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Abstract 

Impacts and adaptations to climate change on the coastal zone of the communities of 
Conception Bay South and Holyrood, Newfoundland were investigated. Based on the 
concept of geoindicators and unique shore-zone morphology, a coastal hazard sensitivity 
assessment was conducted to assess the present sensitivity of the Conception Bay South­
Holyrood coastline to the impacts of flooding and erosion. As the most immediate effects 
of climate change will be felt along the coastline, the implications of future climate 
change and variability in Atlantic Canada on the Conception Bay South-Holyrood 
coastline were then considered. 

Results of the hazard sensitivity assessment indicate that overall, the Conception Bay 
South-Holyrood coastline has a low to moderate sensitivity to coastal flooding and 
erosion. However, subsequent analysis reveals that these results mask important 
differences in sensitivity based on differences in morphology. Results of the flood hazard 
sensitivity assessment indicate that the most sensitive segments of coastline surround the 
numerous lagoons located in Conception Bay South. The majority of the "exposed 
straight" coastline has a low sensitivity to flooding. In the foreshore erosion hazard 
sensitivity assessment, sections of coastline classified as barrier beach are highly to 
extremely sensitive to foreshore erosion processes, while segments classified as fringing 
beach or bedrock dominated receive low to moderate sensitivity ratings. Results of the 
backshore erosion hazard sensitivity assessment indicate that the majority of the 
Conception Bay South-Holyrood coastline has a low sensitivity to backshore erosion, a 
reflection ofthe fact that a third of the coastline is composed of highly resistant, igneous 
bedrock. Sections of backshore classified as unlithified are highly to extremely sensitive 
to erosion and there are a number of segments actively eroding. 

With portions of the Conception Bay South-Holyrood coastline currently sensitive to 
coastal flooding and erosion and anticipated changes in climatic conditions and 
accelerated rates of sea-level rise potentially increasing the risk, there are important 
implications for town management and planning decision-making processes that are 
capable of supporting sustainable community practices. A number of specific adaptation 
options, including hazard identification and monitoring; managed retreat or avoidance; 
accommodation; protection; coastal management and public education, have been 
recommended to enable current protection and in preparation of accelerated sea-level rise 
and climate variability in southern Conception Bay. 
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1.1: Introduction 

Chapter 1 
Introduction 

With increasing development pressure, many coastal regions are experiencing rapid 

alteration of their natural environment, leading to widespread impacts on natural systems 

(Lawrence, 1994) and increasing hazards for human populations. Newfoundland 

communities ·have been tied to the coastline since initial human settlement 7000 to 8000 

years BP. On the Avalon Peninsula, home to approximately 50% of the province's 

population, no community is more than 30 km from the coast. However, assessment and 

management of the Newfoundland coastal zone have been hampered by a lack of 

understanding of the geomorphic environment and its responses to the variations in 

climate conditions unique to this region. 

Coastlines are sensitive to environmental change and many aspects of the coastal 

environment can be clarified by study of coastal geology and geomorphology. Numerous 

examples of inappropriate coastal management decisions or failed engineering solutions 

can be explained by the failure to consider all relevant aspects of the coastal system. 

Coastal landforms can be used as indicators of the processes that shape the coastal zone 

(Forbes and Liverman, 1996), as critical observations of large and small scale coastal 

features and vegetation provide clues to the natural history, degree of erosion or accretion 

and potential risks of associated natural hazards for any particular location (Young et al., 

1996). 
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Coastal processes such as sea-level rise, storm-surge flooding, wave attack, sea-ice 

impact, and shoreline erosion are important components of the climate-driven marine 

environment (Catto, in press). When human developments coincide with these physical 

processes, naturally occurring events can become geologic hazards. The effects of these 

coastal processes and their potentially devastating impacts need to be considered in 

managing any coastal segment. Critical observation of a series of environmental features 

- geoindicators - provides clues to the active physical processes within the coastal zone 

and their· associated natural hazards and thus provides an indication of the level of risk 

associated with coastal development (Young et al., 1996). 

With more and more people moving into the coastal environment, steps must be taken 

to ensure that people, property and infrastructure are not situated in environmentally 

vulnerable locations, now or in the future. This is particularly true when future 

environmental conditions are likely to change. Some the most immediate effects of 

climate change and variability on the physical environment and on social and economic 

activity will be felt along the coastline (Bijlsma, 1996; Forbes et al., 1997; Klein and 

Nicholls, 1998; Mclean et al., 2001). 

Meteorological observations indicate that since the beginning of the twentieth century, 

global temperatures have risen by approximately 0.5 °C (Kemp, 1991 ). While significant 

changes in global temperatures are not a modern phenomenon, recent climate records for 

Canada indicate that there has been a substantial amount of temperature variation within 
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the past 100 years. Canadian mean annual temp~ratures have risen by 1.1 °C (Gullett and 

Skinner, 1992), while temperatures in Atlantic Canada have only increased by 0.4 oc and 

are actually characterized by an overall decrease of 0. 7 °C between the years 1948 and 

1991 (Gullett and Skinner, 1992; Pocklington et al., 1994; Lewis, 1997). However, the 

most recent Environment Canada data (1948-2002) indicates that there is no noticeable 

temperature trend (0.0 °C) in Atlantic Canada (Environment Canada website). 

A continuing increase in greenhouse gas emissions is expected to result in a changing 

and/or more varied climate, with the potential to cause large-scale alterations to both the 

natural environment and socio-economic systems (Kemp, 1991; Shaw, 1997b). Within 

the coastal zone, global climate change is predicted to cause an increase in global sea­

level, as well as changes in atmospheric circulation patterns which may lead to increased 

storm intensity, and possible changes in storm tracks and frequency (Forbes et al., 1997; 

Mclean et al., 2001; Schneider et al., 2001); Increases in open-water fetch and wave 

energy during the winter months, due to higher sea-surface temperatures and an expected 

reduction in the extent and duration of winter sea-ice may also be expected to occur 

(Forbes et al., 1997; Mclean et al., 2001). Thus coastal stability, flood and storm hazards, 

and development within the coastal zone may all be affected (Forbes et al., 1997; Mclean 

et al., 2001). 
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1.2: Purpose and Objectives 

The purpose of this study is to assess the impacts of specific geomorphic hazards -

coastal erosion and coastal flooding - on the communities of Conception Bay South and 

Holyrood, Newfoundland, by considering their present sensitivity to these hazards and by 

considering the implications of future climate change in Atlantic Canada. It forms a 

component of a larger research project (CCAF Project #A-242) designed to develop an 

approach for providing objective information on climate change impacts and adaptation 

options to Newfoundland coastal communities. 

Over 80% of the developed area within the Towns of Conception Bay South and 

Holyrood, lies within 2 km of the coastline (Taylor, 1994). Historically, much of the area 

fronting the coastline in these communities was devoted to agricultural and fishing 

activities, but recently these lands have been converted to residential and retail uses. 

These uses are much more significantly impacted economically by storm activities and 

changes in coastal processes. By studying how these impacts will affect existing and 

future activities and resources in these communities and how ongoing climate change and 

sensitivity could alter the risks associated with various coastal hazards, important 

implications for town management and planning can be recognized. 
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The main objectives of this study are: 

• To systematically classify the Conception Bay South-Holyrood coastline using the 

concept of geoindicators and unique shore-zone morphology for use in developing a 

qualitative framework for evaluating coastal hazard sensitivity based on coastal 

morphology. 

• To evaluate the sensitivity of specific coastal segments to the impacts of the 

geomorphic hazards of coastal erosion and flooding. 

• To test the sensitiveness and accuracy of the coastal hazard sensitivity assessment 

methodology in rating coastal segments with known flooding or erosion problems. 

• To qualitatively assess the impacts of anticipated climate change and variability on 

the Conception Bay South-Holyrood coastline, including the evolution of coarse 

clastic barrier beaches under rising sea levels. 

• To develop a series of land use management recommendations to help the Towns of 

Conception Bay South and Holyrood to successfully adapt to coastal hazards under 

current and future climatic conditions. 
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2.1: Coastal Classification 

Chapter 2 
Previous Work 

Early attempts at coastal classification were rather genenc and based on simple 

differences in coastal morphology or processes, i.e. tide versus wave dominated 

coastlines (Johnson, 1940; Cotton, 1954; Putnam et al., 1960; Tanner, 1960a; Shepard, 

1976; Klemdal, 1982). These were followed by procedures to classify and partition a 

coastline into units that exhibited similar attributes or characteristics (Cotton, 1951, 1952; 

Tanner, 1960b; Swan, 1968; McLaren, 1980; Hiscock, 1981; Owens et al. , 1981; Hiscock 

and Maloney, 1983; Fricker and Forbes, 1988; Harper et al., 1991; Howes et al., 1994; 

Catto et al., 1999a, 1999b; Jennings and Shulmeister, 2002). Such approaches were 

purely desc1iptive, as they systematically recorded shore morphology, shore-zone 

substrate and wave exposure characteristics, leading to the subdivision of the shore-zone 

into distinct alongshore and across-shore components. Functional relationships were not 

included. The various shore units that were generated could then be characterized by one 

of a number of distinct standard shoreline types (Owens et al., 1981; Harper et al., 1991; 

Howes et al., 1994; Catto et al., 1999a, 1999b). However, these approaches suffered from 

the fact that seasonal and yearly variability hindered effective classification based on a 

single time of observation. Seasonal changes in texture and morphology for example, 

could lead to different classifications of the same coastal segment (Catto et al., 1999a, 

1999b). 
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Since the late 1970s, there has been a substantial increase in the use and development 

of physical shoreline description and classification systems. Nowadays, coastal 

classifications are frequently associated with risk assessments and integrated coastal zone 

management plans and seek to assess the vulnerability of particular segments of a 

coastline to the impacts associated with various hydrodynamic, climatic or anthropogenic 

hazards (Cooper and McLaughlin, 1998). Recognition of the variability in coastal 

morphology, .. differing approaches to mitigation strategies and differing management 

objectives, highlights the need for identification of distinct types of coast. Coastal 

scientists and planners have recognized this and are demanding detailed coastal 

classifications that are applicable to their own unique coastlines (Weerakkody, 1993; 

Cooper and McLaughlin, 1998). 

