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Abstract 

Linear regression is a commonly used method of statistical analysis. However, it is 

not able to capture any spatial variations that may exist in the relationship between 

explanatory and response variables. vVe will study geographically weighted regression, 

which is a local regression method that can account for spatial non-stationarity that 

may exist. We will describe the model, estimation and hypothesis testing, both in 

theory and in simulation studies. We will also apply the method to analyze data 

collected on housing prices in the Boston metropolitan area. 

ll 



Acknowledgements 

I owe my profound gratitude to my supervisor, Dr. Gary Sneddon. His insight, 

dedication and continuous guidance have made it possible for me to complete this 

endeavor. He has been very generous with this idea and given me a great privilege to 

work on this interesting problem of spatial non-stationarity in data analysis. I would 

like to thank him for his suggestion of working with this area. 

I sincerely acknowledge the financial support provided by the School of Gradu­

ate Studies and Department of Mathematics and Statistics in the form of Graduate 

Fellowships and Teaching Assistantships. I also would like to thank Professors Herb 

Gaskill and Bruce Watson, the past and present Department Heads, for providing me 

with a friendly atmosphere and necessary facilities to complete the program. 

I would also like to thank Dr. Veeresh Gadag and Dr. Paul Peng for reviewing 

my practicum and providing helpful comments and criticisms. 

I am specially grateful to my parents for their eternal love and emotional support . 

Although they never really understood any of the statistical matters I studied, they 

always encouraged me to do my best. 

Finally, I would like to express my sincere appreciation and thanks to Mr. Gopal 

Chowhan, Subrata K. Chakrabarty, Masud A. Khan, Tapon K. Bhandari, Brian 

Healey and Ms. Roxana Vernescu whose invaluable support and encouragement have 

sustained me during the tough times. Throughout the course of my study, they have 

helped me in several ways, for which I am grateful. 

lll 



Contents 

Abstract 

Acknow ledgernents 

List of Tables 

List of Figures 

1 Introduction 

1.1 Relationship between Variables 

1.2 Regression and Spatial Data 

1.3 Measuring Spatial Patterns 

2 Theory of GWR 

2.1 Introduction . 

2.2 Model for GWR . 

2.3 Estimation . . . 

2.3.1 Bias-Variance Compromise: Prediction Error Approach 

2.3.2 Spatial Weighting Function 

2.4 

2.3.3 Choice of (3 . . . . . . . . 

Inference with the GvVR Model . 

2.4.1 F-Test Statistic . .. 

2.4. 2 Randomization Test 

l V 

11 

iii 

V I 

viii 

1 

1 

2 

3 

6 

6 

6 

8 

8 

11 

13 

15 

16 

19 



2.5 Conclusion . . . . 

3 Simulation Studies 

3.1 Introduction ... .. . . .... . . . 

3.2 Estimation in Single Predictor Model 

3.2.1 Binary versus Gaussian Weighting Function 

3.3 Performance of Tests . . . . . . . . . . . . . . . . . 

3.3.1 

3.3.2 

Power and Size of Tests: Single Predictor Model 

Power and Size of Tests: Multi Predictor Model 

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 

21 

22 

22 

22 

30 

32 

32 

36 

40 

4 Analysis of a Socio-Economic Data and Spatial Non-stationarity 41 

4.1 Introduction . . . 41 

4.2 Data Description 42 

4.3 Exploratory Analysis 45 

4.4 Choice of Model . . . 49 

4.4.1 OLS Regression with all Possible Regressors 49 

4.4.2 Variable Selection in Linear Regression . . . 53 

4.4.3 OLS Regression with the Selected Regressors . 56 

4.5 Proxy Variables for Measuring Spatial Variation 58 

4.6 Fitting G\i\TR Model . . . . . . . . . . . . . . . 61 

4.6.1 Results ofF-Test and Randomization Test 62 

5 Conclusions 66 

Bibliography 68 

v 



List of Tables 

3.1 Summary statistics of parameter estimates: Binary weight function 

with r = 2.0 ....... . .. . . . 24 

3.2 Mean squared errors of b0 and b1 corresponding to bandwidths (3 = 
1.0, 1.5, 2.0 . . . . . . . . . . . . 29 

3.3 CVSS scores for several values of bandwidth (3 29 

3.4 Summary statistics of parameter estimates: Gaussian weight functions 

with (3 = 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

3.5 Simulation results of single predictor model. NDF = the numerator 

degrees of freedom and DDF = the denominator degrees of freedom. . 34 

3.6 Simulation results for model with three predictors. NDF = the nu­

merator degrees of freedom and DDF = the denominator degrees of 

freedom . .. . . . . .... . . ... . .. . . 

4.1 Variables in the Boston house price data set 

4.2 Distribution of observations by sub-region 

4.3 Summary statistics of house price by sub-region, in $1000s. 

4.4 Summary statistics of house price by riverside residents, in $1000s 

4.5 Results of the OLS estimation with 12 predictors and 506 observations 

4.6 Stepwise regression results . ....... . .. . . . 

4.7 Twelve models with the smallest Cp and largest R2 

4.8 OLS regression with five regressors: with and without outliers 

4.9 OLS regression with proxy variables as predictors .. . ... . 

Vl 

39 

43 

46 

48 

48 

50 

54 

55 

56 

59 



4.10 Partial F-test results. SSE= sum of squares residual, SSEdf =residual 

degrees of freedom, NDF = numerator degrees of freedom, DDF = 

denominator degrees of freedom, and for each model n = 502 used. . 61 

4.11 p-values of the Randomization test by several choice of scramblings 63 

Vll 



List of Figures 

2.1 Prediction error distribution of y-estimators. Estimator 1 is f}r, esti-

mat or 2 is fh. . . . . . . . . . . . 9 

3.1 A grid with 4 x 4 Lattice Points . 23 

3.2 Distribution of the b0 values at several points on the grid 26 

3.3 Distribution of the b1 values at several points on the grid 27 

3.4 Pattern of b0 estimates: Binary versus Gaussian weight function 31 

3.5 Pattern of b1 estimates: Binary versus Gaussian weight function 32 

4.1 Pattern of house prices against the proportion of Black people 45 

4.2 Map of Boston Standard Metropolitan Statistical Area . . 47 

4.3 Diagnostic plots for the house price data with model ( 4.1) 52 

4.4 Diagnostic plots for the house price data with model ( 4.2) 57 

4.5 Images of parameter estimates on the Boston Metropolitan Area Map. 65 

Vlll 



Chapter 1 

Introduction 

1.1 Relationship between Variables 

Applied statistics is a discipline where learning from data is one of the most relevant 

and vital challenges. In many cases, the aim is to study the relationships among 

measurable variables, where one is interested in assessing if a change in one (or more) 

variable is associated with a change in another variable of interest. This relationship 

can be of two types; one is a functional relationship and the other is a statistical 

relationship (Neter et al 1985, p. 23-24). A functional relationship between two 

variables is expressed by a mathematical formula. If X is the independent variable 

and Y is the dependent variable, a functional relationship can be written in the form: 

Y = f(X) 

Given a particular value of X, the function f indicates the corresponding exact 

value of Y, which is the characteristic of all functional relations. On the other hand, 

a statistical relation, unlike a functional relation, is not perfect one. To study the 

relationship among variables one of the important statistical methods is regression 

analysis. In the underlying logic of regression analysis, one variable takes on the role 

of a response (or dependent) variable, while all others are viewed as explanatory, 

predictor or independent variables. By a statistical relat ionship, it is meant that the 

1 
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observed values of the response variable in a regression model are generated by a 

probability distribution that is a function of other variables. To demonstrate this, 

suppose we have a set of observations {xi}, i = 1, 2, . . . , n, of an explanatory variable 

x, and {Yi} of a dependent variable y. Then the usual simple regression model can 

be written as 

(1.1) 

where Ei is the error term. 

In the study of the regression model (1.1), the explanatory variable x is used to 

explain how the response variable y varies if the values of the explanatory variable are 

changed. Regression analysis is used to estimate the quantitative functional relation­

ships between dependent variables and one or more independent variables from the 

actual data, when the relationship among the variables is statistical in nature rather 

than exact. Regression analysis is widely used in many fields of research. The goal of 

regression analysis is to estimate the parameter values for a function that cause the 

function to best (in a least squares sense) fit a set of observations that are available. 

1.2 Regression and Spatial Data 

In practice, the study of regression models consists of more than one predictor, and 

hence the analysis is called the study of multiple regression. 'vVe are often interested 

in examining more than one predictor of our response variable, and to determine 

whether the inclusion of additional predictor variables leads to increase prediction 

of the outcome variable. A common feature of this procedure is that it is applied 

globally, that is, to the complete region under study. However, it is often desirable 

to examine the relationship at a more local scale. For example, in studying the 

relationship between house price and population density in a country, the relationship 

between the two variables may differ, depending on the geographical locat ion within 

the country. 
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When data has been collected over a geographic region, there are often two issues 

for which we need to account. One is spatial dependency, which is when observations 

that are close in space exhibit spatial autocorrelation. This has been studied within a 

regression framework by Odland (1988) and Anselin (1993) .The second is spatial non­

stationarity, as discussed in detail by Bailey and Gatrell (1995). This indicates the 

variation in relationships over space. That is, the parameter values change from region 

to region, and hence the effect of the corresponding explanatory variable is not same 

over the whole area under study. It has been recognized that failure to take necessary 

steps to account for or ignore spatial autocorrelation can lead to serious errors in 

the model interpretation (Anselin and Griffith, 1988; Arbia, 1989). Therefore, in 

regression modeling, it is necessary to determine whether or not an identifiable spatial 

pattern exists in the data set . Getis and Ord (1992) suggests that spatial modeling 

should account for not only the dependence structure and spatial heteroskedasticity 

but also assess the effects of several predictors on a spatial scale. 

There are several reasons why parameter estimates from a regression model might 

exhibit spatial variation. For instance, if a regression model is fitted to predict the 

price of houses, it might be usual that the value of an extra room may not be same 

in several towns. Similarly, if a particular type of illness (Fotheringham et al, 1996) 

is considered to be affected by the socio-economic or socio-cultural practices of the 

communities, the effect of certain predictor variables on the illness may vary from 

place to place. 

1.3 Measuring Spatial Patterns 

There are many ways to test for the existence of a spatial pattern in a data set. For 

example, we may test for such patterns by focusing on the locations of the sample 

points, by studying the values associated with these locations given the sampling 

pattern, or by combining these analyses. In many geographical analyses, the identi­

fication of spatial autocorrelation is performed through applying Moran's I statistic 
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(Besag and Newell, 1991; Getis and Ord, 1992). For the study of local patterns in 

spatial data, Getis and Ord (1992) introduced the G statistic and presented a com­

parative advantage between the G and I statistics with respect to the spatial pattern 

in a data set. These general tests are concerned with the overall pattern in a large 

study region, whereas a focused test concentrates upon one or more smaller regions 

selected because of some factors that have been previously hypothesized to be asso­

ciated with the response variable. Besag and Newell (1991) discussed a focused test 

procedure, and pointed out some difficulties for the I statistic. 

In linear regression analysis, the data may be drawn from geographical units 

and a single regression equation is estimated. In general, the ordinary least squares 

( OLS) technique is used to produce the global estimates of parameters which are 

considered to apply equally over the whole region. That is, the relationships being 

measured are assumed to be stationary over space. However, relationships which 

exhibit spatial non-stationarity create problems for the interpretation of the OLS 

estimates of parameters from the regression model. Naturally, it is of interest to 

combine these ideas: regression modeling that attempts to allow us to describe spatial 

non-stationarity in data. Along this line of thinking, we will discuss the technique 

of geographically weighted regression (GWR), in which the coefficients of a linear 

regression model are estimated by a weighted least squares procedure. The location 

in geographical space is used to produce the weight function and, therefore, GWR 

allows us to obtain the local estimates, rather than global, of the parameters in the 

regression model. Brunsdon et al (1998, 1999), for instance, suggested this method 

for analyzing a spatially autoregressive model. 

