
CENTRE FOR 
1
NEWF?UNPLAND STUDIES 
~ ) ,,, 

TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 

(Without Author's Permission) 









PARALLEL PROCESSING OF MANIPULATOR DYNAMICS 

INCORPORATING FRICTIONAL EFFECTS 

By 

@CHARLES DHANARAJ, B. TECH. 

A thesis submitted to the School of Graduate Studies 
in JJ~rtial fulfillment of the 

St. John's 

requirements for the degree of 
Master of Engineering 

Faculty of Engineering and Applied Sciences 
Memorial University of Newfoundland 

August 1990 

Newfoundland Canada 



1+1 National Library 
of Canada 

Bibliotheque nalionale 
du Canada 

Canadian Theses Service Service des theses canadiennes 

Ottawa. Canada 
KIA ON4 

The author has granted an irrevocable non­
exclusive licence allowing the National Ubrary 
of Canada to reproduce, loan, distribute or sell 
copies of his/her thesis b~· a.1y means and in 
any form or format, making this thesis available 
to interested persons. 

The author retains ownership of the copyright 
in his/her thesis. Neither the thesis nor 
substantial extracts from it may be printed or 
otherwise reproduced without his/her per­
mission. 

L'auteur a accorde une licence irrevocable et 
non exclusive permettant a Ia Bibliotheque 
nationale du Canada de reproduire, p~ter, 
dlst!ibuer ou vendre des copies de sa these 
de quelque manier{t et sous quelque forme 
que ce soit pour mettre des exemplaires de 
cette these a Ia disposition des personnes 
interessees. 

L'auteur conserve Ia propriete du droit d'auteur 
qui protege sa these. Ni Ia these ni des extraits 
substantials de celle-ci ne doivent Atre 
imprimes ou autrement reproduits sans son 
autorisation. 

ISBN 0-315- 61784-5 

Canada 



Abstract 

Real-time computation of the inverse dynamics of robotic manipulators is required 
for ensuring robust control. This thesis presents a modified Newton-Euler al­
gorithm which makes use of symbolic programming for impro·o~ed computational 
efficiency. A scheme for modeling the frictional effects at the joints as well as the 
transmissions for robotic mechanisms is outlined with an illustrative case-study for 
the PUMA-560 manipulator. The algorithm is parallelized using a 'Task Streamlin­
ing Approach' - a systematic mapping scheme using layered task graphs to create 
the list schedule and a simplified bin-packing heuristic algorithm t.,) schedule the 
computations on a multiprocessor. The resulting computational load for dynamic 
torques without friction, is only 12n+9 arithmetic operations, where n is the num­
ber of links in the manipulator, indicating a promise for application to precision 
robot control employing a high sam piing rate. 



0 coR.v, oun am.v! 
'HOW MA.J£STIC IS YOUR NAMf. IN A.C£ T1-l£ 

CA'RTJt! 
}t'v''Jtf./1! I CONSIV&'R. YC)U'R. 'H£AVfNS, 

TH£ WCJ'RA:: O:F YOUR :F1N9£'R.S, 
THC M(.'JON ANTI TJ·a: S'T.AR.S. 

W1iiC1-l YOU 'HAY't~ Sf.T IN P.CAC£, 

iii 

W'HAT IS M.AN THAT YOU ARE M1N1J:FU.C O:F 1-liM, 
THE SON O:F M.AN THAT YOU C.A'TU :FO'R. 1-l1M1 

o c.onv. oun £('Jn·v. 
'HOW MA.JCSTIC IS YOUR NAME IN A.C£ T1-l£ 

CA'R.Tii! 

[1\ing David's Psalms in The Dible] 



iv 

ACKNOWLEDGEMENTS 

It is with sincere appreciation and gratitude that I would like to thank 
Dr. A nand M. Sharan, for his direction and support during this re­
search work. His encouragement to try new ideas and develop them for 
practical applications has been the major inspiration for this work. 

I would also like to extend my thanks to the School of Graduate 
Studies and the Faculty of Engineering for supporting me financially 
through thi.'i period. I sincerely thank Dr. J. Malpas, Dean of Graduate 
Studies and Dr. T. R. Chari, Associate Dean of Engineering for their 
valuable advice during my graduate work. The 1thesis guide' prepared by 
the Graduate Studir.s Committee has been of a practical help in preJ:ar­
ing this thesis. A special thanks to Ms. Janet Fairley who was always 
willing to help, with a smile, despite her busy schedule. 

I enjoyed working in the Faculty of Rngineering at MUN. The warmth 
and the friendship of my fellow grad-students and the enthusiasm of the 
faculty has made the arduous task of this research, quite pleasant and 
enjoyable. I would like to thank Professors M.J. Hinchey, W.J. Vetter, 
R. Venkatesan and A .S.J. Swamidas, who have helped me to refine my 
ideas during the course of this work. I would also like to thank the 
staff at Center for Computer Aided Engineering for the support they 
extended to me at various stages of this work. Also, I would like to 
thank C-CORE for lending me the PARALLON board. 

I would like to thank my wife Jayanthi, who was the prime inspi­
ration for me to get into graduate studies and a constant source of 
encouragement to me. 

August 1990 Charlc3 Vhanaraj 



' 
Contents 

Abstract 

Acknowledgements 

List of Figures 

List of Tables 

List of Symbols 

1 Introduction and Literature Survey 
1.1 Introduction .... ....... . 
1.2 literature Survey . . . . . . . .. . 

1.2.1 Dynamic Formulations .. . 
1.2.2 Symbolic Computations .. 
1.2.3 Parallel Processing . 
1.2.4 Friction Modeling . . ... 

1.3 Thesis Objectives . . . . . . . . . . . . . . . . . 

2 Manipulator Dynamics and Symbolic Computations 
2.1 Introduction . . . . . . . . . . . . ... . . 
2.2 The Kinematic and Dynamic Equations . ... . .. . 

2.2.1 Terminology and Definitions ...... . .. . 
2.2.2 Denavit-Hartenberg Transformation Matrix .. 
2.2.3 Newton-Euler Recursive Formulation . 

2.3 Symbolic Computations ............ . .. . 
2.3.1 Application of Symbolic Programming . •.. .. 
2.3.2 Reformulation of the NE Algorithm for Reducing the Com· 

putations . . . . . . . . . . . . . , . . . . . . . . , . • . 

v 

ii 

iv 

viii 

X 

.. 
xu 

1 

4 
6 
8 
9 

13 
13 

15 
15 
15 
15 
17 
27 
31 
31 

35 



2.4 Symbolic Implementation of the Algorithm 
2.5 Computational Efficiency 
2.6 Conclusion ........ .. ...... . 

3 Modeling Friction in InvEn·se Dynamics 
3.1 Introduction ...... . .. . ..... . 
3.2 Coulomb Friction in Robotic Mechanisms . 
3.3 Friction at the Joints ... 
3.4 Friction in Transmissions .. 
3.5 Case Study . 
3.6 Conclusion ........ . 

4 Parallel Processing of Invet·se Dynamic Equations 
4.1 Introduction ............. . .. . 
4.2 Multiprocessor Issues ................. . 

4.2.1 Classification of Par?.llel Computers . . . . . . 
4.2.2 Exploiting Parallelism in Algorithms, Synchronization and 

Uniformity of Subtasks .. 
4.2.3 Multiprocessor Scheduling .. 

4.3 Task Streamlining Approach .. . . . 
4.3.1 Task Decomposition Scheme 
4.3.2 Customization of Robot Dynamics 
4.3.3 Scheduling Strategy .... 

4.4 Case Study - Stanford Manipulator 
4.5 Results and Discussion . 
4.6 Conclusion . . . . . . . . . . . . . 

vi 

43 
48 
52 

53 
53 
54 
56 
61 
67 
76 

79 
79 
so 
80 

85 
88 
90 
91 

• 112 
. II :3 
. 11 g 

5 Summary, Contributions und Recommendations 127 
5.1 Summary of the Work . . . . . . . . 127 
5.2 Contributions of this Work . . . . . 128 
5.3 Recommendations for Future Work . 129 

References 130 

Appendix 136 

A Lagrange Equations of Motion 137 
A.l Closed Form Equations . . . . . . . . . . . . . . . . . . . . . 1:11 
A.2 Recursive Lagrange Equations Using 4x4 D·H Transformation 

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . 139 



vii 

A.3 Recursive Lagrange Equations Using 3 x 3 Rotation Transforma-
tion Matrices . ... . . .. .. .. . . . ..... ... .. . .. 140 

B Derivation of Newton-Eulet· Algorithm 141 

C Schedules for Inverse Dynamics Computation 147 

D Program Listing 163 
0 .1 Numeric Programs for Inverse Dynamics . . . . . . . . . 163 

D.l.l Inverse Dynamics using Lagrange Equations . . . 1611 
0 .1.2 Inverse Dynamics using Newton-Euler Equations . 166 
0.1.3 Inverse Kinematics Program for PUMA-560 (3 OOF). . 171 

0.2 Program in REDUCE for generating the Inverse Dynamics . 175 
0 .3 Inverse Dynamic Equations of Standard Manipulators . . 185 

0 .3.1 Stanford Manipulator - 3 OOF System . . 186 
0.3.2 St:~nford Manipulator - 6 OOF System . . 187 
0 .3.3 PUMA-560 Manipulator- 3 DOF System . 191 
0.3.4 PUMA-560 Manipulator - 6 DOF System . 193 

0 .4 Robot Simulation Program . . . . . . . . . . . . 197 



List of Figures 

1.1 Hierarchical Robot Control Scheme 
1.2 PUMA-560 Manipulator .. . .. . 
1.3 Stanford Manipulator ...... . 

2.1 Typical Open Chain Serial Link Manipulator 
2.2 Inverse Kinematics and Forward Kinematics . 
2.3 Inverse Dynamics and Forward Dynamics 
2.4 Denavit and Hartenberg Parameters . 
2.5 Rotation Transformation of Vectors . . . 
2.6 Free-body diagram of a link ...... . 
2.7 Newton-Euler Scheme for Inverse Dynamics of Manipulators 
2.8 Acceleration Difference Vector . . . . . . . . . . . . . . . . 
2.9 Comparison of Computations for implementing the inverse dyan­

mics of PUMA-560 manipulator ... . . 

3.1 Frictional Torque in Robotic Mechanisms 
3.2 Friction in a Journal Bearing ... . 
3.3 Friction due to Reaction Moments . . . . 
3.4 Efficiency of a Harmonic Drive ..... . 
3.5 Input-Output Curve for a Harmonic Drive . 
3.6 Trajectory in the Global Coordinate Frame 
3.7 Velocity Profile in the Global Coordinate Frame. 
3.8 Angular Displacements in the Link Coordinate Frame. 
3.9 Angular Velocities in the Link coordinate Frame 
3.10 Flow-Chart for Computation of Frictional Torque 
3.11 Torque Profile for the First Link .. 
3.12 Torque Profile for the Second Link 
3.13 Torque ProfiiP for the Third Link 

4.1 SISD Computer Organization 
4.2 SIMD Computer Organization 

viii 

2 
5 

10 

16 
18 
18 
20 
25 
29 
32 
36 

51 

55 
57 
58 
62 
65 
GS 
69 
70 
71 
72 
73 
74 
75 

81 
83 



ix 

4.3 MIMD Computer Organization . . . . . . . . . . . . . 84 
4.4 A Shared Memory Multiprocessor . . . . . . . . . . . 86 
4.5 Task graph of Forward Recursion in Inverse Dynamics . 102 
4.6 Task graph of Backward Recursion in Inverse Dynamics . 103 
4. 7 Layered Task Graph for the Forward Recursion . . 105 
4.8 layered Task Graph for the Backward Recursion . 106 
4.9 Task Graph Assembly for a six link manipulator . . 109 
4.10 Scheduling Strategy . . . . . . . . . , . . . , . . . 118 
4.11 Speed-up vs No. of Processors for inverse dynamic computation 

for a six-link manipulator . , .... . ............ .. 121 
4.12 Efficiency vs No. of Processors for inverse dynamic computation 

for a six-link manipulator ............... .. .... 122 
4.13 Comparison of Processing Time for inverse dynamic computation 

of Stanford Manipulator . . ... . ....... ........ . 124 



List of Tables 

1.1 Complexity cf Dynamic formulations . . 7 

2.1 D-H Parameters of PUMA 560 .. ' .. 21 
2.2 D-H Param:::ters of Stanford Manipulator 22 
2.3 Recursive Newton-Euler Algorithm 30 
2.4 Modified Newton-Euler Algorithm .... 42 
2.5 Center of Mass Data for PUMA-560 .. 46 
2.6 Moment of Inertia Parameters for PUMA-560. 46 
2.7 Center of Mass Data for Stanford Manipulator 47 
2.8 Moment of Inertia Parameters for Stanford Manipulator 47 
2.9 Com parision of Computations . ... . ....... . . 49 
2.10 Implementation of inverse dynamics using symbolic computation . t)O 

3.1 Friction at the Joints . . . . . . . . . . . . . 60 
3.2 Friction at the Transmission ......... 64 
3.3 Computational Count for the Friction Model 66 
3.4 Friction Parameters for PUMA-560 Manipulator 76 
3.5 Torque Values at Time= 0.6 sees . . .... . . 78 

4.1 Decomposition of Inverse Dynamic Tasks . . . . 94 
4.2 Inverse Dynamic Tasks that can be eliminated for Special Cases . 107 
4.3 Tasks for Inverse Dynamics of A Six-Link Manipulator . Ill 
4.4 Sparsity in Position Vectors . . . . . . . . . . . . . . . . . J f,t 
4.5 Subtasks Eliminated for Sparsity in Position Vectors . . . • . l15 
4.6 Subtasks Eliminated in Stanford Manipulator for Sparsity . . 11 6 
4.7 Tasks for Customized Inverse Dynamics of Stanford Manipulator . 117 
4.8 Comparison of processing time for Stanford Manipulator dynamics J2G 

C.l Two Processor Schedule of Inverse Dynam ics of a Six-Link Ma-
nipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.48 

C.2 Three Processor Schedule of Inverse Dynamics of a Six-Link Ma-
nipulator . . . . . . . . . . . . . . . . . . . .... . .. . 149 



xi 

C.3 Four Processor Schedule of Inverse Dynamics of a Six~link Ma-
nipulator . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . 150 

C.4 Five Processor Schedule of Inverse Dynamics of a Six-Link Ma-
nipulator . .............. . ......... .. . .. 151 

C.S Six Processor Scl:edule of Inverse Dynamics of a Six-Link Manip-
ulator ...... . .... . .................. . . 152 

C.6 Seven Processor Schedule of Inverse Dynamics of a Six-Link Ma­
nipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 

C. 7 Eight Processor Schedule of Inverse Dynamics of a Six-Link Ma-
nipulator . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . 15t1 

C.B Nine Processor Schedule of Inverse Dynamics of a Six-Link Ma-
nipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 

C.9 Two Processor Schedule for Customized Inverse Dynamics of 
Stanford Manipulator .. . .. . ... . ... . ..... . ... 156 

C.lO Three Processor Schedule for Customized Inverse Dynamics of 
Stanford Manipulator . ............. . .. • . . .. . 157 

C.ll Four Processor Schedule for Customized Inverse Dynamics of 
Stanford Manipulator .. . .. . ...... . ..... . .. . . 158 

C.l.2 Five Processor Schedule for Customized Inverse Dynamics of Stan-
ford Manipulator .... . ....... . ........... .. 159 

C.13 Six Processor Schedule for Customized Inverse Dynamics of Stan-
ford Manipulator ............ .. . . . . . . . .... . 160 

C.14 Seven Processor Schedule for Customized Inverse Dynamics of 
Stanford Manipulator . ......... . .. . .... . .. . . 161 

C.15 Eight Processor Schedule for Customized Inverse Dynamics of 
Stanford Manipulator . . .. .. . . . ........ . ... . . 162 



xii 

List of Symbols 

{a}i 

{a}ci 

d 

Dx, Dy, Dz 

Ep 

{f}i 

{!}1 

f 

F 

{g} 

[J]i 

n 

{n}; 

{N}i 

{p}i 

r 

acceleration of the origin of the ith link co-ordinate frame 

acceleration of the center of gravity of the ith link co-ordinate frame 

distance between the suppcrt bearings 

inertia constants 

efficiency 

reaction force at the ith joint 

reaction force at the ith joint referred in jth co-ordinate frame 

frictional force 

frictional force 

gravity vector 

centroidal inertia tensor of the ith link 

subscript to denote the link number 

kinematic parameters 

reduction ratio of the hamonic drive 

the total number of links in the manipulator 

reaction moment at the ith joint 

inertial moment of the ith link 

position vector of the i + lth origin 

radius of the journal 

position vector of a point 

position,velocity and acceleration of the 

link movement( angular for revolute joints and 



{R)i 

{s} 

x, y, z 

{z} 

{w}i 

{a}i 

[ ..\ ]i 

Tj 

Tout 

IL 

ll 
{ } 

( 1 

linear for prismatic joints) 

Transformation matrix from ith to i - lth frame 

positicm vector of the center of gravity of the ith link 

speed-up 

ith subtask 

subscripts to denote the x, y an z components of 

a vector 

unit vector along the local Z direction (axis of motion) 

absolute angular velocity of the ith link 

absolute angular acceleration of the ith link 

acceleration difference matrix 

basic dynamic torque of the ith link 

frictional torque at the joint 

frictional torque in the transmission 

input torque of the harmonic drive 

output torque of the harmonic drive 

breakaway torque of the harmonic drive 

coefficient of kinetic friction 

absolute value 

vector or column matrix 

matrix 

... 
Xlll 



Chapter 1 

Introduction and Literature 
Survey 

1.1 Introduction 

Modern robotics offers humanity a wide array of economicC~IIy and socially laud­

able benefits. Industrial robots are already assuming many hazardous, unpleasant 

or boring tasks, while simultaneously improving the productivity of factories in the 

industrialized world. Autonomous robots can potentially handle tasks in hostile 

or inaccessible environments, such as, underwater, in space, or in nuclear power 

reactors. In order for robots to satisfactorily fulfill the many potential missions 

and applications, it is necessary to incorporate many of the recent advances in 

robot control into real-time operation in the robot system. 

Robot motion control can be visualized as a hierarchical scheme, where higher 

levels feed successively lower levels (Fig. 1.1). The 'Task Planning' is at the 

highest level and provides the lower control levels with the desired robot mo-

1 



2 

INPUT ... 
TASK PLANNING ,.. 

n 

INVERSE KINEMATICS 

1r 

TRAJECTORY PLANNING 

, r 

INVERSE DYNAMICS 

1 r 
0 UTPUT 
... 

CONTROL ALGORITHM .... 

Figure 1.1: Hierarchical Robot Control Scheme 



3 

tion, taking cognizance of geometric constraints of the workspace that they have 

to operate in and the obstacles that may be present within it. The 'Inverse 

Kinematics' i~ at the subsequent level of hierarchy, which translates the motion 

of the end-effector to an equivalent motion of the individual joints. The robot 

kinematics and dynamics is explained in detail in Chapter 2. The 'Trajectory 

Planner' goes hand-in-hand with the inverse kinematics module, designing opti­

mal time trajectories for individual motors to achieve the desired motion of the 

end-effector, ensuring that the resultant motion is satisfying the geometric and 

the real-world constraints such as the saturation torque of the motor, etc. The 

'Inverse Dynamics' computes the torque for the desired motion, using an exact 

or simplified model of the robot. The 'Control Algorithm' is the final stage of the 

controller, which compensates the input signal with feed-forward and feed· back 

correction to ensure robustness. 

In a digital control system, which makes use of either minicomputers or mi­

croprocessors, time is normalized to the sampling period, 6t; i.e., velocity is 

expressed as radians per .6t rather than radians per second. To minimize any 

deterioration of the controller due to sampling, the rate of sampling must ~e 

much greater than the natural frequency of the arm (inversely, the sampling pe­

riod must be much less than the smallest time constant of the arm). Thus to 

minimize the effect of sampling, usually 20 times the cutoff frequency is chosen 

(Fu et. al, 1987), i.e., 
1 

l:::.t = ---
20 Wn/27r 

For industrial manipulators, the natural frequency is in the range of 5 to 10 Hz 

but could be as much as twice that for smaller arms. This places a limit of 1 to 



2 kHz on the bandwidth that can be obtained without considering the effects of 

flexibility. This brings in the problem of computing the inverse dynamics model 

within this small sampling period. 

limiting the domain of the research to industrial manipulators, wherein flex· 

ibility effects do not play any significant role due to the high rigidity of the 

manipulators, a rigid body dynamic model incorporating frictional efi'.,.cts would 

be ideal; however the rigid body dynamic model itself is complicated, when the 

number of links exceeds three. To give an ins1ght into this problem, the rigid body 

model of the inverse dynamics of the 6 OOF PUMA-560 manipulator shown in 

Fig.1.2, using the conventional lagrangian formulation, requires 66,271 multipli­

cations and 51,548 additions. It would take as high as 800 milliseconds using an 

8086 processor. Obviously, this time can be brought down if a higher power pro­

cessor is used. For example, the PUMA-560 manipulator, which is built around 

a mini-computer, VAX-700, achieves a sampling period of only 35 ms. This has 

prompted a search for computationally efficient inverse dynamic models. 

1.2 Literature Survey 

Many approaches have been taken by researchers to solve the inverse dynamic 

problem in real time. The Cerebellar Model Articulation Controller (CMAC), 

developed by Albus {1975; 1981), tries to solve the problem using a look-up 

table, wherein a wide range of torque values are pre-computed and stored. Such 

a model needs an extensive memory and may be extremely costly, offsetting 

other advantages. Yang and Tzeng (1986) suggested that the design of the 

robot arms be modified such that it gives a linear model involving a set of 

4 



5 

z8 (o) 

Figure 1.2: PUMA-560 Manipulator 



constraint equations for the mass and inertial parameters. This has been only a 

subject of theoretical interest but the practical feasibility of such a design and 

manufacture to distribute the inertia as deman~ed by the constraint equations, 

has not been explored. Major research has been on a three-tier approach to 

arrive at efficient equations of motion. A set of equations is termed 'efficient' in 

the sense that the equations are computationally less demanding. This three-tier 

approach comprises of 

1. Efficient formulation of dynamic equa~ions. 

2. Use of symbolic computations to avoid multiplications by zero and one in 

real-time and for simplifying the algebraic equations. 

3. Parallel processing of the equations in teal-time. 

1.2.1 Dynamic Formulations 

The literature abounds with formulations for generating complete dynamic robot 

models. The standard formulation for manipulator dynamics is the Lagrangian 

formulation, developed by Uicker (1965) for general linkages and later particular­

ized to open loop kinematic chains by Kahn (1969). These Lagrange equations 

are given in Appendix A. The 0( n4 ) computational complexity1 of this formula­

tion rendered it inefficient for real time applications. Stepanenko and Vukobra­

tovic (1976) suggested the Newton-Euler formulation, which is based on the laws 

governing the dynamics of rigid bodies. In their formulation, they referred all the 

•o(n4) complexity means that the number of arithmetic operations required in the 
algorithm is in the Order of n4, which indicates that it is proportional to the fourth power 
o£ the size of the variable, which in our case, will be the number o£ links in the manipulator. 

6 



7 

link forces and moments as well as the velocities and accelerations to the global 

coordinate system. Orin et. al (1979) proposed that the forces and moments be 

referred to the link coordinate system, which brought down the computational 

requirements. Luh et al. (1980) extended this idea by calculating the velocities 

and accelerations also in the link co-ordinate system which resulted in an efficient 

algorithm with 4 computational complexity of O(n). While the Lagrangian for· 

mulation for a typical 6 DOF robot resulted in 66,271 multiplications and 51,548 

additions, the Newton-Euler algorithm resulted only in 852 multiplications and 

738 additions. This efficiency was mainly attributed to ~ recursive nature of 

the Newton-Euler algorithm. This was extended to the conventional Lagrangian 

formulation by Hollerbach, who proposed two recursive Lagrangian formulations, 

one using 4x4 transformation matrices and the other using 3x3 rotation transfor-. 
mation matrices, both with computational complexity of O(n). These equations 

Method Type of Computations Computations Total flops 
operation for n links for n = 6 for n = 6 

UickerJKahn Mult 32ln4 + 86~n3+ 66,271 2 12 
171 :,n2 + 53~n - 128 

Addn 25n4 + 66!n~+ 
129~n2 + 42!n - 96 

51,548 117,819 

Hollerbach ( 4x4} Mult 830n -592 4,388 
Addn 675n- 464 3,586 7,974 

Hollerbach (3x3) Mult 412n- 277 2,195 
Addn 320n- 201 1,719 3,914 

Newton-Euler Mult 150n -48 852 
Addn 131n- 48 738 1,590 

Table 1.1: Complexity of Dynamic formulations 



are also listed in Appendi;: A. The computational complexity of these formulations 

is shown in Table 1.1, and as we can clearly see in this table, the NE formulation 

is much more efficient than the others. The source of this efficiency was brought 

out by Silver (1982), who showed that with a proper choice for representing the 

rotational dynamic parameters, the lagrangian formulation is indeed equivalent 

to the NE formulation. Otherformulations were developed by Kane (1983, 1985) 

and Balafoutis (1988). Despite the uniqueness in these formulation, they do not 

offer any significant advantage over the NE scheme. The major draw-back of the 

NE formulation is that the recursive nature of the equations does not facilitate 

control analysis unlike the lagrangian formulation which results in a closed form 

solution. Also the transformation matrices and the position vectors, for most 

practical cases are sparse, and the computations involving multiplication with 

zeros and ones or addition with zeros are unnecessary. These two issues can be 

effectively addressed by symbolic computations. 

1.2.2 Symbolic Computations 

Symbolic programming was int1oduced into robot dynamics for generating the 

closed form dynamic equations using lagrange formulation (Vecchio et al. 1980). 

luh and Lin (1981) outlined the first systematic method for simplifying robot 

dynamic models. The simplification procedure mimicked an engineer by com~ 

paring similar algebraic expressions and removing negligible terms based upon 

the relative numerical values of user-specified manipulator parameters. In 1984, 

Neuman and Murray unveiled the computer program Algebraic Robot Modeh:r 

(ARM) for the symbolic generation of complete closed-form dynamic models. 

8 



9 

Using Lagrangian as well as the NE formulations, this program can receive in­

puts on the kinematic and dynamic parameters of the robot and generate the 

dynamic equations. Though this can result in an error-free and convenient way of 

arriving at the dynamic equations, it requires a large memory and enormous CPU 

time and also results in long expressions. For example the ARM output of the 

complete closed-form dynamic model of a six DOF PUMA-560 Manipulator takes 

up 28 typewritten pages and takes 1308 seconds of CPU time and 662 pages of 

memory on a VAX 11/780 {Neuman and Murray, 1985; Neuman and Murray, 

1987a; Neuman and Murray, 1987b). Later, they introduced a systematic orga­

nization procedure and showed that the efficiency of the NE equations can be 

improved by such a procedure (Murray and Neuman, 1988). However the elabo­

rate LISP programming restricted the application of the package to only the local 

researchers due to its lack of portability. Also, the high demands on CPU time as 

well as memory makes such a program possible only in mini-computers. Some of 

the other approaches for symbolic implementation are discussed by Vukobratovic 

et. al (1986), Khalil et. al (1986}, Izaguirre and Paul (1986), Leu and Hemati 

(1986), Burdick (1986), Yin and Yuh (1989), and Toogood (1989). 

However, none of the present schemes are able to address all the issues; 

namely, minimizing the requirements of CPU t ime and memory size; containing 

the intermediate expression swelling; automating the process using commercially 

available symbolic programming packages either on PCs or minicomputers; and 

minimizing the computational burden for real time applications. 



10 

1.2.3 Parallel Processing 

Parallel to the developments in symbolic programming, luh and Lin {1982) pro­

posed a parallel-processing scheme employing inexpensive microprocessors, in­

stead of the conventional mini-computer. In computing the solution for the 

inverse dynamic problem for the Stanford arm shown in Fig. 1.3, Luh and Lin 

assigned one microprocessor to each manipulator joint and proposed a variable 

branch-and-bound search (BBS) algorithm to find a subtask-ordered schedule for 

the microprocessors which allowed them to compute the joint torques using the 

NE equations of motion. They also reported a speed-up of 2.64 on a Stanford 

arm. However, the total processing time for solving the minimum-time schedul­

ing problem could not be easily reduced to a manageable level. Kasahara and 

Narita (1985) extended the above method and proposed a depth-first/implicit 

heuristic search method, which combines the BBS method and the critical path 

method. The schedL":ng strategy was flexible so that the number of processors 

could be varied, with an upper bound decided by the critical path. However, 

the task decomposition was achieved by letting the nine equations of the NE 

formulation as nine different tasks. This, in itself, is not an efficient process, 

since the concurrency of the algorithm can be increased by using a higher degree 

of decomposition. 

Lathrop {1985) proposed two parallel algorithms executable on special-purpose 

processors using the VLSI technology. One is the linear parallel NE algorithm 

and the other is the logarithmic parallel NE algorithm. They both require po­

tentially massive internal buffering to achieve pipelined computation between 

forward and backward recursions. They also involve complex communications 



11 

Figure 1.3: Stanford Manipulator 



12 

between the computations which degrade performance. Further, Nigam and Lee 

(1985) proposed an architecture for a multiprocessor-based controller using the 

NE formulation. Lee and Chang (1986) reformulated the NE equations in a 

homogeneous linear recurrence form (HLR) and developed an algorithm which 

could be implemented within a group of general-purpose microprocessors. Chen 

et . al (1938) aprlied the A• algorithm and a heuristic search algorithm called 

dy .mical-highest-level-first / most-immediate-successor-first (DHLF /MIS F) for 

scheduling the tasks on a multiprocessor system. However, in all the above 

works, the ease of hardware or software implementation was not carefully con­

sidered. Khosla (1988) did an extensive analysis on the hardware requirements 

for the NE formulation and the Lagrangian formulation and concluded that the 

NE formulation was more effective for parallel implementation. Vukobratovic 

{1988) applied the symbolic equations and subsequently used the 885 algorithm 

for multiprocessor implementation. Here, the job partitioning was arbitrary and 

hence the method is not efficient for implementation for robots of arbitrary archi­

tecture. Most of the above works consider the NE algorithm without attempting 

to improve its concurrency and also, do not take into account the fact that the 

transformation matrices and the inertia matrices are sparse and are the source of a 

number of multiplications with zeros and ones in real time, which can be <\Voided 

by using symbolic equations. Finally, the task partitioning is mostly manual and 

no systematic procedure for creating the data-base for the scheduling problem is 

discussed. 



13 

1.2.4 Friction Modeling 

Significant contributions to the understanding of the frictional effects in robot dy­

namics were made by Armstrong (1986, 1988). Using an elaborate experimental 

set-up, he studied the PUMA-560 robot and developed an experimental procedure 

for modeling friction. While on one hand, his work brought out the si3nificance 

of the friction terms in industrial robots, there was no analytical approach de­

veloped. The friction model depended largely on an expensive and error-prone 

experimental set-up. Canudas's work (Canudas: 1986, 1989) concentrates on 

adaptive compensation using non·linear stiction models for friction. Though the 

adaptive techniques give excellent results, friction being much dependent on the 

operating conditions, these techniques require extensive computations in real 

time which may not be the most effic1ent and cost-efTectiv.e method. Gogoussis 

and Donath (1987, 1988) presented a mechanics approach to friction modeling 

from the basic Coulomb's law. The significant contribution of their work was 

to establish the independence of the joint reaction forces and moments on the 

coefficient offriction at the joints. However, no detailed approach was presented 

nor actual application to existing robots discussed in his work. 

1.3 Thesis Objectives 

With this background, this thesis tries to extend previous work and develop a sys­

tematic means of reducing the computational burden and increasing the speed 

of real-time computation of the inverse dynamics calculations for the robotic 

manipulators. The focus is on the rigid models, since most of the industrial ma­

nipulators are rigid. They are also high-torque systems, which make use of special 



14 

drives such as harmonic drives, which in turn introduce significant amounts of 

friction. It should be added here that there are other types of errors arising in 

robot control problems such as due to the backlash in gears and drag forces in 

underwater arms. However, the intent of this work is to include the frictional 

effects only. Thus the objectives of this thesis are set out as follows: 

1. To improve the Newton-Euler algorithm using symbolic computations for 
generalized as well as customized robot models for increased computational 
efficiency. 

2. To introduce an analytical model for the friction in robot mechanisms and 
study the quantitative significance of the frictional torques. 

3. To design a parallel algorithm for computation of the inverse dynamics 
of robotic manipulators using parallel architecture, with emphasis on high 
speed as well as a systematic procedure for task decomposition and task 
scheduling. 

To begin with, Chapter 2 briefly reviews the kinematics and dynamics t:>f 

manipulators, and it explains symbolic computation for robot dynamics and re-

formulates the N E algorithm. Chapter 3 deals with friction modeling in robot 

dynamics and a case study of a PUMA-560 robot with harmonic drives is done 

to quantify the frictional torques for practical applications. Chapter 4 explains 

parallel processing concepts and presents a 'Task Streamlining Approach' for 

parallel computation of the inverse dynamics and also outlines a systematic map­

ping scheme for creating a list schedule and a bin-packing heuristic algorithm for 

scheduling computations on an arbitrary number of processors. Finally, in Chap­

ter 5, the contributions of the thesis and recommendations for future research 

are outlined. 