Several of the classification systems were specifically designed for assessing oilspill 

sensitivity (McLaren, 1980; Hiscock, 1981; Hiscock and Maloney, 1983; Jensen et al., 

1990; Harper et al., 1991; Catto et al., 1999a, 1999b; Griffiths, 1999; Strickland, 2002). 

Other recent coastal classifications have been developed as coastal vulnerability indices 

that are capable of assessing the vulnerability or sensitivity of a coastline to such coastal 

threats as future sea-level rise, episodic storms, climate change and anthropogenic 

disturbance (Gomitz and Kanciruk, 1989; Gomitz, 1990, 1991; Daniels et al., 1992, 

1998; Gomitz et al., 1993; Kay and Hay, 1993; Dal Cin and Simeoni, 1994; Sheppard, 

1997; Zeidler, 1997; Bush et al., 1998, 1999; Shaw et al., 1998; Small et al., 2000; Forbes 

et al., 2001; McCulloch et al., 2002). Recent climate change hazard assessment studies 
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have also sought to investigate adaptation options (Zeidler, 1997; Klein and Nicholls, 

1998; Forbes et al., 2001; McCulloch et al., 2002; Robinson, in preparation; Solomon, in 

preparation). Coastal vulnerability or sensitivity indices have also been developed for 

application to specific coastal systems. Such classification schemes allow coastal 

managers to focus management strategies at specific locations, as both the potential 

vulnerability and the main source(s) of imposed change can be identified. For example, 

Williams et al. (1993) and Garcia-Mora et al. (2001) developed coastal vulnerability 

indices for specific application to dune systems. 

However, in a revww of eighteen coastal classification procedures, Cooper and 

McLaughlin (1998) concluded that few indices adequately considered the physical basis 

for interaction between variables used in the classification procedure. In particular, while 

most indices recognize the need for socio-economic data, few were able to adequately 

incorporate such information. They found that the indices that considered the nature of 

the potential disturbance along with clearly defined issues of management concern were 

the most useful. Indices in which these were not considered or adequately defined were 

likely to be of use mainly as databases. 

2.2: Coastal Hazard Assessment 

There are two fundamental approaches to coastal evolution, change and hazard 

assessment: a qualitative approach that simply detects environmental change without 

providing a rigorous basis for prediction; and a quantitative approach that serves as a 
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long-term historical record and provides rates of change suitable for forecasting future 

conditions (Morton, 1996). Both have their advantages and disadvantages. 

2.2.1: Quantitative Approaches 

Quantitative approaches to future coastal change or hazard assessment provide the 

most precise and accurate results as they are based on detailed, long-term monitoring data 

and rely on statistical, geometric or numerical (deterministic) models to predict future 

conditions (Gibb, 1983; Morton, 1996; Young et al., 1996; Coyne et al., 1999). Statistical 

models are based on the principal of uniformitarianism, with the conditions that caused 

coastal change in the past causing future coastal change. As a result, they are easy to 

understand and apply (Morton, 1996). Future projections of coastal change are derived 

from calculations of average rates of observed shoreline movement (Coyne et al., 1999) 

or through simple equations (Gibb, 1983), such as the Bruun Rule (Bruun, 1962). 

However, if the physical causes of coastal modification change significantly, future 

predictions of shoreline movement will be inaccurate (Morton, 1996). Geometric models 

assume that coastal change is caused by submergence. It is assumed that the beach and 

offshore profile are smooth and unchanging. As a result, future shoreline positions can be 

easily determined from topographic maps and estimates of relative sea-level rise. The 

main disadvantage with using geometric models, however, is that because they assume 

coastal land loss only occurs as a result of submergence, shoreline retreat may be greatly 

under-estimated if other process, such as erosion, also occur (Morton, 1996). Numerical 

models are mathematically sophisticated models that attempt to explain shoreline retreat 
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and coastal land loss through a series of equations that represent observed physical 

conditions and coastal processes. Sea level is assumed to be constant, with the beach and 

offshore profile smooth and unchanging. Although likely to simulate realistic conditions, 

the accuracy of numerical models depends on site specific knowledge of coastal 

behaviour and data for parameters that are generally unavailable (Morton, 1996). 

While quantitative approaches to coastal evolution, change and hazard assessment are 

the most . accurate, the detailed monitoring required is expensive, time consuming and 

requires a high level of expertise. Financial backing for long-term (i.e. decade-long) 

monitoring projects that are not producing immediate results is difficult to obtain. 

However, coastal managers, planners or scientists often need immediate information 

about the state of a particular shoreline (Young et al., 1996). As well, quantitative 

approaches to coastal hazard assessment are often regional in scale, relying on global 

databases that are incomplete, and are not suitable for site-specific evaluation of short 

reaches of coastline (Young et al., 1996; Small et al., 2000). In addition, incomplete 

understanding of complex· coastal processes and the lack of an equilibrium beach profile 

limit the ability of geometric and numerical models to predict accurate shoreline 

movement positions (Morton, 1996). 

2.2.2: Qualitative Approaches 

In areas where quantitative data is lacking, a procedure for the quick and effective 

determination of coastal hazard areas is needed. Qualitative approaches to coastal 
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evolution, change and hazard assessment are based on a general understanding of how 

nearshore environments respond to changing oceanic conditions. They are best suited to 

situations where financial resources are extremely limited, source data are unavailable or 

of questionable quality, and the primary coastal management objective is to provide a 

quick assessment of current conditions and possible future conditions (Morton et al., 

1996; Young et al., 1996; Sheppard, 1997; Bush et al., 1998, 1999; Daniels et al., 1998). 

As a result, they fill a need for a scientifically valid, yet inexpensive, method of 

qualitative shoreline monitoring and assessment (Young et al., 1996). They are able to 

assess vulnerability to a wide range of coastal hazards including hurricanes, landslides, 

coastal erosion, earthquakes, tsunamis and flooding (Morton et al., 1996; Young et al., 

1996; Sheppard, 1997; Bush et al., 1998, 1999; Daniels et al., 1998). However, 

qualitative approaches are limited in their application as they are of little use when it 

comes to knowing where and when changes will occur (Morton, 1996). The interpreted 

results can be misleading or incorrect as observations are site specific and reflect only the 

most recent geomorphic condition (Morton, 1996; Catto et al. , 1999a, 1999b). As Catto et 

al. (1999a, 1999b) noted in a shoreline assessment of Placentia and Conception Bays, 

Newfoundland, seasonal and yearly variability hinders effective classification based in a 

single time of observation, as textural and morphological fluctuation can lead to different 

classifications of the same coastal segment. Only quantitative analyses of long-term 

historical trends are able to avoid the potential errors associated with qualitative 

descriptors of beach stability (Morton, 1996) 
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2.3: Conception Bay South 

A substantial amount of research has been conducted within the Conception Bay 

region. The Geological Survey of Canada- Atlantic (GSCA) has investigated the area 

since the early 1980s (Forbes, 1984; Shaw and Forbes, 1987; Forbes and Taylor, 1994) 

and, in conjunction with the Geological Survey of Newfoundland and Labrador, have an 

ongoing coastal monitoring program in the Topsail Beach area (Liverman et al., 1994). 

Detailed geomorphic studies of the area have been ongoing since the early 1990s, 

particularly by Catto (1994, 1999, in press), Catto et al. (1999a) and students (Prentice, 

1993; Sheppard, 1997; Pittman, 1999, in preparation). 

Taylor (1994) conducted the first coastal land-use management study for the town of 

Conception Bay South. At the time of the study, there were no standards or regulations 

(federal, provincial or municipal) in place to govern development along the coastline and 

development was randomly dispersed throughout the community, reflecting land-use 

patterns inherited when nine separate communities amalgamated. The lack of integrated 

coastal management polices between municipal, provincial and federal levels of 

government resulted m confused jurisdiction, duplication and a general lack of 

communication (Taylor, 1994; Simms, 1997). When determining development or 

protection potential, sites were investigated independently from adjoining areas, ignoring 

the influence that development in one section of coastline would have on another (Taylor, 

1994). 
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In 1999 and 2000, students in the Advanced Diploma in Coastal Zone Management 

program at the Marine Institute of Memorial University, in partnership with the Federal 

Department of Fisheries and Oceans, conducted two integrated coastal zone management 

projects for the town of Conception Bay South. Subsequently, in 2001, the Department of 

Fisheries and Oceans commissioned a general socio-economic study of Conception Bay, 

along with a detailed study of Conception Bay South (Canning and Pitt Associates, 

200la, 2001b). The local economic development board, the Capital Coast Development 

Alliance,· undertook a detailed coastal resource inventory of the entire Conception Bay 

Region, including St. John's (Kerry Murray, personal communication). 