It is our interest in this practicum to study the technique of G'VR including its 

underlying theory, estimation and inference, and practical application. In Chapter 2, 

we discuss t he theoretical aspects of GWR including several weight functions, band­

width selection, estimation and testing procedures. The results of simulation studies 

are described in Chapter 3, where we concentrate on finding the GWR estimates of 

parameters, and to determine the power and size of the tests. With the purpose of 
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observing the performance of tests, we apply testing methods to data simulated using 

a single explanatory variable in the model, and with three explanatory variables. In 

Chapter 4, we choose a widely used socio-economic data set on Boston house prices 

for application of the GWR methods. We will compare these results to those found 

using the typical linear regression model. We will also use some model selection pro­

cedures to help determine a smaller number of explanatory variables to use in the 

GWR procedure. vVe will give our conclusions, and thoughts on possible future work, 

in Chapter 5. 



Chapter 2 

Theory of G WR 

2.1 Introduction 

As mentioned in Chapter 1, geographically weighted regression (GWR) is an alternate 

method of estimation that can incorporate the spatial non-stationarity in relationships 

over space. In this chapter we will study the theoretical aspects of GWR, focusing 

on parameter estimation and hypothesis testing, but the choices of weight function 

and bandwidth are also necessary parts of the methodological development. Since 

the spatial non-stationarity in relationships is the key issue, we will present in detail 

two statistical procedures to test for spatial variation in the parameter values of the 

GWR model. 

2.2 Model for GWR 

In spatial analysis the data are often assumed to be non-stationary over space. Ge­

ographically weighted regression is one of the statistical techniques through which 

the presence of spatial non-stationarity is examined. The statistical model of global 

regression can be written as 

6 
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Yi = bo + L bjXij + Ei 
j=l 

7 

(2.1) 

where Yi represents the ith (i = 1, 2, .. . , n) response related to the jth (j = 1, 2, . . . , k) 

predictor Xij· The corresponding regression coefficient in (2.1) is bj and an uncon­

trolled random error is Ei. 

G\,YR extends the usual regression framework of equation (2.1) that allows local 

rather than global parameters to be estimated (Fotheringham et al, 1998) . Therefore, 

the model for GWR can be written as 

k 

Yi = bo(ui , vi)+ L bj(ui , vi)Xij + Ei 

j=l 

(2.2) 

where ( ui, vi ) indicates the coordinates of the ith point on the surface. If the entire 

study area is considered as a continuous surface of parameter values and the spatial 

variability of the surface is obtained through measurements of this surface at cert ain 

points, then b.i ( ui, vi) indicates the realization of the continuous function of bj ( u, v) 

at point i. That is, in the analysis of spatial data, the parameters are assumed to be 

function of the locations at which the observations are obtained. Obviously, equation 

(2.1) is a special case of equation (2.2), where the parameter values are considered to 

be constant over space. Thus, the equation (2.2) can be approximated by the equation 

(2.1) considering the ith region on the surface. When estimating a parameter for a 

given point i, an ordinary least squares (OLS) regression can be performed with a 

subset of the points in the data set that are close to i . Accordingly, an estimate 

of bj ( ui, vi) is obtained for region i in the usual way, whereas for the next i, a new 

subset of nearby points is used, and so on. Thus, equation (2.2) is a recognition of 

the GWR expression through which one attempts to assess whether spatial variations 

in relationships exist (Fotheringham et al, 1998) . 
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2.3 Estimation 

The regression model in (2.2) leads to a probabilistic model for a given region, specified 

by i, on the surface. Specifying such a model for several points of the study area causes 

problems associated with estimating coefficients, and hence, model fitting. Unlike 

the OLS regression model in equation (2.1), this model (2.2) allows the parameters 

to vary in space. However, the model (2.2) consists of more unknown parameters 

than observations, and hence, being in unconstrained form it is not implementable 

directly. This is related to the notion of underdetermined regression models (Sneddon 

1999). Hastie and Tibshirani (1990) have carried out work with these type of models. 

Also, the estimate of bj ( ui, vi) for the ith point involves some degree of bias since the 

coefficients of equation (2.2) recognize local behaviour rather than global. However, 

if the sample size is large enough for a specified location, the corresponding standard 

error of the parameter estimates will reduce. That is, the larger the local sample, 

the smaller the standard error of the estimates. Hence, the sample size of the local 

subset plays a key role in the estimation process of (2 .2). The sample size works as a 

compromizing factor of increasing bias and decreasing standard error of the estimates. 

2.3.1 Bias-Variance Compromise: Prediction Error Approach 

The idea of a bias-variance compromise is discussed in many works where sampling is 

one of the vital platforms for research. Fotheringham et al (1998) present an extensive 

explanation using a diagram similar to Figure 2.1. 

Considering the context of GWR, if Xi represents a set of predictors in location i 

on the surface, and b is a set of coefficient estimators, then Yi = Xfb is an estimate 

of the response y at that location. Due to the random nature of Yi, t he estimator 

b, and hence, y are random. Therefore, y can be observed through its distributional 

pattern, which is characterized by its expected value E(fj) and standard deviation 

SD(fj). When for all X , E(f)) = E(y), the estimator is said to be unbiased. If for an 

estimator y, once unbiasedness holds, the lower the SD(fj) values the more efficient 
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Figure 2.1: Prediction error distribution ofy-estimators. Estimator 1 is y1 , estimator 
2 is Y2· 
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y 1s. Figure 2.1 presents an interpretation of two different estimators of y, say h 
and y2 respectively, in terms of bias and variance. The probability distributions of h 
and y2 are visualized by two boxplots. Considering the horizontal line for true y, it is 

obvious that y2 is unbiased. Although :h is a biased estimator, its overall variability 

is less than that of y2 . Therefore, the estimator y1 is presenting less prediction error 

of y even though y2 is more advantageous as its distribution is centered at y. Due to 

the longer tails of the prediction squared error (PSE) of 5'2, one may choose :h even 

if it is biased. 

However, introducing more bias caused by a large sample approximation still seems 

to be a drawback of the estimation method. To reduce this effect, another adjustment 

is possible to consider. A weighted OLS estimation can be used so that it provides 

a means of computing localized regression est imates. This technique works well if 

the points further from region i are more likely to have coefficients differing from 

those closer to region i. If the estimation is performed through applying a monotone 

weighting function, then observations further from the point i, at which the parameter 

as well as the model is being estimated, receive less weight that observations closer 

to point i. Thus, estimation of equation (2.2) measures the relationship inherent in 

the model around each point i . 

According to regression theory, the OLS estimate of coefficients in model (2.1) , if 

written in matrix form, is given by 

where b represents an estimate of b, whereas X contains values of the predictor 

variable with 1' s in t he first column and y contains values of the response variable. 

However, if we do not want to place the same emphasis on each observation, a similar 

estimate for model (2.2) will be of the form 

where W(ui , vi ) is an n x n weight matrix whose off-diagonal elements are zero. 

The diagonal elements of W ( ui, vi) indicate weights for observations corresponding 
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to point i in the study area. The role of the weight matrix W ( ui, vi ) is to place 

different emphases on different observations to obtain parameter estimates. Hence, 

introduction of this geographical weight matrix W(ui, vi ) leads to the estimation in 

such a way that the observed data near location i are weighted more than the observed 

data fart her away. It is very important to choose an appropriate weight function to 

obtain a good estimate b(ui, vi) · The choice of weighting matrix is discussed in the 

next subsection. 

2.3.2 Spatial Weighting Function 

As noted above, even if a bias-variance balance is possible to meet through selecting 

a reasonably large sample, there is still an indication of increasing bias. This can be 

controlled when an appropriate weighting function is used for estimation. The choice 

of weighting function is one of the vital issues to estimate coefficients and later on to 

investigate spatial variability. 

A simple but natural choice of weighting function at a specific location is to exclude 

those observations that are farther than some pre-specified distance. If we let W ik be 

the (i,j)th element of W, this kind of weighting function is called a binary weighting 

function, and can be defined by 

1 if dik < r 

0 otherwise 
(2.3) 

where dik represents the distance between the ith and kth locations on the surface. To 

explain the weight function in equation (2.3): if i represents any point on t he surface 

at which parameters are estimated, and k represents a specified point in space at 

which data are observed, then observations t hat are within some distance r from the 

locality i have a weight of unity, and observations whose distance exceeds this quantity 

r have weight zero. In the global model, where no spatial variation is considered, each 

observation has a weight of unity. 

The binary weight function is a step function, which suffers from the problem of 
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discontinuity over the study area. This leads to a very sudden change of the spatial 

association between variables. One way to overcome this problem is to introduce a 

continuous weight function. One such function is the exponential weighting function 

given by 

(2.4) 

The function (2.4) is called a Gaussian distance-decay-based weighting function. This 

is a continuous and monotone decreasing function of dik, because the larger the dis­

tance dik, the smaller the value of the weight. The weight would decay gradually 

with distance. More precisely, if i represents a point at which an observation was 

made, the weight assigned to that observation will be unity and the weights of the 

other points will decrease according to a Gaussian curve as dij increases. In the GWR 

estimation process, another weight function of the form 

is also used. This is an alternative but very similar weighting function to equation 

(2.4). 

Rather than considering an exponential form, another continuous function, which 

is known as a kernel function, is often used. The form of this function is 

wik = { [1- (dik/ t8)
2]2 if dik < r, 

0 otherwise 
(2.5) 

The kernel function is denoted by K; that is, 

The usual features of a kernel function K are (Brunsdon et al, 1998): 

(i) K(O) = 1 

(ii) limd-too K(d) = 0 
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(iii) K is a monotone decreasing function for positive real numbers. 

The weighting function in equation (2.5) indicates setting the weights to zero 

outside a distance r and to decrease monotonically to zero with r as d ik increases. 

Therefore, the kernel function (2.5) is a compromise between the weight functions of 

the binary (2.3) and exponential (2.4) forms. 

2.3.3 Choice of j3 

Introducing a weighting function, the estimate of coefficients, when observations are 

corresponding to location i, can be written as 

where 

Wil 

0 
Wi= 

0 

0 

Wi2 

0 

0 

0 

(2.6) 

Here, the weight matrix Wi is a n x n diagonal matrix which consists of non-zero 

diagonal elements to indicate the weights for estimating hi around region i in space. 

In fact, this matrix plays a key role in estimation in the GWR model. Once each W ik 

has been computed, the hi vector can be computed through repeated application of 

expression (2.6) for each i. As noted previously, the weighting functions of continuous 

type are preferable for analyzing spatial data, since the degree of weighting changes 

with distance rather than suddenly dropping to zero. These functions include a 

constant /3, which is often called the kernel bandwidth. 

The bandwidth f3 is a non-negative constant depicting the way the Gaussian or 

kernel weights very with distance. For a given dik, the smaller the /3 , the less emphasis 

placed on the observation at location k. Accordingly, an important weighting note 
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is struck here- choice of an appropriate bandwidth value has more influence on esti­

mation than the choice of weighting function (Simonoff 1996, p . 44) . Our interest in 

this section is to emphasize how to choose a reasonable f3 value. In some cases, there 

is no theoretical basis of how to choose the value of (3, although the properties of bi is 

greatly affected by the choice of (3. Silverman (1986) suggests a subjective choice of 

f3 if no prior idea is available. The method of mean squared error and cross-validated 

sum of squared errors are used in this practicum to obtain the best possible f3 for 

every individual data set. The mean squared error of the estimate of coefficient b is 

defined by 

MSE(b) E(b- b)2 

Var(b) + [Bias(b) ]2 (2 .7) 

Therefore, the MSE of an estimator can be decomposed into its variance and squared 

bias. To compare estimators by looking at t heir respective mean squared errors, 

naturally we would prefer one with smallest MSE. Hence, we are to choose a value 

of f3 for which the MSE of b attains its minimum. However, (2.7) cannot be found in 

practice, since the true b is unknown. 

