, since u3+un = 0, we have un = u6. This contradiction

shows that u2 + u4 6= 0. As argued in the previous paragraph, we have u2 + u4 = u3.

By repeating the process we can show that ui + ui+2 = ui+1 for 1 ≤ i < n − 1.

Especially, we have that u1 + u3 = u2 and u2 + u4 = u3, implying u1 + u4 = 0, and

that u4 + u6 = u5 and u5 + u7 = u6, implying u4 + u7 = 0. This shows u1 = u7, a

contradiction.

Lemma 3.3.5. [6, Proposition 2.2] Let R be a ring with |U(R)| = k < ∞. Then

Γ(R) is k-regular.
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We are now ready to characterize the rings with planar unitary Cayley graphs.

Theorem 3.3.6. Let R be a ring. Then Γ(R) is planar if and only if one of the

following holds:

(1) |U(R)| ≤ 3 and |R| ≤ c.

(2) |U(R)| = 4, char(R) = 0 and |R| ≤ c.

(3) |U(R)| = 6 and R contains a subring isomorphic to Z[t]
(t2−t+1)

with |R| ≤ c.

Proof. (=⇒). Suppose that Γ(R) is planar. Then R embeds in R × R as sets, so

|R| ≤ c. By Lemmas 3.3.3 and 3.3.4, |U(R)| ≤ 4 or |U(R)| = 6. If |U(R)| = 3, we are

done. If |U(R)| = 4, then by Lemma 3.3.3, we have char(R) = 0. This is case (2).

Suppose |U(R)| = 6. We need to show that R contains a subring isomorphic to
Z[t]

(t2−t+1)
. By Lemma 3.3.3, we have char(R) = 0. Note that there are only two groups

of order 6. If U(R) ∼= S3, then U(R) = {1, u, u2, v, uv, u2v} with u3 = v2 = 1. But, the

non-abelianness of U(R) shows that −1 6= v. Since char(R) = 0, −1 6= 1. Moreover,

it is clear that −1 /∈ {u, u2, uv, u2v}. Thus, −1 /∈ U(R). This contradiction shows

that U(R) is a cyclic group of order 6. So U(R) = {1, u, u2, u3, u4, u5} with u3 +1 = 0.

Claim: 1 + u2 ∈ U(R).

Proof of Claim. Assume to the contrary that 1 + u2 /∈ U(R). Let x1 = 1 + u2,

x2 = u2 + u4 and x3 = 1 + u4 = u4(1 + u2). Then x1, x2, x3 are distinct non-unit

elements in R, so the following graph is a subgraph of Γ(R):
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Since Γ(R) is planar and u is adjacent to 0, u must be in one of the regions (I),

(II) and (III). If u is in region (II), as 1 + u 6= 0 is adjacent to both 1 and u, the

planarity of Γ(R) ensures that 1 + u = u2 or 1 + u = u4 or 1 + u = x2. Note that

1 + u = u2 implies u + u2 = u3 = −1; so 2u2 = 0, i.e., 2 = 0, a contradiction.

Moreover, 1 + u = u4 implies 1 + u = −u; so 2u = 1, a contradiction (note that,

since |U(R)| < ∞, n /∈ U(R) for all ±1 6= n ∈ Z). Furthermore, 1 + u = x2 means

1 + u = u2 + u4, which implies u2 + u3 = u4 + 1, i.e., u2 = u4 + 2. It follows that

1+u = (u4+2)+u4 = 2u4+2 = −2u+2, i.e., 3u = 1, a contradiction. If u is in region

(III), as u + u2 6= 0 is adjacent to both u and u2, the planarity of Γ(R) ensures that

u + u2 = 1 or u + u2 = u4 or u + u2 = x3. Note that u + u2 = 1 implies u2 + u3 = u;

so 2u = 0, i.e., 2 = 0, a contradiction. Moreover, u + u2 = u4 implies u + u2 = −u;

so 2 = −u, a contradiction. Furthermore, u + u2 = x3 means u + u2 = 1 + u4, which

implies u3 +u4 = u2 +1, i.e., −1+u4 = u2 +1; it follows that −1+u+u2−1 = u2 +1,

i.e., 3 = u, a contradiction. Therefore, u must be in region (I). A similar discussion

shows that u3 must be in region (II). Now as u + u3 6= 0 is adjacent to both u and

u3, the planarity of Γ(R) ensures that u + u3 = u2. Then 1 + u2 = u is a unit, a

contradiction. So the Claim is proved.

It is easy to check that 1 + u2 /∈ {1, u2, u3, u4, u5}. So, by the Claim, 1 + u2 = u.

Consider the subring Z[u] of R generated by Z ∪ {u}. We now prove that Z[u] ∼=
Z[t]

(t2−t+1)
. The mapping φ : Z[t] → Z[u] given by φ(f(t)) = f(u) is an epimorphism of

rings. So it suffices to show that kerφ = (t2− t+1). As φ(t2− t+1) = u2−u+1 = 0,

(t2 − t + 1) ⊆ kerφ. Let f(t) ∈ kerφ. There exist a, b ∈ Z and q(t) ∈ Z[t] such

that f(t) = q(t)(t2 − t + 1) + (at + b). As f(u) = 0, we have au + b = 0. So

b2 = (−b)2 = (au)2 = a2u2 = a2(u − 1) = a(au) − a2 = a(−b) − a2. That is,

a2 + b2 + ab = 0 in Z, which implies that a = b = 0. So f(t) = q(t)(t2 − t + 1). It is

proved that kerφ = (t2 − t + 1). Therefore, Z[u] ∼= Z[t]
(t2−t+1)

.



78

(⇐=). By assumption, we have |R| ≤ c. If |U(R)| ≤ 2, then the maximal degree of

Γ(R) is at most two, so Γ(R) must be planar.

Suppose that |U(R)| = 3. Then 2 = 0 in R, and Γ(R) is 3-regular by Lemma 3.3.5.

Write U(R) = {u1, u2, u3}. For a given r ∈ R, r is adjacent to ui + r (i = 1, 2, 3).

There are two situations.

Case 1: u1 + r is adjacent to u2 + r. Then (u1 + r)− (u2 + r) = u3. So u1 + r is

adjacent to u3 + r. In fact, u1 + r is adjacent to u2 + r ⇔ u1 + r is adjacent to u3 + r

⇔ u2 + r is adjacent to u3 + r. So in this case, r, u1 + r, u2 + r, u3 + r form a complete

graph K4, which is 3-regular.

Case 2: ui + r is not adjacent to uj + r whenever i 6= j. Let the neighborhoods

of u1 + r be r, a, b. We may assume u1 + r − a = u2 and u1 + r − b = u3. Then

u2 + r − a = u1 and u3 + r − b = u1. This means that a is adjacent to u2 + r and

b is adjacent to u3 + r. Let c be the third neighborhood of u2 + r. One can verify

that c /∈ {u1 + r, u2 + r, u3 + r, a, b, r}. Moreover, it must be that u2 + r − c = u3, so

u3 + r − c = u2. This means that c is also a neighborhood of u3 + r. Now consider

the vertex a. Let x be the third neighborhood of a. Then it must be that x− a = u3.