The present study is based on a modification of the geoindicators approach to coastal 

hazard assessment developed by Young et al. (1996:Tables 1 and 2). The geoindictors 

approach is based on standard qualitative and quantitative methods for measuring 

geological processes and aims to provide an indication of the level of safety or risk a 

particular location has from natural hazards. This study seeks to build on previous work 

conducted within the Conception Bay South region, particularly studies by Taylor (1994) 

and Sheppard (1 997), by integrating the results of a coastal hazard assessment with an 

understanding ofboth current and future land-use and climate conditions. 
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Chapter 3 
Study Area 

3.1: Location and Physical Setting of Study Area 

The study area is located on the A val on Peninsula, in the southeast part of the island 

of Newfoundland, between 47°23'25" and 47°32'40" N and between 52°55'00" and 

53°08'30" W (Figure 3.1). It consists oftwo communities, the Town of Conception Bay 

South an~ the Town of Holyrood, and approximately 35 kmof coastline. 

The town of Conception Bay South is located on the northeast side of the A val on 

Peninsula, approximately 12 km from St. John's, the provincial capital. It is an 

amalgamation of nine formerly separate communities (Figure 3.2): Topsail, 

Chamberlains, Manuels, Long Pond, Kelligrews and Upper Gullies amalgamated in 1971, 

while the communities ofFoxtrap, Lawrence Pond and Seal Cove joined in 1986 (Taylor, 

1994). 

The town of Holyrood, southwest of Conception Bay South, is located approximately 

48 km from St. John's at the head of Conception Bay. Most of the community is 

concentrated along the shore of the South Arm, although a few homes are found along the 

North Arm (Smallwood, 1984). This study covered only part of the Holyrood shoreline, 

from the Conception Bay South town boundary to two hundred metres north of the head 

of the South Arm to the wharf found near Mahoney's Beach. This location was chosen as 

the study area boundary as it formed the limit of Holyrood Beach. 
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Figure 3.1: Location of the Conception Bay South and Holyrood, Newfoundland study area. 
Note location of figure 3.2 in inset map. (scale approximately 1:1 000 000) · 
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The Avalon Peninsula is part of the Atlantic uplands of Newfoundland, a part of 

Appalachia which lies between 180 and 300m elevation (Bostock, 1970). In a few places 

the upland is rocky and rugged, but mostly it is a rolling plain of low relief (Heringa, 

1981 ). It is the lower part of an ancient peneplain that slopes in a southeasterly direction, 

the surface of which is preglacial and has only been slightly modified by glaciation 

(Bostock, 1970; Heringa, 1981). Bedrock geology is dominated by Late Proterozoic 

sedimentary, metasedimentary and volcaniclastic rocks of varying resistance and the 

strata are cut by northeast-southwest trending faults and joints and are locally folded 

(Bruckner, 1969; King, 1988). The coastline of the study area is characterized by steep 

rocky headlands and cliffs, with gravel-dominated pocket beaches and baymouth barriers, 

locally called barachoix or barasways (Catto, 1994). 

Maximum relief in the area surrounding Conception Bay is approximately 270 m, with 

coastal cliffs 30 m high. Three islands, the largest being Bell Island, are located 

approximately 7.5 km northwest of the study area. Conception Bay itselfhas a maximum 

depth of280 m. 

3.2: General Climate Setting 

The climate of Newfoundland is classified as mid-boreal (Koppen-Geiger Dfb ), 

marked by cool winters and summers and seasonally consistent precipitation (Banfield, 

1981, 1983; Catto, 1994, 1999). The Avalon Peninsula is located within Climatic Zone 1 
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of Newfoundland (south and south-east coasts and immediate hinterlands), characterized 

by Banfield as having the: 

"[g]reatest maritime influences. Annual precipitation 1500-2000 mm, with heaviest falls 
during southerly airstreams, especially over hills inland. Winters relatively mild with less 
than half [the] precipitation falling as snow; snow cover intermittent. Freezing rain 
frequent [in] late winter. Summers cool with frequent sea fog" (Banfield, 1981:129). 

The northeastern part of the A val on Peninsula, which includes the study area, is further 

characterized by "less mild winters with more frequent snowfalls, especially with 

northeasterly airflow. Warmer and sunnier summers ... after late spring" (Banfield, 

1981:129). 

Daily mean temperatures in St. John's are approximately -5°C in January and 12-17°C 

in July (Catto, 1994, 1999), with annual extremes of approximately -23°C and 31°C 

(Hiscock, 1981). July mean temperatures vary with aspect, with northerly areas and those 

consistently exposed to northeast winds being cooler. Freeze-thaw cycles are numerous 

from mid-December to early April (low sea surface temperatures and frequent northerly 

and easterly airflow delay the rise of mean daily temperature above freezing till early 

April) and frost events may occur at any time from early September to June (Banfield, 

1981, 1983, 1993). Complete freeze-over of lakes and rivers occurs two to four weeks 

following the decrease in mean daily temperature to below 0°C, approximately the third 

to last week in December, and complete thaw ranges from the third to fourth week in 

April (Banfield, 1981, 1983). 
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On the Avalon Peninsula, there is 1050-1600 mm of annual precipitation (Banfield, 

1993). Annual average precipitation in December is 152.6 mm and 77.8 mm in July 

(Griffiths, 2001). Snow cover is often discontinuous in time and variable in depth 

throughout the winter. On average, approximately 200 em of snow falls on the Avalon 

Peninsula (Banfield, 1981, 1983, 1993). During the time of this study, a 121 year 

snowfall record for St. John's was broken, as 648.4 em of snow fell between November 

2000 and April 2001, with another higher than average snowfall the following winter: 

393.2 em (Bruce Whiffen, Environment Canada, personal communication). Coastal areas 

receive less snowfall and more freezing rain and drizzle: up to 80 hours per year (Catto, 

1999). 

Fog is common in areas heavily influenced by southwest winds, particularly open 

coastlines (Catto, 1999): the mean monthly percentage of time with fog is 31.2% at St. 

John's in May and 41.0% in Argentia in July (Hiscock, 1981), Conception Bay tends to 

have less summer sea fog due to a general excess of offshore over onshore winds 

(Banfield, 1993). 

Wind patterns vary seasonally, and local topographic effects can be significant (Catto, 

1999). Prevailing winds are from the >vest and southwest, as both have an average annual 

occurrence of >20%, although winds may originate from any compass direction 

(Banfield, 1981, 1983, 1993; Griffith, 2001). Southwesterly winds bring warm, moist air 

to the region from the warmer surface waters south ofNewfoundland and are associated 
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with many of the major storms and hurricanes during the summer and early autumn 

(Catto, 1999). Northeasterly winds, associated with autumn gales, are responsible for 

much of the storm modification of the coastline in Conception Bay (Catto, 1994, 1999, in 

press). Diurnal onshore and offshore winds are also common in most embayments (Catto, 

1994). 

3 .2.1: Tides, Waves and Currents 

Conception Bay (mixed, mainly semi-diurnal tide) occupies a microtidal setting, with 

a mean range of approximately 1.3 m (Canadian Tide and Current Tables, 2000, 2001). 

The coastline is storm wave dominated, characterized by sharp seasonal differences in 

wind, waves, and ice conditions. Wave energy is 5 to 6 times greater in December than in 

July (Farmer, 1981; Prentice, 1993). Coastal dynamics within Conception Bay are 

dominated by local storm waves generated by extra-tropical cyclonic activity during the 

autumn and winter (K.handekar and Swail, 1995). Wave activity is partially or totally 

responsible for the majority of sedimentary landforms and contributes substantially to 

coastal erosion of unlithified cliffs (Catto, in press). Reflective wave behaviour is 

dominant over dissipative conditions in most segments (Catto, 1994). Long period swells 

generated by strong winds offshore make only a small contribution to total wave energy, 

thus emphasising the importance of locally generated wind-driven or storm waves in the 

region (Farmer, 1981 ). The incident wave front is predominantly northwest, but is 

occasionally northeast (Prentice, 1993), reflecting dominant storm wind directions. 

Annual wave statistics from Transport Canada show that significant wave heights of>7m 
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are most common from the west and southwest, although monthly wave statistics for the 

months of September, October, and November show a shift in significant wave height 

occurrence originating from the north. Off the open Atlantic shoreline, modal significant 

deep-water wave heights are 7~8 m (Neu, 1982). In the western Atlantic Ocean, storm 

wave heights are at a maximum east of Newfoundland. The 10-year significant wave 

height is estimated as 11 m and the 100-year height as 12-15 m in the vicinity of 

Conception Bay (Neu, 1982; Kbandekar and Swail, 1995). The 100-year maximum wave 

height is estimated as 23m (Kbandekar and Swail, 1995). 