Chapter 2 

Manipulator Dynamics and 
Symbolic Computations 

2.1 Introduction 

The control of robotic manipulators requires a complete knowledge of the geo­

metric configuration of the manipulator and the dynamic behavior of the system 

under the actuator torques/forces. The availability of commercial packages such 

as REDUCE and MACSYMA has made the formulation of robot dynamic prob­

lems less cumbersome and more efficient. This chapter applies symbolic program­

ming to robot dynamic problems for reformulating the conventional Newton-Euler 

algorithm for increased computational efficiency (Dhanaraj and Sharan, 1990). 

2.2 The Kinematic and Dynamic Equations 

2.2.1 Terminology and Definitions 

A manipulator arm is a sequence of links connected by joints. Each link is 

numbered from 0 to n, as depicted in Fig. 2.1, where n denotes the total 

number of links. A joint between link i-1 and link i is referred to as joint i 

15 



JOINT 2 

LINK I 

JOINT I 

JOINT 4 

LINK 0 
(BASE) 

Figure 2.1: Typical Open Chain Serial Link Manipulator 

16 

LINK 5 



li 

which may be either revolute (relat:ve motion is rotational) or prismatic (relative 

motion is trc-nslational). The Oth link is usually referred to as "base" and the 

nth link is termed as "end-effector". If the end-effector of a manipulator is 

unconstrained in free space, the serial linkage has an open loop structure and is 

referred to as an open i<inematic chain. The degrees of freedom (DOF) represent 

the number of independent joint movements available for the manipulator. In 

general, the number of DOF of a manipulator is equal to its number of joints. 

A manipulator arm must have at least 6 DOF in order to locate its end-effector 

at an arbitrary point with an arbitrary orientation in space and those that have 

more than 6 DOF are termed as redundant manipulators. The set of positions 

and orientations in space that can be reached by an end-effector depend on the 

configuration of a manipulator which describes the types of joints and their 

geometry of connection in the serial linkage. The study of forward kinematics 

relates the position of the end-effector in the the link coordinates to the global 

coordinate frame attached to the base and inverse kinematics relates the position 

in the global frame to the local link coordinates, as shown in Fig. 2.2. In a 

similar manner, in forward dynamics one computes the joint position, velocity 

and acceleration and in inverse dynamics one computes the joint torques/forces 

(torque for a revolute joint and force for a prismatic joint) as shown in Fig. 2.3. 

For real-time control applications, we are interested in the inverse dynamics and 

for simulation we will use the forward dynamics. 



18 

Forward Kinematics 
Joint ... Cartesian 

Space Space 

(qi) - (x,y ,z) -
Inverse Kinematics 

Figure 2.2: Inverse Kinematics and Forward Kinematics 

Forward Dynamics Joint positions, 
Joint .. - velocities, and Torques 

accelerations 
( 'ti) ... (qi,qi'.qi) 

Inverse Dynamics 

Figure 2.3: Inverse Dynamics and Forward Dynamics 



19 

2.2.2 Denavit-Hartenberg Transformation Matrix 

Kinematic and dynamic modeling of a multi-body system requires a procedure by 

which the dynamic configuration of the manipulator can be represented. Moving 

coordinate frames attached to the links have provided an efficient means for such 

modeling (Denavit and Hartenberg, 1955). The transformation matrix which will 

transform a position vector, defined in one frame, to another frame, can be rep· 

resented by two rotations and two translations, performed in a particular order. 

A right-handed coordinate frame is assigned to each link i, such that the Zt axis 

of the coordinate frame attached to the link coincides with the axis of relative 

motion of the link with respect to the previous link and the xt axis is normal to 

the plane of z; and Zt+t· Fig. 2.4 depicts two links i, and i-1 connected by a 

joint with link frames i (X;-Y;-Z;) and i-1 (X;-1-Y;-1-Z;-1 ) attached to the two 

respective links. Note that the axis Zi coincides with the axis of motion of link 

i and the axis Zi-l coincides with the axis of motion of link i-1. The four link 

parameters are defined as below: 

distance of translation along Xi-t from 0;_1 to 0; 
distance of translation along Z; from 0;_1 to 0; 

angle of rotation about X; to align Zi-t with Z; 
angle of rotation about Zi-t to align X;-t with Xi 

(2.1 ) 

These are termed as "Oenavit-Hartenberg (DH) Parameters" and the DH pa· 

rameters for the PUMA-560 manipulator shown in Fig. 1.2 and the Stanford 

manipulator shown in Fig. 1.3 are given in Tables 2.1 and 2.2. 



20 

Axis i - I 

Axis i 

1/ a; 

Figure 2.4: Denavit and Hartenberg Parameters 



21 

Table 2.1: D-H Parameters of PUMA 560 

Link c::ti-1 oi-l ai-l di 

7. (radians) (radians) (meters) (meters) 

1 0 ql 0 0 

2 
7r 

0 0.2435 -- q2 
2 

3 0 q3 0.4318 -0.0934 

4 
7r 

-0.0203 0.4331 - q., 
2 

5 
7r 

0 0 -- q5 
2 

6 
7r 

0 0 - qc, 
2 



22 

Table 2.2: D-H Parameters of Stanford Manipulator 

Link O'i-1 oi-l ai-l di 
z (radians) (radians) (meters) (meters) 

1 0 ql 0 0 

2 
1T' 

0 0.1524 ·- q2 
2 

3 0 
1T' 

0 0 -
2 

4 0 q4 0 q3 

5 
1T' 

0 ·- qs 0 
2 

6 
1T' 

0 0 - qo 2 



23 

The transfor:"'lation matrix, generally known as the DH transformation matrix 

(Denavit and Hartenburg, 1955), can be expressed as a product of these four 

transformations, given by 

where Rot(X,a) implies rotation of n degrees about the X axis and Trans(X,a) 

means translation along the X axis by 'a' units. These four transformation~ can 

also be represented as 

where Screw(X,a,a) stands for a translation along the X axis by a distance a, 

and a rotation about the same axis by an angle a. In the expanded form, this 

can be written as 

-sinOi 
COS0jCOsa·i-l 

COS0jSi11C.'tj-t 

0 

0 
-S21lO'i-t 

COSO'j 

0 

(2.4) 

So a vector ri defined in the frame i can be transformed to the frame i-1 using 

(2.5) 

where {r}i-t and {r}i are the position vectors of the same point in i-lth frame 

and ith frame respectively. Here the position vector { r} is defined as a 4xl 

column vector to make it compatible with the 4x4 transformation matrix (Craig, 

1986), i.e. 

{ 

1'r } 
{r} = rll 

1':: 

1 

(2.6) 

'f 
t 
I 
( 
·: 

\ 

' 
;, 

... 
' I 

/ 



24 

This transformation can be used in the case of robotic manipulators to relate 

the position vector in the local coordinate system at the end-effector to the 

inertial coordinate system at the base of the robot. Mathematically, this can be 

expressed as 

Referring to Eq. 2.5, we can partition the transformation matrix and re-write 

the equation using the 3xl position vector, as 

[R]j-t {p}i-1 { 7'}i 
(3 X 3) (3 X 1) (3xl) 

{r}i-1 = --- --- --- (2.8) 
0 1 1 

(1 X 3) (1 X 1) (1xl) 

where [Rt-1 is defined as the rotation transformation matrix and {p h-t is the 

position vector of the origin of ith coordinate frame referred in the i-lth frame. 

So we can write it as1 

{2.9) 

The above equation can be illustrated by Fig. 2.5, where {r }i-1 refers to the 

position vector of point A defined in the reference frame of link i-1, {r }; is the 

position vector of the same point A defined in the reference frame of link i. 

Geometrically, the product [RH-1 and {ri} yields components of {r}i parallel 

to the axes in the i-lth frame as shown in the figure. Hence the 3x3, [R]; 

matrix, comprised of the first three rows and columns of the Denavit-Hartenberg 

1Thc \'ector {P}i-t refers to the posHion vector of the origin of the ith frame referred 
in Lh.-.! i-Hh frame. Throughout this work t.his will be associated with the link i-1, and 
hence t.hc superscript is dropped since it is referred in the i-lth frame. 



z i-1 

v. 
I 

Rotation of the vector r , projects the vector r 

in the i-Hh frame, as indicated in the figure. 

Figure 2.5: Rotation Transformation of Vectors 

25 



26 

matrix, can be used effectively to transform the free vectors such as the velocity, 

acceleration, forces and moments from the frame i to the frame i - 1 as given 

below2 

{w}~- 1 = (RJ~- 1 {w}s (2.10) 

{a};-1 = (R]~- 1 {a}; (2.11) 

{v}~-t = [R]~- 1 {v}i (2.12) 

{a}~-1 = [R]~- 1 {a}i (2.13) 

{j}~-1 = [RJ!-t {/}i (2.14) 

{n}~- 1 = [R];-1{n}i (2.15) 

where {w}~-t and {a}~-1 refer to the rt:fer to the angular velocity and angular 

acceleration of the link respectively and {v}~- 1 and {a}~-1 refer to the linear 

velocity and linear acceleration of the origin of ith link respectively and {f}~-l 

and { n} ~-I refer to the reaction forces and moments respectively at the joint i. 

The superscript i-1 indicates that these vectors are referred to in the frame of the 

link i-1 and the absence of the superscript indicates that the vector is referred to 

in its own link frame. For exam pie, { n }i indicates the joint moment vector of the 

ith link ref.:rred in the ith frame and {p h-t indicates the vector from the origin 

of the i-lth frame to the origin of the ith frame, referred in the i-lth frame. 

Since these rotation transformation matrices are orthonormal, the transpose 

of th~ matrix yields its inverse, i.e. 

(2.16) 
2Note that the vectors do not have a. superscript indicating that they are referred in 

the frame with which the vector is associated. For example, {w }i refers t? the angular 
velocity of the link i referred in its own coordinate frame. 



2i 

Hence we can write 

(2.17) 

Like the 4x4 transformation matrices, the rotation matrices {3 x 3) also can be 

concatenated, to project vectors from one frame to another, through successive 

transformation of the intermediate frames. 

Note that the above equation projects a free vector { v} such as velocity and 

acceleration vectors, defined in the ith frame to the global frame and is not 

applicable for position vectors. 

2.2.3 Newton-Euler Recursive Formulation 

The dynamics of the robotic manipulator can be modeled as a set of coupled, non­

linear differential equations using any one of the various formulations discussed in 

Chapter 1. It was noted that the Newton-Euler (NE) method is the most efficient 

in terms of the number of computations. This method is briefly reviewed in this 

section and symbolic computations are applied to simplify the NE algorithm to 

make it more efficient in terms of the number of computations. 

The NE formulation is based on the laws governing the dynamics of rigid 

bodies. The manipulator is modeled as a serial chain of rigid links as shown in 

Fig. 2.6. The force vector acting on a link is related to the acceleration of its 

center of mass by Newton's second law 

{F} = m{v} (2.HJ} 



28 

where {F} is the inertial force and { v} is the linear acceleration of the center of 

gravity (CG) of the link. The total moment vector about the CG is related to 

the angular velocity and angular acceleration of the body by Euler's equation 

{ N} = ( /]{ w} + { w} x ( JJ{ w} (2.20) 

where {w} is the angular velocity and {w} is the angular acceleration of the link 

given in the link coordinate frame. Note that "x" in Eq. (2.20) indicates the 

cross-product of the angular velocity vector and the angular momentum vector 

and [/] is the 3x3 inertia tensor about the CG given as 

[ 

l.rx fx'll fxz l 
[/] = f:r:y /'!I'll fyz 

fxz fvz fz:z 

(2.21) 

Fig. 2.6, shows three consecutive links in the kinematic chain of an arbitrary 

manipulator. Referring to this figure, {F}i and {N}i are the inertial forces and 

moments acting at the CG of the link i and {f}i and { n }i are the reaction forces 

and moments acting at the joint i. { s;} is the position vector of the CG of the ith 

link and the {p};-1 is the position vector of 0;, origin of the ith frame, referred 

in the i·lth frame, as defined in Eq. (2.8). 

The set of recursive equations to compute the inverse dynamic torques is 

given in Table 2.3 and the derivation of these equations is given in Appendix B. 

As discussed in Chapter 1. the choice of proper coordinate frames is important 

as it directly affects the computational count. For minimizing the computations, 

all the kin em a tic and dynamic parameters of each link are referred to in its local 

coordinate frame attached to the link. Referring to Table 2.3, qi, qi and ij; are 

the position, velocity and accelerations of the link i with respect to the previous 

link. 



29 

Figure 2.6: Free-body diagram of a link 



Table 2.3: Recursive Newton-Euler Algorithm 

FORWARD RECURSION: 

Step 1 : {w}i = 
{ 

[RJT { w h-t + { z} ti• if joint i roLational 

[R]{ {w }i-t if joint i translational 

..------.(]) 

{ 

[R]f{ah-t+{z}q,+ [R]f{w}i-tX{z}q, ifjointirotational 
Step 2 : {a};= 

[RJf { o }i-1 if joint i translational 

~------------------~® 
(R)f( {a }i-t+ { o h-1 X {p }i-1 + {w h-1 X {w }i-1 X {P}i-1 

if joint i rotational 

~------------------------~® 
Step 3: {a};= (R]f({ah-t+ {o}l-tx{ph-t+{wh-t=<{wh-tx{p}i-1 

if joint i translational 

.-----------------.~ 

Step 5 : {FJ, = mi{a}ei 

Step 6: {N}; = (I]i{o}i+ {w}1 x ([I]i{w};) 

BACKWARD RECURSION: 

Step 7 : {/}i = { F}i + [RJi+t {/}.-+ 1 

Step 8 : {n}i = [R]i+t{n h+t + {N}, + {s}i x {F}i + {p }i x ((R]i+l {!}I+!) 

Step 9 : ri = {z}.{n); = n 1, 

30 



31 

In case of a rotary joint these will be rotational parameters and for a prismatic 

joint the~~ will be linear parameters. These are the motion parameters which 

are directly introduced by the motor movements at the joints. In Table 2.3, 

Steps 1 to 4 compute the kinematic parameters, namely angular velocity, angular 

acceleration of the link, and the linear acceleration of the origin of the link 

coordinate frame and the linear acceleration of the CG of the link. Steps 5 and 

6 compute the total forces and moments acting on the body at the CG of the 

link. Since the velocity and acceleration of the base is known (generally equal to 

zero), the forward recursion can be done in an iterative manner, starting with the 

first link and moving successively, link by link, outward to the end-effector (i=n). 

After completing Step 6 for i=n, the reaction force and moment at the nth joint 

(fn, nn) can be computed using Steps 7 and 8. In Step 9, the z component 

of the vector { n }i computed in Step 8, is assigned as Ti (actuator torque) for 

a revolute joint and for a prismatic joint, the z component of the vector {f}i 

computed in Step 7 is assigned as Ti (actuator force). These steps are arranged 

as a combination of forward recursion for computing the kinematic parameters 

and backward recursion for computing the torques, as shown in Fig. 2.7. 

2.3 Symbolic Computations 

2.3.1 Application of Symbolic Programming 

Symbolic mathematical models, which characterize the dynamic behavior of ma­

nipulators, are needed for physical insight and engineering analysis and design. 

Dynamic simulators, parameter identification and real-time control algorithms 

rely upon efficient numerical models. The dynamic formulation, such as La-



FORWARD 
RECURSION 

R 1- .. ~1 FWR1 

~ 
... FWR2 

·~ 

... FWR3 

l 

• • • 
.lr 

.--.. FWRn ..... 

BACKWARD 
RECURSION 

F1 , N 1 J 
1 BWR1 

Jt. f . 
2J 

F2, N2 
BWR2 .. 

--. 

.4~ f 
F3, N3 

3J 

.. 
BWR3 

••• 

n2 
. ... 

n3 
.. 

~~ f n' nn 

Fn' Nn 
BWRn ,. .. 

Figure 2.7: Newton-Euler Scheme for Inverse Dynamics of Manipulators 

32 



33 

grangian formulation of robotic manipulators is a complex process, involving 

algebraic manipulation and differentiation, especially when the number of links is 

greater than 3. Symbolic programs can be used to overcome this difficulty and 

also to ensure the accuracy of the dynamic model. These symbolic programs 

manipulate algebraic expressions, in contrast to the conventional application of 

computers to number crunching. An internal algebraic representation enables the 

symbolic program to encode uniquely in computer memory the algebraic expres· 

sions, and is designed to facilitate the im pie mentation of symbolic mathematical 

operations. The~e can be written in languages such as LISP. Also commercially 

available packages such as REDUCE or MACSYMA can be made use of to de· 

velop application packages. Typically a symbolic programming system such as 

REDUCE can handle tasks such as 

(a) expansion and ordering of polynomials and rational functions 

(b) substitutions and pattern matching in a wide variety of forms 

(c) calculations with symbolic matrices or vectors 

(d) analytic differentiation and integration and 

(e) factorization of polynomials. 

For details of this software package, the reader is referred to Gayna (1988) and 

the REDUCE User's Manual (1986) or MACSYMA User's Manual (1983). 

Symbolic programs can be used in robotics for two types of applications; for 

developing closed form dynamic equations for engineering design applications and 

for developing efficient dynamic equations for real time control applications. To 

develop the dosed-form dynamic robot model, the intermediate quantities are 

generated sequentially (as prescribed by the formulation), injecting the complete 



34 

analytical expression for the intermediate quantities whenever they are required 

in the subsequent calculations. The recursions are thereby expanded, and closed­

form symbolic expressions are obtained for the joint torques/forces. The coeffi­

cients of the closed-form model are then extracted from each joint torque/force 

equation of motion. 

The second application or sym botic formulations preserves the recursive struc­

ture of the NE formulation, thereby leading to a recursive dynamic robot model. 

The intermediate quantities are again generated sequentially, but each quantity 

is examined. If a quantity requires no mathematical operation to be evaluated, 

the value is passed to subsequent calculations. If the quantity does require a 

mathematical operation to be evaluated then the symbolic quantity's name is 

passed to subsequent calculations. In the former case, one eliminates unneces­

sary intermediate quantities, while in the latter, one suppresses the expansion of 

the recursions, preserving the recursive structure of the formulation. Generating 

dynamic models through application of the NE recursive formulation requires 

only basic matrix algebra operations. 

For the present work, the N E algorithm is initially reformulated applying 

symbolic computations to bring down the computational count. This makes it 

a general algorithm which can be applied to any arbitrary manipulator. Sub­

sequently, this reformulated NE algorithm is applied in a symbolic program to 

generate customized equations for a particular manipulator. The computational 

reductions stem from the elimination of additions of zero, multiplications by ze­

ros or ones, and algebraic simplifications, all of which are performed numerically 

in the general-purpose approach. Also, by recognizing and removing repetitive 



35 

calculations within the equations, one can achieve further reduction in the com· 

putations. 

2.3.2 Reformulation of the NE Algorithm for Reduc­
ing the Computations 

The NE recursive formulation has been by far the best computationally efficient 

algorithm. A careful analysis of these equations reveal that some of the terms 

which have been shown in boxes (these boxes ha\le been numbered in the top right 

hand corner) can be reformulated using symbolic computations to economize 

on the on-line computational requirements. Referring to Table 2.3, the terms 

enclosed in bolCes 1 an..! 4 compute the Coriolis acceleration terms; the terms 

enclosed in boxes 2, 3 and 5 compute the acceleration difference vector; and the 

term in Box 6 in Step 4 computes the gyroscopic moment' terms. These can be 

simplified making use of the vector algebra and the symbolic computations. 

Coriolis Acceleration (Boxes 1 and 4) 

For a revolute joint the Coriolis component of the acceleration appears in the 

angular acceleration (Box 1) and for a prismatic joint, it appears in the linear 

acceleratio., ofthe origin of the refe1·ence frame (Box 4). From Table 2.3 one can 

see that [R]T {w }i-t occurs in Step 1 and also in Step 2. The relative velocity of 

the ith link with respect to the i- lth link is always in the Zi direction. Hence 

we can write 

Using the matrix representation, we can then reduce the Coriolis term as: 



36 

Thus the Coriolis term can be computed in just two multiplications, instead of a 

full matrix multiplication and a cross-product. 

Acceleration Difference Matrix (Boxes 2, 3 and 5) 

Referring to Table 2.3, Boxes 2,3 and 5 compute the summation of a cross 

product and a triple cross product, which is the acceleration difference between 

two points on the same link. Referring to Fig. 2.8, the acceleration of the point 

y 
p 

z Figure 2.8: Acceleration Difference Vector 

P can be written as 

{a}p = {a}o +{a} x {r} + {w} x {w} x {r} 

= {a} o + {a} Po 
(2.22) 



37 

where {a} PO refers to the acceleration difference between 0 and P. From vector 

algebra the second term can be converted to a matrix form as 

(2.23) 

Again using vector algebra the vector cross product can be written as 

{w} x {w} x {r} = ({,~}.{r}){w} - ({w}.{w}){r} (2.24) 

By making use of these two equations we can show that 

[ 

-(w~ + w~) WzW~- a; W~Wz + a 11 l { rx } 
WxWy + Oz -(Wz +w:z:) W11Wz- Or r 11 

w_,Wz - a 11 WyWz +Ox -(w; + w~) r_, 
(2.25) 

wz are the x, y, and z components of the angular velocity vector 

and ar, a 11 , az are the x, y, and z components of the angular acceleration vector. 

So we can write, 

{a}op = [t\] * {r} (2.26) 

where >. can be written as 

[ 

-(w~ + w:) 
[.X.)= W:z;W11 + Oz 

W:Wz- Oy 

WrWy - Ot 

-(w~ + w;) 
WyWz + ar 

(2.27) 

This is shown in Table 2.2 as an intermediate step after Step 2, where the matrix 

[>.i] is computed which has terms kr, k11 , kz which are written as 

kr =w11wz 
k11 = WzWr 

kz = Wz:Wy 

(2.28) 

These terms are computed at this stage and used again in Step 6. Now the steps 

5 and 6 in the Newton - Euler formulation can be rewritten as 

{a}i = [RJT( {ah-1 + [t\]i-t·{Plt-•) 



38 

{a}ci = {a}i + [,\);.{s}i 

where,\; is given by Eq. 2.27. It should be noted that (.X], is dependent only on 

the angular velocities and angular accelerations of the links, and hence [>.]o is a 

null matrix. If the ith joint is a prismatic joint then 

{w}i = (R]f.{w}i-1 

{a }i = [R]f.{a}i-1 

hence[,\]; is obtained by simply transforming (..\]i-1 as 

[.\;] = [R],[.XJ;-tfR]f (2.29) 

If symbolic manipulation is used for evaluating this matrix, the real time com­

putational requirement for [.\]i for the prismatic joint can be brought down to 

zero. For example, the Stanford manipulator (Fig. 1.3) has a prismatic joint in 

its design (i=3). The (..\]3 is computed for this joint and is shown to be equal to 

the (..\]2 matrix projected in the link coordinate frame, using Eq. 2.29. 

[.X]a = [R]3[>.]2[RJ5 

The rotation transformation matrix for i=3, in this case can be computed 

using the D-H parameters given in Appendix A and this is given as 

[ 

1 0 0 ] 
[R]J = 0 0 -1 

0 1 0 

{w h can be written as 



39 

and { w h is written as 

Using similar notation for {oh and {o}J, we can write the matrices {..\h and 

[..\]3 as 

[ 

-(w~ll + W~z) W2~W2y- 02z 

[..\]2 = W2:cW2 11 ·{· 02z -(w~z + w~:c) 
W2zW2:c - 02y W2yW2z t 02x 

[ 

- ( w~11 + wlz) W3zW311 - 03z 

[..\)3 = W3xW3y + tl3z -(w5z + w5:c) 

W3zW3:c - 03y WJI/W3z + 03:c 

Using Steps 1 and 2 of Table 2.3, we can write 

{w}a = [R]f{wh 

{ah = [R]f{oh 

Symbolically computing these two equations, we can show that 

{wh= { 

and 

{ah = { 

Substituting these results in Eq. (2.31), we find 

[ 

-(W~z t W~y) W2.7:W2.: + 0211 

[.\)3 = W2:cW2z- 02y -(w~11 + W~z) 
-w211W2:c - a2z -W2zW2y + a2:c 

-W2yW2:c t 02z l 
-W2zW2y - a2:c 

-(w~:c +w~z) 

Noting the terms of [.\]2, we can write the above equation as 

[ 

.\211 

[.\)3 = -..\231 

,.\221 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 



40 

where >.2;j refer to the (i,j)th element of the [>.]2 matrix. 

Projecting [>.]2 in the frame of link 3, we can write 

(R]3[>.]2[R]I = [ ~ ~ ~1 l [ ~:~: ~:~: ~:~: l 
0 1 0 ).231 ).232 ).233 

(2.38) 

Multiplying these matrices we get 

[ 

).211 - ).213 ).21 2 l 
[R]3(>.)2[R)I = ->.231 ,\233 ->.232 

).221 - ).223 ).222 

(2.39) 

We note that the RHS of Eqs. (2.37) and (2.39) are both same and hence we 

can write 

It should be noted that the [>.]i matrix computed for the ith fink is used to 

compute the linear acceleration of the CG of the ith link as well as that of the 

origin of the i+lth link. 

Gyroscopic Moment (Box 6) 

Now we can analyze the term w x [J].w, which refers to the gyroscopic 

moment, M9 , in this section. Using matrix representations, this can be written 

as 

{M}9 = {w} x [/].{w} = [ ~: 
-Wy 

By carrying out the algebraic manipulations, we can write the above equation 

as a sum of two matrices, one from the diagonal terms and the other from the 

off-diagonal terms of the inertia tensor given as 

(2.40) 

{ M }9 = W;wAlu - lz::) + -~.&..'xWy w; - w; 
{ 

WyWz( f: :: - [ 1111 ) } [ w:- w; WxWy 
(2.'11) 

W.rWy(fyy - Ir.r) '-'-'.rW; - t.A.'yW:: 



" '· 

~. 

l 
I' 
t 

1. 

In most cases, however, the robot design ensures that the principal axes are 

parallel to the coordinate axes and hence l.q,. l.r: and 111z are zero. In such cases 

the above equation reduces to 

where, 

~..t. 11W::(/z:- } 1111 ) 

W;:W:r;(/:r:x- f::) 
Wxw11(f1111 - fxx) 

}={ 
DJ. = 1:::- lu11 

(2.42) 

D11 = fxx - 1:::: (2.43) 
D:: = 11111 - Ix:r 

and kx. 1.~11 • k:: are defined in Eq. (2.28). It should be noted that these have been 

computed in Step 2 and hence the vector cross·product with a matrix product 

is replaced by three multiplications. In this way, the overall computations in 

the dynamic equations can be reduced by a considerable amount. The overall 

algorithm, incorporating the above modifications and explicitly identifying the 

intermediate variables, is given in Table 2.4. The reformulated terms are shown 

in this table, in boxes numbered corresponding to the boxes in Table 2.3. All the 

modifications appear only in the forward recursion and the backward recursion is 

not altered. This can be applied to any manipulator in the same way Table 2.1 is 

applied. The forward recursions are carried out for links 1 to n and subsequently 

the backward recursions are carried out for links n to 1 and the torques/forces 

are extracted from the reaction moments/forces at the joint. 



Table 2.4: Modified Newton-Euler Algorithm 

FORWARD RECURSION: 

lnitioH" ' {w}o = 0 ; {a}o =0 ;{a}o = -{ g} ; [A]o = O;{z}={ ~ } 

I. {w}; = { 
[R]f{wh-1 + {z}q, if joint i rotational 

[R]f{wh-1 if joir.t i translational 

q, { 
Will } 

Q) 
(R]f{o}i-1 + {z}q,+ -Wjz if Joint i rotational 

2. {a};= 0 

if joint i translational 

if joint i rotational 

if joint i translational 

....----....,® 

42 

(R]?'({a}i-1+ (..\)i-l·{P}i-1 if joint i rotational 

3. {a},= 
® ....---{--)-- (9 

Wjll J [R]f{{a}•-t+ (..\]i-t·{P}i-1 D + {z}qi+ 2q,. -Wiz if joint i translational 
0 

4. {a}.;= {•};+);.{•hi([) 

5. {F}i = mi{a}ci 

~--.,(V 

6. {N}; = [I]i{o};+ { ~::!; } [ g;: J;: = ~~~ 
D,.k, D, = 11111 - lu 

(Inertia Consts) 

BACKWARD RECURSION: Initialize: {f}n+1 = 0; {n}n+t = 0 

i .{/}i = {F}; + {1}!+1 

S.{n}. = [R)i+t {n}i+a + {N}i + {s}i x {F}; + {p}. x {f}~+l 

9.r, = {z}{n}; = n;, 



43 

2.4 Symbolic lCmple1nentation of the Algo­
rithm 

The main objectives of symbolic implementation of the dynamic equations are: 

1. To avoid multiplication with zeros and ones and addition with zeros in real 

time. 

2. To simplify the algebraic expressions for minimum computation. 

3. To identify and maintain intermediate variables which will minimize the 

computations, by containing c:J:p,.cs:~ion swelling. 

4. To reduce the computational burden of the symbolic modeling software, in 

terms of the execution time as well as the memory required. 

In a recursive form of an equation if symbolic computation is resorted to, in a 

sequential manner, the final expression tends to be a blown up expression, leading 

to a much higher arithmetic count than the numerical implementation. This has 

been termed as expression swelling; for computational efficiency this expression 

swelling has to be contained. For example, let us consider the following problem 

a = b+c 
e -- rta+d 
g - ef + ca 

In the above set of equations, if the final objective is to compute g, if symbolic 

computation is resorted to in a sequential manner, the final expression for 'g' in 

terms of the basic variables b,c,d and f will be 



44 

One can note that the symbolically expanded and simplified expression, has 3 

multiplications and 4 additions whereas the numerical implementation would 

involve 3 multiplications and 3 additions. It is quite obvious that the extra 

addition is due to the term (b +c) which is being computed twice; had it been 

computed separately once and substituted later in the final expression, we would 

have arrived at the same count as the numerical implementation. Hence we 

see that by ~xpanding expressions by sequentially substituting one expression in 

another leads to swelling of expressions and the computation is better controlled 

when intermediate variables are created to avoid this problem . 

In this work, each of the parameters in Table 2.4 ( {'L.I}i, {a}i, [).]i. etc.) are 

symbolically computed. The expression for one parameter arrived at a step is 

not substituted in any other step where the same parameter may appear. For 

example, referring to Table 2.4, the expression for the thret components of {w} 

is symbolically computed in Step 1, and stored in the numerical program which 

is written in FORTRAN. In subsequent steps, {w} is used only as a variable in 

the symbolic program, without substituting its equivalent expression. In this way, 

the numerical program computes the numerical value of {w} initially using the 

expressions obtained from the symbolic program and subsequently substitutes 

that value in the other expressions where the parameter {w} may appear. In 

addition to the above, all the elements of the various matrices are symbolically 

computed as new variables and they are subsequ~ntly numerically substituted. 

For example, in computing the matrix p.]i, the expression for the all the elements 

of the matrix is obtained by using symbolic computations and stored in the 

numerical program. The subsequent steps in the symbolic program can be carried 



45 

out by using the new variables representing these elements. Thus repetitive 

numerical computation of identical expressions is avoided. This procedure can be 

conveniently incorporated in any of the commercially available symbolic packages 

such as MACSYMA or REDUCE (also available for the micro-computers). A 

FORTRAN or C program can be directly generated from the symbolic program 

which can be com piled and used in the control software. In this way, one can 

formulate very efficiently the equations to compute the torques in the inverse 

dynamics calculations. The dynamic equations of the PUMA-560 robot shown 

in Fig. 1.2, with and without the wrist and also those of the Stanford robot 

shown in Fig. 1.3, have been generated using the above procedure. Tables 2.5 to 

2.8 give the dynamic parameters of these robot models. The symbolic program 

in REDUCE for generating the customized equations of PUMA-560 {6 DOF) 

manipulator is given in Appendix D. The output of such a symbolic program 

would be a FORTRAN program to compute the inverse dynamic torques/forces 

and these inverse dynamic equations for som(' standard manipulators are also 

given in Appendix D. 



46 

Table 2.5: Center of Mass Udta for PUMA-560 

Link mass x y z 
(i) (kg) (m) _(m) (m) 

2 17.40 0.0680 0.0060 -0.0160 

3 4.80 0 -0.0700 0.0140 

4 0.82 0 0 -0.0190 

5 0.34 0 0 0 

6 0.09 0 0 0.032 

Table 2.6: Moment of Inertia Parameters for PUMA-560 

Link lrr Ivy lz.r I motor 

(kg-m2) (kg-m 2) (kg-m2) (kg-m2) 

1 - - 0.35 1.14 

2 0.130 0.524 0.539 4.71 

3 0.066 0.0125 0.086 0.83 

4 0.0018 0.0018 0.0013 0.20 

5 0.0030 0.0030 0.0040 0.179 

6 0.0015 0.0015 0.0004 0.193 



47 

T<tble 2.7: Center of Mass Data for Stanford Manipulator 

Link mass X y z 
(i) (kg) _(m) (m) (m) 
1 9.29 0 -0.1105 -0.0175 

2 5.01 0 0 -0.1054 

3 4.25 0 0 0.6447 

4 1.08 0 -0.0054 -0.0092 

5 0.63 0 -0.0566 0 

6 0.51 0 0 0.1554 

Table 2.8: Moment of Inertia Parameters for Stanford Manipulator 

.tink 1%% l~v lu lmolor 

(k~-m2) (kg·m2) (kg-m2) (kg·m2
) 

1 0.276 0.071 0.255 0.953 

2 0.108 0.100 0.018 2.193 

3 2.510 2.510 - 0.782 (kg) 

4 0.002 0.001 0.001 0.106 

5 0.003 0.0004 0.003 0.097 

6 0.013 0.013 0.0003 0.020 



48 

2.5 Computational Efficiency 

The comparison of computational count of the algorithm outlined in this work 

with the conventional NE Algorithm for typical prismatic and revolute joints is 

given in Table 2.9. The computational count for the inverse dynamic compu­

tations when the joint is revolute is 258 floating point operations (flops) using 

the conventional NE algorithm per joint compared to 168 flops required by the 

modified NE algorithm. For a prismatic joint the computations reduce from 200 

flops to 113 flops. These results show that the modifications as suggested in 

this chapter can make the NE equations more efficient. Customization of the 

algorithm for z particular robot further brings down the computational count due 

to the possible zeroes and ones in the position vectors, namely, {JJ}i, {s}i· The 

comparison of computational count for implementation of the above algorithm 

for some standard manipulators with some of the earlier published results is given 

in Table 2.10. The computations for the customized dynamics using the method 

outlined in this chapter are much less than the published results for most cases. 