As x− b = u3 + a− b = u1 + r − b + a− b = u1 + r − a = u2, x is adjacent to b. As

x− c = (u3 + a)− (u3 + r− u2) = u2 + r− a = u1, x is adjacent to c. One can verify

that x /∈ {a, b, u1 + r, u2 + r, u3 + r, r, c}. So, the vertices r, u1− r, u2− r, u3− r, a, b, c

and x form a cube (see the diagram below), which is 3-regular.

· ·

· ·

· ·
· ·

�
�

�
�@

@

@
@

r u2 + r

u1 + r

u3 + r

a

b x

c

We notice that Γ(R) can not contain both K4 and a cube as subgraphs. In fact,

if r, u1 + r, u2 + r, u3 + r, a, b, c, x form a cube (as shown in the diagram above), then
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u1 − u2 = (u1 + r) − (u2 + r) is not a unit; but if s, u1 + s, u2 + s, u3 + s form a

complete graph K4, then u1− u2 = (u1 + s)− (u2 + s) = u3 is a unit. Hence, as Γ(R)

is 3-regular, either Γ(R) is a disjoint union of copies of a cube, or Γ(R) is a disjoint

union of copies of K4. As a cube and K4 are planar graphs, Γ(R) is planar.

Suppose that |U(R)| = 4 and char(R) = 0. Then R contains Z as a subring. Take

±1 6= u ∈ U(R). As |U(R)| = 4, we have U(R) = {1,−1, u,−u} = U(Z[u]). By

Lemma 3.3.5, both Γ(Z[u]) and Γ(R) are 4-regular. For any a ∈ R, the graph with

vertex set a + Z[u] = {a + r|r ∈ Z[u]} is isomorphic to the graph Γ(Z[u]). It follows

that Γ(R) is a disjoint union of copies of Γ(Z[u]). As shown below, Γ(Z[u]) is planar,

so Γ(R) is planar.

2− 2u 2− u 2 u + 2 2u + 2

1− 2u 1− u 1 u + 1 2u + 1

−2u −u 0 u 2u

−1− 2u −1− u −1 u− 1 2u− 1

−2− 2u −2− u −2 u− 2 2u− 2

Graph Γ(Z[u])

Finally, suppose that |U(R)| = 6 and R has a subring S ∼= Z[t]
(t2−t+1)

. It is easy to

check that U( Z[t]
(t2−t+1)

) = {1,−1, t,−t, 1 − t, t − 1}. So by Lemma 3.3.5, Γ( Z[t]
(t2−t+1)

)

(and hence Γ(S)) and Γ(R) are 6-regular. As shown below, Γ( Z[t]
(t2−t+1)

) is planar. So

Γ(S) is planar.
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a

3− 3t 3− 2t 3− t 3 t + 3 2t + 3 3t + 3

2− 3t 2− 2t 2− t 2 t + 2 2t + 2 3t + 2

1− 3t 1− 2t 1− t 1 t + 1 2t + 1 3t + 1

−3t −2t −t 0 t 2t 3t

−1− 3t −1− 2t −1− t −1 t− 1 2t− 1 3t− 1

−2− 3t −2− 2t −2− t −2 t− 2 2t− 2 3t− 2

−3− 3t −3− 2t −3− t −3 t− 3 2t− 3 3t− 3

Graph Γ( Z[t]
(t2−t+1)

)

For any a ∈ R, the graph with vertex set a + S = {a + r|r ∈ S} is isomorphic to

the graph Γ(S). Therefore, Γ(R) is a disjoint union of copies of Γ(S), and hence is

planar. The proof is complete.

A ring R is called semilocal if R/J(R) is semisimple Artinian. As a corollary of

Theorem 3.3.6, we determine all semilocal rings whose unitary Cayley graphs are

planar. A lemma is needed.

Lemma 3.3.7. Let S be a semilocal ring. Then S/J(S) is a Boolean ring with

|J(S)| = 2 if and only if S ∼= A or S ∼= A × B, where A ∈
{
Z4,

Z2[t]
(t2)

, T2(Z2)
}

and B

is a finite Boolean ring.

Proof. (⇐=). This is clear.

(=⇒). The assumptions on S clearly show that S is a finite ring. Write S = T1 ×

· · · × Tk where k ≥ 1 and each Ti is indecomposable. As J(S) = J(T1)× · · · × J(Tk)

has only two elements, we can assume that |J(T1)| = 2 and J(Ti) = 0 for i > 1. So

S/J(S) ∼= T1/J(T1) × T2 × · · · × Tk. As S/J(S) is Boolean, we see Ti
∼= Z2 for i =

2, . . . , k and T1/J(T1) is Boolean. So it suffices to show that T1 ∈
{
Z4,

Z2[t]
(t2)

, T2(Z2)
}

.

Therefore, we can assume that k = 1, i.e., S is indecomposable.
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If S := S/J(S) is indecomposable, then S ∼= Z2; so S ∼= Z4 or S ∼= Z2[t]
(t2)

(as

|J(S)| = 2). Let us assume that S is not indecomposable. Then S has a non-

trivial central idempotent, say ē. Since J(S)2 = 0, idempotents of S can be lifted to

idempotents of S. Hence we can assume e2 = e ∈ S. Since S is indecomposable, e

is not central, so either eS(1 − e) 6= 0 or (1 − e)Se 6= 0. Without loss of generality,

we can assume eS(1 − e) 6= 0. Let e′ = 1 − e. Then, as |U(S)| = 2, e′Se = 0 and

|eSe′| = 2. So the Peirce decomposition of S with respect to e is

S =

eSe eSe′

0 e′Se′

 .

Since J(S) =

J(eSe) eSe′

0 J(e′Se′)

 and |J(S)| = 2, it follows that J(eSe) = 0 and

J(e′Se′) = 0. So eSe × e′Se′ ∼= S/J(S) is a finite Boolean ring, and hence eSe is

a finite Boolean ring. We claim eSe ∼= Z2. If not, then eSe is not indecomposable,

so eSe = A × B where A 6= 0 and B 6= 0. Write eSe′ = {0, r}. As r = er =

(1A + 1B)r = 1Ar + 1Br, either 1Ar 6= 0 or 1Br 6= 0. Without loss of generality,

we may assume 1Ar 6= 0. Then 1Ar = r and so 1Br = 0. Thus BJ(S) = 0.

Consequently, S =

A×B eSe′

0 e′Se′

 ∼=

A eSe′

0 e′Se′

 × B, and the isomorphism is

given by

(a, b) x

0 y

 7→
( a x

0 y

 , b
)

. This contradicts the indecomposability of S.

Hence we have proved eSe ∼= Z2. Similarly, e′Se′ ∼= Z2. Therefore, S ∼= T2(Z2).

The next result extends Theorem 3.1.1 from a finite commutative ring to a semilocal

ring.

Corollary 3.3.8. Let R be a semilocal ring. Then Γ(R) is planar if and only if R is
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isomorphic to one of the following rings:

Z3, F4, B, Z3 ×B, F4 ×B, Z4,
Z2[t]
(t2)

, T2(Z2), Z4 ×B, Z2[t]
(t2)

×B, T2(Z2)×B,

where B is a finite Boolean ring.

Proof. (⇐=). All rings appearing in the corollary have at most 3 units, so Γ(R) is

planar by Theorem 3.3.6.

