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We study theoretically the effect of an external field on the nematic–smectic-A transition close to the
tricritical point, where fluctuation effects govern the qualitative behavior of the transition. An external
field suppresses nematic-director fluctuations by making them massive. For a fluctuation-driven first-
order transition, we show that an external field can drive the transition second order. In an appropriate
liquid-crystal system, we predict the required magnetic field to be of order 10 T. The equivalent electric
field is of order 1 V�mm.

PACS numbers: 64.70.Md, 61.30.Gd, 64.60.Kw
One of the seminal developments in the theory of
phase transitions was the understanding of how thermal
fluctuations can change the apparent analytic properties
of the free energy and thereby render the predictions of
mean-field theories invalid. The most widely appreciated
consequence of thermal fluctuations is the shift in criti-
cal exponents from their mean-field values [1]. Another
kind of consequence, less widely known, was predicted
over two decades ago by Halperin, Lubensky, and Ma
(HLM) [2]. They argued that the coupling between the
fluctuations of a gauge field with the order parameter can
convert a second-order transition to a first-order one (the
“HLM effect”). Such fluctuation-induced first-order tran-
sitions are expected in two systems: the BCS transition in
type-1 superconductors and the nematic–smectic-A (NA)
transition of liquid crystals. In superconductors, the HLM
effect is immeasurably weak; however, in liquid crystals,
Anisimov, Cladis, and co-workers [3,4] have found ex-
perimental evidence that is consistent with it. But, as
we discuss below, that evidence is indirect. In this pa-
per, we show that applying a modest external field along
the preferred orientation of the nematic leads to effects
that may be unambiguously attributed to the coupling
proposed by HLM, providing a direct test of the HLM
scenario.

In liquid crystals, the HLM effect is sensitive to
the ratio TNA�TNI [TNA and TNI being the nematic–
smectic-A (NA) and nematic-isotropic (NI) transition
temperatures, respectively]. When the nematic range
is large, i.e., when the NI transition is sufficiently far
from the NA transition (TNA�TNI ø 1), the transition is
expected to be second order. Indeed, experiments on such
systems yield critical exponents consistent with the 3D
XY model [5,6] and show no detectable discontinuities.

For small nematic range (TNA�TNI ! 1), the nematic
order parameter, which increases sharply on cooling
below TNI, has not yet saturated when the NA transition is
reached. The nematic phase is thus only partially ordered
at the NA transition, and the emerging smectic order
parameter c is intrinsically coupled to both the nematic
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order parameter magnitude S (dS-c coupling) and the
fluctuations in the director n̂ (dn-c coupling).

There is some evidence for a crossover from a first-
order transition driven by dS-c coupling to one driven by
dn-c coupling, as predicted by the HLM theory. Experi-
mentally, TNA�TNI can be tuned by mixing liquid crystals
with slightly different aliphatic chain lengths. Based on
the dS-c coupling, one expects that, in a mixture with
mole-fraction x, the latent heat L at the NA transition
goes as L ~ x 2 x�, where x� is the mole fraction for
a mixture at the Landau tricritical point (LTP). In one
such mixture (of two cyanobiphenyls, 8CB and 10CB),
Marynissen and co-workers [7] have found such a linear
dependence. The extrapolation of this linear behavior
gives the position of the LTP to be at 40% mole fraction
of 10CB in 8CB. However, the latent heat does not go
to 0 at the LTP. Instead, there is a quadratic crossover
to a smaller value for x , x�. Anisimov and co-workers
interpreted this result [3] as evidence supporting the HLM
theory [2]. Independent work measuring the capillary
length of 8CB-10CB mixtures by Tamblyn et al. [8]
shows a similar crossover. Moreover, even for pure
8CB (x � 0), Cladis et al. [4] have deduced from front
propagation experiments that the transition is first order.
This has been confirmed by Yethiraj and Bechhoefer [9],
who measured nematic fluctuations directly in real space.

Although these experiments suggest the existence of the
nonanalytic cubic term in the smectic free energy, they
do not show unambiguously that this effect arises from
the HLM mechanism. One can directly probe the effect
of director fluctuations on the nature of the transition
by expanding the parameter space of the free energy to
include an external magnetic (or electric) field. As we
shall see below, the HLM theory, thus modified, gives
rise to a peculiar form for the external-field dependence
of measured quantities. An experimental observation of
this specific form would be hard to attribute to any other
mechanism.