Currents in nearshore areas are weak, but generally follow a counter-clockwise 

circulation pattern, moving southward from Baccalieu Island to Holyrood and 

northeastward to Cape St. Francis, with longshore drift of sediment following this general 

southwest to northeast pattern (deYoung and Sanderson, 1995; Griffiths, 2001). 

However, considerable local variation exists, especially within embayments. Open beach 

areas are influenced by shore-parallel and shore-normal transport, with onshore-offshore 

sediment movement essentially normal to the beach dominating. Alternating shore­

parallel and shore-normal transport is common, due to variations in wind direction and 

strength, surf and swell action, and shore-normal and edge wave activity. Along all 

beaches and in many coves, current patterns shift in response to changes in wind 

direction and to storms (Catto, 1999, in press). 
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3.2.2: Sea Ice 

Sea ice in this area of the province is provided by the southward advection of floe ice 

on the Labrador Current (Markham, 1981; Farmer, 1981) and in severe years can extend 

south of 45°N latitude (Farmer, 1981). The maximum ice limit reaches the Avalon 

Peninsula and Conception Bay by mid-January, with the median ice limit located at the 

Baie Verte Peninsula and western Notre Dame Bay at this time. The median ice limit 

does not reach Conception Bay at any point, but the maximum extent reaches Cape St. 

Francis by the end of February (Seaconsult Limited, 1985; Cote, 1989; Canadian Ice 

Service, 2001). 

The development of landfast and pack ice in Conception Bay occurs in 16-20 out of 

25 years, with maximum persistence generally greater than 11 weeks from January 

through to May (Seaconsult Limited, 1985; Hill and Clark, 1999). Sea ice formation 

starts about the beginning of February and increases to about 30 em thickness as the 

season progresses. It begins retreating by late March and is typically gone by the first 

week in April. However, in severe ice years there is a return of sea ice in late April or 

early May. This ice tends to be thicker (50-120 em), having drifted from arctic or near­

arctic locations, and is often mixed with bergy bits, growlers and icebergs. This ice 

remains until middle or late May (Hill and Clarke, 1999). Onshore winds can also divert 

pack ice into the bays along the east coast of the province, narrowing the open water lead 

considerably and creating an ice hazard for navigation (Farmer, 1981; Canadian Ice 
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Service, 2001). A persistent open lead occurs along the northwest coast of Conception 

Bay (Seaconsult Limited, 1985). 

The southerly extent of persistent ice foot development coincides with the position of 

the -0.5°C February sea surface temperature isotherm, confining the phenomenon to the 

northern and central parts of the Avalon Peninsula coastline. Formation begins in late 

December and remains until late March (Catto, 1999, in press). Ice foot development is 

common along the shorelines of Conception and Trinity Bays and is a major factor in the 

geomorphic development ofbeaches as it precludes winter erosion of beach sediments. It 

does occur on beaches in southern Conception Bay, but is less extensive, pervasive and 

persistent than in Trinity Bay (Catto, 1994, 1999, in press). 

Icebergs occur within Conception Bay from the end of March and last till the end of 

June, although they can occur any time between late December and early August. 

Typically, their arrival at the end of March or early April coincides with the initial retreat 

of sea ice and is dependent on wind and current conditions (Clarke and Hill, 1999; 

Griffiths, 2001). Over 300 icebergs have entered Conception Bay since 1961 and are of 

various sizes, with iceberg heights of 50-60 m possible (Hill and Clarke, 1999). General 

ice data for Conception Bay are summarised in Table 3.1. 
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Table 3.1: Ice data for Conception Bay from 1961-2001. 

Ice Data for Conception Bay from 1961-2001 

Total number of years: 

Number of years with no ice: 

Number of years with no sea ice: 

Number of years with no bergs: 

Number of years with very light sea ice and few bergs: 

Number of years with no or minimal ice conditions: 

Number of years with heavy sea ice conditions: 

Number of years with heavy sea ice and bergs present: 

(Hill and Clarke, 1999:6; field observations, 1999-2001) 

3 .3: Vegetation 

41 

2 

9 

12 

3 

15 (37%) 

19 (46%) 

II (27%) 

The study area is classified within the Maritime Barrens Ecoregion, and is 

characterized by extensive barren areas consisting mainly of dwarf shrub heaths, bogs 

and shallow fens (Hiscock, 1981; Damman, 1983; Meades, 1990). Forests are most 

common in valleys, although they can be found on hilltops and slopes (Damman, 1983). 

Most of the forest cover was gradually eliminated by the combined effect of frequent 

fires after European settlement, poor regeneration after fires, marginal climatic 

conditions, and strong competition from ericaeous dwarf shrubs. The majority of the 

region is now covered with Kalmia barrens and shallow bogs and fens. Remaining 

patches of forest are generally of poor quality (Damman, 1983). Heathland vegetation is 

composed mainly of Kalmia angustifolia, Rhododendron canadense, Vaccinium 

angustifolium and V vitis-idaea. Cladonia species dominate the moss layer and V vitis-

idaea and Empetrum nigrum are dominant on exposed sites. Balsam fir (Abies balsama) 

is the most common tree species, with black spruce (Picea mariana) and eastern larch 
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(Larix glauca) colonizing the wetter sites (Hiscock, 1981 ). Peatland in the study region is 

characterized by slope bog vegetation assemblages: Kalmio-Sphagnetum fusci, Vaccinio­

Cladonietum boryi, Calamagrostio-Sphagnetum fusci, Scirpo-Sphagnetum magellanici, 

and Scirpo-Sphagnetum tenelli (Wells and Pollett, 1983). Sea rocket (Cakile edentula var. 

edentula) and beach pea (Lathyrus maritimus) are common colonizers of cobble beaches 

(Rodman, 1986; Barimah-Asare and Bal, 1994), while purple loosestrife (Lythrum 

salicaria) is dominant in shallow water mashes (Thompson et al., 1987), particularly in 

the Foxtrap region (Karyn Butler, personal communication). Coltsfoot (Tussilago fwfara 

L.) can also be encountered on cobble beaches and is a primary colonizer of failing slopes 

(Hendrickson, 1999). 

3.4: Bedrock Geology 

Bedrock within the study area is dominated by Palaeozoic sedimentary units and late 

Proterozoic and early Cambrian intrusive igneous rocks (King, 1988). The oldest 

Precambrian rocks outcropping in the area belong to the Harbour Main Group, a 

sequence of mainly basic and acidic volcanic rocks consisting of resistant green to purple 

basaltic flows, pyroclastic rocks, felsic volcanic rocks, clastic sedimentary rocks, and 

gabbro (King, 1988). The Harbour Main Group constitutes the steeply cliffed shoreline 

from Topsail northwards and is also found in the Holyrood area (McCartney, 1969; King, 

1988). These rocks were subsequently deformed and intruded by the Holyrood plutonic 

series, which is dominantly composed of medium-grained, massive, pink to grey granite 
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with minor amounts of aplite. The Hol:yrood Intrusive Suite is exposed south of Indian 

Pond (BrUckner, 1969; King, 1988). 

Within the study area, the Harbour Main and Holyrood rocks are unconformably 

overlain by the sedimentary strata of the Black Hill sequence. This unit consists of fine­

grained clastic marine sediments, including siltstone and sandstone and is exposed in 

Holyrood (BrUckner, 1969; McCartney, 1969; Catto and St. Croix, 1998). 

Along the southeast coast of Conception Bay, between Indian Pond and Topsail, the 

volcanic Precambrian rocks are overlain by sedimentary rocks of Cambrian age. The 

Adeyton Group (90 m thick) is exposed further inland and extends northward to the 

Topsail Highlands (BrUckner, 1969). These consist of red, greenish, and grey, silty 

mudstone, with some minor limestone nodules, and in the Topsail/Manuels area as much 

as 6 m of basal conglomerate (King, 1988). The Harcourt Group overlies the Adeyton 

Group (120-150 m thick) and are composed of grey, green to black, thinly laminated 

micaeous shale (King, 1988) 

The study area contains two approximately north-south (NNE-SSW) trending major 

fault zones. The Topsail fault zone roughly follows the eastern shore of Conception Bay, 

continuing southward from Topsail inland for a considerable distance. The Holyrood­

Brigus fault zone roughly follows the western coast of Conception Bay and extends 

southward inland from Holyrood Bay (BrUckner, 1969). 
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3.5: Quaternary Geomorphology 

An extensive till blanket characterizes the Topsail to Foxtrap region of Conception 

Bay South, while glaciofluvial outwash sediments are dominant along the coastline from 

Kelligrews southwestward to Indian Pond. The glaciofluvial sediments form a series of 

kames and kame deltas, developed as meltwater flowed northward to the retreating ice 

margin at the mouth of Conception Bay (Catto and St. Croix, 1998; Catto and Taylor, 

1998; Batterson, 2000). Typical sequences in these deposits contain two major 

sedimentary assemblages: a basal assemblage dominated by stratified and imbricated 

pebble and cobble gravel and an overlying second assemblage dominated by cross­

stratified and horizontally stratified sand and gravel (Catto and St. Croix, 1998:455). The 

glaciofluvial deposits reach a maximum thickness of25 m and they are locally capped by 

peat veneers and blankets, as in Upper Gullies and Seal Cove (Catto and St. Croix, 1998). 