(=⇒). We proceed with two cases.

Case 1: J(R) = 0. As R is semilocal, R ∼= Mn1(D1) × · · · × Mns(Ds), where

each Di is a division ring. By Lemma 3.3.2, |U(R)| < ∞. So |R| < ∞ and hence

char(R) 6= 0. Thus, |U(R)| ≤ 3 by Lemma 3.3.3, and so R ∼= D1×· · ·×Ds. It follows

that R ∈ {Z3, F4, B, Z3 ×B, F4 ×B}, where B is a finite Boolean ring.

Case 2: J(R) 6= 0. If |J(R)| ≥ 3, take three distinct elements in J(R), say

a1, a2, a3. For any i, j with 1 ≤ i, j ≤ 3, ai is adjacent to 1+aj. So Γ(R) contains K3,3

as a subgraph, contradicting the planarity of Γ(R). Therefore, |J(R)| = 2. Note that

Γ(R) is planar. In fact, for each element x ∈ R, fix ax ∈ R such that x = ax. Thus, the

map f : Γ(R) → Γ(R) given by f(x) = ax is one-to-one. For x, y ∈ R, x + y ∈ U(R)

if and only if ax +ay ∈ U(R). Thus, Γ(R) is isomorphic to the subgraph of Γ(R) with

vertex set f(R), showing that Γ(R) is planar. Since R is semilocal, as shown in Case

1, we have R ∈ {Z3, F4, B, Z3 × B, F4 × B} where B is a finite Boolean ring. As

|J(R)| = 2, we have |R| < ∞, so |U(R)| ≤ 3 by Lemma 3.3.3. Moreover, |J(R)| = 2

also implies that |U(R)| = 2|U(R)|. It follows that |U(R)| = 1. Hence, R ∼= B. Then

by Lemma 3.3.7, R ∈ {Z4,
Z2[t]
(t2)

, T2(Z2), Z4 ×B, Z2[t]
(t2)

×B, T2(Z2)×B}.

As another application of Theorem 3.3.6, we characterize the rings R with Γ(R[t])

planar. We remark that, for a reduced ring R, U(R[t]) = U(R) (we cannot find a

reference for this, but it can be easily proved).
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Corollary 3.3.9. Let R be a ring. Then Γ(R[t]) is planar if and only if Γ(R) is

planar and R is reduced.

Proof. (⇐=). This follows from Theorem 3.3.6 and the remark above.

(=⇒). Suppose that Γ(R[t]) is planar. Then Γ(R) is planar as Γ(R) is a subgraph

of Γ(R[t]) . If R is not reduced, then take a ∈ R with a2 = 0. As each vertex in

{0, a, at} is adjacent to every vertex in {1, 1 + a, 1 + at}, Γ(R[t]) contains a K3,3, a

contradiction. Thus, R is reduced, as desired.

Corollary 3.3.10. Let R be a ring, and let t1, t2, . . . , tn be commuting indeterminates

over R. Then Γ(R[t1, t2, . . . , tn]) is planar if and only if Γ(R) is planar and R is

reduced.

3.4 Higher Genus Unitary Cayley Graphs for

Finite Commutative Rings

The genus of graphs associated with rings is the topic of many publications. For

instances, the planarity of zero divisor graphs were studied in [9], [11] and [56]. The

rings with toroidal zero divisor graphs were classified in Wang [67] and Wickham [68],

[69]. Genus two zero divisor graphs of local rings were investigated by Bloomfield and

Wickham in [16]. Recently, Maimani et al. [53] determined all isomorphism classes

of finite rings whose total graphs have genus at most one, and Tamizh Chelvam and

Asir [62] characterized all isomorphism classes of finite rings whose total graphs have

genus two. In [6, Theorem 8.2], all finite commutative rings having planar unitary

Cayley graphs are completely classified. The goal of this section is to classify all finite

commutative rings whose unitary Cayley graphs have genus 1, 2, and 3, respectively.

Khashyarmanesh and Khorsandi generalized the definition of the unitary Cayley
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graphs of rings in [38], studied the properties of the resulting graphs and extended

some results of the unit graphs and unitary Cayley graphs. Especially, they classified

all commutative finite rings whose generalized unitary Cayley graphs are planar.

Our first result says that for each g ≥ 1, there are at most finitely many finite

commutative rings R with γ(Γ(R)) = g. The proof relies on several lemmas.

Lemma 3.4.1. [69, Proposition 2.1] Let G be a graph with n (≥ 3) vertices. Then

δ(G) ≤ 6 + 12(γ(G)−1)
n

, where δ(G) is the minimal degree of G.

Lemma 3.4.2. Let R be a finite commutative ring with γ(Γ(R)) = g > 0. Then

either |R| ≤ 12(g − 1) or |U(R)| ≤ 6.

Proof. If |R| > 12(g − 1), then, by Lemma 3.4.1, δ(Γ(R)) ≤ 6 + 12(g−1)
|R| < 7. But

δ(Γ(R)) is an integer, so we have δ(Γ(R)) ≤ 6. By Lemma 3.3.5, the result follows.

Lemma 3.4.3. Let R be a finite commutative local ring. Then |U(R)| 6= 5. Further-

more,

(1) If |U(R)| = 2, then R ∈ {Z3, Z4,
Z2[x]
(x2)

}.

(2) If |U(R)| = 3, then R = F4.

(3) If |U(R)| = 4, then R ∈ {Z5, Z8,
Z2[x]
(x3)

, Z4[x]
(2x,x2−2)

, Z2[x,y]
(x,y)2

, Z4[x]
(2x,x2)

}.

(4) If |U(R)| = 6, then R ∈ {Z7, Z9,
Z3[x]
(x2)

}.

Proof. Let m be the unique maximal ideal of R. By the assumption, we can set

|R| = pn and |m| = |Z(R)| = pm for some prime p and integers n > m ≥ 0. So

|U(R)| = pn − pm = pm(pn−m − 1). It is clear that |U(R)| 6= 5.

(1) If |U(R)| = 2, then p = 2, m = 1 and n = 2, or p = 3, n = 1 and m = 0. So,

R ∈ {Z3, Z4,
Z2[x]
(x2)

}.

(2) If |U(R)| = 3, then p = 2, m = 0 and n = 2. So, R = F4.
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(3) If |U(R)| = 4, then p = 2, m = 2 and n = 3, or p = 5, n = 1 and m = 0. So,

R ∈ {Z5, Z8,
Z2[x]
(x3)

, Z4[x]
(2x,x2−2)

, Z2[x,y]
(x,y)2

, Z4[x]
(2x,x2)

}.

(4) If |U(R)| = 4, then p = 3 m = 1 and n = 2, or p = 7, n = 1 and m = 0. So

R ∈ {Z7, Z9,
Z3[x]
(x2)

}.

In [44, Theorem 1.2], the authors proved that if R is an Artinian ring such that

R/J(R) has s summands isomorphic to Z2, then Γ(R) contains 2s−1 connected com-

ponents. Applying Lemma 2.5.2, we have:

Lemma 3.4.4. Let R be a finite commutative ring. Then γ(Γ((Z2)
s×R)) = 2s−1γ(Γ(Z2×

R)).

Lemma 3.4.5. Let R be a finite commutative ring. If |U(R)| ≤ 3, then Γ(R) is

planar.