In addition, applying an external field affords an experi-
mentalist two other opportunities: first, direct suppression
© 1999 The American Physical Society
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of fluctuation effects provides a continuously variable
parameter with which to study the approach to the
tricritical point in a single material. In contrast, each data
point in mixtures corresponds to a different concentration
and is therefore a different experiment. More important,
mixtures may differ in properties other than simply the
ratio of TNA�TNI, which complicates the comparison of
different experiments. Second, the external field provides
a way of suppressing the anisotropic coupling that gives
the correlation-length exponents at the NA transition their
weak anisotropy. In what follows, we will show that the
subtle fluctuation effects at play at the NA transition can
be tuned by modest magnetic (or electric) fields, making
concrete predictions that can be checked experimentally.

We start with the free energy proposed by de Gennes.
Because the nematic phase from which the smectic con-
denses is only partially ordered, the free-energy ex-
pansion must consider the effects of both nematic and
smectic ordering. As the density modulation in smec-
tic liquid crystals is nearly harmonic, one may write
r�r� � r0�r� �1 1 r1�r� sin�q0 ? r 2 f�� and define the
smectic order parameter by C�r� � r1�r�eif�r�. Assum-
ing that n̂ fluctuates about the z axis, one can write the
free energy as [10]
FNA �
Z

d3x fNA�C, dn� �
1
2

Z
d3x

Ω
r̄jCj2 1

u
2
jCj4 1 Ck

Ç
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, (1)
where dn� � �dnx, dny, 0�. We rescale lengths in the ẑ
direction relative to other directions so that C� � Ck �
C and thus the three Frank constants K1,2,3 are also
rescaled. Close to the NA transition, r̄ has the usual form
a��T 2 T0��T0�. The last three terms in the free energy
correspond to the splay, twist, and bend contributions
to the Frank elastic energy for nematics. Note that we
have not explicitly included the coupling between the
smectic order parameter C and nematic order parameter
S, as its main effect is to shift r̄ and u. We thus
use effective values of r̄ and u. In the absence of dn
fluctuations, u � 0 corresponds to the tricritical point, and
u . 0 implies a second-order transition. However, when
dn fluctuations are taken into account, nothing special
happens at u � 0: we merely cross over from a mean-
field first-order transition to a fluctuation-driven first-order
transition. Here, we assume u $ 0.

Next, we consider the effect of an external field along
the director n̂ (assumed to lie along the z axis). We
assume that the field reinforces the nematic ordering and
neglect its much smaller effects on smectic ordering. For
concreteness, we consider a magnetic field H. Then the
Landau free energy becomes

FH
NA � FNA 2

Z
d3x

1
2

xa�H ? n̂�2

� FNA 2
1
2

VxaH2 1
Z

d3x
1
2

xaH2dn2, (2)

using n2
z � �1 2 dn2�, and expanding in dn2. Here, V

is the sample volume. Thus, the magnetic field makes
the nematic director fluctuations “massive.” Because the
field also couples to the nematic order parameter S, the
free-energy-expansion coefficients also have a magnetic-
field dependence [11,12]; however, one would need a
field of several hundred tesla to change u appreciably,
which is a much weaker effect than the one we shall be
considering here.
Recall that we are working in the regime where
massless nematic director fluctuations, by coupling to the
smectic order parameter, induce a first-order transition.
Adding an external field adds mass to these director
fluctuations, thus suppressing their effect. When the
magnetic field is sufficiently strong, director fluctuations
can be ignored, resulting in a 3D XY , second-order tran-
sition. To estimate the required critical field, we recall
that nematic twist and bend distortions are expelled by
the smectic phase over a length scale l (defined to be
the penetration depth). At a mean-field level, and in the
one-constant approximation K1 � K2 � K3 � K , the
penetration length is given by

l �

µ
K
C

∂1�2 1
q0jC0j

. (3)

When a field is added, we introduce a new length, the
magnetic coherence length j�H�, which measures the
distance over which elastic deformations decay in
the nematic phase. One finds [10]

j�H� �

µ
K
xa

∂1�2 1
H

. (4)