For a pre-specified weight function, let us consider the predicted value of Yi from 

GvVR is denoted by fli(f3) (as a function of /3) . Then the sum of squared error·s can 

be written as 

SS(/3) = L[Yi- Yi(f3)F (2.8) 
i 

A useful choice of f3 depends on a least square criterion. That is, we are to choose 

the value of f3 for which the quantity SS(/3) attains a minimum. In order to find the 

predicted value Yi (/3), it is necessary to estimate the b1(ui, vi) at each of the sample 

points and then combine these with the x values at these points. However, a problem 

is encountered when minimizing sum of squared errors SS(/3) . As f3 --+ 0, Yi(/3)--+ Yi ; 

that is, SS(/3) in equation (2.8) is minimized when f3 --+ 0. This is because, for all 
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kernel functions, 

{ 

Wii = 1 if i = k, 

wik = wik = 0 as f3 ----+ 0 if i =I= k 

To overcome this problem, a cross validation approach is suggested by Cleveland 

(1979) for local regression, and by Bowman (1984) for kernel density estimation; see 

also Golub, Heath and Wahba (1979), Li (1986) and the references therein for discus­

sion of generalized cross validation in ridge regression. Let Y(i)(/3) be the predicted 

value of Yi, obtained by omitting the ith observation from the model, when the GWR 

estimation process is performed. Then the cross validated sum of squared errors is 

defined by 

cv SS(/3) = L[Yi- Y(i) (/3)]2 (2.9) 
i 

The value of f3 for which (2.9) attains its minimum is the logical choice that helps 

to overcome the problem obtained through equation (2.8). 

2.4 Inference with the GWR Model 

As described in the previous sections, the GWR estimation technique provides a 

means of computing localized regression estimates. It has been demonstrated to be 

a useful means for detecting spatial non-stationarity (Paez et al, 2002; Leung et al, 

2000; Brunsdon et al, 1996). In GWR any spatial non-stationarity in the relationships 

being measured is accounted for by allowing t he estimated model to vary spatially. 

From the statistical point of view, it is useful to assess the following two questions 

(Leung et al, 2000): 

(1) On the whole, do the parameters in the GWR model vary significantly over the 

study region? 

(2) Does each set of local parameters, bij = bj (ui, vi ), (i = 1, 2, ... , n ) exhibit signif­

icant variation over the study region? 
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The first question can be modified as, "Does a GWR model describe the data 

significantly better than an OLS regression model?" This is, in fact, a goodness-of-fit 

test for a GWR model. The second question indicates that the variability of the local 

estimates could be thought of as a variance measure, and this is used to examine 

the plausibility of the stationarity assumption which is to be considered in classical 

regression. Furthermore, for any given j, the deviation of bij ( i = 1, 2, . . . , n) can be 

used to evaluate the variation of the parameters associated with the j th independent 

variable. However, it is very difficult to determine the null distribution of the esti­

mated parameters. Therefore, a Monte-Carlo technique has been employed, called a 

permutation or randomization test. 

2.4.1 F-Test Statistic 

The work of Brunsdon et al (1999) provides a significance testing procedure for the 

GWR model. Following the conventional hypothesis testing framework, the notion of 

residual sum of squares is used to formulate the goodness-of-fit test . We assume that 

for calibrating the GWR model the weighting matrix is given. To find the distribution 

of the test statistic, the following two assumptions hold. 

Assumption 1. The error terms c:1 , c:2 , c:3 , .. . , En are independent and identically dis­

tributed, following a normal distribution with zero mean and constant variance 

()2 . 

Assumption 2. Let Yi be the fitted value of Yi at location i . For all i = 1, 2, .. . , n, Yi 
is an unbiased estimate of Yi· That is E(f)i) = Yi for all i . 

The F-test is developed to test the null hypothesis that the coefficient b i (ui, vi) is 

constant for all points ( u, v) in the study area. No evidence of rejecting this hypothesis 

suggests that an ordinary, global regression model is adequate to describe the data 

set. Therefore, the hypotheses to be tested can be formulated as 

R . abj = abj = 0 v . 
0 . au av J 



versus 

H . abj _j_ 0 . obj _j_ 0 \.../ . 
1 . OU T 01 OV T v J 
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The test statistic described in this section is produced by Brunsdon et al (1999) 

considering two models: the GWR model and the global regression model, where 

no variations are assumed for difFerent localities. As in section 2.3, similar matrix 

notations are used here to provide a brief description of how to derive the appropriate 

test statistic. 

In the GWR model, the coefficients bj ( u, v) vary across the study area. Following 

the OLS notation for the GWR model, b( u, v) can be treated as vector of coefficients 

in the global model, so that b(,) is a vector function mapping ~2 , a two dimensional 

Euclidean plane, onto ~m, an m-dimensional Euclidean hyperplane. For the global 

model, an OLS estimate of the vector of parameters b( u, v) is given by 

Since no variation with respect to geographic space is assumed for global regression, 

the estimate b is no longer a function of ( u, v). Then the estimate of y can be written 

as 

where S0 = X(xrx)- 1 xr is known as the hat matrix, or a smoothing operator since 

it transforms, or smooths, the observed y into y. 

A weighted OLS estimate of b(u, v) is obtained when the estimation is performed 

with a weighting function W(u, v) such that the weighting changes as (u, v) varies. 

If the diagonal matrix W ( u, v) consists of the diagonal element corresponding to the 

weighting for a particular ( u, v), then 

For any given Yi, if the ith row of X is xf and the corresponding estimate is 

b( ui, vi), then 
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The row vector x[(XTW(u, v)X)-1XTW(u, v) takes the observed y and smooths it 

to Jk Suppose 8 1 is the smoothing matrix for the GWR model so that its ith row, 

ri = xf(XTW(u, v)X)-1XTW(u, v ). Then the estimate of y using the GWR model 

can be written as 

Obviously, both the hat matrices 8 0 and 8 1 , computed from the global regression 

and GWR models, are independent of y. In either model, the residuals may be 

expressed as 

where z is either 0 or 1. Therefore, the sum of squared residuals can be expressed as 

(2.10) 

where Rz = (I- Sz)l'(I- Sz)· The expression for the sum of squared residuals 

(2.8) is a quadratic form for both the GWR and classical regression models. If the 

assumptions about Ei hold, then equation (2.10) is a quadratic form of normal variates. 

In this case, when both models can be expressed in the form of a hat matrix, Kendal 

and Stuart (1977) present the test statistic, for normally distributed y , as 

(2.11) 

where v = Tr(R0 - Rl) and 6 = Tr(R1), and Tr is the trace of the matrix. 

The test statistic (2.11) has an approximate F distribution with degrees of freedom 

(v2 j v', 82 /6'), where v' = Tr(R0 - R 1 )
2

, 6' = Tr(Ri). These degrees of freedom are 

not necessarily integers; however, this does not affect the distributional assumption 
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provided r > 0 and 6 > 0. The approximation of the test statistic (2.11) to an F 

distribution depends on the fact that the numerator and denominator of (2.11) are 

quadratic forms of normal variates. These are well approximated by a x2 distribution 

with degrees of freedom chosen so that their first and second moments agree with 

those of the quadratic forms. Since there are hat matrices for both the GWR and 

classical regression models: it is possible to compare these two models using the test 

statistic (2.11) . This is the extension of the conventional procedure of comparing 

classical regression models, where one consists of more explanatory variables than 

the other. In that case, the purpose is to fit the reduced model, where the F statistic 

follows an exact F distribution, because the degrees offreedom are an integer. Hence, 

an ANOVA table can be suggested for GWR-OLS comparisons, where the residual 

mean squared error for both is being compared. 

2.4.2 Randomization Test 

In the previous section, the F statistic aims to test whether the coefficients are con­

stant over geographical space. Clearly, application of the F statistic (2.11) can pro­

duce a result of testing where the entire set of explanatory variables are used together 

for estimation. In this section, a different testing technique is illustrated , which aims 

to conduct similar inference but through inference on individual variables. Once a 

final model has been selected, we can further test whether or not each set of param­

eters in the model varies significantly across the study region. Brunsdon et al (1998) 

used the well established Monte Carlo techniques (Hope, 1968) to develop a method 

to test 

Ho: bj(ui, vi )= bj , \li 

versus 

H 1 : bj ( ui , vi ) not all equal \/i 

Testing of the above hypotheses actually measures the variability of bj ( ui , vi) as i 

varies for a fixed j. Since the individual coefficient is to be tested, the test statistic 

is the variance of bj ( ui, vi) across i : 
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(2.12) 

where bij is the G WR estimate of bj ( ui, vi) and b.j is obtained by averaging those over 

subscript i . The lower the value of Vj, the stronger the evidence that the coefficients 

corresponding to Vj is fixed. The null distribution of Vj is unknown, which leads 

us to apply a randomization testing technique to find it s approximate distribution. 

Although Leung et al (2000) have used a transformation of Vj, and approximated as 

F distribution, we are not using this in our analysis. Under the null hypothesis, we 

assume that bij do not vary with i for a fixed predictor j . That is, little difference 

in the pattern of bij is suggested if the estimation of the GWR model were to be 

performed with locations of the observations randomly assigned to the predictor and 

response variables. More precisely, the spatial location should not greatly affect the 

parameter estimation if the bij are fixed over space. As explained by Brunsdon et al 

(1998), the randomization procedure, for given j, is as follows: 

(a) Note the value of Vj for the correctly located observations. 

(b) Randomly 'scramble' the locations Pi among the observations, and calculate Vj. 

(c) Repeat the previous step P -1 times, noting Vj each time. 

(d) Compute the rank of Vj for the correctly located case, R. 

(e) The p-value for the randomization hypothesis is R/P. 

Once the value of the bandwidth f3 is found by minimizing (2.9), the randomization 

test would be carried out following the steps as described above. In practice, a 

large number of random arrangements or scramblings is often required, so the overall 

computational requirements of this approach may be large. 
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2. 5 Conclusion 

In this chapter, we have demonstrated the GWR model and its methodology. The 

method of GWR can be used to produce localized parameter estimates, which appear 

to be a useful means to explore variation of parameters over space, and demon­

strate complex spatial patterns. We have presented the details of two approaches 

of inference to assess spatial non-stationarity in relationships. In comparison to the 

linear regression model, GWR will provide less efficient estimates in the case when 

there is no spatial non-stationarity. However, it should be noted that when spatial 

non-stationarity is present, the classical regression model cannot provide a consistent 

estimate of the true model (Brunsdon et al, 2000). 



Chapter 3 

Simulation Studies 

3.1 Introduction 

The application of the estimation techniques and testing procedures to measure spa­

tial non-stationarity is now described with simulated data. Our interest is to obtain 

estimates of the G\i\TR coefficients and perform goodness-of-fit and randomization 

tests. The power and size of the tests will be studied empirically. This chapter 

presents results considering two different models: one with a single explanatory vari­

able, and the other extended to three variables. Application of the weighting functions 

including choice of bandwidth, (3, is also performed by using several methods. 

3.2 Estimation in Single Predictor Model 

The general form of the model with a single predictor, which is being simulated, is 

given by 

(3.1) 

where i = 1, 2, ... , n; and Ei "' N(O, o-2
). The value o-2 1 is chosen arbitrarily. 

The values of the independent variable x are drawn randomly from a uniform (0, 1) 

distribution. The spatial region of interest consists of coordinates ( ui, vi ) taken from 

22 
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41-----+---~-----+ 

31-----+---~~-----+ 

21-----+---~-----+ 

2 3 4 

Figure 3.1: A grid with 4 x 4 Lattice Points 

a square, two-dimensional grid. The simulation is performed in such a way that the 

grid consists of m x m lattice points with unit distance between any two of them 

along the horizontal and vertical axes. Figure 3.1 presents the lattice points in the 

study region to illustrate how the spatial region can be considered. Throughout this 

chapter, i = 1 refers to the location in the upper-left hand corner of the grid, i = 2 is 

the point to its right, and so on. 

In the first case, we take m = 4, so we have n = m2 = 16 observations in the 

study region. The spatial variation in the intercept and slope are chosen following a 

step changing approach. The bio and bi1 values for this case are considered as follows: 

1, fori= 1, . . . , 4 

bio = 
2, fori= 5, . . . , 8 

3, for i = 9, . . . , 12 

4, for i = 13, ... , 16 

and 

b;~ = { 
1, fori= 1, .. . , 8 

- 1, for i = 9, . . . , 16 

The value of the response variable Yi, i = 1, . . . , 16, is generated by the model (3.1). 

Up to the stage of parameter estimation, we have used the weight functions of binary 
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Table 3.1: Summary statistics of parameter estimates: Binary weight function with 
r = 2.0. 

Intercept ( bo) Slope (b1) 
Points Mean St. dev. Mean St. dev. 