In case of 3 DOF, ARM (Murray and Neuman 1988) seems to be yielding better 

results but the same procedure results in about 30% more computations for the 

6 DOF PUMA robot. Also it should be noted that ARM requires excessively 

large CPU time for generating these equations whereas the method outlined in 

this chapter takes only a fraction of a second to compute this model. The com­

parison of computational counts for PUMA-560 (6 DOF) manipulator is shown 

graphically in Fig. 2.9. 



Table 2.9: Comparision of Computations 

Revolute Joint Prismatic Joint 
Parameter Method I Method II Method I Method II 

M A M A 
{wJ} 9 7 9 7 
{ Ctj} 11 9 24 19 
{At} 6 9 0 0 
{a;} 18 15 27 21 
{aci} 9 9 18 15 
{Fi} 3 0 3 0 
{Ni} 6 3 24 18 
{fi} 0 3 9 9 

{f·' ... t} 9 6 0 0 
{ni} 21 15 21 24 

TOTAL 92 76 135 123 

M= Multiplications; A = Additions 
Method I : Present work (Table 2.4) 

M A M 
0 0 0 
0 0 0 
0 0 0 
20 18 33 
9 9 18 
3 0 3 
6 3 24 
0 3 9 
9 6 0 
12 15 21 

59 54 108 

Method II : Conventional NE algorithm (Table 2.3) 

A 
0 
0 
0 
26 
15 
0 
18 
9 
0 
24 

92 

49 



Table 2.10: Implementation of inverse dynamics using symbolic computation 

A Comparison of computational counts 

RODOT Method I Method II 
M A M A 

PUMA 80 55 55 42 
(3 DOF) 
STANFORD 48 33 40 24 
(3 DOF) 
PUMA 208 152 152 249 
(6 DOF) 
STANFORD 183 140 183 147 
(6 DOF) 

M = Multiplications; A = Additions 

Method I - Present Work 
Method II - Ivlurray and Neuman [1988] 
Method Ill - Toogood, R.W.[1989] 
l'vtethod IV - Khalil, W. et a.l. (1986] 
Method V- llurdick, J. [1986] 
Method VI - Balfoutis, C.A. (1988) 

!vlethod III Method IV 
M A M A 

114 81 - -

- - - -

441 365 214 176 

338 276 187 152 

Method V 
M A 
- -

- -

401 254 

- -

.50 

Method VI 
M A 
- -

- -

277 255 

- -



Floating Point Operations 
1000 

(806) 

800 (655) 

(532) 
600 

(360) (401) (390) 

400 

200 

Present Work ARM Toogood Khalil Burdick Balafoutis 

- Multiplications g Additions 

Total flops given in brackets. 

Figure 2.9: Comparison of Computations for implementing the inverse dyanmics 
of PUMA-560 manipulator 



52 

The significant reduction in the computations can be attributed to the proper 

choice of the intermediate variables (w;, A;, etc.). Due to the efficient symbolic 

implementation of the algorithm, the CPU time as well as the virtual memory 

requirements are very low and can be easily carried out on a micro-computer. 

2.6 Conclusion 

An efficient scheme for dynamic modeling of the robotic manipulators has been 

developed in this chapter using the A matrix approach and symbolic programming. 

Based on the work in this chapter, the following conclusions can be drawn. 

1. An efficient scheme for dynamic modeling of the robotic manipulators can 
be developed from the conventional N E algorithm. 

2. Introducing some modifications in the conventional Newton Euler algorithm 
improves the computational efficiency. 

3. This simplified algorithm can be used to derive customized robot dynamic 
models, using iterative symbolic programming, for real-time control appli­
cations. 



(· 
') 

-t 

[' 

Chapter 3 

Modeling Friction in Inverse 
Dynamics 

3.1 Introduction 

As robotic manipulator systems become increasingly common in industrial ap­

plications, accurate manipulator dynamics that govern their operations become 

essential to ensure control robustness. Much of the published work in compu­

tational robot dynamics neglect the frictional effects but in actual task perfor­

mance they are quite significant. Armstrong's experiments (Armstrong, 1988) 

reveal that the friction torques can be as high a!: three times the inertial torques. 

These effects are significant in robots which operate under high torques, and 

the errors in the trajectories in such applications can be very large, if friction 

is not included in the dynamic model. To minimize such errors, not only the 

model should be accurate but also the computations have to be carried out in 

real-time. An analytical model for friction in robotic mechanisms is developed 

in this chapter and a case study of the applicaton of this model to PUMA-560 

manipulator is also presented (Dhanaraj and Sharan, 1990). 

53 



54 

3.2 Coulomb Friction in Robotic Mechanisms 

While viscous friction can be easily modeled as a linear function of relative ve­

locity, Coulomb friction is non-liut:ar and is proportional to the normal forces 

acting at the contact surface. The laws of Coulomb friction are considered to be 

valid in bearings (journal and rolling) and also in transmissions (e.g. gearboxes 

or harmonic drives). Friction at the joints can be expressed as a function of the 

joint reaction forces and moments at the joints. Friction in transmissions can be 

conveniently modelled using the input-output graphs of the transmission. 

One important point has to be nvt<::d here. Given two identical robot manipu­

lators, one operating under frictional conditions and the other considered ideally 

frictionless, the resultant joint interactions (forces/moments) in corresponding 

links have to be the same in direction and magnitude for both the manipulators 

to produce identical motion (Gogoussis, 1988). So, if the kinematic state of the 

manipulator, (i.e. the position, velocity and acceleration of all the links of the 

manipulator) is given then the resultant reaction forces/moments at the joints, 

in the case with friction are equal to the ones in the system without friction. 

Thus, if the reaction forces for the case of frictionless model are known (which 

can be computed using the modified NE method), the frictional torques can be 

computed using the basic Coulomb's law. This can be understood from Fig. 3.1, 

where T; is the dynamic torque required to produce a given set of acceleration, 

velocity and displacement on a link, when there is no friction. When friction 

is included, we need to apply two additional torques, one due to the friction at 

the joints denoted by Tj and another one due to the losses in the transmission 

denoted by TJ. It should be noted at this point that all these three torques can 



Input ... 
Frictionless t;, Joint 'Zout Transmission 'Ci 

Model Friction 
.. Friction ,.. --, 

, 

(NE) 7-/ ?.} 

ri = Basic Dynamic Torque 

lout = Transmission Output Torque 

~;., = Transmission Input Torque 

Figure :u: Frictional Torque in Robotic Mechanisms 



{ 

56 

take positive or negative values depending upon the direction of the relative motion 

at the joint and this is explained in the following sections. 

3.3 Friction at the Joints 

The joint frictional forces arise due to two reasons, one due to the normal reaction 

forces {f}i at the joints and the second one due to the reaction moments {n}i 

at the joints. If the reaction rnoment at a joint is zero, then the frictional force 

will be of the first kind only and this can be written as a function of the effective 

normal force F N at the joint expressed as 

{3.1) 

where fr and fv are the x and y components of the reaction force {f}i· 

Referring to Fig. 3.2, the friction force f is equal to p. times I FN I and the 

direction of the friction force is opposite to the direction of the relative rotation 

between the journal and the bearing. In the figure, the relative rotation of the 

journal is in the clockwise direction and the frictional force acts in such a way 

to produce a torque in the antidockwise direction. Hence the frictional moment 

( TJ )J can be expressed as1 

(r,)1 = fr 
= 1-' I F:v I r 

{3.2) 

where r is the journal radius. This would imply that the applied torque has to 

com pen sate for this frictional torque in addition to the inertial torque and hence, 

it will be the sum of these two torques. 

The frictional moment arising due to the reaction moments can be understood 

from Fig. 3.3. Here, a force P is applied at the end effector and its moment 

11 FN I indicates Lhe absolute of FN. 



.;; 

)( 

· Figure 3.2: Friction in a Journal Bearing 



58 

' ·! 

. 
)" 

Figure 3.3: Friction due to Reaction Moments 



59 

about the x axis of the previous link will be P times I. This must be resisted 

by a reaction moment at the joint which will be equal to I F I times d, where 

d is the effective length between the the bearing support points. For a single 

bearing support, d will be equal to the effective length of the bearing and for a 

two bearing support, it will be equal to the distance betwe~n the support points. 

There will be frictional forces arising due to this force F which will be given by the 

expressions similar to Eq. 2. When the force and the moment ( {J}i & { n };) act 

simultaneously at the joints, the frictional torque can be written as 2 

(3.3) 

where fz and j 11 are the x and y components of the reaction force at the joint 

and nz and n 11 are the x and y components of the reaction moment at the joint. 

In case of prismatic joints with a linear bearing, the frictional force is a direct 

function of the normal forces and can be written as 

·Jl. 
(rJ)J = sgn(O)d[l 0.5dfz:- n 11 1 +I O.Sd/11 - nr I (3.4) 

+ I o.sd !:& + n 11 I + I o.sd / 11 + nz 11 

When a thrust bearing is used, the frictional forces will be a function of the 

axial force, and hence in such cases, the frictional torque can be written as 

(3.5) 

The applied torque should compensate the frictional torques and hence the 

total torque will be equal to the applied torque from the frictionless model plus 

the moment due to the friction force. In Eqs. 3.3 to 3.5, ( Tf )J is the frictional 

2sgn(B) indicates the sign function. 
sgn(D) = + 1 if 8 > 0 
sgn(8) = -1 if 8 > 0 



oo 

Table 3.1: Friction at the Joints 

Type of Bearing Frictional Torque Equation 

1. JOURNAL BEARING 
• JL1' [ . 

(r,)1 = sgn(O) d J(0.5cl /1:- ny)2 + (0.5dfu- nx)2 

+ (0.5cl fz + ny )2 + (0.5d fu + nx )2 j 

2. LINEAR BEARING 
. II 

(TJ )1 = sg11(0)d [I 0.5d fx- 71y I +I 0.5d / 11 - nx I 
+ I o .. sc! f:z.· + ny I + I o.sc1 Jy + nx I] 

3. THRUST BEARING (Tj)J =~gn(O);H·Ifz I 

torque required to compensate friction at the joint. The torque required at the 

joint, or at the output end of the transmission, Tout. can be computed by summing 

up the dynamic torque and the frictional torque, when the applied torque is in 

the direction of motion, given as 

J 
Tout= Tj + TJ (3.6) 

When the direction of the dynamic torque is opposite to that of the motion 

(braking motion), the frictional torque will be aiding the applied torque and 

hence Tout will be given as 

(3.7) 

Table 3.1 summarizes the various equations for computing the frictional torque 

at the joints. 



61 

3.4 :Friction in Transmissions 

The major source of friction is in the transmission systems, which may com­

prise of gear drives, belt drives, etc. For a detailed analysis, a commonly used 

harmonic drive system can chosen. Harmonic drives have been extPnsively used 

in industrial robots owing to their nigh efficiency, low weight and compactness 

(Dudley, 1956; Chironis, 1967). For trajectory control the robot drives require a 

wide range of torques, and a precision control is possible only if the friction in 

the transmissions is also considered in the dynamic model. The efficiency curves 

of the transmission system (these are generally available from the manufactur· 

ers) such as harmonic drives can be used to model the friction a I losses in the 

transmission. The efficiency curve of a typical harr· 'nic drive, shown in Fig. 3.4 

is a non-linear curve with high frictional losses at low torque operations leading 

to very low efficiencies at such regions (Dudley, 1956). In robotic mechanisms, 

such regions cannot be avoided in trajectory control. 

Defining Tin as the torque generated by the motor at the input shaft of the 

harmonic drive and Tout as the torque available at the output shaft. the frictional 

torque in the transmission, r 1 )T can be written as 

T 
TJ = m X Tin- 'Tout (a.s) 

where m is the torque amplification ratio, which is given by 

Tnput Speed 
m= 

Output Speed 
(3.9) 

It should be noted that the efficiency for the transmission system can be written 



62 

0.9~------~--------~------~--------~------~ 

0.7 

0.6 

> u 0.5 z 
w .... 
(.) .... 
IJ. tb 0. 4 

0.3 

0.2 

0. 1 

o~------~~------_.--------~--------~------~ 
0 20 40 60 80 100 

X LOAD OF RATED OUTPUT TORQUE 

Figure 3.-!: Efficiency of a Harmonic Drive 



63 

as 
Power· Output 

11 = 
Power lnzmt 

Output Tol'que X Output Speed 
{:UO) = 

Input Tm•que X lr~put Speed 

Tout 1 
=--

Tin m 
Due to the high inertia of the transmission systems and the high static friction, 

the no-load torque or the break-away torque of the drives (TB) are normally very 

high and these can be incorporated in the input-output model as 

Tout 
Tin=-+ TB 

I] 
(3.11 ) 

In addition to the factors discussed above, one has to note that when the output 

torque and the velocity of the shaft are in opposite directions, the friction a I 

torque will be in the same direction as the applied torque and hence the input 

torque will be less than the output torque. The complete set of equations for 

the input-output relationships are given in Table 3.2. 

Note that in these expressions 17 is a function of the ratio of the output 

torque to the rated torque. Fig. 3.5 demonstrates the input-output relationship 

described by these equations. One should note that 'curve I' corresponds to 

the positive velocity and 'curve II' corresponds to the negative velocity. Note 

that at point A (Tout > 0), the required input torque is greater than Tout for 

positive velocity and is less for negative velocity. In the same manner at point 8 

(Tout < 0), the required input torque is less than Tout for positive velocity and is 

greater for negative velocity. 

The computational count for including the frictional model is summarized in 

Table 3.3. The efficiency data for the transmission system can be generated using 



64 

Table 3.2: Friction at the Transmission 

Case 1 : Tout> 0 
Tout 

'Tin=-+ TB . ., 
0>0 

Case 2 : Tout< 0 
Tout 

Tin= --TB 

0<0 
1J 

Case 3 : 'Tout > 0 Tin= Tout1"f- TB 

0<0 

Case 4 : Tout< 0 Tin= Tout1f + TB 

0>0 



ii 
I z -
~ 
C3 a: 
C) ... ... 

150 

100 

50 

i -50 
M 

-100 

-150 

I 
I 
I 
I 

65 

-----l~----~-----~----A 

-200~--~-----L----~----~--~----~----._--~ 

-200 -150 -100 -50 0 

OUTPUT TORQUE 

50 
(N-M) 

100 

Figure 3.5: Input-Output Curve for a Harmonic Drive 

150 200 



66 

Table 3.3: Computational Co,Jnt for the Friction Model 

Dynamic Model Revolute Joint Prismatic Joint 
Type M A M A 

Frictionless 92 76 59 54 
M~>del (Table 2) 

(rr.)J(Table 5) 15 5 10 7 
1 

Friction (rr.f1' (Table 6) 5(2*) 4(2*) 5(2*) 4(2*) 
) 

Model 

Total 112(109*) 85(83*) 74(71*) 65(63*) 

* - The transmission frictional torque is computed using a cubic spline approxi· 
mation for the efficiency curve. If a linear interpolation is used then the compu· 
tation will be only 2 multiplications and 2 additions as shown in figures within 
the brackets. 



I' 
r. 

i ,. 
' •, 

~ .. 
' . 

67 

eithor a cubic spline interpolation or a linear interpolation. When anti-friction 

bearings such as ball or roller bearings are used in the joints, the coefficient of 

friction tends to be very low and it may be sufficient to consider the frictional 

torque in the transmission only. It can he seen from the Table 3.3, that if 

linear interp..,lation is used for the efficiency data, the additional computational 

count wil: :..~ only 24 (15+5+2+2) ti"ating point operations per joint, and if 

the coefficient of friction at the joint is considerably low ( < 0.05), rf need not 

be computed and hence the additional loau for frictional etTects will be only 4 

floating point operations. 

3.5 Case Study 

In order to demonstrate the siijnificance of the frictional torque, the above for-
• 

mulation was used to generate the inverse dynamics problem of a PUMA-560 

positioning system. The basic dynamic torque r and the joint friction torque 

rf were computed and after a few steps the required nominal input torque Tin 

was computed. The end-effector of the robot was moved along a straight line 

trajectory as shown in Fig. 3.6. The velocity profile in the global J-ordinates 

is shown in Fig. 3.7. Using the program given in Appendix D, the angular posi­

tions, velocity and accelerations of the three links wer~ computed. The angular 

position and velocity of the links are shown in Figs. 3.8 and 3.9. The motor 

torques were computed using the procedure as shown in the flow-chart in Fig. 

3.10. The parameters used in the friction model are given in Table 3.4. 

The applied torque profiles with and without friction are shown in Figs. 3.13 

to 3.15. At 0.6 sees for example, the contribution of frictional torque is as shown 



y 

' 

z 
' ' 

A 

Figure 3.6: Trajectory in the Global Coordinate f-rame 

68 

I 



6!1 

0.5~----------~.------------r-.----------~.~--------~ 

0.45- -
I 

o. 4 - j 
-til 0.35 ~ 
en ....... 

f 
~ 

z -
a: 0.3 ~ -
0 
t-
u 
Ul 

~ 0.25 ~ -
I 

~ 
~ 

0.2-

ffi 
~ 0.15 ~ 
en 

-

0.1 ~ -

0.05 .. 

A L---------~·---------------._•---------~·-----------\ B 
0 0.5 1 1.5 2 

TIME (SECONDS) 

Figure 3.i: Velocity Profile in the Global Coordinate Frame 



-l3 
~ 
t!) 

"' c -
1-

w w 
tJ 
~ 
....J a. en .... 
c 
a: 
~ _, 
ra z 
~ 

70 

60-----------r----------.----------.--------~ 

40 

20 

0 

-20 

-40 + • LINK I 

o • LINK II 

-eu w • LINK III 

-eo 

-1000L----------~-----------~1------------1.~5---------~2 
0.5 

TIME (SECONDS) 

Figure 3.8: Angular Displacements in the Link Coordinate Frame 



I I 

1.5----------~----------T---------~----------~ 

1 

-en 
~ 0.5 -

-1 

+ • LINK I 

o • LINK II 

* • LINK III 

-1.50~--------~--------~---------L-----~--~2 o.s 1 1.5 

TIME (SECONDS) 

Figure 3.9: Angular Velocities in the Link coordinate Frame 



-
1 START ) 

---------~..,. (), o, e 

1 
COMPUTET; 

USING TABLE 2 

CO~PUTE ( TJ )f 
USING TABLE 5 

COMPUTE 77 
FROM FIG. 5 

COMPUTE (Ti"); 
USING TABLE 6 

.......,-______ __.( RETURN ) 

-
Figure 3.10: Flow-Chart for Computation of Frictional Torque 

. ,, 

·~ 



50~---------r----------~--------~----------~ 

40 

30 

ii' 
I 

20 
3 

o • TOTAL TORQUE 

-to 

TIME = 0.6 SECS 

-20~------------.L---------~----------._--------~ 

0 0.5 1 1.5 2 

TIME (SECONDS) 

Figure 3.11: Torque Profile for the First Link 



-• I z -
~ a: 
0 
1-

50 

0 

-50 

-100 

...,_ _____ REGION I 

I 
I 
I 
I 

* • BASIC (>YNA~IC TORGUE 
I 

a • TOTAL ·roRQUE 
t 
I 
I 

TIME = 0.6 SECS 

74 

-150~--------~~~------~------L----~--------~ 
0 0.5 1 1.5 2 

TIME (SECONDS) 

Figure 3.12: Torque Profile for the Second Link 



i5 

30 ..._--REGION II ~.,..,....1~------- REGION I ----+-....,.. 

20 

-• ! 
~ 10 
CJ a: 
Q 
t-

-10 

M • BASIC DYNAMIC TORGUE 

o • TOTAL TORQUE 

TIME = 0.6 SECS 

-20~--------~~~----~----------~----------~ 
0 0.5 1 1.5 2 

TIME (SECONDS) 

Figure 3.13: Torque Profile for the Third Link 



76 

Table 3.4: Friction Parameters for PUMA-560 Manipulator 

Joint Friction Transmission Friction 
Link Friction Journal Break-away• Maximum]. 
No Coeff. radius Torque (TB) Torque (Tmax) 

J1. m N-m N-m 

1 0.1 0.10 6.3 97.6 

2 0.1 0.08 5.5 186.4 

3 0.1 0.07 2.6 89.4 

l : Values taken from Armstrong, 1988. 

in figure. The values of the joint frictional torque and the transmission frictional 

torque at this instant of time are given in Table 3.5. 

It can be seen that the joint frictional torque was much smaller than the 

transmission frictional torque and this was true for all times. The results in Figs. 

3.13 to 3.15 show that the frictional torques are quite significant. An interesting 

point to note in Figs. 3.14 and 3.15 is that in region I, both iJ and T being in 

the same direction, the total torque is less than the dynamic torque whereas in 

region II, the opposite is true. 

3.6 Conclusion 

An efficient scheme for dynamic modeling of the robotic manipulators including 

the non-linear frictional effects has been arrived at in this work. Based on the 



7i 

work in this chapter, the following conclusions can be drawn. 

1. Friction is significant in robotic mechanisms and should be included in the 
dynamic model for better accuracy. 

2. An efficient algorithm, for modeling manipulator dynamics including fric­
tion can be developed. 

3. The frictional effects are present in the joints as well as the transmissions 
in the robotic manipulators. These frictional effects should be modeled 
separately for greater accuracy since the frictional effects at the joints are 
much lower than than those in the transmissions. 

4. The computational load to incorporate friction in the dynamic model is only 
marginally increased, when used along with the modified NE algorithm. 



78 

Table 3.5: Torque Values at Time= 0.6 sees 

Basic Joint Total Transmission Total 
Dynamic Frictional Torque Frictional Input 

Torque Torque at Joint Torque Torque 
(N-m) (N-m) (N-m) (N-m) (N-m) 

link I 1.2140 1.7803 2.9943 9.8968 12.8911 

Link II -15.6364 -0.3281 -15.9646 -17.9472 -33.9117 

Link Ill -0.8042 0.1241 -0.6801 3.0449 2.3648 



Chapter 4 

Parallel Processing of Inverse 
Dynamic Equations 

4.1 Introduction 

Increasingly robots are designed for high-predsion and high-speed applications 

and these in turn demand a highly sophisticated control mechanism. The dy-

namics of these manipulators, as discussed in earlier chapters, is highly non-linear 

and demand a large number of computations for real-time control. Coupled with 

this, the demand for microprocessor based controllers, capable of attaining a 

sampling rate of over 1 KHz, has required research necessary f::Jr efficient algo­

rithms which can be implemented in parallel architecture. Parallel computers are 

finding increasing applications, since they offer potential advantages of higher 

performance, lower cost to performance ratio, increased availability and easy 

portability of the controller. As discussed in Chapter 1, parallel processing has 

been a very attractive solution for modeling the inverse dynamics of robotic ma­

nipulators in real time control (Binder, 1985; Kasahara and Narita, 1984, 1985, 

1988; Lee and Chang, 1988; Chen et al, 1988; Khosla and Ramos, 1988; Luh 

79 

•.; 



80 

and Lin, 1982; Nigam and Lee, 1985; Tonkinson and Donath, 1988; Vukobratovic 

and Kircanski, 1988). The modified NE Algorithm developed in Chapter 2 can 

be implemented as a parallel algorithm to achieve a high computational speed . 

The multiprocessor implementation of this algorithm using a "task streamlining 

approach" is discussed in this chapter. The task streamlining approach aims at 

1. A systematic decomposition of the inverse dynamic problem of a robotic 
manipulator of arbitrary configuration to a finite number of subtasks of 
uniform computational load, and 

2. A heuristic algorithm for scheduli.ng these subtasks on a multiprocessor 
consisting of an arbitrary number of processors, thereby maximizing the 
speed-up as well as the processor utilization. 

4.2 Multiprocessor Issues 

4.2.1 Classification of Parallel Computers 

A typical uniprocessor computer processes all instructions sequentially, one in-

struction at a time, and hence they are termed as Single-Instruction-Single-Data 

(SISD) systems. The schematic diagram of the organization of such a computer 

is shown in Fig. 4.1. The single control unit (CU) governs the instruction stream 

(IS) which flows to the processing unit (PU) and the data stream (DS) which 

flows from the memory module (MM) to the PU and vice versa. Parallel com­

puters can process information and data in parallel through multiple PUs and 

use one or more of the CUs. Parallel computers, in general, can be grouped into 

two major families: (a) "vector" and (b) "multiprocessor" systems (Hwang and 

Briggs, 1967; Polychronopoulos, 1988). Vector processors are a set of identical 

processors which can process different data simultaneously ?nd for this reason, 



Sl 

IS 

I 
IS OS 

cu PU -• MM .... .. 
..... 

Figure 4.1: SISD Computer Organization 



82 

this reason, they are also called as Single-Instruction-Multiple-Data (SIMD) ma· 

chines. The schematic diagram for such a computer is shown in Fig. 4.2. These 

vector processors can be further grouped into pipelined and array machines. A 

pipeline computer performs overlapped computations to exploit temporal par­

allelism, where component operations may be repeated many times, as in the 

case of matrix multiplication. Examples include the Cray 1, the CDC Cyber 205, 

the Fujitsu VP-100/200, the Hitachi S-810, and the Convex-1 computers. Array 

computers usually comE- with a number of identical arithmetic logic units (ALU) 

interconnected in some symmetric structure (e.g., linear array, mesh, ring). An 

array processor uses multiple synchronized arithmetic logic units to achieve spa­

tial parallelism. Finite element equations and other partial ditTerential equations 

are best-handled using an array processor (Ducksbury, 1986). Some existing ar­

ray machines include the Goodyear MPP, ICL DAP, llli.1c IV, and the Connection 

machine. 

The "multiprocessor systems" are composed of a set of independent and 

autonomous processors that are fully or partially interconnected in some way. 

Multiprocessors can be synchronous or asynchronous where each processor is 

driven by its own clock. These can execute different instructions on different 

data and for this reason they are also called Multiple-Instruction-Multiple-Data 

(MIMD) systems. The organization for such a system is shown schematically 

in Fig. 4.3. Two major subfamilies of multiprocessor computers are the shared 

memory systems and message passing systems. In the former organization, all 

processors share the same memory address space, and are connected to a shared 

physical memory through a high bandwidth bus or a multistage interconnection 



83 

.--------~ 

OS 1 G PU 
1 

~ ·- OS~ 
IS PU 2 cu 

• • • SM • • • 

PUn 
DSn G 

IS I 

Figure 4.2: SIMD Computer Organization 



S·l 

OS 1 I G IS 1 
,.....---- IS 1 

cu 1 PU 1 I 
I 

I 

G IS 2 IS 2 
OS 2 

cu 2 PU 2 

• • • 
• • • 
• • • 

ISn IS n OS n 8 ~ CU n PUn 

I I 

Figure 4.3: MIMD Computer Organization 



85 

network. Communication between processors is accomplished through the shared 

memory and hence they are also termed as 'tightly coupled processors'. Examples 

of shared memory systems include the Cray X-MP, Cray 2, ETA-10, Alliant FX/8, 

IBM 3090 and Sequent. In the message passing organization, each processor has 

its own private memory and there is no physical shared memory and hence they 

are also termed as loosely coupled systems or distributed systems. Processors 

communicate asynchronously using message passiug mechanisms. The Intel hy­

percube, the Caltech cosmic cube, and the N~cube/10 are examples of message 

passing multiprocessors. 

For impleml:!ntation of the robot dynamics, it har. been found that a shared 

memory multiprocessor would be an ideal configuration (Ramos, 1988). Re­

searchers have taken two strat.egies • one using special purpose architecture 

(Chen et al, 1988; Lathrop, 1985) and the other using general purpose archi­

tecture (Kasahara and Narita, 1988). For the purpose of this work, a general 

purpose, shared memory multiprocessor as shown in Fig. 4.4 is considered. 

4.2.2 Exploiting Parallelism in Algorithms, Synchro­
nization and Uniformity of Subtasks 

In most cases, parallelism is not explicit in computational algorithms which are 

designed for sequential execution and hence an algorithm which requires execu­

tion on a multiprocessor system must be de com posed into a set of processes 

or tasks to exploit the parallelism. Here, either a fine-grained approach or the 

coarse-grained approach can be taken. Calculations involving a number of nearly 

independent but communicating calculations such as Monte Carlo simulations, 

or database management systems, can be executed in parallel. This type of 



86 

M-1 M2 M3 ••• Mn 
; 

1 

INTERCONNECTION NETWORK 

~ ~ 
1 ••• 
~ Pn 

t ':t 
I 

PROCESSOR INTERCONNECTION _j 

Figure 4.4: A Shared Memory Multiprocessor 



87 

paralleliam that involves nearly independent tasks is termed as coarse-grained par­

allelism. On the other hand, if a normally indivisible calculation is partitioned 

among processors, this would be termed as fine-grained parallelism. An example 

of this would be computing different iterations of a 'do' loop in a program. Fine­

grained parallel programming is generally more difficult to do than coarse-grained 

parallel programming, although both types depend on exactly the same principles. 

The fine-grained approach generally requires intensive scheduling strategy and also 

a high degree of interprocessor communication. 

Efncient algorithms for solving the problems of arithmetic complexity are fre­

quently based on a technique known as recursion. Recursion is an important 

algorithm design technique. It is a method of solving a problem by dividing it into 

a small number of smaller subproblems of the same type as the original problem. 

The subproblems are divided in the same way. Eventually the subproblems become 

small enough to be solved directly. The solution to the smaller subproblems are 

then combined to give solutions to the bigger subproblems, until the solution to the 

original problem is computed. A useful rule for recursively partitioning the problem 

is to create subproblems of approximately equal size; to be able to partition the 

job into subtasks of equal size is the most challenging work. 

One of the critical issues for multiproces!mr systems is synchronization, which 

is a fund a mental problem with cooperating processes in a multiprocessor 

environment. The computation process in the case of a multiprocessor requires 

interprocessor communication. The parameters which are computed in one pro­

cessor, say A, may be required for a subsequent computation in another processor, 



88 

say B. In such a case, the processor A after computation of these parameters 

should send them to the processor B, and the processor B should start the rel­

evant computation only after receiving the parameter sent by th~ processor A. 

A synchronization mechanism is used to delay execution of a process in order to 

satisfy such data dependency con~traints. Various synchronization mechanisms 

can be used, depending on the harC:ware (Oieinick, 1982). It has been noted that 

for a tightly coupled systems, a large variation in the size of the tasks compos­

ing the multiprocessor process requires significantly large synchronization time, 

which will slow down the overall performance (Kronsjo, 1985). Therefore, a zero 

variation, or tasks of uniform computational load, will be a very good choice for 

easy synchronization. 

4.2.3 l\llultiprocessor Scheduling 

For efficient implementation of an algorithm in a parallel computer, the tasks have 

to be scheduled on a finite number of processors to ensure maximum speed-up 

as well as high processor utilization. The speed-up is the ratio of the execution 

time on a uniprocessor over a parallel processor and the processor utilization 

indicates the idle conditions of the processor. There are many approaches to 

program scheduling. Most can be classified as static or dynamic. In static 

schemes, scheduling is done before program execution based on knowledge of 

global program information. The advantage of static scheduling is that the 

run-time overhead with respect to scheduling is minimal. Dynamic schemes are 

typically based on local information about the program. Scheduling decisions 

are made at run-time which incur a penalty or overhead. In other words, in 



89 

the static scheduling, the sequence of operations is decided beforehand whereas 

in the dynamic scheduling, decisions are made during the execution of the job. 

This overhead is the main disadvantage of dynamic scheduling. Considering the 

nature of the robotic problems, static scheduling has been found to be an ideal 

strategy (Kasahara and Narita, 1985). 

A key issue in the study of processor scheduling is the amount of overh~ad or 

computation time needed to locate a suitable schedule. A scheduling algorithm is 

a procedure that produces a schedule for every given set of processes. An efficient 

scheduling algorithm is one that can locate a suitable schedule in an amount of 

time that is bounded in the length of the input by some polynomial. Construction 

of optimal schedules is NP-complete (NP stands for Non-Polynomial) in many 

cases1• NP-complete implies that an optimal solution may be very difficult to 

compute in the worst possible input case. However, construction of suitable 

schedules, that is, computing a reasonable answer making use of some heuristics 

for the typical input case, is not NP-complete. Therefore, suitable schedules can 

be obtained for concurrent processes. Various search schemes can be utilized 

to arrive at a sub-optimal schedule for the required multiprocessor configuration. 

Three characteristics of multiprocessor scheduling of the robot dynamics problem 

should be noted at this stage, namely 

1. It is a deterministic problem (Coffman, 1975) since the tasks as well as the 
resources can be defined before solving the problem. 