At zero field, if the transition is first order, we can imagine
smectic droplets in the nematic phase at the coexistence
temperature. Bulk twist and bend excitations penetrate a
distance l into the smectic droplets. When H is turned
on, as long as j�H� is much larger than l, the nematic-
smectic interface is not much affected. But when j�H� is
much smaller than l, nematic fluctuations are suppressed
in both the nematic and smectic phases. They then
play no role at the transition, which becomes second-
order XY . Thus, a rough estimate of magnetic field Hc

needed to reach the tricritical point can be obtained by
setting j�Hc� � l. In reality, the different values of
K1, K2, and K3 lead to different penetration depths and
magnetic coherence lengths for the twist and bend modes,
somewhat complicating the above arguments.
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We can study the effect of a magnetic field within
the Halperin, Lubensky, and Ma formalism, where fluc-
tuations in jCj are ignored (the strongly “type-1” limit).
In order to decouple fluctuations in the phase of the or-
der parameter, C, from director fluctuations, we carry
out the gauge transformation [13], dn� � A 1 =L, and
c � Ce2iq0L, where = ? A � 0. Under this transforma-
tion, j�= 2 iq0dn��Cj2 goes to �= 2 iq0A�cj2. Details
will be given in a longer paper [14]. Following HLM, we
write

e2F�c��kBT �
Z

D �A	e�2FNA�c ,A���kBT . (5)

Differentiating with respect to jcj gives
df

djcj
� r̄jcj 1 ujcj3 1 Cq2

0jcj 
A2� . (6)

For simplicity, we will assume that we are in the limit
K1 ø K2, K3, and, hence, set K1 to zero; however, the
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results would not change much for finite K1. Treating jcj
as a constant, we obtain

df
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� rjcj 1 ujcj3 2 w1jcj
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�jcj2 1 a2

HH2�
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#
,

(7)

where w1 � �kBT�p� �C3�2q3
0�2K

1�2
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3�2
3 �, aH �

p
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0,
and r corresponds to a shift of r̄ . At this point, it
is convenient to introduce the scaled (dimensionless)
variables jc 0j �

u
w jcj, r 0 � �u�w2�r , H 0 � �uaH�w�H,

f 0
NA � �u3�w4�fNA. In terms of these variables, the

scaled effective free-energy density takes the form
f 0 �

µ
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2
2

b
4
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1
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where b � K2��K2 1 K3�, and 0 , b , 1. Qualita-
tively, one sees that as H ! 0 there is a negative jcj3

term, indicating a first-order transition; for large jHj the
last three terms in Eq. (8) give only corrections to jcj2

and jcj4, implying a second-order transition. Thus, we
expect a tricritical point at Hc � c0�aH � �1�aH� w

u .
At the coexistence point, using f�jc0j� � f�0� and

� df
djcj �c�c0 � 0, we obtain
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where

D � �9bjH 0j 2 2�2 2 108�1 2 3b�2�

3 H 02��1 2 b�2� 2 2jH 0j� . (10)

Here H 0
c �

1
2 �1 2 b�2� is the critical field; at H � Hc

we have c0 � 0 at the coexistence point. Thus, the
tricritical point corresponds to H � Hc; for larger mag-
netic fields the NA transition is second-order. Our ear-
lier informal argument giving lH�0 � jHc corresponds
to H 0

c � 2
3 . Note that, despite appearances, c0�H� is ana-

lytic at H 0 � 1�3. (See Fig. 1 inset.) The coexistence
temperature rNA satisfies

r 0NA � 2jc 0
0j

2 1

q
jc

0
0j

2 1 H 02

2 bjH 0j ln

"q
jc

0
0j

2 1 H 02 1 jH 0j
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#
. (11)

Because the spinodal temperature T� changes linearly
in jHj, there is a cusp at H � 0 in the function t0�H�.
(See Fig. 1.) The behavior of t0�H� near zero field is the
nonanalytic “signature” of the field-driven HLM effect
in the same way that a jcj3 term is the signature of the
zero-field HLM effect. Recall that only H2 figures in the
original free energy. It should also be noted that t0 as a
function of H�Hc does not depend significantly on b.