Proof. If |U(R)| ≤ 2, then the maximal degree of Γ(R) is at most two, so Γ(R) must

be planar.

Suppose that |U(R)| = 3. Then Γ(R) is 3-regular by Lemma 3.3.5. Note that

2 = 0 in R. Let U(R) = {u1, u2, u3}. For a given r ∈ R, r is adjacent to ui + r

(i = 1, 2, 3). If u1 + r is adjacent to u2 + r, then (u1 + r) − (u2 + r) = u3. So

u1 + r is adjacent to u3 + r too. It follows that u2 + r is adjacent to u3 + r. Hence,

r, u1 + r, u2 + r, u3 form a complete graph K4. As Γ(R) is 3-regular, Γ(R) must be a

disjoint union of copies of K4, so Γ(R) is planar. Let the neighborhoods of u1 + r be

r, a, b. We may assume u1 + r − a = u2 and u1 + r − b = u3. Then u2 + r − a = u1

and u3 + r − b = u1. This means that a is adjacent to u2 + r and b is adjacent

to u3 + r. Let c be the third neighborhood of u2 + r. Then u2 + r − c = u3, so

u3 + r − c = u2. This means that c is also a neighborhood of u3 + r. Now consider

the vertex a. Let the neighborhoods of a be u1 + r, u2 + r, x. Then x − a = u3. As

x− b = u3 + a− b = u1 + r− b+ a− b = u1 + r− a = u2, x is adjacent to b. Similarly,
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x is adjacent to c. So, the vertices r, u1 − r, u2 − r, u3 − r, a, b, c and x form a cube,

which is 3-regular. The graph is shown as follows:

· ·

· ·

· ·
· ·

�
�

�
�@

@

@
@

r u2 + r

u1 + r

u3 + r

a

b x

c

As Γ(R) is 3-regular, Γ(R) must be a disjoint union of copies of a cube. As a cube

is a planar graph, Γ(R) is planar.

We are ready to prove our first main result in this section.

Theorem 3.4.6. For each integer g ≥ 1, there are at most finitely many finite com-

mutative rings R with γ(Γ(R)) = g.

Proof. Let R be a finite commutative ring with γ(Γ(R)) = g. It suffices to prove that

|R| is bounded above by a constant depending only on g.

If R is a field, then Γ(R) is a complete graph K|R|. So, g = γ(Γ(R)) = γ(K|R|) =

d (|R|−3)(|R|−4)
12

e by Lemma 2.5.1. This gives (|R| − 3)(|R| − 4) ≤ 12g, or |R| ≤
7+
√

49+48(g−1)

2
, as needed.

If R is a local ring which is not a field, then m = Z(R) is the maximal ideal

of R and |R| ≤ |Z(R)|2 by [25]. Note that every element in m is adjacent to each

element in 1 + m = {1 + a | a ∈ m}. So K|m|,|m| is a subgraph of Γ(R). Thus,

we have g = γ(Γ(R)) ≥ γ(K|m|,|m|) = d (|m|−2)2

4
e by Lemma 2.5.1. This implies that

(|m| − 2)2 ≤ 4g or |m| ≤ 2
√

g + 2. So, |R| ≤ (2
√

g + 2)2, as needed.

Now suppose that R is not a local ring. We may assume that R = (Z2)
s×R1×· · ·×

Rt, where s ≥ 0 and each Ri is a local ring with at least three elements. By Lemma

3.4.4, we have s ≤ 1 + log2g as g > 0. If |R| ≤ 12(g − 1), we are done. Otherwise, by



87

Lemmas 3.4.2 and 3.4.5, we have 4 ≤ |U(R)| ≤ 6. As |U(R)| = |U(R1)|×· · ·×|U(Rt)|,

we have the following possibilities:

(1) |U(R)| = 4. In this case, we have t = 1 and |U(R1)| = 4, or t = 2 and

|U(R1)| = |U(R2)| = 2. By Lemma 3.4.3, either R ∼= (Z2)
s × R1 with s ≥ 1, where

R1 ∈ {Z5, Z8,
Z2[x]
(x3)

, Z2[x,y]
(x,y)2

, Z4[x]
(2x,x2)

, Z4[x]
(2x,x2−2)

}, or R ∼= (Z2)
s×R1×R2 with s ≥ 0, where

R1, R2 ∈ {Z3, Z4,
Z2[x]
(x2)

}.

(2) |U(R)| = 5. In this case, t = 1 and |U(R1)| = 5. This is impossible, because

there is no local ring with 5 units by Lemma 3.4.3.

(3) |U(R)| = 6. In this case, we have t = 1 and |U(R1)| = 6, or t = 2 and |U(R1)| =

2 and |U(R2)| = 3. By Lemma 3.4.3, either R ∼= (Z2)
s × R1 with s ≥ 1, where

R1 ∈ {Z7, Z9,
Z3[x]
(x2)

}, or R ∼= (Z2)
s ×R1 × F4 with s ≥ 0, where R1 ∈ {Z3, Z4,

Z2[x]
(x2)

}.

In conclusion, in each case, we always have |R1 × · · · × Rt| ≤ 16. It then follows

that |R| ≤ 2s · 16 ≤ 2(1+log2g) · 16 = 32g, as required.

Next, we determine the candidates whose unitary Cayley graphs have genus at

most three. Lemma 2.4.7 from graph theory is very useful to determine the lower

bound of the genus of a graph. We first present some lemmas.

Lemma 3.4.7. Let R be a finite ring. If γ(Γ(R)) ≤ 3, then R has at most 8 units.

Proof. Suppose that |R| = n with k units. Then Γ(R) is k-regular with n vertices.

So Γ(R) has 1
2
kn edges. By Lemma 2.4.7, we have γ(Γ(R)) ≥ kn

12
− n

2
+ 1. If k ≥ 9,

then γ(Γ(R)) ≥ 4, a contradiction. So |U(R)| ≤ 8.

Lemma 3.4.8. Let R be a finite commutative local ring. If γ(Γ(R)) ≤ 3, then R has

at most 13 elements.

Proof. Let m be the unique maximal ideal of R. As each element in m is adjacent

to every element in 1 + m = {1 + a|a ∈ m}, Γ(R) contains a subgraph K|m|,|m|. If
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|m| ≥ 6, then by Lemma 2.5.1, γ(Γ(R)) ≥ 4, a contradiction. So |m| ≤ 5. Thus

|R| = |U(R)|+ |m| ≤ 8 + 5 = 13 by Lemma 3.4.7.

Lemma 3.4.9. The following statements hold:

(1) Let R = Z2 × S, where S is a local ring of order eight which is not a field. Then

γ(Γ(R)) = 2.

(2) Let R = Z3 × S, where S is a local ring of order four which is not a field. Then

γ(Γ(R)) = 1.

(3) Let R = S × T , where S and T are local rings of order four which are not fields.

Then γ(Γ(R)) = 2.

Proof. (1) It is clear that |U(S)| = 4 and |J(S)| = 4. So |U(R)| = |J(R)| = 4. Note

that each element in J(R) is adjacent to every element in U(R) and Γ(R) is 4-regular.

Thus, Γ(R) is two copies of K4,4. By Lemmas 2.5.1 and 2.5.2, γ(G(R)) = 2.