2. It is a non-preemptive scheduling problem (Coffman, 1975). With this 
restriction a task cannot be interrupted once it has begun execution; that is, 
it must be allowed to run to completion. In general, preemptive scheduling 

1 For an excclltmt backgrouud on t.hc compntnlionol complexity of algorit.hms the render 
is rdcrrcd t.o 1\ ronsjo, I 985 and Coffman, I !lib. 



90 

permits a task to be interrupted and removed from the processor under the 
assumption that it will eventually receive all its required execution time, 
and there is no loss of execution time due to preemptions. 

3. It falls under the category of list scheduling (Coffman, 1975). The sequence 
by which tasks are assigned to processors is then decided by a repeated 
scan of the list. The scheduling is done off-line. 

Two principal measures of schedule pt!rformance are the pr-ogram sperd-11p, 

Sp. defined as 

(·LI) 

and the efficiency, Ev, or processor utilization rate for a given program and a 

given number of processors, which :s defined as 

s 
E -2 p-

F 
(4.2) 

where p is the number of processors employed, 1\ is the the execution time in a 

uniprocessor machine and Tp is the execution time in a parallel processor with p 

processors. While we try to optimize on both these measures, the speed-up may 

be the dominant criteria for deciding the number of processors to be employed. 

4.3 Task Streamlining Approach 

As described in the previous section, in order to pr•:>cess the equations in parallel, 

the overall computational task should be split into a finite number of subtasks. 

Also, to achieve a high level of synchronization, the variation in the size of these 

tasks must be minimal. The Task Streamlining Approach, developed in this work 

aims at decomposing the inverse dynamic problem into a set of uniform subtasks 

and ordering them into a layered task graph and scheduling these subtasks on to 

the available processors. These steps are described in the following sections. 



91 

4.3.1 Task Decomposition Scheme 

A common approach to the task decomposition of the inverse dynamic problem 

of manipulators has been one that was initiated by Luh and Lin (1982). The 

torque&/forces at the joints were computed by using the set of nine equations of 

the modified NE algorithm given in Table 2.3. However, the level of computational 

complexity of these equations vary largely, from 0 to 24 flops, 3 (Luh and lin, 1982) 

and he'tce it is necessary to split the larger tasks into subtasks to achieve better 

synchronization. From a careful analysis of these equations, which are mostly 

in vectorial form, it is to be noted that there are a number of explicit subtasks, 

requiring three floating point operations. In developing a parallel algorithm, no 

distinction need to be made between the computational load of a multiplication 

and that of an addition, since recent processors hnve almost the same execution 

time for both these operations (liu and Chen, 1986). In the present work, the 

modified NE algorithm is taken as the base algorithm and each equation in the 

algorithm is analyzed and subdivided into subtasks of three floating point oper­

ations in an explicit way, so that these subtasks can be generated automatically 

using symbolic programming. The subtasks for the revolute joint is developed first 

and modifications are made subsequently to these subtasks for applying to a pris­

matic joint. The modified Newton-Euler algorithm, given in Table 2.4 is analyzed 

step by step and each step is decomposed into several subtasks of 3 floating point 

operations as shown in Table 4.1. The details of this decomposition process are 

given below. 

Step 1 : The angular velocity is computed by the first equation in the algorithm, 

3•nops' is used o indicale the floating point arithmetic operations, such as multiplications 
and additions 



92 

which has the form 

{w}; = [R]T{w};-1 + {z}rj; 

This involves a matrix multiplication with a vector followed by vector addition. 

It should be noted that the rotation transformation matrix, [R];, is sparse and its 

structure is generally one of the two forms given below. If joint i is parallel to 

joint i-1, then 

[ 

c· 

[R]; = -;; Sj 0 l 
C; 0 
0 1 

(4.3) 

If joint i is perpendicular to joint i-1, then 

[R]i = ~ ~] 
Cj 0 

( 4.4) 

When joint i is parallel to joint i-1, then this mu!tiplication results in equations 

as below 

{ 

Cj * Wi-IJ' + Sj * Wi-111 } 

[R)i{w }i-1 :.: -.'li * Wi-t.r + C; * Wi-1 11 

Wi-lz 

(4.5) 

As we can see in these equations, the multiplication of the [RJ matrix with the 

{w} vector results in two expressions (w;.r and w;11 ) each requiring three floating 

point operations (2 multiplications and 1 addition) ar:d the third expression does 

not require any computation. When the axes are perpendicular, the expression 

for Wi.r and Wi: will require three flops and the expression for w;11 will require 

no computations. In either case the multiplication of the [R] matrix can be 

conveniently arranged in two subtasks. The addition of the relative velocity 

vector {Z}(j affects only the Wi: term, which requires one floating point operation 

(addition) which can be assigned to ;:mother independent subtask. It should also 

be noted that the addition of this vector to the result of previous multiplication 



93 

will affect only the z component since the relative velocity is along the z axis of 

the link frame. In essence, Step 1 can be computed through three subtasks, Tt. 

12 and T3 as shown in Table 4.1. 

Step 2 : The angular accelerJtion of the link is computed using the equation 

in Step 2 of the algorithm, which is written as 

{ 

W;y } 
{o}; = [R]T{a}i-1 + {z}ij; + q; -~i:r 

Here, we r.;;n define two intermediate parameters, {a'} and { c} which can be 

writtr~n as 

{o'} = [R]f{o}i-1 {4.6) 

and 

{c} = {z}H 4; { ~~. } 

= { !~~:t:} 
q; 

(4.7) 

It should be noted that { o'} involves multiplication of the rotational transforma-

tion matrix with a vector and as discussed earlier can be done in two subtasks. 

The pararneter { c} requires two flops and hence can be done with T3 which 

has one flop computation from Step 1. Once the intermediate parameters, { o'} 

and {c} are computed they can be added vectorially to yield {o}, which again 

can form a subtask of three flops. Hence, Step 2 can be computed through the 

subtasks, T3 , T4, 1(, and T6 as shown in Table 4.1. 



9·! 

·-
Step Subtask Computations Preceding Task!i 
No ·-

{ 
Wi:z: 

} = [R]i{w}H 1 Tt. T2 a Wjy T" T" T" b 1' 2' 3 

w:z 

Ta Wjz = wiz + tli Tt.T2 
i ciiWiy 

2 {c} = -q;W;.r 
q; 

T4,T5a {a'}= [R]T{ah-t T~ b 

Ts {a}i = {a'}+ {c} Ta, T", Ts 

k.r = w11wz 
2A T1 k11 = W : Wr Tt. T2, Ta 

k: = W:rWy 

Ts SW:r = w;; SW11 = w;; SWz = w; Tt. T2. T:~ 

>.n = -(sw11 + sw;) 
Ts A22 = - ( SW.r + .SWz) Ts 

>.aa = - (swr + .stv11 ) 

Table 4.1: Decomposition of Inverse Dynamic Tasks 

a · The two subtasks indicate the two components of the vector each of which requires 

three flop. The third component docs not require any computation as explained in the 

text. 
b : Superscript 'p' indicates the subtasks of the previous link in the chain, which are 

required in the forward recursion. For example, the forward recursion of link 3 will ft'(JUire 

the subtasks corresponding to numbers 1,2,3 and 6 of link 2. 



95 

Step Subtask Computations Preceding Tasks 
No 

>.21 = ~~r + O.r 

2A T1o >.13 = ky + oy Ta, T; 
A32 = ~:: + O'r 

>.23 = kJ~ - Q'J.' 

Tn >.31 = ~·y - O:y Ta. T; 
>.12 = k::- a:: 

3 T12, T13, TJ.t c {a'}= [>.]i-I·{P}i-t T~, Tio. Tft 
(only multiplications) 

Tts. Tta. Tt; c {a"}= {a}i-t +{a'} Tis. Tig, T 12. T13, T t<~ 

Tts. Tt9 {a }i == [R]T {a"} Tts. TJG, Tt; 

4 T2o. T21. T22 c {a'}ci = [>.}i.{s}i Tg, Tto. Tu 
( only multiplications) 

T23, T2·1• T2s c {a},.; = {a }i + {a} ~i Tts. T19, T2o. Tzr , T22 

Table 4.1: Decomposition of Inverse Dynamic Tasks (Contd.) 

l~: :The t.hrcc subtASks correspond to the x,y,z components of the corresponding vector, 
each of which requires t.hree flops. 



96 

Step Subtask Computations Preceding Tasks 
No 

5 T26 { F} i = 711 d a} ci T 231 T 24 I T 25 

{ D,J,, } 
6 T21. T2s. T29 {N}; =[I];{ a};+ Dy.ky Tal T 1 

Dz.kz 

7 T3o1 Tat {!}~+t = [R)i+t {f}i+t Tj2 d 

Ta2 {/}; = {F}; + {f}~+t T26r T 30r Tat 

8 T 331 T 34 I T 35 {n'}i = {p}& x {f}!+t Tao, Tat 

T3a1 T311 Tas {n"}; = {s}; x {F}i T2a 

T 39, T4o {n"'}; = [R)i+t{n }i+t T:h~ T421 Th d 

T 411 T 42 I T 4a {n}i = {N}; + {n'}; T211 T2s. T291 T4o to T-1o 
+{n"}i + {n"'}; 

Table 4.1: Decomposition of Inverse Dynamic Tasks (Contd .. ) 

3 

3 d : Superscript 's1 mdicates the tnsks of the succeeding link in the chain which arc 
required in the backward recursion. For example, while computing the ~ackward recursion 
tasks of link 3, the subtasks corresponding lo numbcrR, 32141 142 and 43 of link 4 will be 
required. 



97 

Step 2A : The modified NE algorithm uses the [t\] matrix to compute the 

acceleration difference vector, where 

where kx, k11 , an~ k, are given as 

k:z: ::::= WyWz 

k11 == W:Wx 

k: = W:;Wy 

The computation of the [-\) matrix requires 

1. product terms, k:x, k11 , and kz 

2. square terms, w~, w~ and w~ 

3. sum of square terms, w~ + w:, w; + w~ and w~ + w~ 

4. sum of {k} and {a} 

5. difference of { k} and {a} 

Each of the above tasks can be assigned as a subtask, requiring three flops each. 

Thus the matrix [t\) can be computed usir•g subtasks T1, Ts, T9, T10 and T11 • 

S1.ep 3 : The linear acceleration of the origin of the link co-ordinate frame is 

computed using the equation in Step 3, given as 

{a}i = [R]T{ {ah-t + [-\]i-t·{Ph-d 

Here again, we can define intermediate parameters {a '} and {a"} so that 

{a'}= (-\)i-t·{P}i-t (4.8) 

{a"} = {a}i-1 +{a'} (4.9) 



98 

and 

{a}i = [n)r{a"} (4. LO) 

To compute the parameter {a'}, three multiplications and two additions are re­

quired for each component of the vector. The multiplications of each component 

can be assigned to a subtask and the two additions along with one addition re­

quirecl for {a"} are assigned to another subtask, such that Eqs. (4.8) and (4.9) 

can computed in six subtasks altogether. Eq. {4.10) requires the multiplication 

of the rotation transformation matrix (R]T with the vector {a"} and as discussed 

earlier this can be assigned to two subtasks. Thus, Step 3 can be computed in 

eight subtasks, namely, T12. T13, Tt4• Tts. Tt6. Tt7• Tts and Ttu as given in 

Table 4.1. 

Step 4 : The linear acceleration of the CG of the link is computed in Step 4 as 

Using arguments similar to those given for Step 3, we can split the task into six 

sub-tasks, namely, T2o. T21. T22. 723. T24 and T2s as given in Table 4.1. 

Step 5 : The forward recursion ends here with the computation of all velocities 

and accelerations. Steps 5 to 9 compute the backward recursion where the forces 

and moments are computed. The inertial force is computed in Step 5 as 

{F}i = m.i{a}ci 

which involves three multiplications and hence t:an be assigned as a subtask, 726 • 

Step 6 : The inertial moment can be computed using the equation 



where the inertial constants are defined as 

Dx = f:u- 11111 

IJ 11 = 1:rx - 1::: 
D:: = fyy- I:r::r 

99 

As discussed in Chapter 3, the inertia tensor is a diagon;:;l matrix and results in 

eq uatlons as below 

(4.11) 

(4.12) 

( 4.13) 

Hence this step can be computed in nine flops or in three subtasks, namely, T27, 

T28 and T29 , assigning each equation to one subtask. 

Step 7 : Having computed the inertial force, the joint force can be computed 

as 

{/}i = {F}i + [R)i+t {/}i+t 

Here, the force at the previous joint, referred in the local co-ordinate can be 

treated as an intermediate variable as 

(4.14) 

This requires the multiplication of the rotation transformation vector with a 

vector, c:nd as discussed earlier, this can be done in two subtasks, namely, T30 

and 731• Subsequently, the vector addition can be treated as a subtask, T32 • 

Thus the joint forces at any joint can be computed in three subtasks. 

Step 8 : The joint moment is computed in Step 8, using the equation 



At this stage, three intermediate parameters can be defined, namely 

{n'}i = {p}i x {/}~+1 

{n"}i = {.s}i X {F}i 

{nm}i = [R]i+t {n }i+t 

100 

(4.15) 

( 4.16) 

(4.17) 

All these three variables are vector variables which will have three components 

each. The first two variables, defined by Eqs. (4.15) and (4.16) are the results 

of cross·products which require 3 flops for each component of the vector. The 

third variable, defined by Eq. (4.17), is the result of the product of the rotation 

transformation matrix and a vector and as discussed earlier, this can be computed 

in two subtasks. Once all these three variables are computed, they can be added 

vectorially along with {N} computed in Step 6. This will require 3 flops for 

each component of the vector and hence the computation of each component 

can be assigned to a subtask. Thus, Step 8 can be computed in 11 steps, using 

subtasks, T33 to T43 as given in Table 4.1. 

Step 9 : The applied torque at the joint is computed in Step 9 by taking the z 

component of the joint moment vector and hence there is no actual computation 

involved at this step, as indicated by 

Ti = {z}{n}i = niz 

Thus the complete inverse dynamics of a manipulator can be written as a com­

bination of 43 subtasks for each link in the manipulator. The subtasks 1'1 to 126 

are grouped under the forward recursion and the subtasks T20 to 143 are grouped 

under the backward recursion. All the subtasks are of equal computational load 



101 

of 3 flops. The symbolic computations is used at each task-level to arrive at 

the final equation. Thus the creation of these variables can be automated using 

the symbolic software such as REDUCE and hence this can be easily applied for 

manipulator of any arbitrary configuration. The precedence relationship among 

these subtasks can be understood either from Table 4.1 or from the task graphs 

given in Figs. 4.5 and 4.6. Referring to these figures, the following points r:"' ust 

be noted: 

1. Fig. 4.5 indicates the subtasks corresponding to the forward recursion for 
any one link in the kinematic chain and Fig. 4.6 indicates the subtasks 
corresponding to the backward recursion for any one link in the kinematic 
chain. 

2. The kinematics or the forward recursion of all the links should be completed 
before the backward recursion is started as mentioned in Chapter 2. 

3. The kinematic computations of the first link are simpler than the other 
links since many of the parameters are either available readily or null. The 
external forces and moments on the end-effector, which forms the last link, 
are normally zero and this simplifies the backwitrd recursion of last link. 
Table 4.2 indicates the list of subtasks that need not be executed for the 
first link in the forward recursion and for the last link in the backward 
recursion. 

The above algorithm have been developed for a revolute joint. In case of a 

prismatic joint the computations are much simpler than those of a revolute joint, 

since the rotational parameters do not undergo a change in magnitude and the 

rotation transformation matrix consists of zeros and ones only. If joint i is parallel 

to joint i·l ( Oi-t = 0), then 

(R);= [ H n (4.18) 



Note : Thick arrows indicate input 

from the dynamics of previous link 

Figure 4.5: Task graph of Forward Recursion in Inverse Dynamics 



Tasks 26,27,28 and 29 receive Inputs from the forward 

of the same I ink St1d tasks 30,31,39 and 40 receive Inputs 
from the backward recursion of the next link In the chain. 

Figure 4.6: Task graph of Backward Recursion in Inverse Dynamics 

' • 



104 

If joint i is perpendicular to joint i-1 (a;-1 = 90 degrees), then 

[ 
1 0 0 l [RJi = 0 0 1 
0 1 0 

(4.19) 

The computations requiring multiplications with these rotation transformation 

matrices can be handled using symbolic programming avoiding the computational 

load in real-time. This is also given in Table 4.2, which indicates whether a 

subtask is required to be executed for a prismaticjoint . 

For an n link manipulator these task graphs can be combined to give the 

overall task graph. Such a procedure will result in a complex network, which 

will be difficult to handle for scheduling purposes. Also one likes to minimize 

all the computations in minimum amount of time. Assuming that there is no 

constraint on the number of processors these subtasks can be arranged into a 

layered task graph such that all the subtasks in any one layer can be executed 

simultaneously are arranged in one layer. 

A layered task graph arranges the subtasks in disjoint layers such that a task 

in any one particular layer can be executed simultaneously without waiting for 

any other task in the same layer. By arranging the tasks in layers the schedul­

ing problem can be solved efficiently. Since the tasks have been so designed 

so as to have the same number of computations, namely three floating point 

operations, they can be conveniently arranged into a layered task graph format 

(Polychronopoulos, 1988). The layered task graphs for the forward recursion 

and the backward recursion are shown in Figs. 4.7 and 4.8. These are shown 

separately since the algorithm requires the completion of forward recursion tasks 

for all the links before the backward recursion can be started. 



L1 ITJQ _.. 
r 

L2 GJ GJ ITJ __... 

L3 ffiG{]GJGJGJ .. 
r 

L4 ~BGBGJG 
L5 ~ffiffi]GJGJ .. 

L s ~ mffiJ ... 

Note : Precedence arrows are not shown 

to maintain clarity 

Figure 4. i: Layered Task Graph for the Forward Recursion 

105 



L1 ~ 
~ 

~2~ 
~Lam 

~~~~EJ 

~~~~~ 

Note : Precedence arrows are not shown 

to maintain clarity 

Figure 4.8: Layered Task Graph for the Backward Recursion 

-0 
C) 



107 

Case Nos. corresponding to Total 
Type subtasks that can be No. 

eliminated 

Prismatic 1, 2,4,5,7,8,9,10,11 9 
Joint 

First 1,2,3,4,5,6, 7,8,9,11,12, 19 
Link 13,14,15,16,17,18,26,27 

Last 30,31,32,33,34,35,39,40 8 
Link 

T a ble 4.2: Inverse Dynamic Tasks that can be eliminated for Special Cases 



108 

In order to generate the complete layered task graph of an n link robot, the 

graphs of forward recursion and backward recursion are stacked in tandem as 

shown in Fig. 4.9. The data dependency of the subtasks corresponding to one 

link on the subtasks of the previous link, in the case of forward recursion, dictates 

that the layered task graph of the adjacent links should be stacked in such a way 

that the layers corresponding to the ith link start after two layers of the i-lth 

link. This is clearly demonstrated in Fig. 4.9 where the layered task graph for 

a n-link manipulator has been assembled using the layered task graphs of the 

individual links. In other words, referring to Figs. 4.7 and 4.9, T 6 of the first 

link and T 1 of the second link can be done simultaneously. As shown in Fig. 

4.9, the backward recursion of the link n, starts only after the completion of 

the computations of Layer 6 corresponding to the link n. Noting that the basic 

assumption has been that all the tasks have the same computational load, the 

total number of layers is an indication of the critical path for that particular task 

graph. For example, the critical path or the lower bound of the computational 

time in parallel implementation for the task graph defined in Fig. 4.9 can be 

computed by adding the number of layers for the forward recursion and the 

number of layers for the backward recursion. In the forward recursion, the six 

layers of each link are arranged in such a way that the tas~s in the first layer can 

be executed simultaneously with the tasks in the third layer of the previous link. 

When the subtasks are arranged in this manner for n links, the total number of 

layers will be 6 + 2(n-2) = 2n + 2 layers. The subtasks of the first link do not 

affect the critical path, since they can be arranged in parallel with the subtasks 

of the second link as shown in Fig. 4.9. So they are not considered in deciding 



Assembly of Layered Task Graphs for n links 

Link 1 Link 2 

Link 3 

• • Link n 

• 
Link n 

FORWARD RECURSION 
~ Link n-1 

l±j ~ Link n-2 [±jEB 
• • 

BACKWARD RECURSION 

Figure 4.9: Task Graph Assembly for a six link manipulator 

2n+2 

Leveis 

2n+1 
Levels 

Link 1 



110 

the total number of layers. Similary for the backward recursion, the tot~l number 

of layers will be 3 + 2(n-l) = 2n + llayers. In total, for an n link manipulator, 

the total number of layers will be 4n+3. Each layer takes 3 flops for execution 

and hence the inverse dynamics of an n link manipulator can be computed in 

3( 4n+3)=12n+9 flops, when executed in parallel. This type of task streamlining, 

which can be called as the 'task streamlining approach' simplifies the scheduling 

problem as well as the synchronization in the actual implementation. 

The computational tasks for the inverse dynamics of a six-link manipulator 

is detailed in Table 4.3. Here, the tasks are represented by a three digit number, 

wherein the first digit refers to the link number and the subsequent two digits refer 

to the subtask number. An empty box indicates that there is no subtask assigned 

to that particular layer, for that particular procesc:or. As can be seen from the 

table, the total number of layers are 27 (n=6; 4n+3 = 27). This indicates the 

idle time of the processors. Fur example in the first cycle, processors 7 to 13 

will be idle and for the 27th cycle, processors 4 to 13 will be idle. The number 

of columns indicate the concurrency of the algorithm. For example, referring to 

Table 4.3, the maximum number of tasks that can be executed simultaneously 

in any one cycle is 13 as indicated by the subtasks in layers 5, 7 and 9. The total 

number of lz:yers indicate the critical path or the lower bound on the processing 

time for the parallel computation, which in the case of a six link robot is found 

to be 27 levels or 81 flops. For a uniprocessor implementation, it would take 

231 levels or 693 flops and hence a speed-up t?f 8.55 is achieved. The number 

of processors required to achieve this speed-up would be as high as 13, and an 

efficiency of 65.81% is achieved. 



Layer Processor Loading 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

1 2 3 4 5 6 7 8 9 10 11 
110 120 121 122 201 202 
123 124 125 203 204 205 
206 207 208 212 213 214 301 302 
209 210 211 215 216 217 303 304 305 
218 219 220 221 222 306 307 308 312 313 314 
223 224 225 309 310 311 315 316 317 403 404 
318 319 320 321 322 406 407 408 412 413 414 
323 324 325 409 410 411 415 416 417 503 504 
418 419 420 421 422 506 507 508 512 513 514 
423 424 425 509 510 511 515 516 517 603 604 
518 519 520 521 522 606 607 608 612 613 614 
523 524 525 609 610 611 615 616 617 
618 619 620 621 622 
623 624 625 
626 627 628 629 630 631 
632 633 634 635 636 637 638 639 640 
641 642 643 526 527 528 529 530 531 
532 533 534 535 536 537 538 539 540 
541 542 543 426 427 428 429 430 431 
432 433 434 435 436 437 438 439 440 
441 442 443 326 327 328 329 330 331 
332 333 334 335 336 337 338 339 340 
341 342 343 226 227 228 229 230 231 
232 233 234 235 236 237 238 239 240 
241 242 243 126 127 128 129 130 131 
132 133 134 135 136 137 138 139 140 
141 142 143 

Table 4.3: Tasks for Inverse Dynamics of A Six-Link Manipulator 
Maximum Concurrency = 13 

111 

12 13 

401 402 
405 
501 502 
505 
601 602 
605 



112 

This indicates that if one uses 13 pro-:essors for implementing the inverse 

dynamics of a six-link manipulator, the processors will be used for only 65.81% 

of the time or in other words they will be idling for 34.19% of the time. This may 

not be an optimal use for using t~e multip.·ocessor and hence one should vary the 

number of processors and decide the optimal number of processors that should 

be used to arrive at a good speed-up with a reasonable processor utilization rate. 

4.3.2 Customization of Robot Dynamics 

As detailed in Chapter 3, customization of the robot dynamics often leads to less 

computational load, since most of the position vectors are aligned along with one 

axis resulting in sparse vectors. For example, for the Stanford manipulator, Table 

4.4 indicates the sparse elements in the position vectors Si and Pi· Si and Pi are 

the position vectors representing the the CG of the ith link and the origin of the 

i+lth link frame. As is evident, out of the 36 elements, 25 elements are zero 

and hence this need to be considered while formulating the dynamic equations 

for real time control. 

In the modified NE algorithm, the operations involving the position vectors 

appear in steps 3, 4 and 8. The corresponding subtasks are summarized in 

Table 4.5. Depending on the number of zero elements in the position vector, 

the computations can be reduced resulting in less number of subtasks. For 

example, in Step 3, if {Pi} has one zero element, the three multiplications and 

three additions corresponding to that zero e.o:ment can be cut down, resulting in 

cutting down two subtasks and if it has two zero elements, four subtasks can be 

cut down and if the complete vector is zero than all the six subtasks can be cut 



~ . 

113 

down. This can be done in a systematic way and Table 4.6 indicates the subtasks 

that can be cut down from the computational load corresponding to one, two 

and three zero elements in the position vectors. For example, applying this to the 

Stanford manipulator, the subtasks that can be eliminated owing to the sparsity 

in pcsition vectors are shown in Table 4.6. The overall computational load for 

the Stanfr:rd Manipulator is shown in Table 4.8. The maximum concurrency level 

for the computation of the inverse dynamics of the Stanford Manipulator is 9. If 

one uses 9 processors, then the algorithm can be implemented as it exists but it 

rna} often be required to limit the number of processors to a lower number, in 

which case, an efficient scheduling strategy need to be developed. 

4.3.3 Scheduling Strategy 

With the streamlined list of tasks arranged in layers, the scheduling of the jobs can 

be easily handled by a heuristic algorithm. The jobs in each level are scheduled 

on the available processors in a systematic manner until all the processors are 

engaged and if there are pending jobs after engaging all the processors they are 

scheduled in the subsequent cycle. If there arP. processors available in any cycle 

after scheduling all the jobs in one layer, a check is made in the subsequent layers 

beginning with the most immediate layer for jobs which can be scheduled, i.e. 

jobs for which the precedants have already been scheduled in earlier layers. Where 

there are no ready-to-execute tasks, the available processors are left idle. This 

process is continued until all the tasks are allocated. The scheduling strategy is 

summarized in Fig. 4.10. 



114 

Link Position vector of CG Position vector of Origin 
No. {s}i {p }i 

Sx Sy S: Pr Pu Pz 

1 0 J J 0 J 0 

2 0 0 J 0 J 0 

3 0 0 J 0 0 0 

4 0 J J 0 0 0 

5 0 J J 0 0 0 

6 0 0 J 0 0 0 

Table 4.4: Sparsity in Position Vectors 



115 

I I 
Step Computations Total subtasks subtasks to be executed for 

No one two three 
zero zero zero 

element elements elements 

3 Ui-1 + (-\Ji-t•{P}i-1 T12. Tt3• Tt4 Tt4• Tts Tts . 
Tts. TJ6, Tt7 Tts. T17 Tt7 . 

4 {a}i + [-\);.{s}i T2o. T21. T22 T22, T2J T24 -
T2a. T2.t• T2s T24, T2s T2s . 

8 {p}; )I' {!}~+I T33, T34, TJs T34, TJs T3s -

8 {s}; x {F}; T 36, T 37, T Ja T31, TJa Taa -

Table 4.5: Subtasl<s Eliminated for Sparsity in Position Vectors 



116 

I 
link No. of zeros Subtask No.s. to be eliminated Total No. 
No in vectors eliminated 

{s}i {p}i 

1 1 2 112, 113, 114, 115, 120, 121, 136, 133, 134 9 

2 2 2 212, 213, 214, 215, 220, 221, 222, 223, 233, 10 
234, 236, 237 

3 2 3 312, 313, 314, 315, 316, 317, 320, 321, 322, 15 
323, 333, 334, 335, 336, 337 

4 1 3 412, 413, 414, 415, 416, 417, 420, 421 , 433, 12 
434, 435, 436 

5 1 3 512, 513, 514, 515, 516, 517' 520, 521' 533, 12 
534, 535, 536 

6 2 3 612, 613, 614, 615, 616, 617, 620, 621, 622, 15 
623, 633, 634, 635, 636, 637 

Table 4.6: Subtasks Eliminated in Stanford Manipulator for Sparsity 



117 

Processor loading 
Layer 1 2 3 4 5 6 7 8 9 

1 110 120 121 122 201 202 0 0 0 
2 123 124 125 203 204 205 0 0 0 
3 206 207 208 0 0 0 0 0 0 
4 209 210 211 216 217 303 0 0 0 
5 218 219 306 401 402 0 0 0 0 
6 224 225 403 404 405 0 0 0 0 
7 318 319 406 407 408 501 502 0 0 
8 324 325 409 410 411 503 504 505 0 
9 418 419 422 506 507 508 601 602 0 
10 423 424 425 509 510 511 603 604 605 
11 518 519 522 606 607 608 0 0 0 
12 523 524 525 609 610 611 0 0 0 
13 618 619 0 0 0 0 0 0 0 
14 624 625 0 0 0 0 0 0 0 
15 626 627 628 629 0 0 0 0 0 
16 638 0 0 0 0 0 0 0 0 
17 641 642 643 526 527 528 529 530 531 
18 532 537 538 539 540 0 0 0 0 
19 541 542 543 426 427 428 <+29 430 431 
20 432 437 438 439 440 0 0 0 0 
21 441 442 443 326 327 328 329 330 331 
22 332 338 339 340 0 0 0 0 0 
23 341 342 343 226 227 228 229 230 231 
24 232 233 235 238 239 240 0 0 0 
25 241 242 243 126 127 130 131 0 0 
26 132 135 137 138 139 140 0 0 0 
27 141 142 143 0 0 0 0 0 0 

Table 4. 7: Tasks for Customized Inverse Dynamics of Stanford Manipulator 
Maximum Concurrency = 9 



i' 
!,' 

( ,, 

GO TO 
NEXT CYCLE 

LAYERED 

ASSIGN TASKS 

TO PROCESSORS 

JOBS 
AVAilABLE 

PROCESSORS 
AVAILABLE 

CHECK FOil 

EAD'f•TOI'•UECUTE 

NO JOBS 

Figure 4.10: Scheduling Strategy 

NO I'IINDINQ JOII 

GO TO 
NEXT LAYER 

118 



119 

4.4 Case Study - Stanford Manipulator 

The inverse dynamics of Stanford manipulator, whose kinematic and dynamic 

parameters are given in Tables 2.2, 2.7 and 2.8, was analyzed for parallel imple­

mentation. The choice of Stanfr.d Manipulator was made since published rr·!;ults 

of earlier researchers (Luh and Lin, 1982; Kasahara and Narita, 1985; and Chen 

et. al, 1988) were available in the literature, for compari:;on of results of this 

task streamlining approach. The layered task graph, in the form of a table, for 

Stanford manipulator is given in Table 4.8. As indicated earlier, the subtasks are 

represented by a three digit number, the first digit representing the link number 

and the subsequent two digits representing the subtask number. As can be seen 

from d comparison of Table 4.3 and Table 4.8, the computational load for the 

six-link Stanford Manipulator is only 156 subtasks ( 468 flops) compared to the 

load for the generalized six-link manipulator in Table 4.8, namely 231 subtasks 

(693 flops). This indicates a reduction of about 25%. This has been achieved 

by going through the procedure outlined in Section 4.3.2. The tasks that can be 

eliminated for the zero elements in the position vectors were identified in Table 

4.7 and deleted from the generalized six-link manipulator load given in Table 4.3. 

Also, since joint 3 of the manipulator is a prismatic joint, the tasks as indicated 

in Table 4.2 for a prismatic joint were also eliminated. This has resulted in Table 

4.8. which can be scheduled on the required number of processors. 

Using the scheduled strategy outlined in Section 4.3.3, the computational 

load given in Table 4.4 was scheduled using this algorithm. The task schedules 

for two to nine processor configurations are given in Tables C.l to C.8 in Appendix 

C. This was repeated for the Stanford manipulator using the ldye,·ed task graph 



~· 
r 

120 

in Table 4.8. The tasks were scheduled on two to eight processor configurations 

and the corresponding schedules are shown in Tables C.9 to C.15 in Appendix C. 

4.5 Results and Discussion 

The Task-streamlining approach results in a simplified and an efficient approach 

to scheduling the inverse dynamic tasks in a parallel processor. The speed-up 

and the efficiency of the Task Streamlined approach for a six link manipulator 

with varying number of processors is shown in Figs. 4.11 and 4.12. It can be 

seen that upto six processors, an efficiency of over 98% is achieved along with an 

excellent speed-up, which is almost equal to the number of processors employed. 

Beyond six processors, the increase in the speed-up is only marginal, whereas the 

efficiency falls drastically. Hence a six processor configuratipn would be ideal for 

implementation of the inverse dynamic computations. 

The effect of varying the number of processors on the speed-up and efficiency, 

for the customized inverse dynamics of the six-link Stanford manipulator, is also 

shown in Figs. 4.11 and 4.12. Since the number of tasks have been reduced by 

over 25%, the concurrency ievel has dropped from 13 to 9, and this is reflected 

in the speed-up and efficiency curves. In the case of the customized equations, 

the efficiency is more than 98% upto four processors, and beyond this level, it 

starts coming down drastically. So a four processor configuration would be ideal 

for the customized dynamics of the Stanford manipulator. 