1 1.723867 0.7838555 0.16604608 2.7338022 
2 2.040854 0.6518693 -0.75787009 2.0100607 
3 1.427912 0.6323068 0.90988045 1.0969543 
4 1.231453 0.9695123 1.34819799 1.5703363 
5 2.638822 0.6019597 -1.72037161 2.3612661 
6 1.729607 0.4943086 0.97533019 0.8955057 
7 1.841316 0.5422269 0.64377695 0.8858988 
8 1.885211 0.7323107 0.62930668 1.1309353 
9 2.438261 0.4896704 0.05075030 0.9974085 

10 2.519601 0.4874250 -0.03684399 0.8666078 
11 2.064949 0.6313220 0.79236817 0.9421332 
12 2.482459 0.8763860 0.10675806 1.2172196 
13 2.903235 0.6368353 0.05988004 1.1723625 
14 3.014368 0.6207160 -0.28456138 1.0017228 
15 3.254563 0.6785262 -0.69086805 1.0163031 
16 4.014788 2.4692781 -1.40686089 2.8325846 

Global statistic 2.168051 0.4349696 0.4388659 0.7490353 

(2.3) and Gaussian (2.4) type. However, the latter one is used in the determination 

of power and size of the tests. 

In the analysis, the Euclidian distance between points on the square grid (see 

Figure 3.1) are computed. Referring to the binary weight function in equation (2.3) , 

the value of r is specified to 2 units. That is, to estimate the parameters of the GWR 

model corresponding to point i, a weight equal to 1 is considered for those points that 

are within 2 units of location i, and 0 for the points farther away. The estimates of 

bio and bi1 at 16 different points are computed from each of 500 simulated data sets. 

The mean and standard deviation of the estimates are presented in Table 3.1. 

To interpret the result presented in Table 3.1, a close look at the parameter values 

and estimates of the corresponding points will help us to see the bias associated with 
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the G\iVR estimation method. As described previously, the true value of b0 at each of 

the first four points is 1, whereas the means of the GWR estimates are 1.72, 2.04, 1.43 

and 1.23 respectively. That is, for these points, the GWR estimates of the intercept 

term overestimate the true values, so there is positive bias with the estimates. For 

the next four points, the means of the b0 estimates are 2.64, 1.73, 1.84 and 1.86 

respectively, whereas the true value for each is 2. The estimate of b0 at the fifth point 

has positive bias, while the other three have small negative bias. The true b0 at the 

next four points is 3 and of the last four is 4. It is obvious that the GWR estimate 

of b0 at the 16th point shows slight positive bias, whereas the other 7 estimates are 

negatively biased. The standard deviations of the b0 estimates are similar at each 

location except the 16th point on the grid. 

Unlike the b0 estimates, the results obtained for h1 display greater departure from 

the true values. We know the coefficient b1 equals to 1 at each of the first 8 locations 

and -1 at each of last 8 locations. Therefore, the two negative values of h1 averages 

corresponding to the second and fifth locations, whereas positive values corresponding 

to location 9 and 11-13 are not what we would expect. Also the standard deviations 

of the b1 estimates are larger than those of h0 . 

The last row of Table 3.1 presents the statistics of h0 and h1 assuming the parameter 

values are unchanged over the study region. That is, these are simply the mean and 

standard deviation of the ordinary least squares (OLS) estimates of b0 and b1 . Since 

no variation in parameter values are assumed for the OLS estimation, the model 

is called the global regression model and the statistics computed from estimates are 

known as global statistics. Obviously, many of the GWR estimates and corresponding 

parameter values are quite different from the respective global averages of b0 and b1 . 

Figure 3.2 displays the distribution of the b0 values at locations 1, 5, 9 and 13. 

Figure 3.3 presents the distribution of the b1 values at the corresponding locations. It 

is apparent that at each location the shape of the dist ributions of h0 and b1 are very 

close to normal. As well, they are centered close to the true b0 values, and reasonably 

close to the true b1 values. 
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Figure 3.2: Distribution of the b0 values at several points on the grid 
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We have also used the Gaussian-distance-decay function (2.4) for analyzing this 

simulated data. Therefore, the bandwidth fJ had to be determined before parameter 

estimates were determined. The ,B value is first determined by the method of mean 

squared errors, and thereafter by the cross validation approach. Although the fJ values 

obtained from the latter approach are used in our analysis, choosing fJ based on the 

minimum attainable MSE in equation (2. 7) gives an intuitive idea of cross checking 

the cross validation approach. 

For empirical computation, the dik, distance between the ith and kth points ( i , k = 
1, ... , 4) on the square grid (Figure 3.1) is computed, and used to determine the 

Gaussian weight function (2.4). Initially, an arbitrary value of fJ is chosen to determine 

wik· Once the GWR estimates of b0 and b1 are obtained at each of 16 points on the 

grid by using the Gaussian weights, we determine the MSE and CVSS. Following the 

definition of MSE in (2. 7), we can write its empirical formula as 

1 ~A 2 
MSEi =- L.)bi,j- bi) 

n j =l 

where bi is the true value of bi , and bi,j is the corresponding GWR estimate of b. For 
A A 

each of 16 points on the grid, the MSE of b0 and b1 are estimated by using n = 500 

simulated data. Trials over a range of fJ values help us to obtain the fJ for which 

the MSE attains its minimum. The results corresponding to three different choices 

of f3 are presented in Table 3.2. The MSE is minimized most often for (3 = 2. We 

determined this by examining a wide range of f3 values, but only three of those choices 

are presented in Table 3.2. 

To find the empirical value of CVSS scores, we have used the formula in (2.9). 

Once the GVVR estimates of b0 and b1 are found, the computation of Yi - Y(i) (/3), 

i=1,2, . .. , 16, is performed easily. Summing up the quantity Yi - Y(i) ((3 ) over i gives 

the CVSS for a specific data set. Repetition of the same procedure on each data 

set gives 500 CVSS values, while the computational trials with several (3 values are 

performed to pick up the value of f3 which minimizes CVSS. 

Table 3.3 presents the means of the CVSS scores and the number of times CVSS 
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Table 3.2: Mean squared errors of b0 and b1 corresponding to bandwidths f3 = 1.0, 
1.5, 2.0 

/3=1.0 /3=1.5 /3=2.0 
Points mse b0 mse b1 mse b0 mse b1 mse b0 mse b1 

1 0.9445774 2.093401 0.8344093 1.904298 0.7972115 1.4213389 
2 0.8492792 2.137797 0.7469554 1.666718 0.8347536 1.2306280 
3 4.5083120 8.812332 1.1692373 2.355303 0.9781568 1.2615225 
4 19.1430513 50.836072 4.1119758 10.081826 1.3039886 2.0325877 
5 1.3513548 2.137544 0.6492579 1.223976 0.4500557 1.1441368 
6 0.8432945 1.671443 0.5027079 1.310045 0.5069929 1.5000168 
7 2.2272753 4.495173 0.8262826 2.385633 0.7322085 2.2523445 
8 13.3924956 28.378601 1.7542282 4.160823 1.0101686 3.0100945 
9 1.1625503 2.258186 0.5655855 1.311947 0.4158165 1.2179893 
10 1.3647600 2.096101 0.8608799 1.282856 0.5229588 0.9904287 
11 2.2547807 4.659374 1.3445963 2.227735 0.7554245 1.2614566 
12 5.4224494 9.697872 1.9648944 3.627675 1.0422258 1.8922757 
13 1.1444721 4.903224 0.7484456 2.763793 0.6216082 1.5520608 
14 1.0527807 4.973747 0.7432572 2.881863 0.6053905 1.8284279 
15 1.2130773 4.476111 0.8607963 3.451822 0.6596120 2.3585991 
16 3.6127100 10.766331 1.3867159 4.896241 0.8205366 3.0764862 

Table 3.3: CVSS scores for several values of bandwidth f3 

f3 values Mean (CVSS) Number of times CVSS minimized 
1 35.6428 78 

1.5 26.9710 170 
2.0 26.6153 163 
5.0 31.9602 51 

10.0 33.5571 5 
20.0 33.9868 33 

Total simulations 500 
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was minimized corresponding to the six different values of /3. The means of the 

CVSS are obtained by averaging 500 CVSS scores under each value of /3, where the 

least CVSS are computed separately for each data set over the six CVSS values 

corresponding to the values of /3. Obviously, CVSS is minimized most often for f3 
values equal to 1.5 and 2.0, which coincides with the least mean squared errors for 

f3= 2.0. The smallest mean CVSS is 26.62, which is also found for /3= 2.0. The next 

smallest mean CVSS is 26.97, which is observed when /3= 1.5. However, the MSE 

quantity can only be calculated in simulation studies, when the true bi values are 

known. 

3.2.1 Binary versus Gaussian Weighting Function 

As explained above, f3 = 2.0 is preferred based on minimum MSE and CVSS. We 

would like to compare the results when using the Gaussian weight function to what 

would happen if the binary weight function is used. Table 3.4 presents the average of 

the estimates of bio and bi1 using the Gaussian weight function with f3 = 2.0. These 

results can be compared to those in Table 3.1. 

The average values obtained by using the Gaussian weight function seem to follow 

a downward trend within each of the four categories of true values of the intercept. 

For the slope, the first 8 are similar in value, as are the final 8 values. On the other 

hand, no such trend is observed for the binary weighting function . Rather, it shows 

large fluctuations among estimates in several points. Figures 3.4 and 3.5 display line 

diagrams separately for the b0 and b1 estimates and the corresponding true values at 

the 16 points on the grid. 

Interestingly, the lines of b0 and b1 obtained by using the Gaussian weight function 

show a trend along the corresponding lines with the true parameter values and include 

a reasonable amount of positive and negative bias. However, the lines of the b0 and 

b1 estimates obtained using the binary weight function display large variability, in 

particular for b1 . 
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Table 3.4: Summary statistics of parameter estimates: Gaussian weight functions 
with f3 = 2.0 

Points 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Intercept ( b0 )) 

Mean St. dev. 
1.761542 0.5367068 
1.718736 0.4994881 
1.640726 0.5473830 
1.525283 0.6557580 
2.059301 0.4722311 
1.995405 0.4606587 
1.912957 0.5066025 
1.819782 0.6003668 
2.487690 0.4662753 
2.381392 0.4553227 
2.281535 0.4880002 
2.225218 0.5748977 
2.965182 0.5547447 
2.834534 0.5148213 
2.727228 0.5191510 
2.724838 0.6466617 

4 .0 . Gaussian wt. 

'* E 

11 
:8 

3 .5 

3 .0 

2 .5 

2 .0 

1 .5 

1 .0 

Binary wt. 
T rue bO 

Slope (b1) 
Mean St. dev . 

0.4559723999 1.0569348 
0.5884239226 0.8840573 
0. 7695585314 0.9348922 
0.9785509492 1.0890110 
0.4013111474 0.8768544 
0.4990330045 0.7930556 
0.6263274860 0.8419422 
0.7726153581 0.9699079 
0.1029101711 0.8653345 
0.2435643254 0.7933064 
0.3643364632 0.8102761 
0.4424444235 0.8968705 

-0.3029614687 0.9833593 
-0.1260060126 0.8822922 
-0.0016574621 0.8533367 
-0.0001706193 0.9274530 

--0 

-- + 
- - > 

5 10 1 5 

points 

Figure 3.4: Pattern of b0 estimates: Binary versus Gaussian weight function 
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5 10 15 

points 

Figure 3.5: Pattern of b1 estimates: Binary versus Gaussian weight function 

3.3 Performance of Tests 

In order to detect the presence of spatial variation among parameter values, two dif­

ferent statistical testing methods were described in chapter 2. We will now empirically 

study the performance of these tests. At this stage, a note of distinction between the 

two tests should be mentioned here. When one would like to apply goodness-of-fit 

test or the randomization test on local variation, the former one is used to make 

simultaneous inference on all parameters, whereas the latter assesses the contribution 

of an individual explanatory variable. 

3.3.1 Power and Size of Tests: Single Predictor Model 

To assess the performance of testing procedures of spatial non-stationarity, both the 

goodness-of-fit test and randomization test are applied to the data simulated by 

model (3.1) . As described in section 2.4.1, the hypotheses to be tested under the 

goodness-of-fit testing procedure are 
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H0 : The coefficients b( ui, vi) are constant for all points ( ui, vi) in the study area 

versus 

H 1 : The coefficients b(ui, vi) are not constant for some of the points (ui, v.i). 