(2) Note that Γ(Z3×Z4) and Γ(Z3× Z2[x]
(x2)

) have the same graph structure. It is clear

that Γ(R) is 4-regular and it contains no triangles. By Lemma 2.4.7, γ(Γ(R)) ≥ 1.

On the other hand, we can embed Γ(R) into S1 as shown in Figure 6. Hence,

γ(Γ(R)) = 1.

Figure 6: Γ(Z3 × Z4)
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(3) It is clear that |U(S)| = |U(T )| = 2 and |J(S)| = |J(T )| = 2. So |U(R)| =

|J(R)| = 4. Note that each element in J(R) is adjacent to every element in U(R) and

that Γ(R) is 4-regular. Thus, Γ(R) is two copies of K4,4, so γ(Γ(R)) = 2 by Lemmas

2.5.1 and 2.5.2.

Lemma 3.4.10. The following statements hold:

(1) Let R = Z2 × Z7. Then γ(Γ(R)) ≥ 5.

(2) Let R = Z2 × S, where S is a local ring of order nine which is not a field. Then

γ(Γ(R)) ≥ 6.

(3) Let R = Z2 × Z3 × F4. Then γ(Γ(R)) ≥ 7.

(4) Let R = F4 × S, where S is a local ring of order four which is not a field. Then

γ(Γ(R)) ≥ 5.

Proof. (1) Γ(R) is 6-regular. Note that Γ(R) is a bipartite graph, so it contains no

triangles. As Γ(R) contains 14 vertices and 42 edges, γ(Γ(R)) ≥ 5 by Lemma 2.4.7.

(2) It is clear that |U(S)| = 6. So Γ(R) is 6-regular. As Γ(R) has 54 edges and 18

vertices and contains no triangles, the claim follows from Lemma 2.4.7.

(3) It is clear that |U(R)| = 6. So Γ(R) is 6-regular. As Γ(R) has 72 edges and 24

vertices and contains no triangles, the claim follows from Lemma 2.4.7.

(4) It is clear that |U(S)| = 6. So Γ(R) is 6-regular. As Γ(R) has 48 edges and 16

vertices and contains no triangles, the claim follows from Lemma 2.4.7.

We now are ready to prove the second main result in this section.

Theorem 3.4.11. Let R be a finite commutative ring. If 1 ≤ γ(Γ(R)) ≤ 3, then R

is isomorphic to one of following rings:

(1) Z5, Z7, F8, F9.
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(2) Z8, Z2[x]
(x3)

, Z2[x,y]
(x,y)2

, Z4[x]
(2x,x2)

, Z4[x]
(2x,x2−2)

, Z9, Z3[x]
(x2)

.

(3) Z3 × Z3, Z3 × Z4, Z3 × Z2[x]
(x2)

, Z3 × F4, Z4 × Z4, Z4 × Z2[x]
(x2)

, Z2[x]
(x2)

× Z2[x]
(x2)

.

(4) Z2×Z5, Z2×Z2×Z5, Z2×Z8, Z2× Z2[x]
(x3)

, Z2× Z4[x]
(2x,x2−2)

, Z2× Z2[x,y]
(x,y)2

, Z2× Z4[x]
(2x,x2)

,

Z2 × Z3 × Z3, Z2 × Z2 × Z3 × Z3, Z2 × Z3 × Z4, Z2 × Z3 × Z2[x]
(x2)

.

Proof. Suppose that R is a filed. As γ(Γ(R)) ≤ 3, in view of the proof of Theorem

3.4.6, we have |R| ≤ 9. By Lemma 3.4.5, the graphs Γ(Z2), Γ(Z3) and Γ(F4) are

planar, so R ∈ {Z5, Z7, F8, F9}.

Suppose that R is a local ring which is not a filed. As γ(Γ(R)) ≤ 3, by Lemma

3.4.8, |R| ≤ 13. So |R| ∈ {4, 8, 9}. If |R| = 4, then Γ(R) is planar by Lemma 3.4.5.

So |R| ∈ {8, 9}. It follows that R is isomorphic to one of rings: Z8, Z2[x]
(x3)

, Z2[x,y]
(x,y)2

, Z4[x]
(2x,x2)

,
Z4[x]

(2x,x2−2)
, Z9, Z3[x]

(x2)
.

Suppose that R is not a local ring. As γ(Γ(R)) ≤ 3, in view of the proof of

Theorem 3.4.6, we have |R| ≤ 24 or R ∼= (Z2)
s × R1 × · · · × Rt with 0 ≤ s ≤ 2 and

|U(R1 × · · · ×Rt)| = 4 or 6.

For the case of s = 0, we may assume that R ∼= R1 × · · · × Rt, where each Ri has

at least three elements. As |R| ≤ 24, we have t = 2. It follows that R is one of the

following rings:

Z3 × Z3, Z3 × Z4, Z3 × Z2[x]
(x2)

, Z3 × F4, Z3 × Z5, Z3 × Z7, Z4 × Z4, Z4 × F4, Z4 × Z2[x]
(x2)

,
Z2[x]
(x2)

× Z2[x]
(x2)

, Z2[x]
(x2)

× F4, F4 × F4, Z4 × Z5.

As |U(R)| ≤ 8 by Lemma 3.4.7, we have R 6= Z3 × Z7 and R 6= F4 × F4. If

R = Z3×Z5, then Γ(R) is a graph with 15 vertices and 60 edges. It then follows that

γ(Γ(R)) ≥ 4 by Lemma 2.4.7. If R = Z4 × Z5, then Γ(R) is a graph with 20 vertices

and 80 edges. It then follows that γ(Γ(R)) ≥ 5 by Lemma 2.4.7. If R = Z4 × F4 or

R = Z2[x]
(x2)

× F4), then these cases are ruled out by Lemma 3.4.10(4).

Thus, R ∈ { Z3×Z3, Z3×Z4, Z3× Z2[x]
(x2)

, Z3×F4, Z4×Z4, Z4× Z2[x]
(x2)

, Z2[x]
(x2)

× Z2[x]
(x2)

}.
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For the case of 1 ≤ s ≤ 2, according the proof of Theorem 3.4.6, R is one of the

following rings:

(i) Z2 × Z5, Z2 × Z2 × Z5;

(ii) Z2 × Z8, Z2 × Z2[x]
(x3)

, Z2 × Z4[x]
(2x,x2−2)

, Z2 × Z2[x,y]
(x,y)2

, Z2 × Z4[x]
(2x,x2)

;

(iii) Z2×Z2×Z8, Z2×Z2× Z2[x]
(x3)

, Z2×Z2× Z4[x]
(2x,x2−2)

, Z2×Z2× Z2[x,y]
(x,y)2

, Z2×Z2× Z4[x]
(2x,x2)

;

(iv) Z2 × Z3 × Z3, Z2 × Z2 × Z3 × Z3;

(v) Z2 × Z3 × Z4, Z2 × Z3 × Z2[x]
(x2)

;

(vi) Z2 × Z2 × Z3 × Z4, Z2 × Z2 × Z3 × Z2[x]
(x2)

;

(vii) Z2 × Z4 × Z4, Z2 × Z2 × Z4 × Z4;

(viii) Z2 × Z4 × Z2[x]
(x2)

, Z2 × Z2 × Z4 × Z2[x]
(x2)

;

(ix) Z2 × Z2[x]
(x2)

× Z2[x]
(x2)

, Z2 × Z2 × Z2[x]
(x2)

× Z2[x]
(x2)

;

(x) Z2 × Z7, Z2 × Z2 × Z7;

(xi) Z2 × Z9, Z2 × Z2 × Z9;

(xii) Z2 × Z3[x]
(x2)

, Z2 × Z2 × Z3[x]
(x2)

;

(xiii) Z2 × Z3 × F4, Z2 × Z2 × Z3 × F4;

(xiv) Z2 × Z4 × F4, Z2 × Z2 × Z4 × F4;

(xv) Z2 × Z2[x]
(x2)

× F4, Z2 × Z2 × Z2[x]
(x2)

× F4.