The processing time for the inverse dynamic tasks for Stanford manipulator, 

using a 16-bit microprocessor (Intel 8086), is compared with those previously 

published by other researchers in Table 4.8. For a uniprocessor implementation, 



121 

Speed-up (T1/Tp) 

1 2 3 4 5 6 7 8 9 10 11 12 13 

No. of Processors 

-+- GENERALIZED SIX-LINK-8- CUSTOMIZED STANFORD 

Figure 4.11: Speed-up vs No. of Processors for inverse dynamic computation 
for a six-link manipulator 



122 

Efficiency (Tp/p•100 o/o) 
120~------------------------------------~ 

60 ·-

40 

20 

o~~--~---L--~--~--L-~---L---L--~--L-~ 

1 2 3 4 5 6 7 8 9 10 11 12 13 

No. of Processors 

4- GENERALIZED SIX-LINI(-8-- CUSTOMIZED STANFORD 

Figure 4.12: Efficiency vs No. of Processors for inverse dynamic computation 
for a six-link manipulator 



123 

the time required by the scheme presented in this work ism uch shorter than those 

of others. Compared to a processing time of 24.83 ms as proposed by others 

this work requires only 21.06 ms using the modified algorithm. Also as can be 

seen from Fig. 4.13 which presents the same information in a graphical form, 

this work achieves a reduced processing time owing to the increased concurrency 

as well as the efficiency of the algorithm. For a four processor implementation, 

Kasahara's approach and Chen's approach requires about 6.59 ms, whereas the 

task streamlining approach using the modified NE algorithm requires only 5.26 

ms. Also the minimum time has been reduced from 5.60 ms to 3.65 ms for a 

seven-processor configuration. 

It should also be noted here that since all the subtasks are of the same size, 

the synchronization overheads will be minimum. Moreover, the scheduling of the 

subtasks is also simplified due to this uniformity in the tasks. Also the process of 

mapping the tasks into the scheduling problem can be automated using symbolic 

program m 1 ng. 

The friction model developed in Chapter 3 can be included in these task 

graphs as additional subtasks. The friction computations given by Table 3.1 

and 3.2 can be decomposed in a simil.u way and incorporated into the total 

task graph. For manipulators using anti-friction bearings, only the transmission 

friction has to be computed. For clarity of the work, only the frictionless dynam ics 

was parallelized here. This approach can be extended for including the friction 

tasks in the computational load. 



12·1 

Processing time in milliseconds 
30~----------------------------------------~ 

25 

20 

15 

10 

5 

o~----~----~----~----~----~----~----~--~ 

1 

--

2 3 4 5 6 7 

No. of Processors 

Kasahara & Narita --+-- Chen et. al 

--+- Present work 

8 

Figure 4.13: Comparison of Processing Time for inverse dynamic computation 
of Stanford Manipulator 

9 



125 

4.6 Conclusion 

An effic-ient computational algorithm for inverse dynamic problems of robotic 

manipulators has been presented in tnis work utilizing the modified NE algo­

rithm developed in Chapter 2. Based on the work in this chapter the following 

conclusions can be drawn. 

1. The modified NE algorithm using the task streamlined approach for de­
composition of the tasks, results in increased concurrency. 

2. A six processor configuration would be ideal for implementing the general­
ized inverse dynamics of manipulators. 

3. A computational count of 4n+3 operations, where n is the number of links 
in the manipulator, can be achieved for the inverse dynamic problem. 

4. Customization of the algorithm can bring down the number of processors 
required and the processing time. Also a four-processor configuration would 
be optimal for implementing the customized dynamics of the Stanford 
manipulator. 

5. The modified NE algorithm, developed in this work, when used with the 
task streamlining approach, decreases the synchronization time and schedul­
ing time. 



126 

No. Chen 
of Luh & Kasahara Lee & Present 

Proc. Lin & Narita Hou Work 
(1982) (1985) (1988) 

1 24.8 24.83 24.83 21.06 

2 - 12.42 12.42 10.67 

3 - 8.43 8.44 7.02 

4 - 6.59 6.59 5.26 

5 - 5.86 5.72 4.32 

6 9.67 5.73 5.70 3.92 

7 - 5.60 - 3.65 

8 - - - 3.65 

Table 4.8: Com pnrison of processing time for Stanford Manipulator dynamics 



Chapter 5 

Summary, Contributions and 
Recommendations 

5.1 Summary of the Work 

A computationally efficient and accurate solution, for solving the inverse dy­

namic problem in real-time, was deve!oped in this thesis. The conventional NE 

algorithm was modified using symbolic computations and ;:~ [A] matrix. The 

modified algorithm, before customization, results in a reduction of 30-40% of 

the computational load, over the conventional NE algorithm. Customization of 

the algorithm for specific manipulators was suggested using iterative symbolic 

programming and this approach was demonstrated for some standard manipu­

lators. The resulting computational load is further reduced by customization, 

and the number of floating point operations was also considerably less than the 

results published earlier, especially for man:puiators with more than three links. 

Modeling of friction for robotic mechanisms was suggested by modeling of 

the joint friction using Coulomb's law and the transmission fricti~n using an 

input-output function. This was demonstrated for PUMA-560 manipulator with 

127 

'··· 



128 

three links, and it was shown that the total friction is quite significant in robotic 

mechanisms. It was .'llso shown that the joint friction is much smaller than the 

transmission friction and they should be modeled separately for better accuracy. 

It was also shown that the computational load for including friction in the dynamic 

model of the manipulator, is only marginally increased, when used along with 

either the N E algorithm or the modified NE algorithm developed in this work. 

Finally, the modified NE algorithm was parallelized using a 'task streamlining 

approach'. The algorithm was decomposed into subtasks of uniform computa­

tional load of three floating point operations. These subtasks were arranged 

optimally in a layered task graph and assembled for a given number of links. The 

resulting task graph was used to schedule the tasks on the required number of 

processors using a simplified bin-packing algorithm. The speed-up and efficiency 

of the algorithm for a six link manipulator was demonstrated and it was concluded 

that a configuration consisting of six processors would be ideal for implementing 

the inverse dynamic problems. Customization procedure was also discussed and 

this was demonstrated for the Stanford manipulator. It was also shown that the 

minimum processing time for the computation of the inverse dynamics is only 

3.65 ms, which is lower than the results published by earlier researchers in this 

field. 

5.2 Contributions of this Work 

The problem of real-time computation of the inverse dynamics of manipulators 

has been addressed by a wide body of researchers. The uniqueness of this work 

is in the way in which vector mechanics, symbolic programming and parallel pro-



129 

cessing are combined to yield in an efficient algorithm. The specific contributions 

of this work can be listed as follows. 

1. The existing NE algorithm has been modified using the (.A] matrix for the 
minimization of computations. 

2. An analytical friction model has been developed, which can be used to 
predict the inverse dynamic torques/forces more accurately. 

3. Due to (a) the U!H" of the (.A] matrix approach, (b) the fine decomposition 
of tasks, and (c) the optimal layering of the tasks in a parallel algorithm , 
minimum processing time was achieved which was better than the results 
published by other researchers. 

The incorporation of friction and the low !Jrocessing time suggests a promise for 

implementation of this algorithm in the real-time control of industrial manipula-

tors. 

5.3 Reco1nmendations for Future Work 

As a follow-up of this research, two significant avenues are open for further work. 

The first is to develop an expert system using an expert shell such as VP-Expert, 

to integrate the various pieces of this work, so as to get a design tool for the robot 

designer. The generation of inverse kinematic and inverse dynamic equations and 

parallelizing them on a given nurnberof processors can be handled in an excellent 

way. The second is to extend this work to incorporate the flexibility of the links. 

The real-time computation of the inverse dynamics incorporating flexibility would 

be a feasible job with parallel implementation. This would be worth attempting 

for application to space robotics or underwater robotics. 

'• 
( . 



130 

REFERENCES 

Albus, J. 5., (1975), A New Approach to Manipulator Control: The Cerebel­
lar Model Artictdation Controller (CMAC), Journal of Dynamic Systems, 
Measurements and Control, pp. 220-227. 

Albus, J. 5 ., (1981}, Brains, Behavior and Robotics, Byte Publication Inc., 
Massachussetts. 

Armstrong, 8., Khatib, 0., Burdick, J., (1986), The Explicit Dynamic Model 
and Inertial Parameters of the PUMA 560 arm,Proc. of IEEE Int. Conf. 
on Robotics and Automation, pp.510-518. 

P,rmstrong, B., (1988), Dynamics for Robot Control: Friction Modeling and 
Ensuring Excitation During Parameter Identification, Ph.D. Thesis, Stan­
ford University. 

Balafoutis, C.A. et al., (1988), Efficient Modeling and Computation of .Manip­
ulrztor Dynamics Using Orthogonal Cartesian Tensors, IEEE Journal of 
Robotics and Automation, Vol.4, No.6, December (1988). 

Binder, E. E., (1985), Distributed Architecture and Fast Parallel Algorithms 
in Real-time Robot Control, Ph.D. Thesis, Oregon State University. 

Brawer, 5., (1989), Introduction to Parallel Programming, Academic Press, 
Inc., Boston. 

Burdick, J.W., (1986), An algonthm Jot· Generation of Efficient Manipulator 
Dynamic Equations, Proc. of IEEE Int. Conf. on Robotics and Automa­
tion, pp.212-218. 

Canudas De Wit, C., Noel, P., Aubin, A., Brogliato, B., Drevet, P., (1989), 
Adaptive Friction Compensation in Robot Manipulators: Low-velocities, 
Proc. of IEEE Int. Conf. on Robotics and Automation, pp.1352-1357. 

Canudas, C., Astrom, K.J., and Braun, K., (1986), Adaptive Friction Compen­
sation in DC Motor Drives, Proc. of IEEE Int. Conf. on Robotics and 
Automation, pp.l556-1561. 



131 

Cesareo, G., Nicolo, F., and Nicosia, 5., (1984), DYMIR:A Code for Generat­
ing Dynamic Model of Robots, Proc. of the First International Conf. on 
Robotics, Paul, R. P., Ed., Atlanta, GA, pp. 115 - 120. 

Chen, C.l., Lee, C.S.G., Hou, E.S.H, (1988), Efficient Scheduling Algorithms 
for Robot Inverse Dynamics Computation on a Multiprocessor System, 

Proc. of the IEEE Conf. on Robotics and Automation. pp. 1146 - 1151. 

Chironis, N.P., (1967), Gear Design and Application, McGraw-Hill, Inc., New 
'fork, pp. 120-122. 

Coffman, E.G. (Ed.), (1975), Computer and Job-shop Scheduling Theory, John 
Wiley & Sons, New York. 

Craig, J.J., (1986), Introduction to Robotics: Me .:hanics and Control, Stanford 
University, Addison-Wesley. 

Denavit, J. and Harten berg, R.S., (1955), A /(inematic Notation for Lower­

Pair Mechanisms Based on Matrices, J. of Applied Mechanics,Vol.77, 
No.2, pp. 215 - 221 . 

Dhanaraj, C., and Sharan, A. M., (1990), On Efficient Modeling of Rigid Link 
Robot Dynamic Problems, Proc. of lASTED Conf. on Modeling, Sim ula­
tion and Optimization, Montreal, 23-25 May, pp. 

Dhanaraj, C., and Sharan, A.M., (1990), .Friction Modeling in Robot Dynamics 
- A Case Study, To be presented in Int. Conf. Automation, Robotics and 
Computer Vision, Singapore, 24-27 September, 1990. 

Ducksbury, P.G., (1986), Parallel Array Processing, Ellis Horwood Ltd., Chich· 
ester. 

Dudley, D.W., Ed. (1962), Gear Handbook: The Design, Manufacture, and 
Applications of Gears, McGraw-Hill, Inc., New York, pp. 3-35 to 3-43. 

Fu, K.S., Gonzalez, R.C., Lee, C.S.G., (1987), Robotics: Control, Sensing, 
Vision and Intelligence, McGraw- Hill, New York. 

Gogoussis, A. and Donath, M., (1988), Coulomb Friction Effects on the Dy­
namics of Bearings and Transmissions in Precision Robot Mechanisms, 
Proc. of IEEE Int. Conf. on Robotics and Automation, pp.1440 • 1446. 



132 

Gogoussis, A. and Donath, M., {1987}, Co.ulomb Friction Joint and Drive 
Effects in Robot Mechanisms, Proc. of IEEE Int. Conf. on Robotics and 
Automation, pp.828 • 836. 

Hollerbach, J.M., (1980), A recursive Lagrangian formulation of manipulator 
dynamics and a comparative study of dynamics formulation complexity, 
IEEE Transactions on Systems, Man and Cybernetics, Voi.SMC-10, No.ll, 
pp.730-736. 

Hwang, K. and Briggs, F.A., (1984)., Computer Architecture and Parallel Pro­
cessing, McGraw-Hill, Inc., New York. 

Izaguirre, A., Paul, R., (1986}, Automatic Generation ofthe Dynamic Equll­
tions of the Robot Manipulators Using a Lisp Program, Proc. of Interna­
tional conf. on Robotics and Automation, pp.220-226. 

Kane, T.R. and Levinson, D.A., (1983), The Use of Kane's dynamical equations 
in robotics, Int. Journal of Robotics Research, Vol.2, No.3, pp.3-21. 

Kane, T.R., and Levinson, D.A., (1985), Dynamics: Theory and Applications, 
McGraw-Hill Book Company, New York. 

Kasahara, H., Iwata, M., Narita, S. (1988), Parallel Processing of Robot Dy­
namics Simulation Using Optimal Multiprocessor Scheduling Algorithms, 
Journal of Systems and Computers in Japan, Vol.19, No.10, pp.45-54. 

Kasahl'ra, H., Narita, 5., (1984), Practical Multiprocessor Scheduling Algo­
rithms fo-r- Efficient Pamllel Processing, IEEE Trans. on Computers, Voi.C-
33, No.ll. 

Kasahara,H ., Narita,S., (1985), Parallel Processing of robot arm control com­
putation on a multimicroprocessor system, IEEE Journal of Robotics and 
Automation, Vol.l, No.2, pp. 104 -113. 

Khalil, W., Kleinfinger, J.F., Gautier, M, (1986), Reducing the Computational 
Burden of the Dynamic Models of Robots, Proc. of IEEE Int. Conf. on 
Robotics and Automation, pp.S25-531. 

Khosla, P.K., Ramos,S. (1988), A comparative Analysis of the Hardware Re­
quirements for the Lagrange-Euler and Newton-Euler Dynamic Formu­
lations, Proc. of tt.e IEEE Int. conf. on Robotics and Automation, pp.291· 
296. 



133 

Khosla,P.K., Kanade,T., {1988), Experimental Evaluatio-n of Nonlinear Feed­
back and Feed-forward Control Schemes for Manipulators, The Int. Jour­
nal of Robotics Research, Vol.7, No.1, pp. 18- 28. 

Kronsjo, L. , (1985), Computational Complexity of Sequential and Parallel Al­
go1•ithms, John Wiley & Sons, New York. 

Lathrop, R.H., (1985}, Parallelism in Manipulator Dynamics, Int. Journal of 
Robotics Research, Vol.4, No.2, pp. 80-102. 

Lee, C.S.G., Chang, P.R., (1988), Efficient Parallel Algorithms for Robot For­
ward Dynamics Computation, IEEE Trans. on Systems, Man, and Cyber­
netics, vol.l8, No.2, pp.238 - 251. 

Leu, M.C., N.Hemati, (1986), Automated Symbolic Derivation of Dynamic 
Equations of Motion for Robotic Manipulators, ASME Journal of Dynamic 
Systems, Measurement ad Control, Vol.108, pp.172 -179. 

Liu, C.H. and Chen, Y.M., (1986), Multi-Microprocessor-Based Cartesian­
Space Control Techniques for a Mechanical Manipulator, IEEE J. Robotics 
and Automation, Voi.RA-2, No.2, pp. 110-115. 

Luh, J.Y.S. and Lin, C.S., (1981), Automatic Generation of Dynamic Equa­
tions for Mechanical Manipulators, Proc. of the 1981 Joint Automatic 
Control Conference, Charlottesville, VA, pp. TA-20/1-5. 

Luh, J.Y.S ., Walker, M.W., and Paul R.P.C., (1980), On-line computational 
scheme for mechanical manipulators, ASME Journal of Dynamic Systems, 
Measurement and Control, Vol.l02, pp.69-76. 

Luh, J.Y.S., and Lin, C.S., (1982), Scheduling of parallel computation for a 
computer-controlled mechanical manipulator, IEEE Transactions on Sys­
tems, Man and Cybernetics, Vol. SMC-12, No.2, pp.214-234. 

MACSYMA Reference Manual, Mathlab Group, Lab. for Comp. Sc., MIT, 
(1983). 

Murray, J.J. and Neuman, C.P., (1988), Organizing customized robot dynam­
ics algorithms for efficient numerical evaluation, IEEE Transactions on 
Systems, Man and Cybernetics, Vot.18, No.1, pp.llS-125. 



134 

Neuman, C.P. and Murray, J.J., (1985), Computational Robot Dynamics: Foun­
dations and Applications, Journal of Robotic Systems, Vol.2, No.4, pp.425-
452. 

Neuman, C.P. and Murray, J.J., (1987a), Customized computational robot dy­
namics, Journal of robotic systems, Vol.4, No.4, pp.503-526. 

Neuman, C.P., and Murray, J.J., (1987b), Symbolically efficient formulations 
for computational robot dynamics, Journal of Robotic Systems, Vol.4, 
No.6, pp.743-769. 

Nigam, R. and Lee, C.S.G., (1985), A multiprocessor-based controller for con­
trol of mechanical manipulators, IEEE Journal of Robotics and Automa­
tion, Vol. RA-1, No.4. pp.173-182. 

Oleinick, P.N., (1982), Parallel Algorithms on a Multiprocessor, UMI Research 
Press, Ann Arbor, Michigan. 

Orin, D.E., McGhee, R. B., Vukobratovic, M., and Hartoch, G., 1979, Kinematic 
and Kinetic Analysis of Open-Chain Linkages Utilizing Newton Euler 
Methods, Mathematical Biosciences, Vol.43, pp. 107-130. 

Paul, R.P., (1981), Robot Manipulators: Mathematics~ Programming and Con­
trol, MIT Press , Massachussets. 

Polychronopoulos, C. 0., (1988), Parallel Programming and Compilers, Kfuwer 
Academic Publishers, Boston. 

REDUCE Users' Manual, Version 3.3, The Rand Corporation, Santa Monic?, 
CA 90406-2138, (1987). 

Ramos, 5., (1988), Parallelism in Manipulator Dynamics: Analysis and lm­
plementational IsstLes for High-Speed Control, M.Eng. Thesis, Carnegie 
Mellon University, Pittsburgh, USA. 

Rayna, G., (1987), REDUCE: Software for Symbolic Computation, Springer­
Verlag, New York. 

SilvE:r, W.M., (1982), On the equivalence of Lagrangian and Newton-Euler 
Dynamics for Manipulators, Int. Journal of Robotics Research, Vol.l, 
No.2, pp.llS-128. 



135 

Stepanenko, Y. and Vukobratovic, M., (1976), Dynamics of Articulated Open­
Chain Active Mechanisms, Mathematical Biosciences, Vol.28, pp.l37-170. 

Tonkinson, J. and Donati'!, M., (1988), Scheduling robot inverse dynamics com­
putation for multiprocessor based control, Proc. USA-Japan symposium on 
Flexible Automation- Crossing Bridges - Advances in Flexible Automation 
and Robotics, pp.l07-113. 

Toogood, R.W., (1989), Efficient Robot Inverse and Direct Dynamics Algo­
rithms Using Micro-Computer Based Symbolic Generation, Proc. of IEEE 
Int. conf. on Robotics and Automation, pp.1827-1833. 

Uicker, J. J., (1965), On the Dynamic Analysis of Spatial Linkages Using 4 x 
4 Matrices, Ph. D. Thesis, North-Western University, ll, USA. 

Vecchio, l., Nicosia, 5., Nicolo, F., and Lentini, D. Automatic Generation of 
Dynamical Models of 1t4anipulators, Proc. of the Tenth Int. Symposium 
on Industrial Robots, Milan, Italy, March 5-7, 1980, pp.293-301. 

Vukobratovic, M. and Kircanski, N., (1984), A Metho'd for Computer-Aided 
Construction of Analytical Models of Robotic Manipulators, Proc. of the 
First Int. Conf. on Robotics, Paul, R.P., Ed., Atlanta, GA, pp. 519 • 528. 

Vukobratovic, M., Kircanski, N ., li, S.G., (1988) An approach to Parallel Pro· 
cessing of Dynamic Robot Models, Int. Journal of Robotics Research, Vol.7, 
No.2, pp.64- 71. 

Yang, D.C.H. and Tzeng, S.W., (1986), Simplification and linearization of 
manipulator dynamics by the design of inertia distribution, Int. Journal 
of Robotics Research, Voi.S, No.3, pp.120-128. 

Yin, Sand Yuh, J., (1989), An Efficient Algorithm/or Automatic Generation 
of Manipulator Dynamic Equations, Proc. of IEEE Int. Conf. on Robotics 
and Automation, pp.l812-1817. 



APPENDIX 



Appendix A 

Lagra11ge Equations of Motion 

A.l Closed Form Equations 

The closed form lagrange Equations 1, which are widely used for simulation and 

control applications are given as 

for i := 1, 2, ... , n. 
{A.l) 

where Tr denotes the trace operator and [U]ij denotes the partial derivative of 

the transformation matrix T? with respect to Q; and [U]iik denotes the partial 

derivative of [U];,; with respect to qk and ir,; is the position vector of the CG of 

the jth link projected in the link frame. J; is the pseudo-inertia tensor about the 

origin of the link co-ordinate frame, given as 

-fu + f!J!I + fzz 
fzy f z z m;xi 

2 
l:ry 

fxx - fyy + fzz 
fyz mi'fh [J], = 2 (A.2) 

fx: fy: 
f:r:z + fyy - fzz 

m;z; 
2 

m;x; mifh m;z; m; 

1 For the derivation of these equations, refer toFu et. al. (1985). 

137 



138 

This is generally written as a second order matrix differential equation, given 

as 

where 

{r} = {r(t)} 

{q} ={ q{t)} 

{ <i} = {q(t)} 

{q} = {q(t)} 

{D(q)} 

{h(q,q)} 

{ c(q)} 

{r} = [D(q)){q} + {h(q,q)} + {c(q)} 

= n x 1 generalised torque vector applied at' joints 

= n x 1 vector of the joint variables of the robot arm 

= nxl vector of the joint velocities of the robot arm 

=nxl vector of the joint accelerations of the robot arm 

(A.3) 

= n x n inertial acceleration related symmetric matrix, where 

~n T { i = 1 ton [D];k = L..., ._ c· ... 1 Tr ([U]iklJ]i[U]j;) k _ 1 t 
J-ma.7: '·"' - 0 n 

= n x 1 nonlinear coriolis and centrifugal force vector, where 

h; = E:=tL:=l h;kmtiktim i = 1, 2, .: .. n 

where 

hikm = Li = max(i, k, mt Tr ([U]p;m[Jli[U]t) i, k, m = 1, 2, .... n 

= n x 1 gravity loading force vector where, 

{c}; = L:;=/-mig(UJi;.iri) i = 1,2, .... n 

A.2 Recursive Lagrange Equations Using 4x4 
D-H Transformation Matrices 

Hollerbach introduced recursion 2 in the Lagrange Equations using 4 x 4 D~H 

transformation matrices and the equations are given as a set of forward and back-

ward recursion equations, as below 

2For derivation of these equations refer to Hollerbach ( 1980). 



139 

FORWARD RECURSION 

[T]o = Identity; [T)o = [0]; [T]o = [0] 

ai-trr1. . 
o[T.)· _o [T'] · i-l(T]·+o[TJ · _ .: ...2. · . ' - ,-1· 1 a-1· a q, q; J 

ai-1[T] 82 i-t[T] ai-t[T] 0[ "] 0 [T"] i-l[ l 0[ '] j. I)[T] i ·2 O[T] i .. r i = i-•· T ;+2 T i-1 · 8 qi+ i-1· a 2 qi + i-1· 8 qj 
q; qi qi 

BACKWARD RECURSION 

[D]n+l =-· [OJ; (c]n+l = (OJ 

[D]i = [J]i 0 [TJT +0 [T]i+I·[D]i+l 

[c]i = mi.0 [T]i +0 [T]j.q.(c]i+l 

{r}i = Tr (ao(T]i[D}i)- {gVao[T);[c]; 
8qj 8q; 

A.3 Recursive I.~agrange Equations Using 3x3 
Rotation Transformation Matrices 

The recursive equations can also be written using the 3 x 3 rotation transforma­

tion matrices and the position vector Pi· to improve the computational efficiency 

of the algorithm (Hollerbach 1980). The forward recursion is similar to that of 

the previous formulation, except that, in this case, the [R]3 xa matrices are used 

instead of the [T]4x4 matrices as given below 

[R]? = (R]?-1.[RH-1 



140 

The second derivative of the position vector ( { r }?) of the origin of the link frame 

from the origin of the ba -e frame is also computed recursively as 

If { s }i is the position vector of the CG of the ith link in its own link co·ordinate 

frame, than the backward recursion is written as follows. 

[D)n+l = [0); [c)n+l = [0) 

[D]i = [J]i [R]?T + [R]?+1[D]i+t + {r}~+de}i+t + {s}i{r}?T 
mi 

where { e }i is written as 

{} [R]i {} {"}OT {s}i{"}OT e i = i+t' e i+l + mi r i + - r i 
mi 

The recursion for [c]i is the s~me as the previous one but using the 3x3 rotation 

matrix given as 

The torque vector is now written as 



Appendix B 

Derivation of Newton-Euler 
Algorithm 

The Newton-Euler formulation for robot dynamic problems, assumes the links to be 

rigid bodies obeying Newton's equation and the Euler's equation. The kinematic 

parameters, such as the position vector of the joint locations and the center of 

gravity (CG) of the links, and the dynamic parameters, nam-!y the moment of 

inertia (MI) tensor about the CG, are assumed to be known. For computational 

efficiency all the vectors and the inertia tensors are referred to the corresponding 

link coordinate ft·ame. 

Fig. 2.6, shows three consecutive links in the kinematic chain of an arbitrary 

manipulator. Referring to the figure, {F}i and {N}, are the inertial forces and 

moments acting at the CG of the link i and {f}i and {n}i are the reaction forces 

and moments acting at the joint i. { si} is the position vector of the CG of the ith 

link and the {Ph-1 is the position vector of Oi, origin of the ith frame, referred 

in the i-lth frame, as defined in Eq. {2.8). The problem of inverse dynamics is 

to compute the joint torques/forces (torque for a revolute joint and force for a 

prismatic joint) given the relative position, velocity and acceleration of each fink 

141 



142 

(qi, tli and -li for i=l to n). For a revclute joint these are angular parameters and 

for a prismatic joint they refer to linear displacement, linear velocity and linear 

acceleration of the CG of the link. The local link coordinate frames are assigned 

in such a way that the local z axis is aligned with the direction of the relative 

motion at the joint. Hence for a revolute joint, the relative angular velocity and 

the relative angular acceleration of the ith link with respect to the previous lir.k 

will be in the;:. direction and hence these vectors can be written as 

{ w };,,_, = { i } = { ~ } 8 = { z )9 (B.l) 

{a);1,_, = { ~} = { ~ }o= {Z}O (8.2) 

where 0, 0, B refer to the rotational para meters. In case of a prismatic joint, the 

relative linear velocity and the relative linear acceleration of the CG of the link can 

be written as 

{w};/i-t = { ~} = { ~ }4= {Z}q 

{a),,,_,= { ~} = { ~ }q= {Z)q 

(B.3) 

(8.4) 

In order to make the algorithm, a general purpose one, we will denote the relative 

joint displacements, rotational or linear, by q and similarly its first and second 

derivatives. 

For a revolute joint, the angular velocity of one link can be computed with the 

knowledge of the angular velocity of the previous link. If the angular velocity of 

the i-lth link is known then the angular velocity of the ith link can be written as 

{w}i = [R]f{~IJ}i-1 + {w}i/i-1 (B.5) 

f• 

\ 



143 

Here the first term on the left hand side of the equation refer to the angular 

velocity of the base projected into the coordinate frame of link 1 and the second 

term refer to the relative angular velocity. Substituting Eq. (B.l), we can write 

this as 

{w }i = [RJT {w }i-1 + {Z}q (B.6) 

where { z} denotes the unit vector along the z axis. Differentiating (8.6), we can 

write the expression for the angular acceleration of the link i. Noting that { w} is 

a rotating vector (Shames 1967), we can write 

{a}i=[R]T{a}i+{z}q+[RJT{w}i-t x {z}q (B.7) 

The last term in the left hand side of the above equation refers to the coriolis 

acceleration. If the joint is prismatic, then there is no relative rotation between . 
the two adjacent links and hence the angular velocity and the angular acceleration 

remain the same in magnitude. The these vectors projected in the ith link frame 

can be written as 

{w}i = [RJT{w}i-1 

{a}i = [R)T{a}i 

(B.8) 

(B.9) 

In order to compute the forces and moments acting at the CG of the link, we 

need to determine the linear acceleration of the CG. This is determined by first 

computing the linear acceleration of the origin of the link coordinate frame and 

subsequently computing the linear acceleration of the CG. Referring to Fig. 2.8, 

the acceleration of a point can be written as (Shames 1967) 

{a}p = {a}o +{a} x {r}op + {..;} x {w} x {r}oP + {f}P/O + 2{w} x {r}P/O 

(B.lO) 



144 

where {a} p and {a }o are the linear accelerations of points P and 0, { r }op is the 

position vector of P, {w} and {o} are the angular velocity and the angular accel· 

eration of {r}op, {r}P/O and {r}P/O refer to the linear velocity and acceleration 

of point P with respect to 0. Applying this to a prismatic joint, we can write as 

{a}~- 1 = {ah-t + {ah-t x {Ph-1 + {w}i-t x {wh-t x {P}i-1 + {z}iii 

+2 {R]{ {w }i-t x {z}tk 
(B.ll) 

For a revolute joint, there is no relative translation between the origin of the ith 

link and that of the i-lth link and hence the above expression will reduce to 

{a}~-1 = {a}i-1 + {a}i-1 X {P}i-1 + {w}i-t X {w}i-1 X {Ph-t (B.l2} 

These can be projected to the the ith frame by pre-multiplying with the rotation 

transformation matrix, (R]f, and written as 

{a}i = [R]T{{a}i-1 + {a}i-1 x {Ph-t + {w}i-1 x {w}i-1 x {P}i-1 + {z}ih 

+2 [R]f{wh-1 x {z}qi) 
(8.13) 

for a prismatic joint and 

{a},= [R]T({a}i-1 + {ah-1 X {P}i-1 + {w}i-1 X {w}i-1 X {P}i-d (8.14) 

for a revolute jomt. 

Similarly the linear acceleration of the CG can be computed . Noting that there is 

no relative motion between the CG and the origin of the ith link, we can write, for 

revolute as well as prismatic joint 

{a}ci = {a}i + {a}i x {s}i + {w}i x {w}i x {s}i) (8.15) 



145 

Eqs. (8.6) to (8.15) compute the kinematic parameters of a link with the 

knowledge of those of the previous link. Since the velocity and acceleration of 

the base is commonly known these equations can be usP.d recursively to compute 

the kinematics of the other links in the chain by starting with linkl and mc.•ving 

successively, link by link, outward to link n. This is termed as the forward recursion 

in the NE algorithm. Since the kinematics of the links are known, the inertial 

forces and moments can be computed using the Newton's equation and the Euler's 

equation respectively. 

{F}i = mi{a}ci 

{ N }i = ( J]{ a }i + { w }i X [ /]{ w} i 

(B.16) 

(B.17) 

Note that the second term of Eq. {8.17) refers to the gyroscopic moment of the 

link, which does not appear for a two dimensional problem. 

At this stage we can apply the equilibrium conditions for each link starting 

with the outermost link (i=n), and move inward, link by link to compute the joint 

forces and moments. Considering the equilibrium of link i shown in Fig. 2.6 we 

can write the equilibrium equations as 

l)F} = mi{a}ci 

l:{N} = [/)i{a}i + {w}i x [/)i{w}i 

(B.18) 

(B.19) 

where {F} and {N} denote the external forces and moments acting on the link. 

This directly yields the solution for the joint force { f}i and the joint moment { n }i 

as 

{/}i = {F}i + [R]i+t {/}i+l (B.20) 

{n}i = [R]i+t{n}i+l + {N}i + {s}i x {F}i + {P}i x ([R]i+I{f}i+I) (B.21) 



146 

The forces and moments exerted at the end-effector are normally equal to zero 

and this can be used to compute the joint forces at the nth joint. For n-lth link, 

the joint forces and moments at the end where the nth joint is located, will be equal 

and opposite to the joint forces and moments computed for the nth link. Using 

this knowledge, the joint forces and moments at the other end can be computed 

using Eqs. (8.20) and (8.21) Thus we can proceed down the chain successively 

fror"" i=n to i=l and determine the force and moment acting at each joint. 

The alignment of the local z axis along the direction of motion of the link 

facilitates easy computation of the actuator torques/forces which are the z com­

ponents of the joint moments/forces. For rotational joints, the vector moment is 

projected along the axis of rotation to yield the joint torque. For sliding joints, the 

vector force is projected along the sliding axis to yield the joint force. The other 

components of the force and moment are generated by the structure and bearings 

of the device. Thus we can write 

r, = {z}.{f;} 

r, = {z}.{ni} 

for a prismatic joint 

for a revolute joint 

(B.22) 

(8.23) 



Appendix C 

Schedules for Inverse 
Dynamics Computation 

The schedule for computation of the inverse dynamic subtasks are given in this 

appendix. Tables C.l to C.8 give the schedule for the computation of the inverse 

dynamic tasks of a six-link manipulator given in Table 4.3. As mentioned in 

Chapter 4, the subtasks are denoted by a three digit number. The first number 

corresponds to the link number and the subsequent two numbers correspond to 

the subtask number as given by Table 4.2. 