The power and size of tests are two well-known statistical tools through which one 

can justify the level of acceptance of a test. Since for the simulated data the true state 

of nature of the parameter values are known, the power and size of tests are possible 

to determine. The power of a statistical test is the probability of rejecting the null 

hypothesis when in fact it is false and should be rejected. On the other hand, the size 

of a test is the probability that the test will lead to the rejection of the null hypothesis 

when the null hypothesis is true. To obtain empirically the power of the test, we have 

chosen b0 and b1 values at 16 different points in the grid in such a way that there 

exists spatial variation among the parameters. Two separate choices are considered: 

one with the purpose of observing the result with relatively small variation among the 

parameter values at different points, whereas the other with large variation among the 

parameter values. The size of the test will be studied empirically with data generated 

with no variation among the biD and bi1 values. The results are presented in Table 

3.5. 

Case 1: Simulated data with small variation in parameter values. 

In this case, the same simulated data of section 3.2 are used. The Gaussian 

weighting function is used in the analysis , where the bandwidth ,8 is chosen using 

the cross validation approach. The goodness-of-fit test produces the value of the F 

statistic of equation (2.11) for each of 500 data sets. Since the null distribution of the 

F statistic is approximated by an F distribution, and the analysis of these data gives 

8.78 and 11.04 for the numerator and denominator degrees of freedom respectively, 

the corresponding p-values are obtained. At the 5% level of significance, it is found 

that the test would reject the null hypothesis 124 times out of 500 data sets which 

leads to the power of the test equal to 0.25 (see Table 3.5) . 
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Table 3.5: Simulation results of single predictor model. NDF = the numerator degrees 
of freedom and DDF = the denominator degrees of freedom. 

Goodness-of-fit Randomization 
Case N DF DDF Power Power Vo Power v1 

1 8.78 11.04 0.25 0.06 0.09 
2 12.70 9.10 1.00 0.57 1.00 

Size Size v0 Size v1 
3 2.99 14.00 0.01 0.07 0.05 

Case 2: Simulated data with relatively large variation in parameter values. 

In this case, simulations are performed considering the biO and bi1 values as follows: 

1, fori= 1, . .. ,4 

biO = 
10, fori= 5, . .. , 8 

20, for i = 9, .. . , 12 

50, for i = 13, . . . , 16 

and 

bil = { 
5, fori= 1, . . . , 8 

20, for i = 9, . .. , 16 

Obviously, the spatial variation in the true parameter values is much greater in 

Case 2 than in Case 1. When the Gaussian weighting function is used for GWR 

analysis, all 500 data sets attain a minimum CV either for /3 = .8 or /3 = 1.0. As 

before, the analysis produces 500 F -statistic values along with the common degrees 

of freedom 12.70 and 9.10 for the numerator and denominator of the F distribution 

respectively. It is found that all of the 500 p-values are less than a= 0.05. Therefore, 

the power of the test becomes 1.0 when the data has a relatively large amount of 

spatial variation in the parameters. 

Case 3: Simulated data with no spatial variation in parameter values. 
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In this case, the interest is to apply the goodness-of-fit testing method and em­

pirically find the size of the test. For these simulations we have chosen bio = 3 and 

bi1 = 2 for all i. No change of parameter values for the locations implies no spatial 

variation in the data set. To use the Gaussian weight function, over 50% of the min­

imum CV S S scores are found for f3 = 20, and almost 25% for f3 = 3. Out of 500 

data sets, only 5 tests found to be rejecting the null hypothesis at the 5% level of 

significance. Hence, the size of the test appears smaller than we would theoretically 

expect; see Table 3.5. 

We now expand on what we observe on Table 3.5. In Case 1, when spatial non­

stationarity exists but not with large variation in parameter values, some of the 

p-values of the corresponding test statistic are small and some are large. In Case 2, 

when spatial non-stationarity exists with relatively large variation in the parameter 

values, all of the p-values of the corresponding F -statistics becomes very small. In the 

third (stationary) case, we get very few small p-values. Hence, it can be concluded 

that when variations do exist, the p-values of the statistic becomes smaller, and 

accordingly the sensitivity of the statistics proposed to explore spatial variations in 

the parameters, and the power of the test becomes high. On the other hand, when no 

variation exists, the p-values of the statistic become large, and leads to the conclusion 

that the data do not support a model with spatial variability. Therefore, the goodness­

of-fit test correctly reflects the properties of the true model in terms of simultaneous 

inference in the single predictor GWR model. 

To assess spatial non-stationarity related to the individual contribution of each 

explanatory variable in the model, the randomization test of sect ion 2.4.2 is applied to 

the data simulated in the above three cases. Since this procedure is performed t o test 

whether or not each set of parameters in the model varies significantly across the study 

region, the hypothesis of interest would be to test whether the data support a model 

with constant intercept over location i and individually constant slope over location i. 

As described above, the context of data generation, number of simulations, weighting 

function and choice of bandwidth are the same. However, to obtain the value of the 
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test statistic vi in equation (2.12) we use a Monte-Carlo approach such that in each 

of 500 simulated data sets, we randomly rearrange (or scramble) our observations 

among the 16 spatial locations. This scrambling is done 200 times, and Vj from 

(2.11) is calculated in each of these 200 rearrangements. These values, along with the 

Vj value of the original data arrangement, make up our randomization distribution 

for vi. The p-value corresponding to Vj is equal to the number of scrambled Vj less 

than or equal to the unscrambled one divided by 200. 

For Case 1, in which there is spatial non-stationarity with small variation in the 

true parameters, the power of the test corresponding to the statistics v0 and v1 are 

0.062 and 0.09. For Case 2, in which there is spatial non-stationarity with larger 

variation in the parameter values, the power of the tests are 0.57 and 1.0 respectively. 

In Case 3, we find the size of the tests are 0.07 and 0.05 corresponding to the test 

statistics v0 and v1 at the 5% level of significance. As described in section 2.4.2, the 

statistic v0 is for testing whether the intercept, b0 , varies over location i, and v1 is for 

assessing whether the slope, b1 , changes over i. 

Therefore, the conclusion for this test can be outlined as follows. If non-stationarity 

exists in the data with a single predictor, the power of the test tends to increase with 

increasing variability among the true parameter values. Although the result reflect 

the true state of parameter variations, such reflection may differ among coefficients. 

In this case, the test performs well to test variability of the slope over several locations 

in space; however the results are not as good for the intercept term. 

3.3.2 Power and Size of Tests: Multi Predictor Model 

The inferential analysis of a multi-predictor GWR model is simply an extension of 

section 3.3.1. The objective is to observe if there is any significant change in the 

performance ofthe testing procedures with data available on more than one predictor. 

vVe consider a GWR model with three predictors, which can be written in the form 

(3.2) 
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where, as earlier, Ei rv N (O, o-2 ) with o-2 = 1. A similar arrangement in a grid is con­

sidered to represent the coordinates (ui , vi) of a spatial region of parameter variation. 

An extension of Figure 3.1 into 6 x 6 lattice points means we have n = 36 obser­

vations. The values of the independent variables x1, x2 and x3 are taken randomly 

from a uniform distribution on interval (0, 1), a normal distribution with mean 10, 

variance unity and a standard normal distribution respectively. The selection of true 

parameter values also follows a step changing approach in 36 points in the grid, and 

is described in each case below. 

To determine the power of the tests we take the parameter values of model (3.2) so 

that it represents spatial non-stationarity among the points in the grid. To study the 

size of the tests we apply the same testing procedure to the model where no parameter 

variation exists. Considering these situations, the detail of data generation along with 

application of the tests described in Cases 4, 5 and 6, is as follows. The results are 

summarized in Table 3.6. Again we use 500 simulated data sets. 

Case 4: Three predictor model data simulation: small variation in parameter 

values. 

To generate data with spatial non-stationarity but relatively small variation in 

parameter values, the biO is chosen with the values: 

1, for i= 1, . .. , 9 

bio = 
2, for i = 10, . . . , 18 

3, for i = 19, .. . , 27 

4, for i = 28, . . . , 36 

The coefficients bi1 , bi2 and bi3 take 1, 2 and 1.5 for the first 18 points and -1, -2 and 

-1.5 for the last 18 points respectively. To apply GWR testing methods, the Gaussian 

weighting function is used with (3 = 1.6 which minimizes the cross validated sum of 

squared errors for all 500 data sets. The F -statistic is computed from the data sets 

with common degrees of freedom 26.21 and 19.87 for numerator and denominator 
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respectively. All 500 p-values obtained from the goodness-of-fit test are less than 

a = 0.05, and hence the power becomes 1.0. 

Case 5: Three predictor model data simulation: large variation in parameter 

values. 

Following a similar procedure, the data are simulated considering relatively large 

variation in parameter values. As before, to choose intercept values, the points are 

separated into four categories, each of which contains consecutive 9 points. For sim­

ulation, biD takes following values. 

1, fori= 1, .. . , 9 

bio = 
10, for i = 10, ... , 18 

20, for i = 19, . .. , 27 

50, for i = 28, . . . , 36 

To choose the coefficients of the three explanatory variables, the points are divided 

into two separate categories so that each contains 18 points. The data sets are 

generated in such a way that bi1 , bi2 and bi3 take 5, 4 and 25 for the first 18 points, 

and 20, -10 and 5 for the last 18 points respectively. For 496 data sets, f3 = 1.6 and 

for the remaining four f3 = 1.7 minimizes the CV function. Table 3.5 indicates that 

the power of the test is found to be equal to 1.0. 

Case 6: Three predictor model data simulation: no variation in parameter values. 

Since our interest is to determine size of the test, we have chosen the parameter 

values to be equal at the different points on the grid. For the simulations, we take 

biD= 3, bi1 = 2, bi2 = -1 and bi3 = 5 for all i, following the model (3.2). In this case, 

f3 = 5 and 50 minimizes most of the CV scores when the Gaussian weight function is 

used for analysis. Interestingly, for the stationary case regardless of single or multi­

predictor model, most of the minimum values of the cross validated sum of squared 
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Table 3.6: Simulation results for model with three predictors. NDF = the numerator 
degrees of freedom and DDF = the denominator degrees of freedom. 

Goodness-of-fit Randomization 
Case NDF DDF Power Power v0 Power v1 Power v2 Power v3 

4 26.21 19.87 1.00 0 1 0 1 
5 26.21 19.87 1.00 0 1 0 0 

Size Size v 0 Size v1 Size v2 Size V3 

6 1.67 31.11 0.02 0.04 0.04 0.05 0.06 

errors are found at two quite different values of (3 . Out of 500 p-values corresponding 

to the F statistics, only 12 are found to be less than 0.05, and hence the size becomes 

0.02. 

For the randomization test, the steps described at the end of sub-section 2.4.2 are 

carried out. Application of this testing procedure to the model with three predictors 

means our interest is in assessing whether there is any variation for each individual set 

of parameters bij over the location i = 1, 2, . . . , n on the study region. As simulated 

in Cases 4, 5 and 6, exactly the same data sets are used to perform this test. A 

procedure that is similar to that done for the single predictor model case is applied to 

obtain the empirical values of the power and size for the model with three predictors. 

The number of permutations used in this case is also 200. The results corresponding 

to the coefficients of x1 , x2 and x3 are presented in the last four columns of Table 3.6. 

When the analysis of the data generated in Case 6 is done with the randomization 

test, the empirical values of the sizes corresponding to v0 , v1 , v2 and v3 become 4%, 

4%, 5% and 6% respectivley . Since a is pre-considered at 0.05, the results of the 

empirical study seem reasonable. However, the power computed by using the data 

generated in Cases 4 and 5 are not what we would expect. For Case 4, the power 

of the randomization test corresponding to v1 and v3 are equal 1, whereas for v0 

and v2 are 0. For case 5, the power corresponding to v1 becomes 1; however for the 

other three it is 0. Therefore, it seems to be the test works well when the model 



40 

is of stationary over the study region. However, for spatial non-stationarity the test 

procedure for the multi-predictor model does not work as well. It is not clear why 

the randomization test gives the results that we observe. These test procedures will 

be applied to a socio-economic data set in Chapter 4 with possible explanations for 

the behaviour of the tests in Chapter 5. 