Tills are coarse-textured, with silt concentrations of <2-30% and large clasts (pebbles, 

cobbles and boulders) forming 30-55% of the deposit (Catto and St. Croix, 1998; Catto, 

in press). A narrow foreshore strip of modem beach and barrier deposits, dominantly 

composed of pebbles and cobbles, extends from Topsail through to Foxtrap. Along the 

Kelligrews River, Lower Gullies River and Seal Cove River there is a thick sequence of 

modem stream deposits of sand, silt and gravel (Henderson, 1974; Taylor, 1994; Catto 

and Taylor, 1998). Colluvium deposits characterize the east side of Topsail Beach Pond 

and the Holyrood coastline from the Ultramar storage facility site eastwards (Catto and 

Taylor, 1998; Batterson, 2000). 
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The presence of the highly permeable and porous glaciofluvial sediments along the 

Conception Bay coastline has contributed to the susceptibility of this area to coastal 

erosion and to the development of gravel-dominated barrier beaches (Catto and St. Croix, 

1998). Fringing barricades of glacially transported boulders that have remained after 

marine waters have removed finer-grained clasts, flank much of the shorelines (Catto, in 

press). As significant amounts of sea and landfast ice are not common in southern 

Conception Bay, the mechanism of ice-push is eliminated as the mode of formation for 

these nearshore boulder deposits. They are not boulder barricades. Boulders are not 

formed into a rampart and ice-push of individual clasts only occurs in association with 

strong northeast winds. Observations by Pittman (in preparation) indicate that ice push is 

limited and confined to finer-grained sediments. 

3.6: Holocene Sea-level History 

Sea levels along the coast of the A val on Peninsula have undergone a series of changes 

since deglaciation, approximately 12 000 years BP, through a combination of sea-level 

rise and· crustal response, following the "Type C" model proposed by Quinlan and 

Beaumont (1981) and modified by Liverman (1994) (Figure 3.3). The northeastern part 

of the peninsula, around St. John's and Cape St. Francis, shows the least amount of 

fluctuation, while the northwestern part, at the head of Placentia Bay, exhibits the greatest 

(Catto, 1994). In general, all of coastal Newfoundland, excluding the Northern Peninsula, 

is experiencing submergence (Shaw et al., 2002), although at various rates. 
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Figure 3.3: 'Type C' sea-level curve due to migration of peripheral forebulge (Quinlan and Beaumont, 
1981; Liverman, 1994). 

Along Placentia Bay, submerged estuarine and deltaic sediments indicate that sea-

level was eight to twenty metres lower than present (Catto, 1994; Forbes et al., 1995; 

Shaw and Forbes, 1995; Catto et al., 2000). At Biscay Bay Brook, east of Trepassey, a 

spruce stump rooted in forest peat below the modem high tide line dated at 750±90 years 

BP (GSC-5414), indicating a rise in relative sea-level. Radiocarbon analysis of a spruce 

stump found at Mobile also suggests a rise in relative sea-level: at 40 to 65 em/century, it 

is more than double the rates assumed for Conception Bay (20 to 30 em/century at Port 

de Grave Harbour) (Catto et al., 2000). Archaeological excavations at Ferryland and 

Placentia suggest that sea-level may have been up to three metres lower than present in 

the early 1600s (Catto, 1994, 1999; Catto et al., 2000). 
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Along Conception and Trinity Bays, manne sediments and erosional features are 

noted at elevations between five and twenty metres above present sea-level (Bruckner, 

1969). However, raised marine features have not been recognized along the open Atlantic 

coastline south of Cape St. Francis, approximately 15-30 km east of Conception Bay. 

Cores taken from St. John's Harbour indicate the presence of a freshwater lake around 

11 000 years BP, suggesting that sea-level was at least 14m lower than present, as this is 

the elevation of a controlling sill at the entrance to the harbour. Marine foraminifera 

dated at 9900 years BP record the transgression of marine waters into the harbour (Lewis 

et al., 1987): an approximate sea-level rise of 12.7 em/century. 

Offshore of the Conception Bay coast, submerged shoreline features have not been 

located, although extrapolation from data for Placentia and Trinity Bays suggests that sea 

levels fell to between ten and twenty metres below present during the early Holocene 

(Grant, 1989; Shaw and Forbes, 1995; Liverman, 1994; Catto et al., 2000) 

3. 7: Coastal Geomorphology 

The coastline of the study area is characterized by steep, nearly continuously linked, 

fringing and barrier beaches primarily composed of pebble to cobble-sized clasts and 

backed by 20 to 30 m high bluffs of unlithified, Quaternary glacio genic sediments (Plate 

3.1). 
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Plate 3.1: Typical coarse clastic barrier beach encountered in Conception Bay South. 

Gravel barriers are distinctive coastal landforms in glacially influenced regions. Their 

development and behavioural controls can only be understood with a knowledge of 

coastal morphodynamics, the combined adjustment of topography and fluid motion 

through sediment transport (Cowell and Thorn, 1994), and sedimentation (Orford et al., 

1991). It is important to understand these processes to fully understand the implications 

of climate change and variability on barrier beach evolution. 

3. 7.1: Morphological Development Controls 

Short-term barrier beach stability is highly dependent upon a range of pre-existing 

conditions that determine morphodynamic status and vulnerability to rapid change or 

breakdown. Long-term stability is governed by strong morphology and sedimentary 

memory and feedback interactions, in addition to such crucial external controls as sea­

level change, wave climate and sediment supply (Carteret al., 1987; Orford et al., 1991, 

31 



1995a, 1996; Forbes et al. , 1995). In general, gravel barrier beach processes are strongly 

affected by two factors: the appearance of long-period swells in the nearshore and the 

inheritance of large-scale sedimentary structures from storm events (i.e. beach cusps) 

(Carter and Orford, 1984). Their morphology is extremely sensitive to wave run-up 

height and volume, which are functions of breaking wave structure, sediment roughness 

and beach permeability (Orford et al., 1995b). 

On microtidal, wave-dominated beaches, such as those in southern Conception Bay, 

morphological change is primarily induced by variations in the incident-wave climate 

(Masselink and Pattiaratchi, 1998a). Beach cusps are uniformly spaced, scalloped­

shaped, shoreline features formed by swash action and are characterized by steep­

gradient, seaward-pointing horns and gentle-gradient, seaward-pointing embayments 

(Plate 3.2) (Inman and Guza, 1982; Miller et al. 1989; Werner and Fink, 1993; Masselink 

et al., 1997; Masselink and Pattiaratchi, 1998b, Masselink, 1999). Cuspate structures are 

common from Topsail through to Long Pond and are occasionally encountered at Lance 

Cove; Stacked sequences are commonly encountered on Topsail Beach and may remain 

unaltered for several years (Plate 3.3). 
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Plate 3.2: Example of a beach cusp, Topsail Beach. 

Plate 3.3: Series of beach cusps along Topsail Beach. 

Cusps have important implications to the form and scale of nearshore circulation 

patterns and/or wave dynamics (Miller et al., 1989). They act as a template for directing 

and concentrating run-up, potentially leading to crest breaching and overwashing and the 

introduction of beachface material onto the back barrier (Carter and Orford, 1984; Orford 
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et al., 1991 ). Their development and persistence can result in the direction and control of 

subsequent overwash and washover spacing (Carter and Orford, 1984). 

In addition to waves, sediment texture and supply characteristics exert considerable 

control on barrier morphology and dynamics (Carter et al., 1987; Klein and Menezes, 

2001). Most coarse clastic barriers are composed of varying mixtures of gravel and sand, 

along-shore, across-shore, and at depth (Forbes et al., 1995) and shore forms of sediment 

organization (Orford et al., 1991). Sorting of clasts by size, shape and composition can 

induce significant effects on the rate of barrier change. According to Carter et al., 

(1987:1788), "lateral variation in barrier facies will lead to modification of barrier slopes, 

which in tum will affect the structure of breaking waves and the morphodynamic status 

ofthe beach-nearshore zone." 

Although "sediment supply is regarded .. . as the main control on barrier morphological 

variation ... this control is regulated by the bathymetric terrestrial basement geometry 

over, and onto, which the coastal sediment is transported" (Orford et al., 1996:590). The 

nature of geologic basement is crucial for both barrier progradation and recession, as it 

controls long-term sediment transport and incident waveform (Orford et al., 1996). For 

example, as a barrier migrates landward, it may encounter basement irregularities that can 

result in disruptions to the sediment supply, causmg accretion updrift and erosion 

downdrift, and can lead to the development of new · wave refraction patterns and 

gradients, leading to locally-enhanced sediment mobility (Orford et al., 1991). Headlands 
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also exert a considerable influence over barrier development, as they serve as hinge or 

anchor points from which barriers form. Their emergence and spacing alters the incident 

wave field, affecting wave refraction and diffraction. They may also act as local sediment 

sources and control the rate and pattern of coastal sediment transport (Carteret al., 1987). 