The computation of customized inverse dynamics of Stanford manipulator 

given in Table 4.9 is scheduled in Tables C.9 to C.15. 

Hi 



Ji\8 

Processor 
Level 1 2 

1 110 229 
2 121 231 
3 201 232 
4 123 234 
5 125 236 
6 204 238 
7 206 241 
8 208 243 
9 213 129 
10 301 131 
11 209 132 
12 211 134 
13 216 136 
14 303 138 
15 305 141 
16 218 143 
17 220 221 
18 222 306 
19 307 308 
20 312 313 
21 314 402 
22 223 224 
23 225 309 
24 310 311 
25 315 316 
26 317 403 
27 404 405 
28 318 319 
29 320 321 
30 322 406 
31 407 408 
32 412 413 
33 414 501 
34 502 323 
35 324 325 
36 409 410 
37 411 415 
38 416 417 
39 503 504 

Processor 
Level 1 2 
40 505 418 
41 419 420 
42 421 422 
43 506 507 
44 503 512 
45 513 514 
46 601 602 
47 423 424 
48 425 509 
49 510 511 
50 515 516 
51 517 603 
52 604 605 
53 518 519 
54 520 521 
55 522 606 
56 607 608 
57 612 613 
58 614 523 
59 524 525 
60 609 610 
61 611 615 
62 616 617 
63 618 619 
64 620 621 
65 622 623 
66 624 625 
67 626 627 
68 628 629 
69 636 637 
70 638 526 
71 641 642 
72 643 527 
73 528 529 
74 530 531 
75 532 533 
76 534 535 
77 536 537 
78 538 539 

Processor 
Level 1 2 

79 540 426 
80 541 542 
81 543 427 
82 428 429 
83 430 431 
84 432 433 
85 434 435 
86 436 437 
87 438 439 
88 440 326 
89 441 442 
90 443 327 
91 328 329 
92 330 331 
93 332 333 
94 334 335 
95 336 337 
96 338 339 
97 340 226 
98 341 342 
99 343 226 
100 227 228 
101 229 230 
102 231 239 
103 232 233 
104 234 235 
105 236 237 
106 238 240 
107 241 242 
108 243 126 
109 129 130 
110 131 139 
111 132 133 
112 134 135 
113 136 137 
114 138 140 
115 141 142 
116 143 0 

T~ble C.l: Two Processor Schedule of Invcl'se Dynamics of a Six-Link M _ 
mpulator a 



149 

Processor Processor Processor 
Level 1 2 3 Level 1 2 3 Level 1 2 3 

1 110 120 121 27 505 418 419 53 538 539 540 
2 122 201 202 28 ·120 421 422 54 541 542 543 
3 123 124 125 20 506 507 508 55 426 427 428 
4 203 204 205 30 .512 513 514 56 429 430 431 
5 206 207 208 31 601 602 423 57 432 433 434 
6 212 213 214 32 424 425 509 58 435 436 437 
7 301 302 209 33 510 511 515 59 438 439 440 
8 210 211 215 34 516 517 603 60 4tl1 442 443 

9 216 217 303 35 GO·l 605 518 61 326 327 328 
10 30<1 305 218 36 .519 520 521 62 329 330 331 
11 219 220 221 37 522 606 607 63 332 333 334 
12 222 306 307 38 608 612 613 64 335 336 337 
13 308 312 313 39 614 523 524 65 338 339 340 
14 314 401 402 ,10 52.5 609 610 66 341 342 343 
15 223 224 225 ·ll Gll 615 616 67 226 227 228 
16 309 310 311 42 617 620 621 68 229 230 231 
17 315 316 317 43 G18 619 622 69 232 233 234 
18 403 40·1 40.5 44 623 624 62.5 70 235 236 237 
19 318 319 320 45 626 627 628 71 238 239 240 
20 321 322 406 46 629 636 637 72 241 242 243 
21 407 408 412 47 638 S26 527 73 126 0 0 
22 413 414 501 48 641 642 6·13 74 129 130 131 
23 502 323 324 tl9 5:l6 527 528 75 132 133 134 
24 325 409 410 50 !'.\29 S30 531 76 135 136 137 

25 411 415 416 .51 532 533 534 77 138 139 140 
26 417 503 504 52 535 536 537 78 141 142 143 

Table C.2: Three Proccssot· Schedule of Inverse Dynamics of a Six-Link Ma­
nipu]at.m· 



150 

Processor Loading Processor Loading 
Level 1 2 3 4 Level 1 2 3 4 

1 110 120 121 122 30 524 525 609 610 
2 201 202 123 124 31 611 615 616 617 
3 125 203 204 205 32 618 619 620 621 
4 206 207 208 212 33 622 526 527 528 
5 213 214 301 302 34 623 624 625 529 
6 209 210 211 215 35 626 627 628 629 
7 216 217 303 304 36 636 637 638 530 
8 305 218 219 220 37 641 642 643 531 
9 221 222 306 307 38 532 533 534 535 
10 308 312 313 314 39 536 537 538 539 
11 401 402 223 224 40 540 427 428 429 
12 225 309 310 311 41 541 542 543 426 
13 315 316 317 403 42 430 431 436 437 
14 404 405 318 319 43 432 433 434 435 
15 320 321 322 406 44 438 439 440 327 
16 407 408 412 413 45 441 442 443 326 
17 414 501 502 323 46 328 329 330 331 
18 324 325 409 410 47 332 333 334 335 
19 411 415 416 417 48 336 337 338 339 
20 503 504 505 418 49 340 227 228 229 
21 419 420 421 422 50 341 342 343 226 
22 506 507 508 512 51 230 231 236 237 
23 513 514 601 602 52 232 233 234 235 
24 423 424 425 509 53 238 239 240 126 
25 510 511 515 516 54 241 242 243 136 
26 517 603 604 605 55 129 130 131 137 
27 518 519 520 521 56 132 133 134 135 
28 522 606 607 608 57 138 139 140 0 
29 612 613 614 523 58 141 142 143 0 

Table C.3: Four Processor Schedule of Inverse Dynamics of a Six-Link Ma­
nipulator 



151 

Processor loading 
level 1 2 3 4 5 

Processor Loading 

1 110 120 121 122 201 
Level 1 2 3 4 5 

2 202 123 124 125 203 25 611 615 616 617 528 

3 204 205 301 302 212 26 618 619 620 621 622 

4 206 207 208 213 214 
27 623 624 625 529 427 

5 209 210 211 215 216 28 626 627 628 629 428 

6 217 303 304 305 401 29 636 637 638 530 531 

7 218 219 220 221 222 30 641 642 643 526 527 

8 306 307 308 312 313 31 532 533 534 535 536 

9 314 402 223 224 225 32 537 538 539 540 430 

10 309 310 311 315 316 33 541 542 543 426 429 

11 317 403 404 405 501 34 431 327 328 329 227 

12 318 319 320 321 322 35 432 433 434 435 436 

13 406 407 408 412 413 36 437 438 439 440 330 

14 414 502 323 324 325 
37 441 442 443 326 331 

15 409 410 411 415 416 38 332 333 334 335 336 

16 417 503 504 505 601 39 337 338 339 340 228 

17 418 419 420 421 422 40 341 342 343 226 229 

18 506 507 508 512 513 41 230 231 236 237 238 

19 514 602 423 424 425 42 232 233 234 235 239 

20 509 510 511 515 516 43 240 126 129 130 131 

21 517 603 604 605 520 
44 241 242 243 0 0 

22 518 519 521 522 606 45 132 133 134 135 136 

23 607 608 612 613 614 46 137 138 139 140 0 

24 523 524 525 609 610 47 141 142 143 0 0 

Ta.biP C' 4 · F' · • p · . · . . S ·I · . - '" · t\c toccsr;ot . c tedule ol ln\'ct·sc Dvua.mics of a Six-1 · J· J\·1 _ 
mpulator • .. m... a 



152 

Processor Loading 
Level 1 2 3 4 5 6 

1 110 120 121 122 201 202 
2 123 124 125 203 204 205 
3 206 207 208 212 213 214 
4 301 302 209 210 211 215 
5 216 217 303 304 305 401 
6 218 219 220 221 222 306 
7 307 308 312 313 314 402 
8 223 224 225 309 310 311 
9 315 316 317 403 404 405 
10 318 319 320 321 322 406 
11 407 408 412 413 414 501 
12 502 323 324 325 409 410 
13 411 415 416 417 503 504 
14 505 418 419 420 421 422 
15 506 507 508 512 513 514 
16 601 602 423 424 425 509 
17 510 511 515 516 517 603 
18 604 605 518 519 520 521 
19 522 606 607 608 612 613 
20 614 523 524 525 609 610 
21 611 615 616 617 527 528 
22 618 619 620 621 622 529-
23 623 624 625 427 428 429 
24 626 627 628 629 327 328 
25 636 637 638 326 329 226 
26 641 642 643 526 530 531 
27 532 533 534 535 536 537 
28 538 539 540 426 430 431 
29 541 542 543 436 437 438 
30 432 433 434 435 439 440 
31 441 442 443 330 331 227 
32 332 333 334 335 336 337 
33 338 339 340 228 229 230 
34 341 342 343 231 236 237 
35 232 233 234 235 238 239 
36 240 126 129 130 131 0 
37 241 242 243 136 137 138 
38 132 133 134 135 139 140 
39 141 142 143 0 0 0 

Table C.5: Six Processor Schedule of }11\:ersc.! Dynamics of a Six-Lirlk Mauip-



153 

Processor Loading 
Level 1 2 3 4 5 6 7 

1 110 120 121 122 201 202 129 
2 123 124 125 203 204 205 126 
3 206 207 208 212 213 214 301 
4 302 209 210 211 215 216 217 
5 303 304 305 218 219 220 221 
6 222 306 307 308 312 313 314 
7 401 402 223 224 225 309 310 
8 311 315 316 317 403 404 405 
9 318 319 320 321 322 406 407 
10 408 412 413 414 501 502 323 
11 324 325 409 410 411 415 416 
12 417 503 504 505 420 421 422 
13 418 419 506 507 508 512 513 
14 514 601 602 423 424 425 509 
15 510 511 515 516 517 603 604 
16 605 518 519 520 521 522 614 
17 606 607 608 612 613 523 524 
18 525 609 610 611 615 616 617 
19 618 619 620 621 622 526 527 
20 623 624 625 528 529 536 537 
21 626 627 628 629 538 426 427 
22 636 637 638 530 531 428 429 
23 641 642 643 436 437 438 326 
24 532 533 534 535 539 540 327 
25 541 542 543 430 431 328 ~29 
26 432 433 434 435 439 440 336 
27 441 442 443 330 331 337 338 
28 332 333 334 335 336 339 340 
29 341 342 343 226 227 228 229 
30 230 231 236 237 238 136 137 
31 232 233 234 235 239 240 138 
32 241 242 243 130 131 0 0 
33 132 133 134 135 139 140 0 
34 141 142 143 0 0 0 0 

Table C.G: Sm·<'n Processor Schedule of lm·c1·sc Dynamics of a Six-Link l'vla­
nipulat.or 



15·1 

Processor Loading 
Level 1 2 3 4 5 6 7 8 

1 110 120 121 122 201 202 129 0 
2 123 124 125 203 204 205 0 0 
3 206 207 208 212 213 214 301 302 
4 209 210 211 215 216 217 303 304 
5 305 218 219 220 221 222 306 307 
6 308 312 313 314 401 402 223 224 
7 225 309 310 311 315 316 317 403 
8 404 405 318 319 320 321 322 126 
9 406 407 408 412 413 414 501 502 
10 323 324 325 409 410 411 415 416 
11 417 503 504 505 418 419 420 421 
12 422 506 507 508 512 513 514 601 
13 602 423 424 425 509 510 511 515 
14 516 517 603 604 605 612 613 614 
15 518 519 520 521 522 606 607 608 
16 609 610 611 615 616 617 226 227 
17 618 619 620 621 622 523 524 525 
18 623 624 625 228 229 136 137 138 
19 626 627 628 629 526 527 528 529 
20 636 637 638 536 537 538 426 326 
21 641 642 643 530 531 436 336 226 
22 532 533 534 535 539 540 236 0 
23 541 542 543 427 428 429 430 431 
24 432 433 434 435 437 438 439 440 
25 441 442 443 327 328 329 330 331 
26 332 333 334 335 337 338 339 340 
27 341 342 343 227 228 229 230 231 
28 232 233 234 235 237 238 239 240 
29 241 242 243 126 129 130 131 0 
30 132 133 134 135 139 140 0 0 
31 141 142 143 0 0 0 0 0 

Table C.7: Eight Processor Schedul<· of Im·et·se Dynamics of a Six-Link Ma­
nipulator 



155 

Processor Loading 
Level 1 2 3 4 5 6 7 8 9 

1 110 120 121 122 201 202 0 0 0 
2 123 124 125 203 204 205 0 0 0 
3 206 207 208 212 213 214 301 302 0 
4 209 210 211 215 216 217 303 304 305 
5 218 219 220 221 222 306 307 308 312 
6 313 314 401 402 223 224 225 309 310 
7 311 315 316 317 403 404 405 320 321 
8 31f.l 319 322 406 407 408 412 413 414 
9 501 502 323 324 325 409 410 411 415 
10 416 417 503 504 505 420 421 422 512 
11 418 419 506 507 508 513 514 601 602 
12 423 424 425 509 510 511 515 516 511 
13 603 604 605 518 519 520 521 522 0 
14 606 607 608 612 613 614 0 0 0 
15 523 524 525 609 610 611 615 616 617 
16 618 619 620 621 622 0 0 0 0 
17 623 624 625 0 0 0 0 0 0 
18 626 627 628 629 0 0 0 0 0 
19 636 637 638 0 0 0 0 0 0 
20 641 642 643 526 527 528 529 530 531 
21 532 533 534 535 536 537 538 539 540 
22 541 542 543 426 427 428 429 430 431 
23 432 433 434 435 436 437 438 439 440 
24 441 442 443 326 327 328 329 330 331 
25 332 333 334 335 336 337 338 339 340 
26 341 342 343 226 227 228 229 230 231 
27 232 233 234 235 236 237 238 239 240 
28 241 242 243 126 127 128 129 130 131 
29 132 133 134 135 136 137 138 139 140 
30 141 142 143 0 0 0 0 0 0 

Table C.S: Nine PI'O('(~liSOl' Srlll'dulc.• or Jn\'NSC Dynamics of a Six-Link 1\Ja­
nipulat.or 



156 

Processor 
Level 1 2 

1 110 120 
2 121 122 
3 201 202 
4 123 124 
5 125 203 
6 204 205 
7 206 207 
8 208 216 
9 209 210 
10 211 217 
11 303 218 
12 219 306 
13 401 402 
14 224 225 
15 403 404 
16 405 318 
17 319 406 
18 407 408 
19 501 502 
20 324 325 
21 409 410 
22 411 503 
23 504 505 
24 418 419 
25 422 506 
26 507 508 

Processor 
Level 1 2 

27 601 602 
28 423 424 
29 425 509 
30 510 511 
31 603 604 
32 605 518 
33 519 522 
34 606 607 
35 608 523 
36 524 525 
37 609 610 
38 611 618 
39 619 528 
40 624 625 
41 626 627 
42 628 629 
43 638 529 
44 641 642 
45 643 526 
46 530 531 
47 527 532 
48 537 538 
49 539 540 
50 541 542 
51 543 426 
52 427 428 

Processor 
Level 1 2 

53 429 430 
54 431 439 
55 432 437 
56 438 440 
57 441 442 
58 443 326 
59 327 328 
60 330 331 
61 329 332 
62 338 339 
63 340 226 
64 341 342 
65 343 227 
66 228 229 
67 230 231 
68 232 233 
69 235 238 
70 239 240 
71 241 242 
72 243 126 
73 130 131 
74 127 132 
75 135 137 
76 138 139 
77 140 0 
78 141 142 
79 143 0 

· 1 1 1 I' · (' ·t · ., • I 111\'C'l'SC Dvnamics of Table C .U: Two Processor Sc 1<.'< 11 e 01 -us .onllr.u - · w 

Stanford .r..Ianipulator 



157 

Processor Loading Processor loading 
Level 1 2 3 Level 1 2 3 

1 110 120 121 27 624 625 527 
2 122 201 202 28 626 627 628 
3 123 124 125 29 629 528 529 
4 203 204 205 30 638 426 326 
5 206 207 208 31 641 642 643 
6 209 210 211 32 530 531 427 
7 216 217 303 33 532 537 538 
8 218 219 306 34 539 540 428 
9 401 402 224 35 541 542 543 

10 225 403 404 36 429 430 431 
11 405 318 319 37 432 437 438 
12 406 407 408 38 439 440 327 
13 501 502 324 39 441 442 443 
14 325 409 410 40 329 330 331 
15 411 503 504 41 328 332 338 
16 505 418 419 42 339 340 226 
17 422 506 507 43 341 342 343 
18 508 601 602 44 227 228 229 
19 423 424 425 45 230 231 126 
20 509 510 511 46 232 233 235 
21 603 604 605 47 238 239 240 
22 518 519 522 48 241 242 243 
23 606 607 608 49 127 130 131 
24 523 524 525 50 132 135 137 
25 609 610 611 51 138 139 140 
26 618 619 526 52 141 142 143 

Table C.lU: Thrc.·~ PI'Ores~or Srlu·dulf• for Customiz{'d lnYcrsc Dynamics of 
Stauford l\1anipnla.tol' 



l58 

Processor Loading 
Level 1 2 3 4 

1 110 120 121 122 
2 201 202 123 124 
3 125 203 204 205 
4 206 207 208 126 
5 209 210 211 216 
6 217 303 401 402 
7 218 219 306 403 
8 224 225 404 405 
9 318 319 406 407 
10 408 501 502 324 
11 325 409 410 411 
12 503 504 505 418 
13 419 422 506 507 
14 508 601 602 423 
15 424 425 509 510 
16 511 603 604 605 
17 518 519 522 606 
18 607 608 523 524 
19 525 609 610 611 
20 618 619 526 527 

Processor Loading 
Level 1 2 3 4 

21 624 625 528 529 
22 626 627 628 629 
23 638 537 538 426 
24 641 642 643 530 
25 531 427 428 429 
26 532 539 540 326 
27 541 542 543 430 
28 431 438 327 328 
29 432 437 439 440 
30 441 442 443 329 
31 330 331 226 227 
32 332 338 339 340 
33 341 342 343 228 
34 229 230 231 129 
35 232 233 235 238 
36 239 240 130 131 
37 241 242 243 137 
38 135 138 139 140 
39 141 142 143 0 

Table C.ll· Four Processor S ·I 1 1 I' l' · 
Stat 

r ·d !11. . I . c ll'l u c or .ustonu:wd luverse Dvnatnics of 
• HOI l\ am pu ntor • .. 



159 

Processor Loading 
level 1 2 3 4 5 

1 110 121 122 201 202 
2 120 203 204 205 129 
3 206 207 208 123 124 
4 209 210 211 216 217 
5 303 125 218 219 401 
6 306 402 224 225 227 
7 403 404 405 318 319 
8 406 407 408 501 502 
9 324 325 409 410 411 
10 503 504 505 418 419 
11 506 507 508 601 602 
12 509 510 511 603 422 
13 604 605 518 519 423 
14 522 606 607 608 424 
15 524 525 609 610 611 
16 618 619 523 425 526 
17 624 625 527 528 529 
18 626 627 628 629 426 
19 638 427 428 428 326 
20 327 328 329 226 126 
21 229 238 138 228 0 
22 641 642 643 530 531 
23 532 537 538 539 540 
24 541 542 543 430 431 
25 432 437 438 439 440 
26 441 442 443 330 331 
27 332 338 339 340 0 
28 341 342 343 230 231 
29 232 233 235 239 240 
30 241 242 243 130 131 
31 132 135 137 139 140 
32 141 142 143 0 0 

'l~1blc C.l2: FivP Processor Schedule for Customized Inverse Dynamics of 
Stanford l\Janipulator 



1()0 

Processor Loading 
level 1 2 3 4 5 6 

1 110 120 121 122 201 202 
2 123 124 125 203 204 205 
3 206 207 208 0 0 0 
4 209 210 211 216 217 303 
5 218 219 306 401 402 0 
6 224 225 403 404 405 0 
7 318 319 406 407 408 501 
8 502 324 325 0 0 0 
9 409 410 411 503 504 505 
10 418 419 422 506 507 508 
11 601 602 423 424 425 0 
12 509 510 511 603 604 605 

... 

13 518 519 522 606 607 608 
14 523 524 525 609 610 611 
15 618 619 526 527 528 426 
16 624 625 427 428 326 327 
17 626 627 628 629 328 0 
18 638 226 227 228 126 0 
19 641 642 643 529 530 531 
20 532 537 538 539 540 0 
21 541 542 543 429 430 431 
22 432 437 438 439 440 0 
23 441 442 443 329 330 331 
24 332 338 339 340 0 0 
25 341 342 343 229 230 231 
26 232 233 235 238 239 240 
27 241 242 243 127 130 131 
28 132 135 137 138 139 I 140 
29 141 142 143 0 0 0 

'fable C.13: Six Processor Schedule for Customized Inverse Dynamics of 
Stanford Manipulator 



161 

Pi'ocessor Loading 

Level 1 2 3 4 5 6 

1 110 120 121 122 201 202 
2 123 124 125 203 204 205 
3 206 207 208 0 0 0 
4 209 210 211 216 217 303 
5 218 219 306 401 402 0 
6 224 225 403 404 405 0 
7 318 319 406 407 408 501 
8 325 409 410 411 503 504 
9 418 419 506 507 508 601 
10 509 510 511 603 604 605 
11 518 519 522 606 607 608 
12 523 524 525 609 610 611 
13 618 619 423 424 425 526 
14 624 625 426 427 326 327 
15 626 627 628 629 227 0 
16 638 0 0 0 0 0 
17 641 642 643 528 529 530 
18 532 537 538 539 540 0 
19 541 542 543 428 429 430 
20 432 437 438 439 440 0 
21 441 442 443 328 329 330 
22 332 338 339 340 0 0 
23 341 342 343 228 229 230 
24 232 233 235 238 239 240 
25 241 242 243 126 127 130 
26 132 135 137 138 139 140 
27 141 142 143 0 0 0 

Table C.l4: Seven Processor Schedule for Customized Inverse Dynamics of 
Stauford C\Janipulator 

7 

0 
0 
0 
0 
0 
0 

502 
505 
602 

0 
324 
422 
527 
226 
0 
0 

531 
0 

431 
0 

331 
0 

231 
0 

131 
0 
0 

' I 

:~ 

~ 

t 
.... ,. ,, 



162 

Processor Loading 
Level 1 2 3 4 5 6 7 

1 110 120 121 122 201 202 129 
2 123 124 125 203 204 205 0 
3 206 207 208 126 0 0 0 
4 209 210 211 216 217 303 137 
5 218 219 306 401 402 0 0 
6 224 225 403 404 405 0 0 
7 318 319 406 407 408 501 502 
8 324 325 409 410 411 503 504 
9 418 419 422 506 507 508 601 
10 424 425 509 510 511 603 604 
11 518 519 522 606 607 608 423 
12 523 524 525 609 610 611 0 
13 618 619 526 426 326 0 0 
14 624 625 0 0 0 0 0 
15 626 627 628 629 0 0 0 
16 638 0 0 0 0 0 0 
17 641 642 643 527 528 529 530 
18 532 537 538 539 540 0 0 
19 541 542 543 427 428 429 430 
20 432 437 438 439 440 0 n 
21 441 442 443 327 328 329 330 
22 332 338 339 340 0 0 0 
23 341 342 343 227 228 229 230 
24 232 233 235 238 239 240 0 
25 241 242 24:> 130 131 0 0 
26 132 135 139 140 0 0 0 -27 141 142 143 0 0 0 0 

Table C.l5: Eight Processor Sclwdule for Customized luverse Dymnnics of 
Stanford !\·1anipula.tor 

8 

0 
0 
0 

138 
0 
0 

226 
505 
602 
605 
0 
0 
0 
0 
0 
0 

531 
a·-

431 
0 

331 
0 

231 ·-
0 
0 
0 
0 



Appendix D 

Program Listing 

D.l Numeric Programs for Inverse Dynam-
• 
ICS 

The inverse dynamics of PUMA-560 {3 DOF) manipulato:- is computed numerically 

using two approaches: 

1. Lagrange formulation (0.1.1) 

2. Newton-Euler formulation (0.1.2) 

These programs are written for MATLAB software. The position, vell:lcity and 

acceleration of each link can be defined in tl1e input se~tion and the program 

computes the torques/forces at the joints. 

In order to compute the torque profiles for a given traje~tory, die inverse kine­

matics has to be solved first . A program using MATLAB to compute the inverse 

kili~matics for the 3 DOF PUMA-560 manipulator is given in Section 0.1.3. 

163 



D.l.l Inverse Dynamics using Lagrange Equations 
Y.general parameters for puma 560 

m2=17.4 
m3=6.05 

j1=[0.0058 0 0 0;0 0.0058 0 0;0 0 ··0.0058 0;0 0 0 0] 

164 

j2=[0.6984 0 0 -1.1832;0 0.0340 0 0;0 0 0.2416 0;-1.1832 0 0 17.4] 
j3=[0.0039 0 0 0;0 0.0335 0 -0.4235;0 0 0.1432 0;0 -0.4235 0 6.05] 

pl= [0 j 0; 0] 
p2=[0;0.2435;0] 
p3=[0.4318;0;-0.0934] 

g=[O 0-9.8 0]' 

cg2=[-0.068;0;0;1] 
cg3=[0;-0.07;0;1] 

r.rotation matrices are computed 

s1=sin(q1) 
c1=cos(q1) 
s2=sin(q2) 
c2=cos(q2) 
s3=sin(q3) 
c3=cos(q3) 

rl=[cl -s1 O;s1 c1 0;0 0 1] 
r2=[c2 -s2 0;0 0 1;-s2 -c2 0] 
r3=[c3 -s3 O;s3 c3 J;O 0 1] 

r1=[[r1] [p1];0 0 0 1] 
r2=[[r2] [p2] ;0 0 0 1] 
r3=[[r3] [p3] ;0 0 0 1] 

qq= [0 -1 0 0; 1 0 0 0 j 0 0 0 0; 0 0 0 0] 

drl=rl*qq 
dr2=r2*qq 
dr3=r3*qq 

ddr1=dr1*qq 
ddr2=dr2*qq 
ddr3=dr3*qq 

t1=r1 



t2=t1*r2 
t3=t2*r3 

fttO=[O 0 0 0;0 0 0 0;0 0 0 0;0 0 0 0] 
ftt1=fttO•r1+dr1*v1 
ftt2=ftt1*r2+t1*dr2*v2 
ftt3=ftt2*r3+t2*dr3*v3 

t0=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1] 
sttO=fttO 
stt1=sttO*r1+2*fttO*dr1*v1+tO*ddr1*v1~2+tO*dr1*a1 

stt2=stt1*r2+2*ftt1*dr2*v2+t1*ddr2*v2-2+t1*dr2*a2 
stt3=stt2*r3+2*ft~2*dr3*v3+t2*ddr3*v3~2+t2*dr3*a3 

dt1=dr1 
dt2=t1*dr2 
dt3=t2*dr3 
d3=j3*(stt3')+[0 0 o 0;0 0 0 o:o .o o 0;0 0 0 0] 
d2=j2*(stt2')+r3*d3 
d1=j1*(stt1')+r2*d2 

b1=(dt1)*d1 
b2=(dt2)*d2 
b3=(dt3)*d3 
trcl=trace(bl) 
trc2=trace(b2) 
trc3=trace(b3) 

cc3=m3*cg3+[0;0;0;0] 
cc2=m2*cg2+r3*cc3 
cc1=r2*cc2 

g1=-g'*dt1*cc1 
g2=-g'*dt2*cc2 
g3=-g'*dt3*cc3 

toq1=trc1+g1 
toq2=trc2+g2 
toq3=trc3+g3 

165 



l(}(i 

D.l.2 Inverse Dynan1ics using Newton-Euler Equa­
tions 

%general parameters for PUMa 560 

m2=17 .4; 
m3=6.05; 
m4=0 .0; 
I 

i1=[0 0 0;0 0 0;0 0 0.35+1.14] j 

i2=[0.130 0 0;0 0.524 0; 0 0 0.539+4.71]; 
i3=[0.192 0 0; 0 0.0154 0; 0 0 0.212+0.83]; . 
• 
p1=[0;0;0]; 
p2=[0;0.2435;0]; 
p3=[0.4318;0;-0.0934]; 
p4=[0;-0.4318;0] i 
I 

cg2=[-0.068;0;0]; 
cg3=[0;-0.07;0]; 
y3new=(6.05*0.07+m4*0.4318)/(m4+6.05) 
cg3=[0;-y3new;O] 
m3=m4+m3; 
%increments in inertia due to payload 
dxx=m4*(p4(2)-2+p4(3)-2); 
dyy=rn4*(p4(1)-2+p4(3)-2); 
dzz=rn4*(p4(1)-2+p4(2)-2); 
di3=[dxx 0 0;0 dyy 0;0 0 dzz]; 
i3=i3+di3 
%rotation matrices are computed; 
I 

sl=sin(ql); 
c1=cos(q1); 
s2=sin(q2); 
c2=cos(q2); 
s3=sin(q3); 
c3=cos(q3); 

r1=[c1 -s1 O;sl c1 0;0 0 1]; 
r2=[c2 - s2 0;0 0 1; - s2 -c2 0]; 
r3=[c3 -s3 O;s3 c3 0;0 0 1]; 

%Forward recursion starts here . 
I 

avO=[O;O;O]; 
aaO=[O;O;O]; 



la0=[0;0;9.8]; 

' Y. link no: 1 
rl'*avO; 
avl=r1'*avO+[O;O;v1]; 
a=av1; 
b=[O;O;v1]; 
c=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)]; 
aa1=r1 1 *(aaO)+[O;O;a1]+c; 
a=aaO; 
b=pl; 
c=[a(2,1)•b(3,1)-b(2,1)*a(3,1); 
b(1,1)•a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)); 
a=avO; 
b=p1; 
ccc=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
b=ccc; 
cc=[a(2,1)*b(3,1)-b(2,1)*a(3,1)j 
b(1,1)*a(3,l)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
laO+c+cc; 
la1=r1'*(1aO+c+cc); 
Y.cg acceleration is not calculated as this is not required. 