3.4 Conclusion 

The simulation studies presented in this chapter appears to validat e the applicat ion 

of GWR. To strengthen the theoretical basis, we have used 500 data sets throughout 

the analysis, and 200 permutations for each to apply the Monte Carlo technique. The 

F -test results indicate its ability to identify the overall effect of spatial variation in 

relationships. However, as noted in our simulation results, the radomization test may 

have problems in detecting the presence of spatial non-stationarity for individual pa­

rameters, even when this non-stationarity is strong. Brunsdon et al (1998) has applied 

this test to a data set without verifying its performance. Although the performance 

of this test has been presented in some works with the simulation results of single 

predictor model (Leung et al, 2000), an extension of this to a multi-predictor model 

indicates we may need to be cautious in generalizing the technique. 



Chapter 4 

Analysis of a Socio-Economic Data 

and Spatial Non-stationarity 

4.1 Introduction 

The presence of spatial non-stationarity in many of data sets is not unusual, though 

analyses are often performed which ignore this issue. Socio-economic study is one of 

the important areas, where much of the data are obtained either from a census or large 

scale survey. Generally, the data from a relatively large study area include a wide 

variety in variables, which leads us to consider the context of spatial non-stationarity 

in analysis. To measure spatial variations in the relationships of parameter values, we 

will analyze house price data with the GWR methodology. The benefits of using the 

G\.VR inferential techniques is also discussed following the methods which assumes 

no spatial variation, i.e. ordinary least squares regression. The final issue will be to 

assess the goodness-of-fit and randomization testing procedures of the GWR model 

we have chosen. The stepwise regression and best subset methods are used initially 

for the purpose of selecting a suitable subset of the explanatory variables. 

41 
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4.2 Data Description 

Socio-economic data on housing prices obtained from the Boston Standard Metropoli­

tan Statistical Area (SMSA) is used for illustrating the GWR inferential techniques 

of measuring spatial non-stationarity. Harrison and Rubinfeld (1978) used this data 

set to analyze various methodological issues of hedonic housing prices to estimate 

the demand for clean air. The hedonic price index is based on the fitted values of a 

regression of price on the various explanatory variables and is used to represent its 

qualitative determinants. The Census Bureau Publication in 1970 is the source of 

the majority of the data, whereas some of the explanatory variables were added from 

several other studies (see Harrison and Rubinfeld, 1978, Table IV, p 96-97). The basic 

data are a sample of 506 observations on 16 variables on census tracts (1 observation 

per census tract) in the Boston SMSA -1970. A brief description of the variables is 

presented in Table 4.1. 

Harrison and Rubinfeld (1978) focused on the willingness to pay for air quality 

improvements using this data with several methods of analysis. To examine the effects 

of robust estimation, Belsley et al (1980) also used this data. Many authors, such 

as Krasker et al (1983), Subramanian and Carson (1988), Brieman and Friedman 

(1985) , Lange and Ryan (1989), Breiman et al (1993), Pace (1993) , have used the 

data to examine robust estimation, normality of residuals, and non-parametric and 

semi-parametric estimation. 

Harrison and Rubinfeld (1978) described this data set as superior in comparison 

to others since it consists of a large number of neighborhood variables. The median 

value of the owner-occupied homes in the census tract is considered as the dependent 

variable for the regression models. It is expected that the house price is influenced 

by the structural aspects of houses, amenities in their neighbourhood, ease of access 

to employment, and how free the area is from air pollution. There are 15 explana­

tory variables available in the data set that are categorized into four different types 

with respect to the variables' contribution to the house value. These are structural, 

neighbourhood, accessibility /locality and air pollution (Table 4.1) . As part of the 
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Table 4.1: Variables in the Boston house price data set 

Variable 
Dependent 
medv 
Structural 
rm 
age 
Neighborhood 
b 
lstat 
crim 
zn 
indus 
tax 
ptratio 
chas 

Accessibility /locality 
dis 
rad 
latt 
long 
Air pollution 
nox 

Definition 

Median value of owner-occupied homes in $1000s 

Average number of rooms per dwelling 
Proportion of owner occupied units built prior to 1940 

1000(Bk- 0.63)2 where Bk is the proportion of blacks by town 
Proportion of lower status of the population 
Per capita crim rate by town 
Proportion of residential land zoned for lots over 25,000 square feet 
Proportion of non-retail business acres per town 
Full-value property-tax rate per $10,000 
Pupil-teacher ratio by town 
Charles River dummy variables (1 if 
tract bounds the river ; 0 otherwise) 

Weighted distances to five Boston employment centers 
Index of accessibility to radical highway 
Standardized Latitude coordinates 
Standardized Longitude coordinates 

Nitric oxides concentration (parts per 10 million) 



44 

structural aspect of houses, rm represents spaciousness and, in a certain sense, quan­

tity of housing. The unit age is usually related to the structural quality. Out of 

15 explanatory variables, eight are considered to be relating to the neighbourhood 

amenities. The context of the variable b helps to observe if there is any effect of 

Black-White neighbourhood on house price. Through an exploratory analysis Harri­

son and Rubinfeld (1978) observed that at a low to moderate proportion of Blacks in 

the Boston area, an increase in the Black population has a negative influence on hous­

ing, whereas the reverse trend is found when the proportion of Black people becomes 

very high. Based on this parabolic trend, b is created by shifting the proportion 

0.63 towards the origin. The variable lstat is for indicating the proportion of lower 

status people, which is obtained by averaging the proportion of adults without some 

high school education and the proportion of male workers classified as laborers. It is 

assumed that the crime rates, defined by crim are generally proportional to people's 

perceptions of danger. Since crime gauges threat to the habitants' well-being and 

people of lower status might be undesirable neighbours, both are expected to have a 

negative effect on the housing price. The residential land zoned for lots greater than 

25,000 square feet restricts construction of small lot houses, and accordingly welcomes 

the higher class people to be neighbours. This also maximizes the outdoor amenities 

to a community. Hence, the proportion zn should have a positive effect on housing 

price. The variable indus is considered to serve as proxy measure of externalities 

associated with industry, such as, noise, heavy traffic and unpleasant visual effects. 

The variable tax indicates the full value property taxes ($/$10, 000) , which measures 

the cost of public services in the communities. The local assessment ratio is used as 

a correction factor with the nominal tax rate and yields the full value tax rate which 

varies from town to town. The ptratio is t reated as an indicator of measuring public 

sector benefits in towns. The lower the ptratio, the better opportunities for a child's 

education. Therefore, an increase in indus, tax and ptratio would not be expected 

by the residents and should have a negative influence on housing prices. The vari­

able chas captures the amenities of a riverside location and thus the corresponding 
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regression coefficient would be expected to show a positive effect on house price. 

4.3 Exploratory Analysis 

The application of statistical methods usually demands some exploratory analysis of 

the variables included in the data set. Though our ultimate interest is to proceed 

to fit a GWR model with a limited number of explanatory variables of the house­

price data, the exploratory look at several variables of the data set will help to make 

inference through analysis. Figure 4.1 presents the relationship of house price with 

changing the proportion of black people. 

o.o 0.1 0 . 2 0.3 0.4 0.5 0 .6 

Proportion of B lack people 

Figure 4.1: Pattern of house prices against the proportion of Black people 

The house price increases when the proportion Black in the population becomes 

more than 60%. Due to this in Table 4.1 we observe that the variable b is created by 

shifting the proportion 0.63 to 0. The map in Figure 4.2 exhibits that the study area 

consists of eight different sub-regions: Inner Core, North Shore, North Suburban, 
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Table 4.2: Distribution of observations by sub-region 

Sub-region # oftown Observation 

# % 
Inner Core 24 331 65.42 
North Shore 11 36 7.11 
North Suburban 9 33 6.52 
Minuteman 4 12 2.37 
Metro West 8 39 7.71 
South West 4 4 0.79 
Three Rivers 8 28 5.53 
South Shore 11 23 4.55 
Total 79 506 100.00 

Minuteman, Metro West, South West, Three Rivers, South Shore. 

For convenience of analysis, we attempt to observe sub-region summaries of several 

variables. Although the data set covers the Boston Standard Metropolitan Statistical 

Area (SMSA) in the 1970 census, most of the observations (65%) are selected from 

the sub-region of the Inner Core (Table 4.2). It was found from a further look that 

as a single city, Boston consists of the highest number of observations (132), which is 

also included in the Inner Core. Therefore, a major portion of the data tends to be 

concentrated in the city towns of the study area. 

Since in the next sections of analysis our main attention will be to assess if there 

is any spatial variation of the effect of other variables on house price, we now explore 

more aspects of the data set. The results in Table 4.3 indicate that the houses with 

the lowest mean value are in the Inner Core area. One may find this surprising in the 

sense that this consists of the central towns of the Boston SMSA including the city 

of Boston, where the housing value may be assumed to be higher. However, large 

cities often have some poor, rundown areas. T hese are more likely in the city center. 

A large gap between the lowest ($20,692 in the Inner Core area) and the highest 

($34,083 in Minuteman) means can be treated as an indication that the location may 

be a contributing factor to the house price. Observing the three largest standard 
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Table 4.3: Summary statistics of house price by sub-region, in $1000s. 

Sub-region Mean Std. dev. n 
Inner Core 20.692 9.559 331 
North Shore 23.336 5.941 36 
North Suburban 24.776 5.723 33 
Minuteman 34.083 5.660 12 
Metro West 27.685 8.966 39 
South West 34.025 15.201 4 
Three Rivers 27.214 4.865 28 
South Shore 22.087 4.504 23 
Overall 22.533 9.197 506 

Table 4.4: Summary statistics of house price by riverside residents, in $1000s 

Do t racts bound the Charles River? Mean Std. dev. n 
Yes 28.440 11.817 35 
No 22.094 8.831 471 
Overall 22.533 9.197 506 

deviations, it can be explained that the house prices in the South West, Inner Core 

and Metro West regions are more heterogeneous than the other regions. 

As explained in section 4.2, the Charles River provides some additional amenities 

to the residents who are living by the riverside. From Table 4.4, we see that out of 

the total sample of 35 houses bounded by the Charles River, the mean price of those 

houses is $28,440, which is much higher than those are farther away from the river. 

All these issues produced from our exploratory analysis give us some indication that 

along with other variables in the data set, the location of census tracts or houses may 

have some influence on the housing values in the Boston SMSA. Therefore, combining 

the spatial aspect with the model fitting approach will be followed in the next stages 

of analysis to determine whether there is any spatial pattern in the relationships. 
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4.4 Choice of Model 

In this section we will move through a sequential procedure of regression analysis with 

the aim of choosing a simplified model for house price. The model fitting approaches 

start with an ordinary least squares (OLS) regression, where all possible explanatory 

variables are included. The stepwise regression procedure is applied for the purpose 

of excluding less relevant variables from the model. A model using a subset of the 

predictors will be selected to apply the GWR method of estimation. An attempt 

of examining the traditional methods is also taken to observe the difference in the 

linear regression and GWR estimation techniques. We note that, to our knowledge, 

no procedures have been developed on variable selection in G\VR. 

4.4.1 OLS Regression with all Possible Regressors 

As described in section 4.2, there are 506 observations in the data set with 15 ex­

planatory variables available for model fitting. In the linear regression model, we 

begin by fitting a model with all possible regressors, and observe the contribution 

of individual variables on the house price. However, the ultimate purpose is to fit a 

GWR model and compare the results obtained from the OLS regression and GWR 

estimation methods. The spatial structure in the study area plays a key role in the 

GWR estimates, and leads to a difference with the estimates obtained from the OLS 

procedure. Therefore, to fit an OLS regression model, we use all the explanatory 

variables in Table 4.1 except dis, latt and long. Our starting linear regression model 

is as follows: 

medvi = bo + b1 cTim + b2 zn + b3indus + b4chas + bsnox + b6Tm + b7age 

+b8Tad + b9tax + b10ptratio + b11 b + b12lstat + €i (4.1) 

The application of the OLS estimation method produces the F-statistic value equal 

to 101.5 with numerator and denominator degrees of freedom 12 and 493 respectively, 

and hence the p-value computed to zero. This indicates an overall significance that at 
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Table 4.5: Results of the OLS estimation with 12 predictors and 506 observations 

Variable b-coefficient Std. Error(b) t-value P-value 
Intercept 23.0244 5.0226 4.5842 0.0000 

crim -0.0796 0.0344 -2.3161 0.0210 
zn 0.0055 0.0132 0.4176 0.6764 

indus 0.1166 0.0633 1.8420 0.0661 
chas 2.7872 0.9072 3.0723 0.0022 
nox -9.7996 3.8593 -2.5392 0.0114 
rm 4.2228 0.4362 9.6816 0.0000 
age 0.0292 0.0133 2.1912 0.0289 
rad 0.3138 0.0699 4.4923 0.0000 
tax -0.0129 0.0040 -3.2520 0.0012 

ptratio -1.0434 0.1372 -7.6065 0.0000 
b 0.0097 0.0028 3.4472 0.0006 

lstat -0.5392 0.0534 -10.1031 0.0000 

least one of the explanatory variables included in ( 4.1) has a very strong contribution 

on the house price. 