The integrity of coarse clastic barrier beaches also depends on their ability to maintain 

cross-shore drainage. In some cases, drainage is through channels, which may or may not 

allow tidal exchange (Carteret al., 1987; Orford et al., 1991). Over longer timeframes, 

the development of drainage-related features; such as lagoons, channels and inlets; will 

have a profound effect on barrier evolution, as they influence the mechanisms promoting 

sediment stability and transport direction (Orford et al., 1991). For example, incised 

channels may be deflected by longshore drift, resulting in the reworking of the barrier 

during migration (Carter and Orford, 1984). 

3.8: Communities of Conception Bay South and Holyrood 

Since the end of Second World War, the towns of Conception Bay South and 

Holyrood have become dormitory suburbs of St. John' s (Hyde, 1973; Smallwood, 1981, 

1984; Brown, 1988; Veitch, 1989; Poole, 1991, 1993, 1994). Improved transportation 

networks (construction of the Manuels Access Road, the Conception Bay South Bypass 

Road [Route 2] and the Outer Ring Road within St. John's, have greatly improved 

accessibility) have supported the growth and development of the towns. Conception Bay 

South was designated as a sub-regional centre [an area for residential development 
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supported by a commercial sector to serve local needs (Canning and Pitt Associates, 

2001a)] in the St. John's Urban Regional Plan adopted in 1976, and is meant to be 

"supportive and complementary to the regional centre of St. John's and Mount Pearl" 

(Canning and Pitt Associates, 2000a:6). With their proximity to the provincial capital, 

unique mix of urban and rural characteristics, and accessible coastline and industrial port 

facilities, both communities have become desirable locations in which to live and work 

(Taylor, 1994; Canning and Pitt Associates, 2000a; Marine Institute, 2000; Canning and 

Pitt Associates, 2001a). 

3.8.1: Population Characteristics 

Over the past fifty years the population growth rate in Conception Bay South has 

exceeded that of the province. Historical data indicate that town's population has almost 

doubled every twenty years (Figure 3.4) (Canning and Pitt Associates, 2001a). By 1988, 

Conception Bay South was the third largest municipality and largest town in the province 

(Hochwald and Smith, 1988). Statistics from the 1991 census determined the population 

to be 17 590 (Statistics Canada, 1992). By 1996, the population had increased to 19 265 

inhabitants (Statistics Canada, 1999). The most recent census figures, for 2001, indicate a 

2.6% increase in population to 19 772 (Statistics Canada, 2002). Newfoundland and 

Labrador's fastest growing community for two decades; with a 20.8% population 

increase between 1996 and 2001, the Town of Paradise is currently the fastest growing 

community; the population of Conception Bay South is projected to reach 22 200 by 
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2006, necessitating the construction of 90 to 130 residential units annually (Canning and 

Pitt Associates, 2000a; Marine Institute, 2000). 

Population Growth (1951-2001) Conception Bay South 
and Holyrood, Newfoundland 

25000 r---,---------, 
-+-Conception Bay South 

20000 -II- 1-blyrood 

1940 1950 1960 1970 1980 1990 2000 2010 

Figure 3.4: Population growth (1951-2001) Conception Bay South and Holyrood, 
Newfoundland. (Statistics Canada, 1973, 1982, 1992, 1999, 2002; Taylor, 1994). 

While many communities within Newfoundland and Labrador are losing young 

people and families through out-migration, with the provincial population decreasing 7% 

between 1996 and 2001 (Statistics Canada, 2002), Conception Bay South has continued 

to attract young families. 52.5% of Conception Bay South's current residents are children 

under 15 years of age and adults between the ages of 25 and 44. People over the age of 55 

are also an important component of the population, constituting 18.1% (Statistics Canada, 

2002). The proportion of the population over the age of 40 is expected to increase 

significantly over the next decade, as the population ages and more people over the age of 

55 move into the community (Canning and Pitt Associates, 2000a). 
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Although Holyrood has an area nearly twice that of Conception Bay South, its 

population has historically been considerably smaller and continues to be (Figure 4.1). 

Statistics from the latest federal census of 2001 indicate that Holyrood has a population 

of 1906, down from 2087 in 1996. Interestingly, the population grew slightly between the 

previous census years, as the population was 2075 in 1991. However, this is still below 

the high of2118 inhabitants in 1986 (Statistics Canada, 1992, 1999, 2002). Holyrood has 

also tended to attract families. Of the current population, 40.1% are children under 15 and 

adults between 25 and 44 years of age (Table 4.2). People over the age of 55 constituted 

26.5% of the population (Statistics Canada, 2002). 

3.8.2: Land Use 

With consistent population growth and demand for new housing, as well as an 

improved provincial and regional economy, Conception Bay South has continued in its 

development as a sub-regional_ centre (Canning and Pitt Associates, 2001a). Taylor 

(1994) indicated that over 80% of the developed area in Conception Bay South lies 

within 2 km of the coastline. Over the past decade, rapid urbanization, recreation and 

tourism have become significant economic activities within the community (Canning and 

Pitt Associates, 2001a). The situation is similar in Holyrood, with a number of residential 

and commercial developments situated along the coast (Plate 3.4). Historically, much of 

the area fronting the coastline in these communities was devoted to agricultural and 

fishing activities (Plate 3.5), but in the recent past, these lands have been converted to 
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residential and commercial uses: uses that are much more significantly impacted by storm 

activities and changes in coastal processes. 

Plate 3.4: The backshore of Holyrood Beach today contains numerous residential and commercial 
buildings, often constructed very close to the shoreline. 

Plate 3.5: Holyrood Beach around the tum of the 201
h century: the backshore is dominated by 

agricultural and pastoral activities. 
(photograph courtesy Provincial Archives of Newfoundland and Labrador- P ANL VA 9-73) 
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Chapter 4 
Climate Change and Variability 

4.1: Climate Change and Variability 

Since the end of the last ice age, 10 000 years ago, Canada has experienced both 

warmer and colder climates, although average temperatures have only varied by 1 to 2 °C 

(Folland et al. , 1990; Gullett and Skinner, 1992). Some 6000 years before present, 

average global temperatures were approximately 1 °C warmer than at the beginning of 

the twentieth century and year round precipitation was probably lower (Gullett and 

Skinner, 1992; Phillips, 1993). In the arctic, summer temperatures may have been as 

much as 3 °C higher than present values (Gullett and Skinner, 1992). A second warming 

period occurred between 700 and 1300 AD, when average temperatures were 0.5 to 1 °C 

higher than present. During this period, known as the "Little Climatic Optimum" or the 

"Medieval Warming," sea ice cover extent was reduced, the tree line extended further 

north and the Viking occupation of northern Newfoundland occurred (Gullett and 

Skinner, 1992; Phillips, 1993; Catto, in press). Beginning in the fifteenth century, a 

significant cooling began as temperatures dropped 0.5 °C below present values. During 

this interval, known as the ''Neoglacial" or "Little Ice Age," alpine glaciers advanced to 

the furthest positions since the previous ice age. Along the northern North Atlantic, mean 

temperatures were 1 to 3 °C cooler than those during the preceding warm period and 

precipitation values increased (Francis and Hengveld, 1998; Catto, in press). The years 
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between 1810 and 1820 were the coldest on record, with 1818 the coldest year on 

Newfoundland's Avalon Peninsula (Catto, in press). 

With regards to recent climate trends, analysis of Canadian mean annual temperature 

departures from 1895 to 1991 indicates a statistically significant increase of 1.1 oc. 

However, this increase was not steady as there was a substantial amount of temperature 

variation within the past 100 years (Gullett and Skinner, 1992). Temperatures increased 

throughout the country from the late 1800s to the mid-1940s, after which a gradual 

cooling was evident. Temperatures began rising again in the late 1970s and approached 

values not experienced since the Medieval Warming period (Gullett and Skinner, 1992). 

Environment Canada national temperature departure statistics indicate that seven of the 

ten warmest years on record have occurred since 1980, four since 1998. Based on annual 

national temperature departures for the period 1948-2002, the warmest ten years in 

Canada have been: 1998, 1981, 2001, 1999, 1987, 1953, 1952, 2000, 1977 and 1998. The 

warmest year, 1998, was 2.5 oc above normal (Climate Trends and Variation Bulletin, 

Environment Canada). However, climate records for Atlantic Canada indicate that its 

pattern of temperature change does not follow the general trend seen in the interior of 

North America, particularly over the last forty years (Pocklington et al., 1994; Jacobs and 

Banfield, 1996; Morgan and Pocklington, 1997). The ten warmest years in Atlantic 

Canada for the period 1948-2002 have been 1999, 1953, 1951, 1998, 1981, 1952, 1979, 

1960, 2001, 1983 (Climate Trends and Variations Bulletin, Environment Canada). 

Pocklington et al. (1994), in a detailed analysis of mean surface air temperatures of the 
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region, show that although a warming trend is evident in the region starting in 1895, it 

peaked in the mid-1950s, nearly a decade later than the rest of Canada, and was followed 

by a cooling trend which is still evident. Analysis of records for St. John's, 

Newfoundland show a similar pattern, with a general rise during the first half of the 

twentieth century, a peak near 1950, followed by a general decline in temperature 

(Pocklington et al., 1994). 