To estimate the magnitude of magnetic field required
to drive the transition second order, we consider the
material 8CB, where the NA transition appears to be in
the HLM fluctuation-driven first-order regime. It is useful
to express Hc in terms of the measured value of t0 at zero
field. In the HLM formalism, t0 � 2w2�9au, and we
have

Hc �

∑
9
8

a

u
C�q2

0

xa

∏1�2

�1 2 b�2�
p

t0 � H0
p

t0 . (12)

Using C� � 2 3 1027 dyn, q0 � 2 3 107 cm21,
xa � 1027 cgs, a�u � 1, we estimate H0 � 3500�1 2

b�2� T, which is the field required to quench fluctuations
at molecular scales. Using t0 � 6 3 1026 [9], we obtain
the critical field Hc � 5 10 T. For an electric field, the
critical electric field is roughly 0.5 1 V�mm.

These figures are encouragingly low, but one should
be cautious since smectic fluctuations, which we have
ignored, are important for such weak first-order transi-
tions. The calculation of the critical magnetic field is on
firmer ground in the vicinity of the Landau tricritical point
(u � 0), where the neglect of c fluctuations is more valid.
Close to the tricritical point, we retain a y�jcj6�6� term in
the Hamiltonian. Then the critical field for a second-order
transition is �1�aH� � w

y �1�3. The expression for Hc in this
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FIG. 1. Plot of the reduced temperature t0�H� � �TNA 2
T ���TNA as a function of the scaled magnetic field H, at b � 0.
Note the cusp at H � 0. In the inset, we plot the (scaled)
smectic order parameter at the transition as a function of H.

case is

Hc �
∑µ

a

y

∂1�2 C�q2
0

xa

∏1�2

t
1�4
0 . (13)

In the 8CB-10CB system studied by several groups [7,8],
the LTP occurs at a mole fraction of roughly 40% 10CB
in 8CB. In this system, one of us has measured t0 to be
roughly 1024 [15]. Unfortunately, the t

1�4
0 dependence

then results in a much higher critical field, on the order of
300 T (or roughly 30 V�mm).

Lelidis and Durand have extensively studied the effects
of large electric fields on the NA transition [16,17].
In his Ph.D. thesis, Lelidis looked for evidence of an
electric field-induced tricritical point at the NA transition
of 8CB. The experiments, which measure S, give some
evidence for a tricritical point at an external electric field
somewhere between 5 and 20 V�mm. Unfortunately, the
temperature resolution was 25 mK. Since the zero-field
discontinuity is only 2 mK, this does not rule out a
much smaller critical field for 8CB, and better temperature
resolution will be needed to confirm these results.

External fields may have other interesting, observable
effects. In the type-2 limit, where the NA transition
should be second order, applying a field should be a rele-
vant perturbation that changes the universality class of
the transition to second-order XY . In the superconduc-
tor analogy, adding a field in the liquid-crystal system
corresponds to adding mass to the gauge fluctuations in
superconductors. For massless fluctuations, in type-2 su-
perconductors, magnetic vortices are screened by current
loops. The interaction between the current loops (and
not the vortices) is long range, giving rise to the inverted
XY transition. However, when the gauge fluctuations be-
come massive, the interaction between current loops de-
cays exponentially while that between vortices becomes
long range, leading to the usual XY transition. It would be
very interesting to probe the experimental consequences
of this crossover to the XY fixed point.

One such consequence would be the suppression of
spatial anisotropy in the critical region. It has been
proposed that experiments probe the crossover region
between an isotropic, high-temperature region and the
true critical region governed by a renormalization group
fixed point [18]. The nature of the fixed point is still
under debate. Since with a magnetic field we could tune
the strength of nematic fluctuations, it would give us a
better understanding of the role of these fluctuations in
the crossover region, and the observed weak anisotropy.
This is currently under investigation.

In conclusion, we have shown that the HLM effect for
the NA transition leads to an unusual, nonanalytic form
for the effective smectic free energy in the presence of an
external field. Measurements by Lelidis and Durand seem
consistent with the predicted effects. More precise experi-
ments on the field dependence would be an extremely
promising way to probe these unusual effects of thermal
fluctuations.
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