However, to observe the individual contribution of the variables we examine the 

estimated coefficients presented in Table 4.5. Clearly, out of 12 explanatory variables 

included in the model (4.1) , only the zn shows a large p-value. The variable indus 

presents an evidence of positive relationship to the house price if we consider the 

level of significance a = 0.1. However, the coefficients corresponding to the other 

explanatory variables exhibit a strong evidence that the house prices are affected by 

those variables at a = 0.05, and in some cases at 0.01 . The OLS estimates of the 

coefficients presented in the second column of Table 4.5 demand careful interpretation 

for the model. We see that a one unit increase of per capita crime rate implies a 

decrease of the median house price equal to 0.0796 x $1000 = $79.60. Similarly, an 

increase of the nitric oxide concentration by a single part per 10 million, full-value 

property tax rate by 1 per $10, 000, number of pupil per teacher by 1 and proportion 

of the lower status people by 1% implies a decrease in the house price by $9799.60, 
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$12.90, $1043.40 and $539.20 respectively. To explain the positive coefficients, an 

increase of the proportion of the non-retail business acres per town by 1%, average 

number of rooms per dwelling by 1, proportion of the owner occupied units built prior 

to 1940 by 1% and the transformed variable of proportion of Black people by 1 per 

1000 lead to the increase of a house price by $116.60, $4222.80, $29.20, and $9.70 

respectively. A house that bounds the Charles River is worth $2787.20 more than a 

house farther away. Similarly, if a house is accessible to the radical highway, its price 

is $313.80 more than a house that does not have access. 

The R2 value associated with this model indicates that 71.18% of the total vari­

ation in house price is explained by the regressors included in the model ( 4.1). In 

the OLS fit, it is essential to verify the assumptions about the distribution of the 

error term. It is usually assumed that the errors have a normal distribution with the 

zero mean and a constant variance. Figure 4.3 presents several plots of the residuals 

and fitted values of the house price in ( 4.1). The scatterplots of the residuals and 

the square root of absolute residuals against the fitted house price (Figure 4.3.a and 

4.3.b) display a random scatter with no obvious pattern. This indicates independence 

and constant variance of the error term associated with the model. The normal prob­

ability plot is expected to be a straight line if the normality assumption is valid. 

However, Figure 4.3.d does not appear to satisfy this criterion. A similar trend at 

the right-end of Figure 4.3.c leads us to look for models with a transformation of the 

response variable. An attempt of several transformations, such as the natural log and 

square root of medv was made, and there was little difference in the results. There­

fore, we move forward with our analysis considering the error term as approximately 

normally distributed and keep medv as the response variable. Figure 4.3.e is called the 

residual-fitted orr- f plot. Ideally, we hope to see less variability in the plot labelled 

residuals, since the goal in regression is to explain the variability in the response y 

with our model. In this case the plot is not ideal since the variability is almost the 

same in both plots. The graph of Cook's dist ance against the observation numbers 

(Figure 4.3.f) along with other plots indicates influential observations. A preventive 
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Figure 4.3: Diagnostic plots for the house price data with model ( 4.1) 
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measure of omitting those observations is taken prior to moving our analysis to the 

GWR model fitting and testing procedures. 

4.4.2 Variable Selection in Linear Regression 

With socio-economic data obtained from a census or large scale survey, consisting of 

a large number of variables, we often suspect that many of the explanatory variables 

might have some effect on the response variable. However, it is important to think 

about how many variables are included in the model, because too many explanatory 

variables make the interpretation of the model more difficult. In the analysis of 

the Boston house price data, the stepwise regression and t he best subset (or leaps) 

method are applied for variable selection. An important variable selection note should 

be cited here - an independent variable is said to be important if the residual sum 

of squares is significantly reduced when it is added to the model (Leung et al, 2000) . 

The value of the residual sum of squares is used to compute two different quant it ies: 

adjusted R2 and Mallows' Cp. The stepwise regression procedure works with the 

testing of hypotheses to determine whether an explanatory variable should be included 

in or excluded from the model, whereas the leaps method applies the strategy of 

maximizing R2 or adjusted R2 and minimizing Mallows' Cp (with Cp close top). 

The stepwise regression combines the forward selection and backward elimination 

procedures, which to some extent work through the inclusion of the relevant variables 

and the exclusion of the irrelevant ones. To conduct the analysis, all 12 explanatory 

variables which have been used for the OLS fit in section 4.4.1 are initially entered. 

Considering the value of a equal to 0.05 for both entering and removing variables, 

the procedure is stopped at the fifth step (Table 4.6). The variables being suggested 

to include as explanatory are lstat, rm, ptratio, b and chas. 

The leaps method produces all possible regression models and summarizes a subset 

containing the best of the many good models. A compromise between the adjusted 

R2 and Mallows' CP criteria is also considered here to select one of the simpler but 

reasonably good models (Weisberg, 1985). Table 4. 7 presents the results of 12 different 
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Table 4.6: Stepwise regression results 

a to enter = 0.05 a to remove = 0.05 
Response is medv on 12 predictors, with n = 506. 
Step 1 2 3 4 5 
Constant 34.554 -1.358 18.567 12.055 11.854 
lstat -0.950 -0.642 -0.572 -0.513 -0.518 
t value -24.53 -14.69 -13.54 -11.53 -11.79 
p value 0.000 0.000 0.000 0.000 0.000 
rm 5.09 4.52 4.75 4.65 
t value 11.46 10.60 11.18 11.08 
p value 0.000 0.000 0.000 0.000 
ptratio -0.93 -0.90 -0.86 
t value -7.91 -7.72 -7.43 
p value 0.000 0.000 0.000 
b 0.0105 0.0101 
t value 3.83 3.74 
p value 0.000 0.000 
chas 3.32 
t value 3.68 
p value 0.000 
s 6.22 5.54 5.23 5.16 5.10 
R2 54.41 63.86 67.86 68.77 69.60 
R2-adjusted 54.32 63.71 67.67 68.53 69.30 
Cp 247.9 94.6 30.7 17.7 6.1 
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Table 4.7: Twelve models with the smallest CP and largest R2 

p R2 R~d· Cp Predictors in the Model 
2 54.4 54.3 247.9 lstat 
3 63.9 63.7 94.6 rm lstat 
4 67.9 67.7 30.7 ptratio rm lstat 
5 68.8 68.5 17.7 b ptratio rm lstat 
6 69.6 69.3 6.1 chas b ptratio rm lstat 
7 69.7 69.3 6.6 age chas b ptratio rm lstat 
8 69.9 69.5 5.5 nox age chas b ptratio rm lstat 
9 69.9 69.5 6.4 crim nox age chas b ptratio rm lstat 
10 70.0 69.4 7.7 indus crim nox age chas b ptratio rm lstat 
11 70.0 69.4 9.2 rad indus crim nox age chas b ptrat io rm lstat 
12 70.0 69.4 11.0 tax rad indus crim nox age chas b ptratio rm lstat 
13 70.0 69.3 13.0 zn tax rad indus crim nox age chas b ptratio rm lstat 

models obtained from the method of leaps. Every model consists of intercept term, 

and the values of p in the left column of Table 4. 7 indicate the number of coefficients 

in a model, that is, the number of explanatory variables plus intercept term. 

Table 4. 7 presents 12 different models taking one from each of p= 2, 3, . .. , 13. 

Obviously, the CP value closest top is found for p = 13, that is, when all 12 variables 

included in the model, whereas the adjusted R2 for any p equal to 6 and above is 

between 69.3 and 69.5. Clearly, the model with p = 6 is the same that is prescribed 

by the stepwise regression procedure, and in comparison to models in Table 4.5, its 

Cp value and adjusted R2 are very reasonable. That is, with p = 6 we are getting 

a reasonable value of adjusted R2 , and Cp reasonably close top= 6. Therefore, the 

model ( 4.2) with five regressors lstat, rm, ptratio, b and chas has been selected to 

proceed with our analysis using GWR. 
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Table 4.8: OLS regression with five regressors: with and without outliers 

Variables Model with n = 506 Model with n = 502 
(excluding outliers) 

Intercept 11.8536** 6.3162* 
chas 3.3200** 3.0559** 

rm 4.6523** 5.4458** 
ptratio -0.8583** -0.9010** 

b 0.0101 ** 0.0110** 
lstat -0.5181 ** -0.4477** 

F -statistic 228.9** 294.0** 
R2 69.6% 74.8% 

**significant at 1% level and *significant at 5% level 

4.4.3 OLS Regression with the Selected Regressors 

The model ( 4.2) will be used for further analysis including the application of GWR: 

medvi = b0 + b1 chas + b2 rm + b3ptratio + b4 b + b5 lstat + Ei ( 4. 2) 

In section 4.1.1, we have described Figure 4.3 to check the assumptions on the 

error term associated with model ( 4.1). Similar plots are displayed in Figure 4.4 

when OLS estimation is performed with the five regressors in model (4.2). A close 

look at the respective plots of Figure 4.3 and 4.4 help us to conclude that there is no 

significant difference in terms of the error assumption in the two models. However, 

there are four observations in the data set, indicated by the observation numbers 365, 

369, 372 and 373, that are possible outliers. We note that all four of these values are 

from the Inner Core. Since outliers may be influential for parameter as well as model 

estimation, we have performed the analysis excluding those from the data set. Table 

4.8 shows the results of the OLS estimation of the regression model with and without 

these outliers. The residual plots for the model which excludes the outliers are not 

included. However, we note that the QQ-plot in this case is similar to those seen in 

Figure 4.3 and 4.4. 
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In both models the individual effect of each of the five explanatory variables is 

highly significant on the house price. However, the exclusion of the outliers leads to 

an increase in R2 from 69.6% to 74.8%. This is a significant achievement of having a 

higher percentage of the total variation of the house price explained by the model. Due 

to excluding those observations, there are some changes also found in the parameter 

estimates. The houses close to the Charles River exhibit a higher price than those 

further away. Also the house price tends to increase as t he average number of rooms 

per dwelling increase and the proportion of Black people in towns increase. The values 

decrease with increasing pupil teacher ratio and the proportion of the lower status 

people. Since the exclusion of these observations appears reasonable, the analysis 

using the GWR estimation procedure will be performed excluding those outliers. 

4.5 Proxy Variables for Measuring Spatial Varia­

tion 

These house price data cover a relatively large study area of the metropolitan region 

of Boston. In the context of housing data, we usually assume that the greater the cov­

erage area, the more variation in housing amenities. Similarly, we assume houses with 

more amenities would have a higher value than those with fewer amenities. Therefore, 

for model fitting it is important to consider location variation in t he analysis. Along 

with the other explanatory variables, the effect of location variat ion will be deter­

mined through the application of the GWR estimation procedure and its associated 

hypothesis tests. However, an at tempt of applying some traditional methods is also 

made to present a comparative advantage of GWR as a way of accounting for spatial 

non-stationarity. 