Y. link no: 2 
r2'*av1; 
av2=r2'*av1+[0;0;v2]; 
a=av2; 
b=[O;O;v2J; 
c=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)]; 
aa2=r2'*(aa1)+[0;0;a2]+c; 
a=aa1; 
b=p2; 
c=[a(2,1)*b(3,1)-b(2,1)*a(3.1); 
b(1,1)*c(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)]; 
a=av1; 
b=p2; 
ccc=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
b=ccc; 
cc=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
lal+c+cc; 
la2=r2'*(la1+c+cc); 
a=aa2; 
b=cg2; 

167 



c=[a(2,1)*b(3,1)-b(2,1)•a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)•a(2,1)]; 
a=av2; 
b=cg2; 
ccc=[a(2,1)•b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)•b(2,1) -b(1,1)•a(2,1)] 
b=ccc; 
cc=[a(2,1)*b(3,1)-b(2,1)•a(3,1); 
b(1,1)*a(3,1)-a(1,1)•b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
lc2=la2+c+cc; 

% link no: 3 
r3'*av2; 
av3=r3'*av2+[0;0;v3]; 
a=av3; 
b:.[O;O;v3] i 
c=[a(2,1)*~(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)]; 
aa3=r3'*(aa2)+[0;0;a3]+c; 
a=aa2; 
b=p3; 
c=[a(2 , 1)+b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)]; 
a=av2; 
b=p3; 
ccc=[a(2,1)•b(3,1)-b(2,1)*a(3,1); 
b(1,1)•a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
b=ccc; 
cc=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)•a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
la2+c+cc; 
la3=r3'*(la2+c+cc); 
a=aa3; 
b=cg3; 
c=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)•a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)]; 
a=av3; 
b=cg3; 
ccc=[a(2,1)•b(3,1)-b(2,1)*a(3,1); 
b(1,1)•a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
b=ccc; 
cc=[a(2,1)*b(3,1)-b(2,1)•a(3,1); 
b(1,1)•a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
lc3=la3+c+cc; 

7.Forward Recursion ends here 

7.Backward Recursion starts here 

lGS 



Y.External forces are defined zero 

f4=[0;0;0]; 
n4=[0;0;0]; 
r4=[1 0 0;0 1 0;0 0 1]; 
p4=[0;0;0]; 

Y.link 3 

r4*f4; 
rn3*lc3; 
f3=r4*f4+m3*lc3; 
morn=i3*av3; 
a=av3; 
b=mom; 
c=[a(2,1)•b(3,1)-b(2,1)*a(3,1); 
b(1,1)+a(3,1)-a(1,1)+b(3,1);a(1i1)+b(2,1)-b(1,1)*a(2,1)]; 
a=cg3; 
b=m3*lc3; 
cc=[a(2,1)+b(3,1)-b(2,1)*a(3,1); 
b(1,1)•a(3,1)-a(1,1)*b(3,1);a(1,1)+b(2,1)-b(1,1)•a(2,1)]; 
a=p4; 
b=r4*f4; 
ccc=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
mom=i3*aa3; 
dd=r4*n4; 
i3*aa3; 
n3=(i3*aa3+c)+cc+ccc; 

%link 2 
r3*f3; 
m2+1c2; 
f2=r3*f3+m2+lc2; 
mom==i2*av2; 
a=av2; 
b=mom; 
c=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)+a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)+a(2,1)]; 
a=cg2; 
b=m2*1c2; 
cc=[a(2,1)+b(3,1)-b(2,1)+a(3,1); 
b(1,1)*a(3,1) - a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)]; 
a=p3; 
b=r3*f3; 
ccc=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 

169 



b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
r3*n3; 
i2*aa2; 
n2=r3*n3+(i2*aa2+c)+cc+ccc; 

Xlink 1 

f1=r2*f2; 
mom=i1*av1; 
a=avl; 
b=mom; 
c=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)]; 
a=p2; 
b=r2*f2; 
ccc=[a(2,1)*b(3,1)-b(2,1)*a(3,1); 
b(1,1)*a(3,1)-a(1,1)*b(3,1);a(1,1)*b(2,1)-b(1,1)*a(2,1)] 
i1*aa1; 
r2*n2; 
n1=r2*n2+(i1*aa1+c)+ccc; 

Xend of backward recursion 

170 

Xthe torques are given by the z components of n, the joint moments. 

t1=n1(3,1) 
t2=n2(3,1) 
t3=n3(3,1) 



171 

0.1.3 Inverse Kinematics Program for PUMA-560 {3 
DOF) 

1.Program pumakin.m 
1. 
1. Inverse Kinematics for PUMA-560 Manipulator 
1. 
1.h=distance of the first joint from base =O.O(can be changed) 
1.e=distance of the third joint from second joint along 2nd link=0.4318 
Y.g=distance of the third joint from first joint along 1st link=0.1270 
Y.f=distance of the wrist from the third joint along 3rd link=0.4521 
Y.d=distance of end effector from the third joint=O.O 
load traj2 
h=O.O; 
e=0.4318; 
f=0.4318; 
g=0.1270; 
d=O.O; 
px=0.3 
for i=1:201, 
pz=ppp(i,2); 
py=pz; 
q1f=atan2(-px,py)+atan2(sqrt(px~2+py~2-g~2),g); 
q1s=atan2(-px,py)+atan2(-sqrt(px~2+py~2-gA2),g); 
1.choose qi; 
if i > 1, 
df=abs(q1-q1f); 
ds=abs(q1-q1s); 
if df < ds, q1=q1f; end; 
if df > ds, q1=q1s; end; 
if df == 0, q1=q1s; end; 
end; 
if i == 1, ql=qlf; end; 
q3f=atan2(e~2+fA2+gA2-pxA2-py~2-(pz-h)A2, 
sqrt(4•eA2*fA2-(eA2+f~2+gA2-pxA2-pyA2-(pz-h)A2)A2)); 
q3s=atan2(eA2+f~2+gA2-pxA2-py~2-(pz-h)~2, 
-sqrt(4*e~2*fA2-(eA2+fA2+g~2-pxA2-py~2-(pz-h)A2)~2)); 
Y.choose q3; 
if i > 1, 
df=abs(q3-q3f); 
ds=abs(q3-q3s); 
if df < ds, q3=q3f; end; 
if df > ds, q3=q3s; end; 
if df == 0, q3=q3s; end; 
end; 
if i == 1, q3=q3f; end; 
1.q3 
s3=sin(q3); 



c3=cos(q3); 
c1=cos(q1); 
s1=sin(q1); 
q2=atan2(-(px*c1+py*s1)*f*c3-(pz-h)*(e-f*s3), 
(px*c1+py*s1)•(e-f•s3)-(pz-h)*f*c3); 
theta(i,1)=q1 
theta(i,2)=q2 
theta(i 1 3)='13 

y1=theta(i,1); 
y2=theta(i 1 2); 
y3=theta(i 1 3); 
d3=S.•.0254; 
d4=17.•.0254; 
a2=17.•.0254; 
a3=0; 
pp(i 1 1)=a3*cos(y1)*cos(y2+y3)-d4•cos(y1)*sin(y2+y3) 
+a2•cos(y2)*cos(y1)-d3*sin(y1);; 
pp(i,2)=a3*sin(y1)*cos(y2+y3)-d4•sin(y1)*sin(y2+y3) 
+a2*cos(y2)•sin(y1)+d3•cos(y1);; 
pp(i 1 3)=-a3*sin(y2+y3)-d4*cos(y2+y3)-a2*sin(y2);; 

vz=ppp(i,3); 
vy=vz; 
vx=O.O; 
rv=[vx;vy;vz]; 

con11=-a3*sin(y1)*cos(y2+y3)+d4*sin(y1)*sin(y2+y3) 
-a2•sin(y1)•cos(y2)-d3*cos(y1); 
con12=-a3*cos(y1)*sin(y2+y3)-d4*cos(y1)*cos(y2+y3) 
-a2*sin(y2)•cos(y1); 

con13=-a3•cos(y1)*sin(y2+y3)-d4*cos(y1)*cos(y2+y3); 

con21=a3•cos(y1)•cos(y2+y3)-d4•cos(y1)*sin(y2+y3) 
+a2•cos(y1)•cos(y2)-d3•sin(y1);; 
con22=-a3•sin(y1)*sin(y2+y3)-d4*sin(y1)*cos(y2+y3) 
-a2•sin(y2)*sin(y1);; 
con23=-a3*sin(y1)•sin(y2+y3)-d4•sin(yl)*cos(y2+y3);; 
I 

con31=0.0; 
con32=-a3•cos(y2+y3)+d4*sin(y2+y3)-a2•cos(y2); 
con33=-a3*cos(y2+y3)+d4*sin(y2+y3); 
con=[con11 con12 con13;con21 con22 con23; con31 con32 con33] 
vq=inv(con)•rv; . 
I 

v(i 1 1)=vq(1) 
v(i 1 2)=vq(2) 
v(i 1 3)=vq(3) 



I 

v1=vq(1); 
v2=vq(2); 
v3=vq(3); 

vv(i,1)=con11*vl+con12*v2+con13*v3; 
vv(i,2)=con21*vl+con22*v2+con23*v3; 
vv(i,3)=con31*vl+con32*v2+con33*v3; 

az=ppp(i,4); 
ay=az; 
ax=O.O; 
ra=[ax;ay;az]; . 
I 

d3=5.•.0254; 
d4=17.*.0254; 
a2=17.*.0254; 
a3 .. 0.0; 
I 

s1=sin(y1); 
s2esin(y2); 
s3=sin(y3); 
c1ecos(y1); 
c2=cos(y2); 
c3=cos(y3); 
s23=sin(y2+y3); 
c23=cos(y2+y3); 

con11=-a3*sin(y1)•cos(y2+y3)+d4*sin(y1)*sin(y2+y3) 
-a2•sin(y1)*cos(y2)-d3*cos(y1); 
con12=-a3*cos(y1)*sin(y2+y3)-d4•cos(yl)*cos(y2+y3) 
-a2*sin(y2)•cos(y1); 

con13=-a3*cos(y1)*sin(y2+y3)-d4*cos(y1)*cos(y2+y3); 
I 

tx11e(-a3*c1•c23+d4•c1•s23-a2•c2•c1+d3*s1)*v1~2; 
tx22=(-a3*c1*c23+d4*c1*s23-a2*c2*c1)*v2~2; 
tx33=(-a3*c1*c23+d4*c1*s23)*v3~2; 
tx12=(a3*s1•s23+d4*s1•c23+a2*s2*s1)*2.*v1*v2; 
tx23=(-a3•c1•c23+d4•c1*s23)*V2*V3*2.; 
tx13=(a3•s1•s23+d4•s1*c23)•2.•v1•v3; 
sra1=ra(1)-(tx11+tx22+tx33+tx12+tx13+tx23); 
ss1=(tx11+tx22+tx33+tx12+tx13+tx23) ; 

con21=a3*cos(y1)*cos(y2+y3)-d4*cos(y1)*sin(y2+y3) 
+a2•cos(y1)•cos(y2)-d3*sin(y1); 
con22=-a3*sin(y1)*sin(y2+y3)-d4•sin(y1)*cos(y2+y3) 

173 



r · 

f. .. 

-a2*sin(y2)*sin(y1); 
con23=-a3*sin(y1)•sin(y2+y3)-d4*sin(y1)*cos(y2+y3); 
ty11a(-a3*s1+c23+d4+s1+s23-a2•c2*s1-d3*c1)*v1A2; 
ty22=(-a3•s1•c23+d4*s1*s23-a2*c2*s1)*v2-2; 
ty33=( -a3*s1*t:23-t·d4+s1+s23) +v3"'2; 
ty12=(-a3*c1+s23-d4+c1+c23-a2+s2+c1)*v1*v2*2.; 
ty23=(-a3*s1*c23+d4*s1*s23)+v3*v2*2.; 
ty13=(-a3*c1*s23-d4*c1+c23)+v3*v1*2.; 
sra2=ra(2)-(ty11+ty22+ty33+ty12+ty13+ty23); 
ss2=(ty11+ty22+ty33+ty12+ty13+ty23); 

con31=0.0; 
con32=-a3*cos(y2+y3)+d4*sin(y2+y3)-a2*cos(y2); 
con33=-a3*cos(y2+y3)+d4*sin(y2+y3); 
tz11=0 .0; 
tz22=(a3*s23+d4*c23+a2*s2)*v2-2; 
tz33=(a3*s23+d4*c23)*v3"'2; 
tz23=(a3*s23+d4*c23)*v2*v3*2.; 
sra3=ra(3)-(tz11+tz22+tz33+tz23); 
ss3=(tz11+tz22+tz33+tz23); 
I 

con=[con11 con12 con13;con21 con22 con23;con31 con32 con33]; 
sra=[sra1;sra2;sra3]; 
qa=inv(con)*sra 
al(i,1)=qa(1); 
al(i,2)=qa(2); 
al(i,3)=qa(3); 

a1=qa(1); 
a2=qa(2); 
a3=qa(3); 

aa(i,1)=con11*a1+con12*a2+con13*a3+ss1; 
aa(i,2)=con21*a1+con22*a2+con23*a3+ss2; 
aa(i,3)=con31*a1+con32*a2+con33*a3+ss3; 

end; 

t=ppp(1:201,1); 

17·1 



175 

D.2 Program in REDUCE for generating the 
Inverse Dynamics 

The symbolic program for generating the inverse dynamics of manipulators is given 

here. This can be executed using the symbolic package, REDUCE, in VAX/7000 

system. The program will generate the inverse dynamic equations in FORTRAN 

which can be used in the control software. The kinematic and dynamic parameters 

U!.ed for generating the prograrfl are given in Tables 2.5 to 2.8. The program given 

in this section is for a PUMA-560 manipulator with 6 DOF. This can be modified 

with new input data for any other manipulator. 



''======================''$ 
"PROGRAM INITIALIZATION"$ 
"======================''$ 

ON FLOAT$ 
OFF EXP; 
ON FORT; 
OFF PERIOD; 
NLINK:=6$ 

17() 

ARRAY THETA(NLINK),ALPA(NLINK) ,A(NLINK), D(NLINK), JT(NLINK)$ 
ON NUMVAL$ 
MATRIX R,R1,R2,R3,RR4,R5,R6,R7,R8,R9$ 
ORDER 
DXX2,DXX3,DXX4,DXX5,DXX6,DYY2,DYY3,DYY4,DYY5,DYY6,DZZ2, 
DZZ3,DZZ4,DZZ5,DZZ6$ 

''=====================''$ 
"OUTPUT FILE IS OPENED"$ 
''====================='' $ 

OUT PUMTOR$ 

II===================================================== It$ 
"DENAVIT HARTENBERG MATRIX PARAMETERS ARE ENTERED HERE"$ 
''=====================================================''$ 

THETA(3):=Q3$ 
THETA(1):=Q1$ 
THETA(2):=Q2$ 
THETA(4):=Q4$ 
THETA(5):=Q6$ 
THETA(6):=Q6$ 

ALPA(1):-0$ 
ALPA(2):=-PI/2$ 
ALPA(3):=0$ 
ALPA(4):!:PI/2$ 
ALPA(E):=-PI/2$ 
ALPA(6):=PI/2$ 

A(1):=0$ 
A(2):=0$ 
A(3):=0.4318$ 
A(4):=-0.0203$ 
A(S):=O$ 
A(6):=0$ 



0(1):=0$ 
0(2):=0.2435$ 
0(3):::-0.0934$ 
0(4) :=0.4331$ 
0(5):=0$ 
0(6):=0$ 

II ================================='I$ 
"INERTIA MATRICES ARE ENTERED HERE"$ 
II:::::::::::::::::::::::::::::::::: II$ 

IXX2 :=0.1351$ 
IYY2 :=0 .6089$ 
IZZ2 :=5.3301$ 

IXX3 :=0.066$ 
IYY3 :=0.0134$ 
IZZ3 :=0.9395$ 

IXX4 :=0.0021$ 
IYY4 :=0.0021$ 
IZZ4 :=0.2013$ 

IXX5 : =0. 3E-03$ 
IYYS : =0. 3E-03$ 
IZZ5 : =0. 1794$ 

IXX6 :=0.2422E-03$ 
IYY6 :=0.2422E-03$ 
IZZ6 : =0. 1930$ 

I1:=MAT((0,0,0),(0,0,0),(0,0,1.490))$ 
I2: =MAT( (IXX2,0, 0) ,·(0, IYY2,0), (0, 0, IZZ2) )$ 
I3:=MAT((IXX3,0,0),(0,IYY3,0),(0,0,IZZ3))$ 
I4:=MAT((IXX4,0,0),(0,IYY4,0),(0,0,IZZ4))$ 
I5:=MAT((IXX5,0,0),(0,IYY5,0),(0,0,IZZ5))$ 
I6:=MAT((IXX6,0,0),(0,IYY6,0),(0,0,IZZ6))$ 

''==============================''$ 
"LINK MASS DATA IS ENTERED HERE"$ 
II ::::::::::::::::::::::::::c:::::::::::: II$ 

M2 :=17.4$ 
M3 :=4.8$ 
M4 :=0 . 82$ 
M5 :=0.34$ 
M6 :=0.09$ 

177 



··==================!:!===========a=======••$ 
"LINK CG CO··ORDINATES ARE ENTERED HERE"$ 
II:::::::::::::::::::::::::::.:::::.:::::::::: ll $ 

CG2:=MAT((-0.068),(0),(0))$ 
CG3:=MAT((0),(-0.070),(0))$ 
CG4:=MAT((O),(O),(O))$ 
CG5:=MAT((O),(O),(O))$ 
CG6:=MAT((0),(0),(0.032))$ 

It=========================== II$ 
"DEFINITION OF CROS OPERATOR"$ 
11:::=:::::==::::::::=::::::=:::::::::: It$ 

OPERATOR X3,Y3,Z3$ 

178 

FOR ALL X1,Y1,Z1,X2,Y2,Z2 let X3(X1,Y1,Z1,X2,Y2,Z2)=Y1*Z2-Z1*Y2$ 
FOR ALL X1,Y1,Z1,X2,Y2,Z2 let Y3(X1,Y1,Z1,X2,Y2,Z2)=Z1*X2-X1*Z2$ 
FOR ALL X1,Y1,Z1,X2,Y2,Z2 let Z3(X1,Y1,Z1,X2,Y2,Z2)=X1*Y2-X2*Y1$ 

••=============c:===••••=cs•m••==-==-•=•=============::•==''$ 
"ROTATION TRANSFORMATION MATRICES ARE COMPUTED HERE"$ 
··=======================-===========================''$ 
FOR I:=l:NLINK DO << 
R:= MAT((COS(THETA(I)), -SIN(THETA(I)),O),(SIN(THETA(I))*COS(ALPA(I)), 
COS(THETA(I))*COS(ALPA(I)), 
-SIN(ALPA(I))),(SIN(THETA(I))*SIN 
(ALPA(I)),COS(THETA(I))*SIN(ALPA(I)),COS(ALPA(I))))$; 
P:=MAT((A(I)),(-D(I)*SIN(ALPA(I))),(D(I)*COS(ALPA(I))))$; 
IF 1=1 THEN R1:=R ; 
IF I=2 THEN R2:=R ; 
IF 1=3 THEN R3:=R ; 
IF !=4 THEN RR4:=R ; 
IF 1=5 THEN RS:=R 
IF I=6 THEN R6:=R 
IF I=2 THEN P1:=P 
IF !=3 THEN P2:=P 
IF 1=4 THEN P3:=P 
IF I=5 THEN P4:=P 
IF I=6 THEN PS:=P ;>>$ 
P6:=MAT((O),(O),(O))$ 

''==============~======:::::::::::::::::::::::::::===:::=:::=========:::========''$ 
"ALTERNATIVELY, ROTATION MATRICES CAN BE DIRECTLY ENTERED"$ 
"TRANSFORMATION MATRICES ARE ENTERED HERE"$ 
II::::::::::::::::::::::::::::::::::==:::="""":::::="":"""":""::::::,:::=::,:::::======== II$ 

R1:,MAT((C1, - S1,0),(S1,C1,0),(0,0,1))$ 



R2:=MAT((C2,-S2,0),(0,0,1),(-S2,-C2,0))$ 
R3:=MAT((C3,-S3,0),(S3,C3,0),(0,0,1))$ 
RR4:=MAT((C4,-S4,0),(0,0,-1),(S4,C4,0))$ 
R5:=MAT((C5,-S5,0),(0,0,1),(-S5,-C5,0))$ 
R6:=MAT((C6,-S6,0),(0,0,(-1)),(S6,C6,0))$ 

II=============·=================-======''$ 
"RELATIVE VELOCITIES ARE ASSIGNED HERE"$ 
tl = :::::::::::::::::::::::::::::::::::II$ 

RV1:=MAT((O),(O),(V1))$ 
RV2:=MAT((O),(O),(V2))$ 
RV3:=MAT((O),(O),(V3))$ 
RV4:=MAT((O),(O),(V4))$ 
RV5:=MAT((O),(O),(V5))$ 
RV6:=MAT((O),(O),(V6))$ 

t I=====~==::::::=====:::::===============:::::::==''$ 

"RELATIVE ACCELERATIONS ARE AS&IGNED HERE"$ 
''=================================n====="$ 

RA1:=MAT((O),(O),(A1))$ 
RA2:=MAT((O),(O),(A2))$ 
RA3:=MAT((O),(O),(A3))$ 
RA4:=MAT((O),(O),(A4))$ 
RAS:=MAT((O),(O),(A5))$ 
RA6:=MAT((O),(O),(A6))$ 

II:::::::::::::::::::::::::::::::::::::= II$ 
"ANGULAR VELOCITIES ARE CALCULATED HERE"$ 
II=====================~================ II$ 

AV1 :=RV1$ 
AV2:=TP(R2)*(AV1)+RV2; 
AV2:=MAT((AV2X),(AV2Y),(AV2Z))$ 
AV3:=TP(R3)*(AV2)+RV3; 
AV3:=MAT((AV3X),(AV3Y),(AV3Z))$ 
AV4:=TP(RR4)*(AV3)+RV4; 
AV4:=MAT((AV4X),(AV4Y),(AV4Z))$ 
AVS:=TP(R5)*(AV4)+RV5; 
AVS:=MAT((AV5X),(AV5Y),(AV5Z))$ 
AV6:=TP(R6)*(AV5)+RV6; 
AV6:=MAT((AV6X),(AV6Y),(AV6Z))$ 

I I::::::::::::::::::::::::::::::::::::::::::::: II$ 
"ANGULAR ACCELERATIONS ARE CALCULATED HERE"$ 
II:::::::::::::::::::====::::::::::=::::::::::: I I$ 

17H 



AA1 :=RA1$ 
CROS2:=MAT((V2*AV2Y),(-V2*AV2X).(O))$ 
AA2:=TP(R2)*(AA1)+RA2+CROS2; 
AA2:=MAT((AA2X),(AA2Y),(AA2Z))$ 
CROS3:=MAT((V3*AV3Y),(-V3*AV3X),(O))$ 
AA3:=TP(R3)*(AA2)+RA3+CROS3; 
AA3:=MAT((AA3X),(AA3Y),(AA3Z))$ 
CROS4:=MAT((V4*AV4Y),(-V4*AV4X),(O))$ 
AA4 :=TP(RR4)*(AA3)+RA4+CROS4; 
AA4:=MAT((AA4X),(PA4Y),(AA4Z))$ 
CROS5:=MAT((V5*AV5Y),(-V5*AV5X),(O))$ 
AA5:=TP(R5)*(AA4)+RA5+CROS5; 
AA5:=MAT((AA5X),(AA5Y),(AA5Z))$ 
CROS6:=MAT((V6*AV6Y),(-V6*AV6X1,(0))$ 
AA6:=TP(R6)*(AA5)+RA6+CROS6; 
AA6:=MAT((AA6X),(AA6Y),(AA6Z))$ 

II :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::11 $ 
"GRAVITY EFFECTS ARE INCLUDED HERE"$ 
II::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: I I$ 

GG:=MAT((O).(O),(G))$ 
LET G=9.8; 

II::=:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: II$ 

11 LAMBDA MATRICES ARE DEFINED HE~E"$ 
''========================;;;;...:~====="$ 

180 

LAM1:=MAT((O,O,O),(O,O,O),(O,O,V1**2-A1))$ 
LAM2:=MAT((RSX2,RZM2,RYP2),(RZP2,RSY2,RXM2),(RYM2,RXP2,RSZ2))$ 
LAM3:=MAT((RSX3,RZM3,RYP3),(RZP3,RSY3,RXM3),(RYM3,RXP3,RSZ3))$ 
LAM4:=MAT((RSX4,RZM4,RYP4),(RZP4,RSY4,RXM4),(RYM4,RXP4,RSZ4))$ 
LAM5:=MAT((RSX5,RZH5,RYP5),(RZP5,RSY5,RXM5),(RYM5,RXP5,RSZ5))$ 
LAM6:=MAT((RSX6,RZM6,RYP6),(RZP6,RSY6,RXM6),(RYM6,RXP6,RSZ6))$ 

··======================================================··$ 
"LINEAR ACCELERATION OF THE ORIGINS ARE CALCULATED HERE"$ 
''======================================================''$ 

LA1:=TP(R1)*GG$ 
LA2P:=(LA1)+LAM1*P1; 
LA2:=TP(R2)*(LA2P)$ 
LA3P:=(LA2)+LAM2*P2; 
LA3P:=MAT((LA3PX),(LA3PY),(LA3PZ))$ 
LA3:=TP(R3)*LA3P; 
LA3:=MAT((LA3X),(LA3Y),(LA3Z))$ 
LA4P:=(LA3)+LAM3*P3; 
LA4P:=MAT((LA4PX),Lh4PY),(LA4PZ))$ 



TPRR4:,.TP(RR4)$ 
LA4:""TPRR4*LA4P; 
LA4:=MAT((LA4X),(LA4Y),(LA4Z))$ 
LA5:=TP(RS)*((LA4)+LAM4*P4); 
LA5:=MAT((LA5X),(LA5Y),(LA5Z))$ 
LA6:,.TP(R6)*((LAS)+LAMS*P5); 
LA6:=MAT((LA6X),(LA6Y),(LA6Z))$ 

"=====,=="'"'"""""'===,.,============================"'="$ 
11LINEAR ACCN OF CGS OF LINKS ARE CALCULATED HERE"$ 
11== .. ==== .. ================= .. =====================~'$ 

LC2:= LA2+LAM2*CG2$ 
LC3:= LA3+LAM3*CG3$ 
LC4:= LA4+LAM4*CG4$ 
LCS:= LA5+LAM5*CG5$ 
LC6:= LA6+LAM6*CG6$ 

''=======================:::======:::=========:::::= .. "$ 
"INERTIAL FORCES OF LINKS ARE CALCULATED HERE"$ 
''= .. ==== .. === .. =========,,=== .. =============="'"'""="$ 

IF2:"" M2*LC2; 
IF3:= M3*LC3; 
IF4:= M4*LC4; 
IF5:"" M5*LC5; 
IF6:"" M6*LC6$ 

IF2:"" MAT((IF2X),(IF2Y),(IF2Z))$ 
IF3:"" MAT((IF3X),(IF3Y),(IF3Z))$ 
IF4:= MAT((IF4X),(IF4Y),(IF4Z))$ 
IF5:= MAT((IF5X),(IF5Y),(IF5Z))$ 

''== .. ========= .. =============================''$ 
"JOINT FORCES ARE GALCULATED HERE"$ 
"COMPUTE JF(I) IN THE PREVIOUS CO-ORD FRAME"$ 
II::::::::::::::::!::::::::::::::::::::::::::::: II$ 

JF6:=IF6; 
JF6:=MAT((JF6X),(JF6Y),(JF6Z))$ 
JFP6:=R6*JF6; 
JFP6:=MAT((JFP6X),(JFP6Y),(JFP6Z))$ 
JF5:=JFP6+IF5; 
JF5:=MAT((JF5X),(JF5Y),(JF5Z))$ 
JFP5:=R5*JF5; 
JFP5:=MAT((JFP5X),(JFP5Y),(JFP5Z))$ 
JF4:=JFP5+IF4; 
JF4: =MAT((JF4X), (Jr1Y) , (JF4Z)) $ 

181 



JFP4:=RR4*JF4; 
JFP4:aMAT((JFP4X),(JFP4Y),(JFP42))$ 
JF3:=JFP4+IF3; 
JF3:=MAT((JF3X),(JF3Y),(JF3Z))$ 
JFP3:o:R3•JF3; 
JFP3:=MAT((JFP3X),(JFP3Y),(JFP3Z))$ 
JF2:=.JFP3+IF2; 
JF2:=MAT((JF2X),(JF2Y),(JF2Z))$ 
JFP2:=R2*JF2; 
JFP2:=MAT((JFP2X),(JFP2Y),(JFP2Z))$ 
JF1:=JFP2$ 

''=================.,.=======""=""========''$ 
11 INERTIAL MOMENTS ARE CALCULATED HERE 11 $ 
''=========================::::==========''$ 

IN1 :ai1*AA1$ 
IN2:=12*AA2+MAT((DXX2*KX2),(DYY2*KY2),(DZZ2*KZ2))$ 
IN3:=I3*AA3+MAT((DXX3*KX3),(DYY3*KY3),(DZZ3*KZ3))$ 
IN4 : =14*AA4+MAT((DXX4>~<KX4),(DYY4*KY4),(DZZ4*KZ4))$ 
IN5:=I5*AA5+MAT((DXX5*KX5),(DYY5*KY5),(DZZ5*KZ5))$ 
IN6:=I6*AA6+MAT((DXX6*KX6),(DYY6*KY6),(DZZ6*KZ6))$ 

11===============-=-===========:::====:::::::::::::::::::::===========''$ 
"JOINT MOMENTS ARE CALCULATED HERE"$ 
''TWO CROS PRODUCTS ARE REQUIRED"$ 
"ONE IS CG(I) X IF(I) (DENOTED BY CN)"$ 
"OTHER ONE IS P(I) X R(I+1)•JF(I+1) (DENOTED BY DN) 11$ 
··==============~==~=============::==================''$ 

182 

CN2:=MAT((X3(CG2(1,1),CG2(2,1),CG2(3,1),IF2(1,1),IF2(2,1),IF2(3,1))), 
(Y3(CG2(1,1),CG2(2,1),CG2(3,1),IF2(1,1),IF2(2,1),IF2(3,1))), 
(Z3(CG2(1,1),CG2(2,1),CG2(3,1),IF2(1,1),IF2(2,1),IF2(3,i))))$ 

CN3:=MAT((X3(CG3(1,1),CG3(2,1),CG3(3,1),IF3(1,1),IF3(2,1),IF3(3,1))), 
(Y3(CG3(1,1),CG3(2,1),CG3(3,1),IF3(1,1),IF3(2,1),IF3(3,1))), 
(Z3(CG3(1,1),CG3(2,1),CG3(3,1),IF3(1,1),IF3(2,1),IF3(3,1))))$ 

CN4::::MAT((X3(CG4(1,1),CG4(2,1),CG4(3,1),IF4(1,1),IF4(2,1),IF4(3,1))), 
(Y3(CG4(1,1),CG4(2,1),CG4(3,1),IF4(1,1),IF4(2,1),IF4(3,1))), 
(Z3(CG4(1,1),CG4(2,1),CG4(3,1),IF4(1,1),IF4(2,1),IF4(3,1))))$ 

CN5::::MAT((X3(CG5(1,1),CG5(2,1),CG5(3,1),IF5(1,1),IF5(2,1),IF5(3,1))), 
(Y3(CG5(1,1),CG5(2,1),CG5(3,1),IF5(1,1),IF5(2,1),IF5(3,1))), 
(Z3(CG5(1,1),CG5(2,1),CG5(3,1),IF6(1,1),IF5(2,1),IF5(3,1))))$ 

CN6:=MAT((X3(CG6(1,1),CG6(2,1),CG6(3,1),JF6(1,1),JF6(2,1) ,JF6(3,1))), 
(Y3(CG6(1,1),CG6(2,1),CG6(3,1),JF6(1,1),JF6(2,1),JF6(3,1))) , 



(Z3(CG6(1,1),CG6(2,1),CG6(3,1),JF6(1,1),JF6(2,1),JF6(3,1))))$ 

''========~======~============:;;:==:::==:::.•==''$ 
"EVALUATE CROS PRODUCT OF P(I) X JFP(I)"$ 
''"""""'"'"""'"'"'"'"""""'"""""'"'"'="'"'="'===="'"'="'===="'"'"'"'''$ 

DN2:=MAT((X3(P1(1,1),P1(2,1),P1(3,1),JFP2(1,1),JFP2(2,1),JFP2(3,1))), 
(Y3(P1(1,1),P1(2,1),P1(3,1),JFP2(1,1),JFP2(2,1),JFP2(3,1))), 
(Z3(P1(1,1),P1(2,1),P1(3,1),JFP2(1,1),JFP2(2,1),JFP2(3,1))))$ 

DN3:=MAT((X3(P2(1,1),P2(2,1),P2(3,1),JFP3(1,1),JFP3(2,1),JFP3(3,1))), 
(Y3(P2(1,1),P2(2,1),P2(3,1),JFP3(1,1),JFP3(2,1),JFP3(3,1))), 
(Z3(P2(1,1),P2(2,1),P2(3,1),JFP3(1,1),JFP3(2,1),JFP3(3,1))))$ 

DN4:=MAT((X3(P3(1,1),P3(2,1),P3(3,1) ,JFP4(1,1),JFP4(2,1),JFP4(3,1))), 
(Y3(P3(1,1),P3(2,1),P3(3,1),JFP4(1,1),JFP4(2,1),JFP4(3,1))), 
(Z3(P3(1,1),P3(2,1),P3(3,1),JFP4(1,1),JFP4(2,1),JFP4(3,1))))$ 

DN5:=MAT((X3(P4(1,1),P4(2,1),P4(3,1),JFP5(1,1),JFP5(2,1),JFP5(3,1))), 
(Y3(P4(1,1),P4(2,1),P4(3,1),JFP5(1,1),JFP5(2,1),JFP5(3,1))), 
(Z3(P4(1,1),P4(2,1),P4(3,1),JFP5(1,1),JFP5(2,1),JFP5(3,1))))$ 

DN6:=MAT((X3(P5(1,1),P5(2,1),P5(3,1),JFP6(1,1),JFP6(2,1),JFP6(3,1))), 
(Y3(P5(1,1),P5(2,1),P5(3,1),JFP6(1,1),JFP6(2,1),JFP6(3,1))), 
(Z3(P5(1,1),P5(2,1),P5(3,1),JFP6(1,1),JFP6(2,1),JFP6(3,1))))$ 

It ==================••===================••••==aza::.•='' $ 
"NOW COMPUTE THE JOINT MOMENTS IN BACKWARD ITERATION"$ 
''====:.:==============================::=~==========:zaa'1$ 

JM6:"" IN6+CN6; 
JM6:,.MAT((JM6X),(JM6Y),(JM6Z))$ 

JM5:=R6*JM6+DN6+IN5+CN5; 
JMS: =MAT ( (JM5X) , ( JMSY) , (JH5Z)) $ 

JM4:=RS•JM5+DN5+IN4+CN4; 
JM4:=MAT((JM4X),(JM4Y),(JM4Z))$ 

JM3:,.,RR4*JM4+0N4+IN3+CN3; 
JM3:,MAT((JM3X),(JM3Y),(JM3Z))$ 

JM2 :=R3*JM3+DN3+IN2+CN2; 
JM2:=MAT((JM2X),(JM2Y),(JM2Z))$ 

JM1:=R2*JM2+DN2+IN1; 

''===============================================··$ 



"JOINT TORQUES EXTRACTED FROM THE JOINT MOMENTS"$ 
''==============================================''$ 
Tl:=JMlZ; 
T2:=JM2Z; 
T3:=JM3Z; 
T4:=JM4Z; 
T5:=JM5Z; 
T6:=JM6Z; 

lt::===========::::::::ll$ 

"OUTPUT FILE IS CLOSED"$ 
"=================:===="$ 
SHUT PUMTOR; 

"=============="$ 
"END OF PROGRAM"$ 
"======,====="'="$ 
BYE; 



185 

D.3 Inverse Dynamic Equations of Standard 
Manipulators 

The inverse dynamics equations of Stanford manipulator and PUMA-560 manip­

ulator have been generated using symbolic program given in Appendix 0.2. Four 

programs are given in the subsequent sections, for the following manipulators. 