By Lemmas 3.4.9(1)(2) and 2.5.2, the rings appearing in (iii) and (vi) are ruled

out. By Lemmas 3.4.9(3) and 2.5.2, the rings appearing in (vii)–(ix) are ruled out.

By Lemma 3.4.10, the rings appearing in (x)–(xv) are ruled out. So, in this case, R

is one of rings appearing in (i), (ii), (iv) and (v). This completes the proof.
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Our next goal is to classify all finite commutative rings whose unitary Cayley graphs

have genus 1, 2, 3, respectively. By the previous theorem, we need only to determine

the genus of the unitary Cayley graphs of all the rings appeared in Theorem 3.4.11.

Lemma 3.4.12. The following statements hold:

(1) γ(Γ(Z5)) = γ(Γ(Z7)) = 1.

(2) γ(Γ(F8)) = 2.

(3) γ(Γ(F9)) = 3.

Proof. Note that the unitary Cayley graph of a field is a complete graph. The

results follow by Lemma 2.5.1.

Lemma 3.4.13. [70, Theorem 6.39] Let m,n be positive integers. Then γ(Kmn,n,n) =

(mn−2)(n−1)
2

. In particular, γ(K3,3,3) = 1.

Lemma 3.4.14. The following statements hold:

(1) If R is a local ring of order 8 which is not a field, then γ(Γ(R)) = 1.

(2) If R is a local ring of order 9 which is not a field, then γ(Γ(R)) = 1.

Proof. (1) It is clear that R has four units and |J(R)| = 4. So Γ(R) is the complete

bipartite graph K4,4. The claim follows by Lemma 2.5.1.

(2) Note that Γ(R) is a complete 3-partite graph K3,3,3. So γ(Γ(R)) = 1 by Lemma

3.4.13.

Lemma 3.4.15. The following statements hold:

(1) Let R = Z3 × Z3. Then γ(Γ(R)) = 1.

(2) Let R = Z2 × Z5. Then γ(Γ(R)) = 1.
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(3) Let R = Z3 × F4. Then γ(Γ(R)) = 3.

Proof. (1) By Theorem 3.1.1, Γ(R) is not planar, so we have γ(Γ(R)) ≥ 1. The

following Figure 7 shows that Γ(Z3×Z3) can be embedded into S1. Thus γ(Γ(R)) =

1.

Figure 7: Γ(Z3 × Z3)

(2) By Lemma 2.4.7, we obtain γ(Γ(R)) ≥ 1. On the other hand, we can embed

Γ(Z2 × Z5) into S1 as shown in Figure 8. Hence, γ(Γ(Z2 × Z5)) = 1.

Figure 8: Γ(Z2 × Z5)
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(3) Write F4 = {0, 1, a, b}. Note that Γ(Z3 × F4) has 36 edges and 12 vertices. So

γ(G) ≥ 1 by Lemma 2.4.7. On the other hand, we can embed G into S1 as shown in

Figure 9. Therefore, γ(Γ(Z3 × F4)) = 1.

Figure 9: Γ(Z3 × F4)

We now prove the last main result of this section.

Theorem 3.4.16. Let R be a finite commutative ring. Then the following hold:

(1) γ(Γ(R)) = 1 if and only if R is isomorphic to one of the following rings:

Z5, Z7, Z8, Z2[x]
(x3)

, Z2[x,y]
(x,y)2

, Z4[x]
(2x,x2)

, Z4[x]
(2x,x2−2)

, Z9, Z3[x]
(x2)

, Z3 × Z3, Z3 × Z4, Z3 × Z2[x]
(x2)

,

Z3 × F4, Z2 × Z5, Z2 × Z3 × Z3.

(2) γ(Γ(R)) = 2 if and only if R is isomorphic to one of the following rings:

F8, Z4×Z4, Z4× Z2[x]
(x2)

, Z2[x]
(x2)

× Z2[x]
(x2)

, Z2×Z2×Z5, Z2×Z8, Z2× Z2[x]
(x3)

, Z2× Z4[x]
(2x,x2−2)

,

Z2 × Z2[x,y]
(x,y)2

, Z2 × Z4[x]
(2x,x2)

, Z2 × Z2 × Z3 × Z3, Z2 × Z3 × Z4, Z2 × Z3 × Z2[x]
(x2)

.

(3) γ(Γ(R)) = 3 if and only if R ∼= F9.
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Proof. By Theorem 3.4.11, it suffices to determine γ(Γ(R)) for the rings R appearing

in Theorem 3.4.11.

In view of Lemmas 3.4.9, 3.4.12, 3.4.14 and 3.4.15, the three rings Z2 × Z2 × Z5,

Z2 × Z3 × Z3 and Z2 × Z2 × Z3 × Z3 are the remaining uncertain cases. By Lemma

3.4.15(2) and Lemma 3.4.4, we know that γ(Γ(Z2 ×Z2 ×Z5)) = 2γ(Γ(Z2 ×Z5)) = 2.

As Γ(Z2 × Z2 × Z3) has 36 edges and 18 vertices with no triangles, γ(Γ(Z2 × Z2 ×

Z3)) ≥ 1 by Lemma 2.4.7. Note that Γ(Z2×Z2×Z3) ∼= Γ(Z2×Z6). On the other hand,

we can embed Γ(Z2 × Z6) into S1 shown in Figure 10. So γ(Γ(Z2 × Z2 × Z3)) = 1.

Figure 10: Γ(Z3 × Z6)

By Lemma 3.4.4, we have γ(Γ(Z2 × Z2 × Z3 × Z3)) = 2γ(Γ(Z2 × Z2 × Z3)) = 2.

This completes the proof.

As mentioned earlier, Khashyarmanesh and Khorsandi generalized the definition

of the unitary Cayley graphs of rings in [38]. Let G be a multiplicative subgroup of

U(R) and S be a non-empty subset of G such that S−1 = {s−1 : s ∈ S} ⊆ S. They

define a graph Γ(R,G, S) with vertex set R and in which two distinct vertices x and

y are adjacent if there exists s ∈ S such that x + sy ∈ G. If G = U(R), they use

Γ(R,S) to replace Γ(R,G, S). We end this section with a remark.
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Remark 3.4.17. In [3, Theorem 4.2], the authors classified all commutative Artinian

rings whose generalized unit and unitary Cayley graphs are toroidal (genus is one). As

its application, they got a list of commutative rings whose unitary Cayley graphs are

toroidal [3, Corollary 4.5]. However, their proof has some gaps, and it turns out that

their list is not right. In fact, in the case that R ∼= Z2× F4, one can easily check that

Γ(R,S) is a cube. So Γ(R,S) is planar. For the case that R ∼= Z2×Z3×Z3, they used

the contracted techniques to get a minor subgraph whose genus is greater than one.