The greatest increase of warming within Canada between 1895 and 1991 occurred in a 

broad band extending from the Mackenzie River Valley (a warming of 1.3 oc over the 

last century) through the Prairie Provinces (an overall warming of 0.9 °C) (Gullett and 

Skinner, 1992; Lewis, 1997). In contrast, Atlantic Canada temperatures only increased by 

0.4 °C during the same time period and were characterized by an overall cooling of 0. 7 

ac between the years 1948 and 1991 (Gullett and Skinner, 1992; Pocklington et al., 1994; 

Lewis, 1997). On a seasonal basis, summers became slightly warmer (+0.5 °C mean), 

autumns cooler ( -0.8 ac mean) and winters substantially colder ( -2.2 ac mean) (Lewis, 

1997). Sea surface temperature trends in Atlantic Canada followed a similar pattern as the 

general surface air temperature patterns and data from coastal stations around the 

northern North Atlantic (Greenland, Ireland, Great Britain) lend further support to this 

cooling trend, indicating that the cooling experienced in Atlantic Canada is not a 

localized phenomenon (Pocklington et al. , 1994; Morgan and Pocklington, 1997). As 

Gullett and Skinner's ( 1992) analysis of Canadian temperature trends shows, temperature 

changes are not temporally or spatially uniform and it is crucial to remember that this 
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future climate change will not be evenly distributed geographically and some regions 

may in fact experience a seemingly contradictory cooling. The possibility of continued 

regional cooling in Atlantic Canada under general conditions of global warming exists 

(Jacobs and Banfield, 1996). Although global warming will not affect all areas of the 

earth, the effects will, and evidence from the Climatic Optimum suggests that the greatest 

impact of any change will be felt in the mid to high latitudes of the Northern Hemisphere 

(Kemp, 1991). 

4.2: Variable Storminess and Extreme Events 

Although most studies on climate change have focused on the changes in average 

climatic conditions, global climate change is also likely to cause changes in climate 

variability and extreme events, those events that are rare both in their intensity and 

frequency of occurrence (Bijlsma et al., 1996; Hengeveld, 2000; Schneider et al., 2001). 

Temporal variations in storminess, including possible increases in storm frequency or 

intensity, wind climatology, and wave patterns can be expected to have significant effects 

on rates of coastal erosion and risks of storm surge flooding (Forbes et al., 1997; Mclean 

et al., 2001). Omitting changes in extreme events and/or climate variability will likely 

underestimate climate change impacts and vulnerability (Schneider et al., 2001). 

In Atlantic Canada, the main types of extreme events are maJor storms such as 

extratropical cyclones (nor'easters), tropical cyclones (hurricanes), or severe weather, and 

their associated phenomena such as storm surges and extreme waves (Abraham, 1997). 
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Recent modelling experiments suggest that cyclone frequencies could change with 

climate warming, although there appears to be little change in storm tracks (Lambert, 

1995, 1996; Canavan, 1997). For example, the Canadian Climate Centre's general 

climate model (GCM) indicates that under a doubled C02 atmosphere, there will be an 

overall decrease in the number of cyclone events, but an increase in the number of 

extreme events (Lambert, 1995; also work by Bengtsson et al., 1996). With subsequent 

research indicating that climate warming would result in increases to both storm 

frequency and magnitude (Lambert, 1996). 

4.2.1: Nor'easters 

The main type of extratropical cyclonic storm to affect Atlantic Canada is the 

nor' easter, named after the direction from which the wind blows during . these events 

along the U.S. Eastern Seaboard (Davis and Dolan, 1993). They form off the eastern 

United States and track in a northeasterly direction through the Gulf of St. Lawrence, 

directly over the Island of Newfoundland or over the Grand Banks. Others form in the lee 

of the Rocky Mountains in Alberta and track over northern Newfoundland and Labrador. 

Occurring at any time of the year, nor' easters are most frequent in late autumn/early 

winter (Davis and Dolan, 1993; Griffiths, 2001). 

Studies on extratropical storm frequency and variability in the Atlantic have generally 

indicated that there is a notable degree of interannual and interdecadal variability (Dolan 

et al., 1988; Abraham, 1997; Forbes et al., 1997; Mclean et al., 2001). Davis and Dolan 
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(1993) indicate that the occurrence of nor' easters between 1942 and the mid-1960' s 

declined by approximately 22%. Since then, their occurrence has been erratic and below 

pre-1965 levels, although the number of very powerful nor' easters has increased. Seven 

of the eight most extreme storms that developed between 1942 and 1992 occurred after 

1968. These findings are supported by Lambert (1996), who analyzed intense 

extratropical northern hemisphere winter cyclone events from 1899 to 1991 and also 

found that the number of intense cyclones increased dramatically after 1970. Lambert 

also found that between 1961 and 1991 , there was an increase in intense cyclonic activity 

over Davis Strait, off Labrador and over the Island of Newfoundland. 

Nor'easters are responsible for much of the storm modification of beaches along 

Conception Bay (Catto, 1999, in press). A strong nor' easter in late September- early 

October 1992, led to significant modification of beach systems in Conception Bay South 

and resulted in substantial cliff erosion behind the Topsail United Church (Liverman et 

al., 1994). Further modification and erosion resulted from weaker, although significant, 

storms in the fall of 1994 (Catto, 1999, in press). 

4.2.2: Hurricanes 

Hurricanes form west of the African continent, intensify as they move westwards 

towards the Caribbean and then tract northwestward towards the U.S. East Coast before 

weakening over the colder waters of the North Atlantic. The typical hurricane season 

extends from June through November, with the greatest probability of occurrence in 
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September. On average, ten tropical storms form each year in the Atlantic Ocean, of 

which, five reach hurricane strength. However, only one or two storms a year pass 

through Canadian waters (Table 4.1) (Griffiths, 2001). 

The record of tropical storms in the western North Atlantic extends back to 1871, and 

shows a considerable variation in the annual frequency, and in the frequency of storms 

travelling through Atlantic Canada (Manson and Parks, 2001). For example, in general, 

between the years of 1931 and 1985, there was a 30% decrease in cyclone frequency in 

the Canadian Maritimes and New England States (Canavan, 1997). During the 1950s and 

1960s overall hurricane frequency was quite high, while between 1970 and 1987 there 

was a relative decrease in overall hurricane activity. In 1988 and 1989 hurricane activity 

again increased (Goldenberg et al., 1997). However, the following years of 1991 to 1994 

experienced the quietest tropical cyclone activity on record in terms of frequency of 

tropical storms, hurricanes, and intense hurricanes (Landsea et al., 1996). This was 

followed by the 1995 and 1996 hurricane seasons, which saw an increase in the average 

number of storms (Landsea et al., 1996; Francis and Hengeveld, 1998). In fact, 1995 was 

considered one of the busiest hurricane seasons of the previous 50 years (Landsea et al., 

1996). Despite 1995's unusual amount of activity, it capped a five decade downward 

trend in the frequency of intense hurricanes and maximum wind speeds and a 25 year 

decline in overall hurricane frequency (Landsea et al., 1996; Francis and Hengeveld, 

1998). In 1997, no hurricanes struck Atlantic Canada and the subsequent years of 1998-
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Table 4.1: Significant hurricanes, tropical storms, nor'easters and winter storms (1989- 200 l) to impact eastern Newfoundland. 

Date(s) over Maximum Date 
Storm Name Type Dates Newfoundland Wind Speed Attained Impacts 

Dean H July 31 -Aug. 9, 1989 Aug. 9 169 km/h Aug. 7 Newfoundland not impacted. 

Maritime Provinces received strong winds. 
Hugo H Sept. 10- 25, 1989 N/A 217 km/h Sept. 15 Beaches modified along Cape Shore and Burin 

Peninsula. 

Caused strong winds in Nova Scotia and 
Lili H Oct. 6- 15, 1990 Oct. 15 120.5 km/h Oct. 11 - 13 Newfoundland. Made landfall as an extratropical 

storm near Lamaline and Argentia . 

Strong winds felt in Atlantic Canada. Storm 
Bob H Aug. 16-29, 1991 Aug. 21 185 km/h Aug. 19 modified beaches along Cape Shore, South Coast 

and Trepassey Bay. 

Caused widespread damage from Florida to 
Newfoundland. Many boats, wharves and coastal 

Perfect or Hallowe'en 
properties were flooded or damaged. The highest 

Storm 
H Oct. 28- Nov. 2, 1991 N/A 120 km/h Nov. 1 waves ever recorded on the Scotian Shelf (30.5 

m+) were reported during the storm. Beaches 
along the South Coast, Cape Shore and 
Conception Bays modified. 

Beaches in Conception and Trinity Bays and on 
Southern Shore affected. Barrier beach in Long 

October Nor'easter N Oct. 2-7, 1992 Oct. 2- 7 74 km/h Oct. 7 
Pond breached causing significant damage to the 
Royal Newfoundland Yacht Club. Severe erosion 
noted in Chamberlains and Topsail, Conception 
Bay South. 