1. Stanford Manipulator - 3 DOF system 

2. PUMA-560 Manipulator· 3 DOF system 

3. Stanford Manipulator • 6 DOF system 

4. PUMA-560 Manipulator - 6 DOF system 

The inputs to the program are the position, velocity ana acceleration supplied 

at the joints and the torque/force for each actuator is computed by using the 

program. These programs can be compiled and used in the controller program for 

computing the input torque signal. 

Following each program the number of multiplications and additions required 

for computing the inverse dynamic torques/forces are also given. 



0.3.1 Stanford Manipulator - 3 DOF System 
AV2X=-S2*V1 
AV2Y=-C2*V1 
AV2Z=V2 
AA2X=-(S2*A1-V2*AV2Y) 
AA2Y=-(C2•A1+V2•AV2X) 
AA2Z=A2 

KX2=AV2Y*AV2Z 
KY2=AV2X*AV2Z 
KZ2=AV2X*AV2Y 
RX2=AV2X*AV2X 
RY2=AV2Y*AV2Y 
RZ2=AV2Z*AV2Z 
RSY2a-(RX2+RZ2) 
RSZ2=-(RY2+RX2) 
RXM2=KX2-AA2X 
RXP2=KX2+AA2X 
RYP2=KY2+AA2Y 
RZM2=KZ2-AA2Z 

IF2X=-49.098*(S2+0.0107551*RYP2) 
IF2Y=-49.098*(C2+0.0107551*RXM2) 
IF2Z=-0.528054*RSZ2 
JF3X=-63.406*((S2-0.2040816•V3•AV3Y)+0.0657857* 

. RZM2) 
JF3Y=-12.94*(V3*AV3X-0 .32235*RXP2) 
JF3Z=63.406*((C2+0.1020408*A3)-0.0657857*RSY2) 
JF2X,.IF2X+JF3X 
JF2Y=IF2Y-JF3Z 
JFP2X=C2•JF2X-S2*JF2Y 
JM3X=2.51•((AA2X-KX3)+0.2568526*JF3Y) 
JM3Y=2.51*((AA2Z+KY3)-0.2568526*JF3X) 
JM3Z=O 
JM2Xa0.108*((AA2X+19.54629*KX2)+0.9759259*IF2Y+ 

. 9.259259•JM3X) 
JM2Y=0.1*((AA2Y-21.03*KY2)-1.054*IF2X-10*JM3Z) 
JM2Z=2.211•((AA2Z-0.0036183•KZ2)+0.452284*JM3Y) 
JM1Z=-(C2•JM2Y+S2•JM2X-1.208•A1+0.1524*JFP2X) 
T1=JM1Z 
T2=JM2Z 
T3=JF3Z 

No. of Multiplications = 48 
No. of Additions == 33 
Total == 81 

186 



I r 

D.3.2 Stanford Manipulator- 6 DOF System 

AV2X.c-S2*V1 
AV2Y=-C2*V1 
AV2Z=V2 
AV4X•C4*AV2X+S4*AV2Z 
AV4Y=C4*AV2Z-S4*AV2X 
AV4Z=V4-AV2Y 
AV5X~C5*AV4X-S5*AV4Z 
AV5Y=-(C5*AV4Z+S5*AV4X) 
AV5Z=V5+AV4Y 
AV6X=C6•AV5X+S6*AV5Z 
AV6Y~C6*AVSZ-S6*AV5X 
AV6Z=V6-AV5Y 
AA2X=-(S2*A1-V2•AV2Y) 
AA2Y=-(C2*A1+V2*AV2X) 
AA2Za::A2 
AA4X=C4*AA2X+S4*AA2Z+V4*AV4Y 
AA4Y=C4*AA2Z-S4*AA2X-V4*AV4X 
AA4ZeA4·-AA2Y 
AA5X=C5*AA4X-S5*AA4Z+V5*AV5Y 
AA5Y=-(C5*AA4Z+S5*AA4X+V5*AV5X) 
AA5Z=A5+AA4Y 
AA6X=C6*AA5X+S6*AA5Z+V6*AV6Y 
AA6Y=C6*AA5Z-S6*AA5X-V6*AV6X 
AA6Z=A6-AA5Y 

KX2=AV2Y*AV2Z 
KY2=AV2X*AV2Z 
KZ2.cAV2X*AV2Y 
KX4=AV4Y*AV4Z 
KY4=AV4X*AV4Z 
KZ4aAV4X*AV4Y 
KX5=AVSY*AVSZ 
KY5.cAV5X*AVSZ 
KZ5=AV5X*AV5Y 
KX6=AV6Y*AV6Z 
KY6=AV6X*AV6Z 
KZ6=AV6X*AV6Y 
RX2=AV2X*AV2X 
RY2=AV2Y*AV2Y 
RZ2=AV2Z*AV2Z 
RSX2=-(RY2+RZ2) 
RSY2=-(RX2+RZ2) 
RSZ2=-(RY2+RX2) 
RXM2=KX2-AA2X 
RXP2=KX2+AA2X 

1~7 



li.YM2=KY2-AA2Y 
RYP2=KY2+AA2Y 
RZM2=KZ2-AA2Z 
RZP2=KZ2+AA2Z 

RX4=AV4X•~V4X 
RY4=AV4Y•A:V4Y 
RSZ4=-(RY4+RX4) 
RXM4=KX4-AA4X 
RXP4=KX4+AA4X 
RYP4=KY4+AA4Y 
RZM4=KZ4-AA4Z 

RX5=AV5X•AV5X 
RZ6=AV6Z*AV6Z 
RSY5=-(RZ5+RX5) 
RXP5=KX5+AA5X 
RZM5=KZS-AASZ 

RX6=AV6X*AV6X 
RY6•AV6Y+AV6Y 
RSZ6= ~ (RY6+RX6) 
RXM6=KX6-AA6X 
RYP6=KY6+AA6Y 

LA3X=-9.S•(S2-0.2040816•V3•AV3Y) 
LA3Y=-2*V3+AV3X 
LA3Z=9.8+C2+A3 
LA4X=(C4+RZM2-S4+RXP2)*Q3+LA3X+C4+LA3Y*S4 
LA4Y=-((C4•RXP2+S4+RZM2)+Q3+LA3X•S4-LA3Y•C4) 
LA4Z~LA3Z+Q3•RSY2 
LA5X=LA4X•C5-LA4Z*S5 
LA5Y=-(LA4X*S5+LA4Z*C5) 
LASZ=LA4Y 
LA6X=LA6X+C6+LA5Z*S6 
LA6Y=-(LA5X+S6-LA5Z*C6) 
LA6Z=-LA5Y 
IF2X=-49.098+(S2+0.0107551•RYP2) 
IF2Y=-49.098+(C2+0.0107551•RXM2) 
IF2Z=-0.528054•RSZ2 
IF3X~4.25+(LA3X-0.6447•RZM2) 
IF3Y=4.25+(LA3Y+0.6447*RXP2) 
IF3Z=4.25+(LA3Z-0 .6447+RSY2) 
IF4X=1.08•(LA4X-0.0054+RZM4-0.0092+RYP4) 
IF4Y=1.08+(LA4Y-0.0054*RSY4-0.0092*RXM4) 
IF4Z•1.08*(LA4Z-0.0054+RXP4-0.0092•RSZ4) 
IF5X=0.63+(LA5X-0 .0566*RZM5) 
IF5Y=0.63+(LA5Y-0 .0566*RSY5) 
IF5Z=0.63+(LA5Z-0.0566+RXP5) 

188 



JF6X=0.51*(LA6X+0.1554*RYP6) 
JF6Y=0.51*(LA6Y+0.1554*RXM6) 
JF6Z=0.51*(LA6Z+0.!554*RSZ6) 
JFP6X=C6*JF6X-S6•JF6Y 
JFP6Y=-JF6Z 
JFP6Z=C6*JF6Y+S6•JF6X 
JF5X=IF5X+JFP6X 
JF5Y=IFSY+JFP6Y 
JF5Z=IF5Z+JFP6Z 
JFP5X=CS•JF5X-S5•JF5Y 
JFPSY=JF5Z 
JFP5Z=-(C5*JF5Y+SS•JFSX) 
JF4X=IF4X+JFP5X 
JF4Y=IF4Y+JFP5Y 
JF4Z=IF4Z+JFPSZ 
JFP4X=C4•JF4X-S4*JF4Y 
JFP4Y=C4•JF4Y+S4*JF4X 
JFP4Z=JF4Z 
JF3X=IF3X+JFP4X 
JF3Y .. IF3Y+JFP4Y 
JF3Z=IF3Z+JFP4Z 
JFP3X=JF3X 
JFP3Y=-JF3Z 
JFP3Z=JF3Y 
JF2X=IF2X+JFP3X 
JF2Y=IF2Y+JFP3Y 
JFP2X=C2*JF2X-S2*JF2Y 
JM6X=0.013~((AA6X+0 . 5615385*KX6)-11.95384*JF6Y) 
JM6Y•0.013•((AA6Y-0.5615385*KY6)+11.95384*JF6X) 
JM6Z=0.0203*AA6Z 
JMSX=0.003*((AA5X+33.2•KX5)-18.86666*IF5Z) 

.+JM6X*C6-JM6Y*S6 
JM5Y=0.0004*(AA5Y-242.5*KY5)-JM6Z 
JM6Z=JM6X•S6+JM6Y*C6+0.1*AASZ+0.0566*IF5X-0.0026 

. *KZ5 
JM4X=JM5X*C6~JM5Y•S5+0.002*AA4X+0.0092*IF4Y-

. 0.0054*IF4Z+0.106*KX4 
JM4Y=0.001*((AA4Y-105*KY4)-9.2•IF4X)+JM5Z 
JM4Z=-(JM5X*S5+JMSY•C5-0.107•AA4Z-0.0054*IF4X+ 

. 0.001*KZ4) 
JM3X=JM4X*C4~JM4Y*S4-Q3•JFP4Y+2.51*AA2X+0.6447* 

. IF3Y-2.51*KX3 
JM3Y=JM4X•S4+JM4Y*C4+Q3•JFP4X+2.51*AA2Z-0.6447* 

. IF3X+2.51*KY3 
JM3Z=JM4Z 
JM2X=0.108•((AA2A~19.54629*KX2)+9.259259*JM3X+ 

. 0.9759259•IF2Y) 
JM2Y=0.1•((AA2Y-21.03*KY2)-1.054*IF2X)-JM3Z 

ISH 



JM2Z=2.211*(AA2Z-0 .0036183*KZ2)+JM3Y 
JM1Z=-(JM2X*S2+JM2Y*C2-1 .208*A1+0.1524*JFP2X) 
Tl=JMlZ 
T2•JM2Z 
T3=JF3Z 
T4=JM4Z 
T5=JM5Z 
T6=JM6Z 

No. of Multiplications = 183 
No. of Additions = 140 
Total = 323 

190 



D.3.3 PUMA-560 Manipulator - 3 DOF- System 
AV2X,-S2•V1 
AV2Y=-C2*V1 
AV2Z=V2 
AV3X=C3*AV2X+S3*AV2Y 
AV3Y=C3*AV2Y-S3*AV2X 
AV3Z=V3+AV2Z 
AA2X=-(S2*A1-V2*AV2Y) 
AA2Y=-(C2•A1+V2*AV2X) 
AA2Z,A2 
AA3X=C3*AA2X+S3*AA2Y+V3*AV~Y 
AA3Y=C3*AA2Y-S3*AA2X-V3*AV3X 
AA3Z=A3+AA2Z 

KX2="AV2Y*AV2Z 
KY2=.AV2X*AV2Z 
KZ2=AV2X*AV2Y 
I<X3=AV3Y*AV3Z 
KY3=AV3X•AV3Z 
KZ3=AV3X*AV3Y 
RY2=AV2Y*AV2Y 
RZ2•AV2Z*AV2Z 
RSX2=-(RY2+RZ2) 
RYM2=KY2-AA2Y 
RZP2=KZ2+AA2Z 
RX3=AV3X*AV3X 
RZ3=AV3Z*AV3Z 
RSY3=-(RX3+RZ3) 
RXP3,KX3+AA3X 
RZM3=KZ3-AA3Z 

LA3PX=-9.8•(S2-0.0440612*RSX2+0.0095306*RYP2) 
LA3PY=-9.8*(C2-0.0440612*RZP2+0.0095306*RXM2) 
LA3PZ=0.4318*(RYM2-0.2163038•RSZ2) 
LA3X=C3•LA3PX+S3*LA3PY 
LA3Y=C3•LA3PY-S3*LA3PX 
LA3Z=LA3PZ 
IF2X=-170.52*(S2+0.0069388*RSX2) 
IF2Y=-170 .52*(C2+0.0069388*RZP2) 
IF2Z=-1.1832•RYM2 
JF3X=-0.336*RZM3+LA3X) 
JF3Y=-0.336*RSY3+LA3Y) 
JF3Z=-0.336•RXP3+LA3Z) 
JFP3X=C3•JF3X-S3*JF3Y 
JFP3Y=C3•JF3Y+S3*JF3X 
JFP3Z=JF3Z 
JF2X=IF2X+JFP3X 
JF2YaiF2Y+JFP3Y 
JFP2X=C2•JF2X-S2*JF2Y 

HH 



JM3X=O. 066* ( (AA3X +14. 03181*KX3) -1. 060606*JF3Z) 
JM3Y=O. 0134*(AA3Y-65 .18656*KY3) 
JM3Z=0.9395*((AA3Z-0.0559872*KZ3)+0.0745077*JF3X) 
JM2X=C3*JM3X-S3*JM3Y+0 . 1351*AA2X+0.0934*JFP3Y+ 

. 4. 7212•KX2 
JM2Y=C3*JM3Y+S3*JM3X+0.6089*AA2Y+0.068*IF2Z-

. 0.0934*JFP3X-0.4318*JFP3Z-5.195*KY2 
JM2Z=5.3301*((AA2Z+0.0888914•KZ2)-0.0127577•IF2Y 

. +0.0810116*JFP3Y)+JM3Z 
JM1Z=-(C2•JM2Y+S2*JM2X-1.49*A1+0 .2435•JFP2X) 
T1=JM1Z 
T2=JM2Z 
T3=JM3Z 

No. of Multiplications = 80 
No. of Additions = 55 
Total = 135 

192 



D.3.4 PUMA-560 Manipulator- 6 DOF System 
AV2X=-S2*V1 
AV2Y=-C2*V1 
AV2Z=V2 
AV3X=C3*AV2X+S3*AV2Y 
AV3Y=C3*AV2Y-S3*AV2X 
AV3Z=V3+AV2Z 
AV4X=C4*AV3X+S4*AV3Z 
AV4Y=C4*AV3Z-S4*AV3X 
AV4Z=V4-AV3Y 
AV5X=C5*AV4X-S5*AV4Z 
AV5Y=-(C5*AV4Z+S5*AV4X) 
AV5Z=V5+AV4Y 
AV6X=C6*AV5X+S6*AV5Z 
AV6Y=C6*AV5Z-S6*AV5X 
AV6Z=V6-AV5Y 
AA2X=-(S2*A1-V2*AV2Y) 
AA2Y=-(C2*A1+V2*AV2X) 
AA2Z=A2 
AA3X=C3*AA2X+S3*AA2Y+V3*AV3Y 
AA3Y=C3*AA2Y-S3*AA2X-V3*AV3X 
AA3Z=A3+AA2Z 
AA4X=C4*AA3X+S4*AA3Z+V4*AV4Y 
AA4Y=C4*AA3Z-S4*AA3X-V4*AV4X 
AA4Z=A4-AA3Y 
AA5X=CS*AA4X-S5*AA4Z+VS*AVSY 
AA5Y=-(C5*AA4Z+SS*AA4X+V5*AVSX) 
AA5Z=A5+AA4Y 
AA6X=C6*AA5X+S6*AA5Z+V6*AV6Y 
AA6Y=C6*A~SZ-S6*AA5X-V6*AV6X 
AA6Z=A6-AA5Y 

KX2=AV2Y*AV2Z 
KY2=AV2X*AV2Z 
KZ2=AV2X*AV2Y 
KX3=AV3Y*AV3Z 
KY3=AV3X*AV3Z 
KZ3=AV3X*AV3Y 
KX4=AV4Y*AV4Z 
KY4=AV4X*AV4Z 
KZ4=AV4X*AV4Y 
KXS=AVSY*AVSZ 
KYS=AVSX*AVSZ 
KZS=AV5X*AV5Y 
KX6=AV6Y*AV6Z 
KY6::AV6X*AV6Z 
KZ6=AV6X*AV6Y 
RX2=AV2X*AV2X 

193 



RY2=AV2Y*AV2Y 
RZ2=AV2Z*AV2Z 
RSX2=-(RY2+RZ2) 
RSZ2=-(RX2+RY2) 
RXM2=KX2-AA2X 
RYM2=KY2-AA2Y 
RYP2=KY2+AA2Y 
RX3=AV3X*AV3X 

. RY3=AV3Y*AV3Y 
RZ3=AV3Z~AV3Z 
RSX3=-(RY3+RZ3) 
RSY3=-(RX3+RZ3) 
RXP3=KX3+AA3X 
RYM3=KY3-AA3Y 
RX4=AV4X*AV4.i{ 
RY4=AV4Y*AV4Y 
RZM3=KZ3-AA3Z 
RZP3=KZ3+AA3Z 
RSZ4=-(RX4+RY4) 
RXM4=KX4-AA4X 
RYP4=K'.'4+AA4Y 
RX6=AV6X*AV6X 
RY6=AV6Y*AV6Y 
RSZ6=-(RX6+RY6) 
RXM6=KX6-AA6X 
RYP6=KY6+AA6Y 

LA3PX=-9.8*(S2-0 . 0440612*RSX2+0.0095306*RYP2) 
LA3PY=-9.8*(C2-0.0440612*RZP2+0.0095306*RXM2) 
LA3PZ=0.4318*(RYM2-0.2163038•RSZ2) 
LA3X=C3*LA3PX+S3*LA3PY 
LA3Y=C3*LA3PY-S3*LA3PX 
LA3Z=LA3PZ 
LA4PX=LA3X-0.0203*RSX3-0.4331·~ZM3 
LA4PY=LA3Y-O. 0203*RZP3-0. 4.?.;~1*RSY3 
LA4PZ=LA3Z-0.0203*RYM3-0.4331*RXP3 
LA4X=C4*LA4PX+S4*LA4PZ 
LA4Y=C4*LA4PZ-S4*LA4PX 
LA4Z=-LA4PY 
LA5X=LA4X*C5-LA4Z*S5 
LASY=-(LA4X*SS+LA4Z*CS) 
LA5Z=LA4Y 
LA6X=LA5X*C6+LA5Z*S6 
LA6Y=-(LA5X*S6-LASZ*C6) 
LA6Z=--LA5Y 
IF2X=-170.52*(S2+0.0069388*RSX2) 
IF2Y=-1~0.52*(C2+0.0069388*RZP2) 
IF2Z=-1.1832*RYM2 
IF3X~4.8*(LA3X-0.07*RZM3) 

194 



IF3Y=4.8*(LA3Y-0.07*RSY3) 
1F3Z=4.8*(LA3Z-0.07*RXP3) 
IF4X=0.82*(LA4X-0.019•RYP4) 
IF4Y=0.82*(LA4Y-0.019*RXM4) 
IF4Z=0.82*(LA4Z-0.019*RSZ4) 
IFSX=O . 34*LA5X 
IF5Y=O. 34•LA5Y 
IFSZ=O . 34*LA5Z 
JF6X=0.09*(LA6X+0.032*RYP6) 
JF6Y=0.09*(LA6Y+0.032*RXM6) 
JF6Z=0.09*(LA6Z+0.032*RSZ6) 
JFP6X=C6*JF6X-S6*JF6Y 
JFPGY•-JFGZ 
JFP6Z=C6*JF6Y+S6*JF6X 
JF5X=IF5X+JFP6X 
JF6Y=IF5Y+JFP6Y 
JF5Z=IF5Z+JFP6Z 
JFP5X=C5*JF5X-S5*JF5Y 
JFPSY=JFSZ 
JFP5Z=-(C5*JF5Y+S5*JF5X) 
JF4X=IF4X+JFP5X 
JF4Y=IF4Y+JFP5Y 
JF4Z=IF4Z+JFP5Z 
JFP4X=C4•JF4X-S4•JF4Y 
JFP4Y=-JF4Z 
JFP4Z=C4•JF4Y+S4*JF4X 
JF3X-=IF3X+JFP4X 
JF3Y=IF3Y+JFP4Y 
JF3Z=IF3Z+JFP4Z 
JFP3X=C3*JF3X-S3*JF3Y 
JFP3Y=C3•JF3Y+S3*JF3X 
JFP3Z=JF3Z 
JF2X=IF2X+JFP3X 
JF2Y=IF2Y+JFP3Y 
JFP2X=C2•JF2X-S2*JF2Y 
JM6X=0.0002422•((AA6X+795.862*KX6)-132.1222*JF6Y) 
JM6Y=0.0002422*((AA6Y-795.862*KY6)+132.1222*JF6X) 
JMGZ=O .193*AA6Z 
JM5X=JM6X*C6-JM6Y*S6+0.0003*AA5X+0.1791*KX5 
JM5Y=0.0003*(AA5Y-597.0*KY5)-JM6Z 
JM5Z=JM6X*S6+JM6Y*C6+0.1794•AA5Z 
JM4X•JM5X*C5-JM5Y*S5+0.0021*AA4X+0.019*IF4Y+ 

. 0 .1992*KX4 
JM4Y=0.0021*(AA4Y-94.85714*KY4-9.047619*IF4X)+JM5Z 
JM4Z=-(JM5X*S5+JM5Y*C5-0.2013*AA4Z) 
JM3X=JM4X*C4-JM4Y*S4+0 .066*AA3X-O. 07*IF3Z-O .4331 

. •JFP4Z+0.9261•KX3 
JM3Y=0.0134*((AA3Y-65.18656*KY3)+1.514925*lFP4Z)-JM3Z 

195 



JM3Z=JM4X*S4+JM4 Y•C4+0. 9395*AA3Z+O. 07*IF3X+ 
. 0.4331*JFP4X-0.0203*JFP4Y-0.0526*KZ3 
JM2X=JM3X*C3-JM3Y*S3+0. 1351*AA2X+O. 0934*JFP3Y+ 

. 4. 7212*KX2 
JM2Y=JM3X*S3+JM3Y*C3+0.6089*AA2Y+0.068*IF2Z-

. 0.0934*JFP3X-0.4318*JFP3Z-5.195*KY2 
JM2Z=5. 3301* ((AA2Z+O. 0885914*KZ2) 

. -0 .0127577*IF2Y+O. 0810116*JFP3Y)+JM3Z 
JM1Z=-(JM2X*S2+JM2Y*C2-1.49*A1+0.2435*JFP2X) 
T1=JM1Z 
T2=JM2Z 
T3=JM3Z 
T4=JM4Z 
T5=JM5Z 
T6=JM6Z 

No. of Multiplications = 208 
No. of Additions = 152 
Total = 360 

196 



197 

0.4 Robot Simulation Program 

A FORTRAN program for simulating a robot is given in this appendix. The 

dynamic equation of the robot is written as 

[D){q} = {r}- {ft}(q,q) 

where (D) is the matrix of inertial coefficients, and {h} is the vector of velocity 

and gravitational terms and { r} is the vector of applied torques. The velocity 

and gravitational vectors are obtained from the symbolic program by setting the 

joint acceleration strings to zero. The inertial coefficients are evaluated using 

the symbolic programming of the modified NE algc:·ithm , by making following 

assumptions: 

1. The velocity and acceleration strings are set to zero. 

2. For the jth column of the [D) matrix, the acceleration of the jth joint is 

set to one and the acceleration of all the other joints are set to zero. The 

corresponding torque vector computed by the modified NE algorithm yields 

the jth column . 

The resulting second order differential equation is solved by fourth order Runge­

Kurta method. 



198 

c=============================================================== 
c 
c ROBOT SIMULATION PROGRAM - 3 DOF PUMA-560 MANIPULATOR 
c 
c=============================~================================= 

c 
c Program uses Runge-Kurta fourth order method to 
c solve the differential equation and 
c cholesky decomposition to find the inverse of 
c the inertia matrix. 
c 
c========================================================L ·====== 
PARAMETER(NN=6 ,mm=3) 
DIMENSION F(NN) ,y(nn) ,pp(mrn) ,tq(201,3) ,tor(3) 
open (unit=10, file='outtorq.dat' ,type='old') 
open (unit=16, filc<='disp.dat' ,type='new') 
open (unit=17, file='velo.dat' ,type='new') 
open (unit=18, file='accn.dat' ,type='new') 

DATA T, TLIM,H,M/0 .0,2. 0,0 .02 ,0/ 
DATA Y/3.6997,2.3083,0.5951,0.0,0.0,0.0/ 
LL=1 
N=NN 
do i=1,201 
read(10 ,*) (tq(i ,j) ,j=1,3) 
c write(*,*) (tq(i,j),j=1,3) 
end do 
8 IF (T-TLIM) 6, 6, 7 
6 CALL RUNGE(N,F,Y,T,H,M,K) 
GO TO (10, 20) ,K 
10 F(1)=Y (4) 
F(2)=Y(5) 
F(3)=Y(6) 
jj=(t/0.01)+1 
write(*,*) t,jj 
tor(1)=tq (jj ,1) 
tor(2)=tq (jj ,2) 
tor(3)=tq (jj ,3) 
write(*,*) tor 
call interpol(jj ,tor,y,pp) 
F(4)=PP(1) 
F(5)=PP(2) 
F(6)=PP(3) 
GO TO 6 
20 WRITE(16,*) (Y(J),J=1,3) 
wri te(17, *) (Y(j) ,j=4, 6) 
write(18,*) (pp(j),j=1,3) 
GO TO 8 



7 STOP 
END 

SUBROUTINE RUNGE(N,F ,Y, T ,H,M,K) 
DIMENSION F(6), Y(6) ,Q(6) 
write(*,*) 'm',m, 't',t 
M=M+1 
GO TO (1,4,5,3,7) ,M 
1 DO 2 J=l ,N 
2 Q (J)=O. 0 
A=0.5 
GO TO 9 
3 A=1. 707107 
4 T=T+O.S•H 
5 DO 6 J=l,N 
C PRINT* ,F 
Y (J) =Y(J) +A*(F(J) *H-Q(J)) 
6 Q(J)=2.*A*H*F(J)+(1.-3.*A)*Q(J) 
A=O • 2928932 
GO TO 9 
7D08J=l,N 
8 Y(J)=Y(J) +H*F(J)/6 .-Q (J)/3. 
C PRINT *, Y 
M=O 
K=2 
GO TO 10 
9 K=1 
10 RETURN 
END 

subroutine interpol(jj, tor,y ,pp) 
dimension y(6) ,pp(3) ,tq (201,3), vc(3) ,ac(3,3), toind(3), tor(3) 
dimension la(3) ,lb(3,2) , s (3) ,x (3) 
call velcoeff(y, vc) 
write(*,*) 'vc' ,vc 
write(*,*) 'tor in sub' ,tor 
toind(1)=0. 0 
toind(2)=0. 0 
toind(3)=0. 0 
if(jj .eq.l) go to 55 
toind(1)=tor(1) -vc(1) 
toind(2) =tor(2) -vc(2) 
toind(3) =tor(3) -vc(3) 
55 write(*,*) 'toind', toind 
call acccoeff(y, ac) 
write(*,*) 'ac values' 
write(*,*) ac 
WRITE(*,*) 'TOIND', TOIND 

lU!l 



call lsarg(3,a.c,3,toind,1,x) 
WRITE(*,*) 'SOLN',X 
c call simul(ac,toind,3,2,la,lb,s) 
do i=1,3 
pp(i)=x(i) 
end do 
WRITE(*,*) 'PP IN SUB' ,PP 
return 
end 

subroutine acccoeff (y, ac) 
dimension y(6) , ac(3, 3) 
q1=y( 1) 
q2=y(2) 
q3=y(3) 
s2=sin(q2) 
c2-=cos (q2) 
s3=sin(q3) 
c3=cos(q3) 

a.c(1, 1)=6 .881538*(c2*s2*c3*s3+0.5946234*c2*s2*c3-s2**2* 
. s3**2-0. 5946234*s2**2*s3-0. 0035408*s2**2+0. S•s3**2+ 
. 0. 5946234*s3+0. 9436266) 
ac (1 ,2) =-0. 7112062*(c2*c3-s2*s3-1. 056f.47*s2) 
ac(1 ,3)=-0. 7112062*(c2*c3-s2*s3) 
ac(2, 1)=-0. 7112062*(c2*c3-s2*s::l-1.056647*s2) 
ac(2,2)=4.091923*(s3+3 .085665) 
ac(2,3)=2 .045961*(s3+2 .104716) 
ac(3, 1)=-0. 7112062*(c2*c3-s2*s3) 
ac(3,2)=2 .045961*(s3+2 .104716) 
ac (3,3) =4. 306169 

write(56 ,*) ac 
return 
end 

subroutine veJ.coeff (y, vc) 
dimension y(6) , vc(3) 
ql=y(l) 
q2=y(2) 
q3=y(3) 
v1~:~~y(4) 
v2=y(5) 
v3=y(6) 
s2=sin(q2) 
c2=cos (q2) 
s3=sin(q3) 
c3=cos(q3) 

200 



vc ( 1) =-13. 76656* (c2*s 2•s3**2*v1*v2+c2*s2*s3**2•v1 •v3+ 
0. 5948432*c2*s2•s3*vhv2+0. 2974216*c2•s2•s3+v1*v3+ 

. 0 .0036841*c2*s2•v1*v2-0 . 5*c2+s2*V1*v3-0. 0516941•c2+ 
s3•v2**2-0 .1033881+c2•s3*v2*v3-0. 0516941*c2+s3+v3** 

. 2-0. 0546354*c2*v2**2+s2**2*c3•s3*v1*v2+s2*+2+c3*s3* 
vhv3+0. 5948432+s2**2+c3*v!•Jtv2+0. 2974216•s2**2*c3* 
v1•v3-0. 0516941*s2*c3*V2**2-0 .1033881+s2*c3+v2*v3-
0 .0516941*s2*c3+v3**2-0 . 5*c3*s3+v1*v2-0. 5•c3•s3•v1* 
v3-0. 2974216•c3•v1*v2-0 . 2974216*c3*v1+v3) 

vc(2)=6. 883283*(c2*s2•s3**2*V1**2+0. 5948432•c2*s2•s3+v1 
**2+0. 0036841•c2*s2•v1**2-6. 750189•c2*s3-8 .182499* 

. c2+s2**2*c3*s3•v1**2+0. 5948432+s2**2*c3•v1•+2-

. 6. 750189*s2*c3-0 .5*c3•s3+v1**2-0. 2974216•c3*v1**2+ 

. 0. 5948432*C3*V2*V3+0 , 297 4216+c3*V3**2) 
vc(3)=6. 883283•(c2*s2•s3**2*V1**2+0. 2974216*c2•s2•s3•v1 

. **2-0. S•c2*s2•v1**2-6. 750189•c2*s3+s2**2*c3•s3•v1•* 

. 2+0. 2974216*s2>~<*2+c3•v1**2-6. 760189*s2*c3-0 .5*c3•s3 
• •v1**2-0 . 297 4216*c3*v1+*2-0. 2974216*c3+v2•+2) 

c write(•,*) vc 
return 
end 

subroutine simul(a,b,n,ind,la1 lb,s) 
dimension a(n, n) 1 b(n) 1 la(n) 1 lb(n 1 2) 1 s(n) 
do 100 i=1 1 n 
100 la(i)=O 
do 250 k=1 1 n 
z=O.O 
do 150 i=1 1 n 
if (la(i) .eq. 1) go to 150 
do 140 j=1 1 n 
if (la(j)-1) 130 1 140,300 
130 if (abs(z) .ge.abs(a(i,j))) go to 140 
ia=i 
ib=j 
z=a(i ,j) 
140 continue 
150 continue 
la(ib) =la(ib) +1 
if (ia.eq.ib) go to 190 
do 160 i=1 1 n 
z=a(ia, i) 
a(ia,i)=a(ib,i) 
160 a(ib,i)=z 
if (ind.eq.O) go to 190 
z=b(ia) 
b(ia) =b(ib) 
b(ib) =z 

201 



190 lb(k,i)=ia 
lb(k,2)=ib 
s(k)=a(ib,ib) 
a(ib,ib)=1.0 
do 200 i=1 ,n 
200 a(ib,i)=a(ib,i)/s(k) 
if (ind. eq.O) go to 220 
b(ib)=b(ib)/s (k) 
220 do 250 i=l,n 
if (i. eq. ib) go to 250 
z=a(i, ib) 
a(i,ib)=O.O 
do 230 j=1,n 
230 a(i,j)=a(i,j)-a(ib,j)*z 
if (ind.eq.O) goto 250 
b(i) =b (i) -b(ib) *Z 
250 continue 
do 270 i=i,n 
j=n-i+1 
if (lb(j, 1). eq . lb(j, 2)) go to 270 
ia=lb(j, 1) 
ib=lb(j 1 2) 
do 260 k=i,n 
z=a(k, ia) 
a(k, ia)=a(k, ib) 
a(k,ib)=z 
260 continue 
270 continue 
300 return 
end 

202 