Instead of determining t he direct effect of some factors, we often see the use of 

proxy variables in model fitting. The utilization of such proxy variables is often 

found when the inclusion of an explanatory variable seems to be very relevant but 

not available directly in the data set . In the house price data, we have used one 
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Table 4.9: OLS regression with proxy variables as predictors 

Variables 'weighted distance' as proxy 'sub-regions' as proxy 
Intercept 10.051832 7.439438* 
chas 2.672253** 2.847142** 
rm 5.249001 ** 5.257867** 
ptratio -0.929174** -0.865807** 
b 0.011992** 0.011330** 
lstat -0.510961 ** -0.483921 ** 
dis -0.3907 46** 
sr.cat2: North Shore -0.701148 
sr.cat3: North Suburban -0.867990 
sr.cat4: Minuteman 0.367249 
sr.cat5: Metro West 1.082042 
sr.cat6: South West 1.644622 
sr.cat7: Three Rivers -1.629566* 
sr.cat8: South Shore -2.808603** 
F -statistic 252.3** 125.8** 
R2 75.36% 75.54% 
**Significant at 1% level, and *significant at 5% level 

continuous variable termed as dis and another categorical variable called sr for two 

separate models. 

The variable dis represents the weighted distance to five employment centers in 

Boston. Certainly, employment can play an important role as an amenity to the 

dwellers, and hence distance to the workplace may contribute to variation in the 

house prices. On the other hand, the categorical variable sr consists of eight sub­

regions as described in Section 4.3. It is expected that the housing amenities in some 

of the sub-regions may differ from others; hence the variable sr may have some effect 

in exhibiting variation in housing price. Therefore, the analysis of the model ( 4.2) 

is extended to include these two variables separately in two different models. The 

results of the OLS estimates are presented in Table 4.9. 

In both models, the OLS estimates of the parameters corresponding to each of 
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the five explanatory variables are highly significant. As observed in the two other 

OLS models in subsection 4.3.3, the effect of the Charles River, number of rooms 

per dwelling and proportion of Black people in towns is positive on the house price, 

whereas that of pupil teacher ratio and proportion of the lower status people is nega­

tive. Moreover, the inclusion of dis as proxy variable has a significant negative effect 

on the house price. That is, the houses that are close to employment centers have a 

higher price than those that are farther away. On the other hand, the inclusion of the 

categorical variable sr presents a comparative effect of seven other sub-regions with 

respect to the base category of the Inner Core sub-region. In the third column of Ta­

ble 4.9, we see that the houses in the South Shore and Three Rivers have significantly 

lower price in the housing market than those in the Inner Core sub-region, given the 

other predictors in the regression model. We note that this differs from the sum­

mary statistics in Table 4.3, which indicate that the Inner Core has the lowest mean 

price. However, those sample means fail to account for the effect of the predictors 

that we include in our regression model. Although we observe the lower prices in the 

North Shore and North Suburban, and higher prices of the Minuteman, Metro West 

and South West areas as compared to the Inner Core, the p-values corresponding to 

these sub-regions present no evidence of statistical significance. In the use of proxy 

variables, we also see how the R2 value changes. Comparing the R2 values of both 

models in Table 4.9 with respect to the model without outliers in Table 4.8, we see 

that the inclusion of the two separate variables dis and sr as contributing location 

factors provides a model with slightly higher predictive skill. However, this small in­

crease may be caused by the inclusion of an additional regressor in the models, rather 

than explaining it as evidence of significant contribution of the particular variable to 

house price. 

Since the determination of spatial variability in the parameters will be the issue 

of the next section, we put special attention on the variables dis and sr as these 

are somehow representing spatial location. The smaller p- value corresponding to dis 
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Table 4.10: Partial F-test results. SSE = sum of squares residual, SSEdf = residual 
degrees of freedom, NDF = numerator degrees of freedom, DDF = denominator 
degrees of freedom, and for each model n = 502 used. 

Models 
Reduced Model ( 4.2) 
Full Model (4.4) 

SSE 
10201.1 
9892.9 

496 
489 

Partial F-test p - value 
~--~--~~~~~ 

F-value NDF DDF 

2.18 7 489 0.035 

suggest to include this in the model. Therefore, the fitted model is of the form: 

However, the large p-values corresponding to the five sub-regions of sr (Table 

4.9) leads us to perform a partial F-test which is also called full-versus-reduced model 

test (Neter et al1985, p. 95). To test whether the variable sr should be included in 

the model, we consider the model: 

medvi = bo + b1 chas + b2 rm + b3ptratio + b4 b + b5 lstat + b6 sr:cat2 + b7 sr:cat3 

+bssr:cat4 + bgsr:cat5 + b1osr:cat6 + bu sr:cat'l + b12sr:cat8 + Ei ( 4.4) 

as full or unrestricted, and the model ( 4.2) as the reduced model. Table 4.10 presents 

the value of the F-statistic = 2.18, and the results associated with the test. The 

p-value = 0.035 indicates sufficient evidence to include sr in the model. 

4.6 Fitting GWR Model 

Application of the GWR model fitting approach and testing techniques on the house 

price data is one of the key interests of this practicum. After a detail theoretical 

explanation (Chapter 2) and simulation results (Chapter 3), its application to a real 

data set helps to strengthen the methodological grounds, and to find further problems 

that may associated with some unknown characteristics in the data set. There are 
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two other variables available in the data set. These represent the measurement of the 

latitude and longitude of the sampled houses, and indicat e the location of a house. 

To analyze the GWR methods, these two new variables are not used as explanatory 

variables, but are used to form the GWR weight function by computing distance 

between each location. 

At the stage of analysis, the cross validation approach is used to determine the 

value of the bandwidth (3 . Using equation (2.9) this produces the minimum CVSS 

score at (3. To obtain the estimates of the GWR coefficients we have used the Gaus­

sian weighting function (2.4) with f3 = 0.40. However, we did find some computa­

tional difficulties during the GWR estimation with the values of this weight function. 

In the previous section, we already omitted the four observations which had been 

identified as outliers. When the analysis determining hi in (2.6) was done with the 

remaining 502 observations, there were problems with inverting the xrwix matrix. 

Some exploratory work identified ten more observations causing trouble such that 

the corresponding Wi matrix was found to be non-full rank. The exclusion of those 

observations finally set the house price data with sample size equal to 492 for the 

GWR analysis. We note that one of these observations was from the North Shore, 

and the remainder from the South Shore. 

4.6.1 Results ofF-Test and Randomization Test 

The analysis for both testing procedures are performed with the five selected regres­

sors included in the model. The interest of the F-test and randomization test is to 

test whether there is any evidence of spatial non-stationarity, where the overall sig­

nificance of the five explanatory variables is to be tested by the former one and the 

significance of individual variables over the study area is to be inferred by the latter 

one. Through the F test we would like to test the null hypothesis that none of the 

five coefficients bi varies over the study regions versus the alternative that at least 

one of the five bj is not constant for all locations in the Boston SMSA. On the other 

hand, the randomization test examines whether the values of individual coefficients 
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Table 4.11: p-values of the Randomization test by several choice of scramblings 

Number of scramblings 
Coefficients 200 500 1000 

bo 1.000 0.996 0.997 
bl 0.890 0.896 0.911 
b2 1.000 0.994 0.997 
b3 0.880 0.902 0.912 
b4 0.950 0.960 0.969 
bs 0.980 0.964 0.979 

change over the study region. 

As stated above, we have excluded 14 observations from the data set, and the 

remaining 492 are considered for the GVvR analysis. The value ofF-statistic obtained 

from the analysis is 2.91 with the numerator and denominator degrees of freedom 

173.86 and 389.76 respectively. The p-value of the test is approximately zero, and 

hence we conclude that there is a strong evidence of observing significant spatial non­

stationarity in at least one of the five parameters over the Boston metropolitan area. 

In section 4.5, we have used dis and sr as proxy variables, and reached a conclusion 

that as other explanatory variables, location of houses has a significant effect on 

house price. The inference that we made from the GWR-based F-test supports t his 

conclusion, and in addition it says the effect of at least one of the explanatory variables 

included in the model varies spatially over the study area. 

For the randomization test, t he number of explanatory variables included in the 

model, size of the sample considered for the analysis, the weight function computation 

procedure including the choice of f3 values are all the same as that ofF test procedure. 

Initially, the test is conducted with 200 scramblings. Later on, it is increased to 500 

and then 1000. The results are presented in Table 4.11. 

The large p-values corresponding to the coefficients in Table 4.11 are not what 

we expect and do not match our findings obtained from the F-test. Increasing the 

number of scramblings from 200 to 500 and then 1000 produces no significant change 
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in the p- values. Similar results were also observed in Chapter 3 when its application 

to the simulation studies was performed for a multi-predictor model. To verify these 

results, we have attempted to visualize the GWR estimates of the parameters in this 

model. For every individual coefficient this has produced 492 estimates considering 

each household located at a point on the study region. 

Figure 4.5 presents the image plots of the estimates on the map of the Boston 

metropolitan area. For an individual parameter estimates, the lighter the image, the 

higher effect of the corresponding explanatory variable on house price. Conversely, 

the darker the image, the lower its effect on house price. From Figure 4.5.a and 

4.5.b, the effects of the Charles River and average number of rooms are lower in most 

areas of the Boston metropolitan city, but is quite strong in a few lightly shaded 

areas in the left of these plots. If we consider Figure 4.5.c and 4.5.e, the effects of 

pupil-teacher ratio and proportion of lower status people on house price are similar 

in most regions, except for those at the left of the plots. As an individual predictor, 

the effect of the proportion of Black population in the communities does not appear 

to vary over space. Therefore, as the F-test suggests, these image plots support that 

the relationship of some of the explanatory variables with house price varies over the 

location of the study region. All t hese findings strengthen our conclusions that the 

randomization test does not work as well for detecting spatial variation in relationship 

between an individual explanatory variable and response. Some possible explanations 

of such behaviour with this test are outlined in Chapter 5. 
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Chapter 5 

Conclusions 

In this practicum, we have considered the theoretical aspects of GWR, the perfor­

mance of the estimation method and inference in simulation studies, and its use in an­

alyzing a socio-economic data set. With the aim of assessing spatial non-stationarity 

in the parameter estimation, we combined the concept of regression analysis and spa­

tial variation in our analysis. Though the F test and randomization test were chosen 

as the major area of concentration, we have performed several techniques of regression 

analysis throughout the study. The key findings are summarized below. 

The performance of two different testing methods, presented in section 3.3, can 

be treated as one of the most significant outcomes of this study. For both the single 

and multi-predictor models, the simulation studies show that the F test can cor­

rectly reflect the spatial non-stationarity that may exist in the relationship among 

the explanatory and response variables. Also, in compare to the randomization pro­

cedure, it appears that the F test has advantages in terms of higher power and is less 

computationally intensive. 

However, in determining the spatial variability of each individual parameter in the 

model, the application of the Monte Carlo technique exhibits some erratic behavior 

in our simulation results. When the true state of the data has no spatial variation 

in parameter values, the randomization test is of the appropriate size. Hence for 

the stationary case in both the single and multi-predictor models, this test correctly 
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identifies no spatial variation in the relationships. Also, if the data is exhibits spatial 

non-stationarity and we are aiming to fit a single predictor model, the test has ade­

quate power. A contradictory performance is observed, when it is applied to a data 

set with spatial non-stationarity, and the purpose is to fit a multi-predictor model. 

One possible explanation of this problem is that the spatial variation in parameters 

could be removed by the addition of further explanatory variables (Brunsdon et al, 

1998). According to Leung et al (2000) , the validity of this randomization distribution 

is limited to the given data set. In this line of thinking, we conclude that the p-value 

associated with the randomization test may not work well to identify spatial non­

stationarity. As explained by Brunsdon et al (1998), the confidence intervals might 

be more helpful than p-values as they convey an idea not only of the magnitude of 

parameters but also how precisely this has been determined. However, in our analysis 

only the Monte Carlo technique is applied to carry out this randomization test, rather 

than using a distribution of Vj in (2.12) . Therefore, an attempt of cross-checking with 

a confidence interval may be considered for further work followed by a distributional 

form of Vj. 

As shown in Chapter 4, several steps are recommended prior to applying GWR 

in a data set to assess the spatial non-stationarity in relationships. Considering the 

theoretical basis of G WR, it can be hoped that there are a number of research areas 

where the G\VR method might be a valuable statistical technique in spatial data 

analysis. 

As a future direction of studies, it may be useful to allow t he GWR model to 

have a mix of variables with and without spatial variations that affect the response. 

Also, more simulation studies on the inference procedures may be needed. Leung et 

al (2000) present some results on a single predictor model with several patterns of 

spatial variability. However, their results were based on either a single, or very small 

number of simulations. This contrasts with our results with using a rectangular grid, 

as we used 500 simulated data sets in each of our studies. 
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