But they made a mistake that the vertices 002, 121 and 001 cannot contract as 002 is

not adjacent to 121 and 001. The same mistake occurs in the case that R ∼= Z3 × F4.

As a matter of fact, we can embed the graphs Γ(Z3 × Z6) (∼= Γ(Z2 × Z3 × Z3)) and

Γ(Z3×F4) into S1 as shown in Figures 4 and 5, respectively. Therefore, the complete

list in [3, Corollary 4.5] should contain two more rings Z2×Z3×Z3 and Z3×F4, with

the ring Z2 × F4 removed.



Chapter 4

Isomorphism Between Unit Graphs

and Unitary Cayley Graphs

4.1 Introduction

As we have seen in Chapter 2 and Chapter 3, the unit graph and the unitary

Cayley graph of a same ring share many common properties. For instances, the two

graphs have the same range of grith, which is {3, 4, 6,∞}; and the two graphs of a

self-injective ring also have the same range of diameters, which is {1, 2, 3,∞}. Thus,

it is interesting to know when the two graphs are isomorphic to each other. This

question is the topic of this Chapter. We give an answer for any finite ring.

4.2 Isomorphism Between G(R) and Γ(R)

If we omit the word “distinct” in the definition of unit graph, we obtain the closed

unit graph denoted G(R); this graph may have loops. Note that if 2 /∈ U(R), then

G(R) = G(R).

97



98

In graph theory, the tensor product G ⊗ H of graphs G and H is a graph such

that the vertex set of G ⊗ H is the Cartesian product V (G) × V (H), and any two

vertices (u, u′) and (v, v′) are adjacent in G ⊗ H if and only if u is adjacent to v

and u′ is adjacent to v′. Clearly, for given rings R1 and R2, two distinct vertices

(x1, x2), (y1, y2) ∈ R1×R2 are adjacent if and only if x1 is adjacent to y1 in G(R1) and

x2 is adjacent to y2 in G(R2). From this, we obtain G(R1 ×R2) = G(R1)⊗G(R2).

By Lemmas 2.4.4 and 3.3.5, we easily get the following.

Lemma 4.2.1. Let R be a ring with finitely many units. If G(R) ∼= Γ(R), then

2 /∈ U(R).

The following lemma is an easy observation.

Lemma 4.2.2. Let R be a ring. If char(R) = 2, then G(R) ∼= Γ(R).

Proof. Define φ : R → R by φ(x) = x for all x ∈ R. As 2R = 0, x + y = x − y. So

x + y is a unit iff x− y is a unit. So G(R) ∼= Γ(R).

Lemma 4.2.3. Let D be a finite field. Then G(D) ∼= Γ(D) iff char(D) = 2.

Proof. The necessity follows from Lemma 4.2.1 and the sufficiency follows from Lemma

4.2.2.

Proposition 4.2.4. For n ≥ 2, G(Zn) ∼= Γ(Zn) iff n is even.

Proof. If G(Zn) ∼= Γ(Zn), then n must be even by Lemma 4.2.1. Conversely, suppose

n is even. Define φ : Zn → Zn by φ(x) = x if x is even and φ(x) = −x if x is odd. It

is not difficult to verify that φ is an isomorphism between G(Zn) and Γ(Zn).

Lemma 4.2.5. Let R be a ring. If G(R) ∼= Γ(R), then G(R) ∼= Γ(R).
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Proof. Let φ be the isomorphism from graph G(R) to Γ(R). That is, φ is a bĳection

from R to R such that x+y ∈ U(R) if and only if φ(x)−φ(y) ∈ U(R) for all x, y ∈ R.

Let {xi : i ∈ I} be a set of fixed representatives of the distinct cosets of J(R) in R.

Then R =
⋃

i∈I(xi + J(R)) is a disjoint union.

For each i ∈ I, there exists a unique i′ ∈ I such that φ(xi) = xi′ . We define a map

σi : xi+J(R) → xi′+J(R) by σi(xi+j) = xi′+j for all j ∈ J(R). Then σi is a bĳection

and the map σ : R → R whose restriction on xi + J(R) is σi is clearly a bĳection.

We claim that σ is a graph isomorphism from G(R) to Γ(R). Suppose x is adjacent

to y in G(R). That is, x + y ∈ U(R). Let us assume x = xi + j1 ∈ xi + J(R) and

y = xk+j2 ∈ xk+J(R). As x+y = (xi+xk)+(j1+j2) ∈ U(R), xi+xk ∈ U(R). Hence,

xi+xk ∈ U(R). So φ(xi)−φ(xk) ∈ U(R), i.e., xi′ +xk′ ∈ U(R). Thus xi′−xk′ ∈ U(R).

Then σ(x)− σ(y) = (xi′ + j1)− (xk′ + j2) = (xi′ + xk′) + (j1 − j2) ∈ U(R). So σ(x) is

adjacent to σ(y) in Γ(R).

Suppose σ(x) is adjacent to σ(y) in Γ(R). That is, σ(x) − σ(y) ∈ U(R). Let us

assume x = xi + j1 ∈ xi + J(R) and y = xk + j2 ∈ xk + J(R). Then σ(x) = xi′ + j1

and σ(y) = xk′ + j2. Note that φ(xi) = xi′ and φ(xk) = xk′ . As σ(x) − σ(y) =

(xi′ + xk′) + (j1 + j2) ∈ U(R), xi′ + xk′ ∈ U(R). Hence, xi′ + xk′ ∈ U(R). That is

φ(xi) − φ(xk) ∈ U(R). So xi + xk ∈ U(R). Thus xi + xk ∈ U(R). Then x + y =

(xi + j1) + (xk + j2) = (xi + xk) + (j1 + j2) ∈ U(R). So x is adjacent to y in G(R).

This completes our proof.

Lemma 4.2.6. Let R be a ring. The following statements hold:

(1) If x− y ∈ J(R), then N(x) = N(y) in G(R).

(2) If x− y ∈ J(R), then N(x) = N(y) in Γ(R).

Proof. (1) Let z ∈ N(x). Then x+z ∈ U(R). It follows that y+z = (x+z)−(x−y) ∈

U(R). So z ∈ N(y). Hence, N(x) ⊆ N(y). Similarly, N(y) ⊆ N(x).
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(2) The proof is similar to (1).

The next lemma was proved by Kiani and Aghaei [36] for a finite ring. We extend

this result to a ring with stable range one. Recall that a ring R has stable range one

provided that aR + bR = R with a, b ∈ R implies that there exists y ∈ R such that

a + by ∈ U(R). Note that every semilocal ring has stable range one (see [23]). Let R

be a ring. Note that J(R) = {x ∈ R | 1− xy is a unit for all y ∈ R}.

Lemma 4.2.7. Let R be a ring with stable range one. Then a + U(R) = U(R) iff

a ∈ J(R).

Proof. Note that a ∈ J(R) clearly implies a+U(R) = U(R). Now assume a+U(R) =

U(R). For x ∈ R, Let b := 1 − ax. Then ax + b = 1, so aR + bR = R. As R has

stable range one, there exists y ∈ R such that u := a + by ∈ U(R). It follows that

a + (−u) = b(−y) is a unit. So b is a unit. Hence a ∈ J(R).

Lemma 4.2.8. Let R be a ring with stable range one. The following statements hold:

(1) If N(x) = N(y) in G(R), then x− y ∈ J(R).

(2) If N(x) = N(y) in Γ(R), then x− y ∈ J(R)

Proof. (1) Note that N(x) = −x + U(R) and N(y) = −y + U(R). So N(x) = N(y)

deduces −x + U(R) = −y + U(R), i.e., (x− y) + U(R) = U(R). So x− y ∈ J(R) by

Lemma 4.2.7.

(2) Here N(x) = x+U(R) and N(y) = y+U(R). So N(x) = N(y) implies x+U(R) =

y + U(R), i.e., (x− y) + U(R) = U(R). So x− y ∈ J(R) by Lemma 4.2.7.

Theorem 4.2.9. Let R be a ring with stable range one. Then G(R) ∼= Γ(R) iff

G(R) ∼= Γ(R).
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Proof. The sufficiency is follows from Lemma 4.2.5. To show the necessity, let φ :

G(R) → Γ(R) be an isomorphism. Define φ : R → R by φ(x) = φ(x). Next we verify

φ is an isomorphism between G(R) and Γ(R).

(1) φ is a mapping. Let x = y. Then x− y ∈ J(R) and thus N(x) = N(y) in G(R)

by Lemma 4.2.6. As φ is an isomorphism, we have N(φ(x)) = N(φ(y)) in Γ(R). So

φ(x)− φ(y) ∈ J(R) by Lemma 4.2.8. Thus, φ(x) = φ(y).

(2) φ is injective. Let φ(x) = φ(y). Then φ(x) − φ(y) ∈ J(R), so N(φ(x)) =

N(φ(y)) in Γ(R) by Lemma 4.2.6. As φ is an isomorphism, we have N(x) = N(y) in

G(R). Then x− y ∈ J(R) by Lemma 4.2.8. So, x = y.

(3) It is clear that φ is surjective.

(4) φ : G(R) → Γ(R) is an isomorphism. In fact, x is adjacent to y in G(R) iff

x + y ∈ U(R) iff x + y ∈ U(R) iff x is adjacent to y in G(R) iff φ(x) is adjacent to

φ(y) in Γ(R) iff φ(x)−φ(y) ∈ U(R) iff φ(x)−φ(y) ∈ U(R) iff φ(x) is adjacent to φ(y)

in Γ(R).

Proposition 4.2.10. Let R be a local ring with |U(R)| < ∞. Then G(R) ∼= Γ(R) iff

2 /∈ U(R).

Proof. The necessity follows from Lemma 4.2.1. To see the sufficiency, let 2 /∈ U(R).

Then 2 /∈ U(R) and thus 2 = 0. So by Lemma 4.2.2, G(R) ∼= Γ(R) and hence

G(R) ∼= Γ(R) by Lemma 4.2.5.

Proposition 4.2.11. Let R be a ring with R = Mn(D), where D is a division ring.

Then G(R) ∼= Γ(R) iff char(D) = 2.

Proof. If char(D) 6= 2, then 2 is a unit in Mn(D) and thus 2 is a unit in R. But

G(R) � Γ(R) by Lemma 4.2.1. For the sufficiency, let char(D) = 2. Then 2 = 0, so

G(R) ∼= Γ(R), and hence G(R) ∼= Γ(R) by Lemma 4.2.5.
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To prove our main result in this section, we need a result from graph theory.

Lemma 4.2.12. [32, Theorem 9.10] Let A, B and C are finite simple graphs (may

have loops). If A⊗ C ∼= B ⊗ C and C has an odd cycle, then A ∼= B.

Theorem 4.2.13. Let R be a finite ring. Then G(R) ∼= Γ(R) iff char(R) = 2 or

R ∼= Z2 × S, where S is a finite ring.

Proof. (⇐). If char(R) = 2, then G(R) ∼= Γ(R) by Lemma 4.2.2. The result follows

from Theorem 4.2.9. Let R ∼= Z2 × S, where S is a finite ring. Define φ : R → R by

φ(0, s) = (0, s) and φ(1, s) = (1,−s) for all s ∈ S. Then φ is clearly a bĳection. Now

we show that φ is a graph isomorphism from G(R) to Γ(R).

Assume that x is adjacent to y in G(R). Then x + y ∈ U(R). We may assume,

without loss of generality, that x = (0, s1) and y = (1, s2) where s1 +s2 ∈ U(S). Then

φ(x)− φ(y) = (0, s1)− (1,−s2) = (1, s1 + s2) ∈ U(R). So φ(x) is adjacent to φ(y) in

Γ(R).

Assume that x is adjacent to y in Γ(R). Then x − y ∈ U(R). We may assume,

without loss of generality, that x = (0, s1) and y = (1, s2) where s1 − s2 ∈ U(S).

Then, with x′ := φ−1(x) = (0, s1) and y′ := φ−1(y) = (0,−s1), we have x′ + y′ =

(0, s1) + (1,−s2) = (1, s1 − s2) ∈ U(R). So x′ is adjacent to y′ in G(R).

Therefore, G(R) ∼= Γ(R). By Theorem 4.2.9, we have G(R) ∼= Γ(R).

(⇒). By Theorem 4.2.9, we have G(R) ∼= Γ(R). Let R ∼= Mn1(D1)× · · · ×Mnt(Dt),

where each Di is a finite field. As 2 /∈ U(R) by Lemma 4.2.1, there must have some

i such that char(Di) = 2. If for all i, char(Di) = 2, then char(R) = 2. Now assume

that char(Di) = 2 for 1 ≤ i ≤ s and char(Dj) 6= 2 for s + 1 ≤ j ≤ t.

Note that

G(R) ∼= G(Mn1(D1))⊗ · · · ⊗G(Mns(Ds))⊗G(Mns+1(Ds+1))⊗ · · · ⊗G(Mnt(Dt))
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∼= G(Mn1(D1))⊗ · · ·G(Mns(Ds))⊗G(Mns+1(Ds+1)) · · · ⊗G(Mnt(Dt))

and

Γ(R) ∼= Γ(Mn1(D1))⊗ · · · ⊗ Γ(Mns(Ds))⊗ Γ(Mns+1(Ds+1))⊗ · · · ⊗ Γ(Mnt(Dt)).

If |(Mni
(Di))| > 2 for all 1 ≤ i ≤ s, then gr(G((Mni

(Di))) = 3 = gr(Γ((Mni
(Di)))

by Lemmas 2.2.3 and 2.2.4. So G(R) ∼= Γ(R) implies that G(Mns+1(Ds+1)) ⊗ · · · ⊗

G(Mnt(Dt)) ∼= Γ(Mns+1(Ds+1))⊗ · · · ⊗ Γ(Mnt(Dt)) by Lemma 4.2.12. This is impos-

sible by Lemma 4.2.1. Therefore, there is some Di such that Di = Z2. The proof is

complete.
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