October Nor'easter N Oct. 12-14, 1994 Oct. 12-14 65 km/h Oct. 13 
Beaches in Conception and Trinity Bays and on 
Southern Shore modified. 

Passed just south of the Avalon Peninsula on 
August 22. Southeastern Newfoundland received 

Felix H Aug. 8 - 25, 1995 Aug. 22 222 km/h Aug. 12 15-40 mm of rain. Maximum wave heights of 15-25 
m reported. Beaches along South Coast, Cape 
Shore and St. Mary's Bay modified. 



Date(s) over Maximum Date 
Storm Name TyQ_e Dates Newfoundland Wind Speed Attained Impacts 

Early on September 11, Luis crossed the Avalon 

222 km/h Peninsula dumping 60-120 mm of rain. Severe 

( 92-130 km/h 
damage to property resulted on the Burin and 

Luis H Aug. 26 - Sept. 12, 199E Sept. 11 Sept. 3-5 Bonavista Peninsulas. Maximum wave heights of 
over eastern 30 m reported by the Queen Elizabeth II luxury liner 

Newfoundland) and Canadian NOMAD buoy 44141 . Beaches in St. 
Mary's Bay and along the South Coast modified. 

Opal H Sept. 27- Oct. 6, 1995 N/A 241 km/h Oct. 4 
Beaches in St. Mary's and Trepassy Bays and 
along the South Coast modified October 4 to 6. 

Saros w Dec. 10, 1995 Dec. 10 81 km/h Dec.10 
Beaches along South Coast and St. Mary's Bay 
modified. 

Hortense H Sept. 3 - 16, 1996 Sept. 16 222 km/h Sept. 13 
Beaches along South Coast modified. Winds 
reached 120 km/h in Atlantic Canada. 

Gale and storm warnings were issued by both the 
Bill H July 11 - 13, 1997 July 13 120 km/h July 12 Maritime and Newfoundland Weather Centres for 

southern marine waters. 

A maximum windspeed of 74 km/h with gusts of 

Bonnie H Aug. 19- 20, 1998 Aug.30 185 km/h Aug. 24 100 km/h was recorded on the southwestern Grand 
Banks. Maximum significant wave heights of 14.4 
m were recorded. 

A maximum wind speed of 85 km/h with gusts of 
115 km/h was recorded on the southwestern Grand 

Danielle H Aug. 24 - Sept. 4, 1998 Sept. 3-4 165 km/h Aug. 27 
Banks. A wind speed of 93 km/h was recorded at 
the Hibernia drilling site. A rainfall advisory was 
issued by the Newfoundland Weather Centre for 
both the Avalon and Burin Peninsulas. 

April Storm w 1999 N/A N/A N/A Beaches in Conception Bay modified. 

Over the southern Grand Banks, peak winds of 11 5 
Cindy T Aug. 19- 31 , 1999 N/A 115 km/h Aug. 28 km/h and maximum wave heights of 16.7 m were 

reported. No singnificant effects were felt over land. 



Date(s) over Maximum Date 
Storm Name Type Dates Newfoundland Wind Speed Attained Impacts 

Floyd Hff Sept. 7-17, 1999 Sept. 19 83 km/h Sept. 13 
Maximum seas of 8 -9 m reported. Beaches along 
Cape Shore and Conception Bay modified. 

High waves (approximately 24 m) and surf caused 

Gert H Sept. 11 - 23, 1999 Sept. 23 125 km/h Sept. 16 
more than $1 .5 million of damage and property 
losses, particularly at St. Brides, Placentia Bay. 
Beaches along the southern Cape Shore modified. 

Harvey T Sept. 21 - 23, 1999 Sept. 23 93 km/h Sept. 21 

Maximum winds were near 98 km/h with gusts of 
117 km/h measured along the east coast of 
Newfoundland. Rainfall amounts for eastern 

Irene H Oct. 13- 19, 1999 Oct. 19- 20 98 km/h Oct. 18 Newfoundland were between 40 and 70 mm. 
Maximum waves of 14.8 m were reported. Beaches 
along southern Cape Shore and Burin Peninsula 
modified. 

January Storm w January 21 - 23, 2000 N/A N/A N/A 
Beaches on South Coast and Burin Peninsula 
modified. 

Leslie T Oct. 4 - 8, 2000 Oct. 9 65 km/h Oct. 6 
Rainfall amounts over eastern NFLD averaged 20 -
30mm. 

Hurricane Michael made landfall near Harbour 
Breton, Newfoundland during the evening of 
October 19. It was the first hurricane to make 
landfall in the province since Luis in 1995. A peak 
gust of wind of 170 km/h was reported at St. 

Michael H Oct. 15 - 19, 2000 Oct. 19 128 - 150 km/h Oct. 19 Lawrence on the Burin Peninsula. Rainfall amounts 
of 20-75 mm were recorded. Significant wave 
heights of 7-8 m, with a peak wave height to 16.9 
m, were recorded at buoy 44139. There were 
numerous reports of damages, mainly due to high 
winds. 

Dean T Aug. 22 - 28, 2001 Aug. 27-28 102 km/h Aug.27 
Bonavista reported 107 mm of rain between August 
27 and 28. 
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Date(s) over Maximum Date 
Storm Name Tvoe Dates Newfoundland Wind Speed Attained lmoacts 

Maximum wind speeds were estimated at 130 km/h 
with significant wave heights of 9.3 m. The 

Erin H Sept. 1 - 15, 2001 Sept. 14 194 km/h Sept. 10 maximum recorded wave height, at buoy 44251, 
was 14.4 m. Heavy rains reported across 
Newfoundland. 

Rainfall records were recorded with between 100 
and 175 mm of rain falling over the Avalon 
Peninsula, most of which fell over a six hour period. 
Wind gusts in excess of 130 km/h were recorded at 

Gabrielle T Sept. 11 - 19, 2001 Sept. 18 -1 00 km/h Sept. 17 
Cape Race. Significant wave heights reached 11 
m. There were major flooding problems and road 
washouts in St. John's. Declared as "the worst 
storm in 100 years," the mayor of St. John's 
activated the city's Emergency Preparedness 
Program. 

H - Hurricane N - Nor'easter N/A - Storm track did not pass directly over the Island of Newfoundland 

T - Tropical Storm W - Winter Storm 

(Catto, 2000; Canadian Hurricane Centre, Environment Canada, 2002; National Hurricane Centre, National Oceanic and 
Atmospheric Administration, 2002) 



2001 were characterized by average conditions. Although hurricanes seldom reach 

Newfoundland because of the cold waters of the North Atlantic, on average, 

approximately three tropical storms a year threaten Atlantic Canada (Hickey, 1996). 

Hurricane activity in the Newfoundland region has been relatively moderate, with 

similar shoreline morphology patterns over the past twenty years. However, in 1995, the 

enhanced frequency of hurricanes (Hurricanes Felix, Luis, and Opal affected significant 

portions of the southern Avalon Peninsula) caused southwesterly winds to be particularly 

effective in modifying the coastline (Catto, 1999, in press). Strong southwesterly winds 

frequently generate northeast counterwinds at sea-level, resulting in high waves and 

beach modifications. They are particularly effective agents of coastline change if they 

arrive prior to the formation of sea and landfast ice (Catto, in press). The absence of 

hurricanes in 1997, for the first time since 1961, precluded substantial coastal 

modification (Catto, 1999; in press). The most recent tropical cyclones to significantly 

affect the Avalon Peninsula include Felix (1995), Luis (1995), Opal (1995), Hortense 

(1996), Floyd (1999), Gert-Harvey (1999), Irene (1999), and Michael (2000). Hurricane 

Michael marked the first time since 1996, although the third time since 1995, that a 

hurricane made landfall in Atlantic Canada (hitting near Harbour Breton, Newfoundland) 

(Canadian Hurricane Centre, Environment Canada). In 2001, Tropical Storm Gabrielle 

caused considerable damages in the St. Jolm's region. 
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Chapter 5 
Methodology 

Geomorphological mapping is an important tool in hazard assessment and in planning 

cost-effective, efficient and environmentally sensitive infrastructure improvements 

(Petley, 1998). It represents a proven method for collecting data on the location and 

nature of geomorphological hazards, as it identifies those areas where natural hazards 

have previously occurred and/or are likely to occur in the future. Thus, geomorphological 

hazard mapping serves two important purposes. First, it allows the location of the most 

hazardous areas to be ascertained, thus permitting better land use decision-making. 

Second, it allows the nature of any geomorphological hazards to be considered when 

construction is planned (Petley, 1998). 

5.1: Geoindicator-Based Shoreline Mapping 

Geoindicators are observable landscape responses and indicators of rapid 

environmental change at tim esc ales of less than 100 years. They provide convenient and 

effective tools for assessing changes in the landscape resulting from natural processes or 

human actions (Berger, 1997, 1998). The geoindicator approach is based on standard 

methods (both qualitative and quantitative) for measuring geochemical, geophysical, and 

geomorphological processes. It aims to synthesize for any particular area, all the 

contemporary geological changes that might be significant for environmental assessments 

(Berger, 1997, 1998). 
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A major geoindicator in the coastal zone is shoreline position (Figure 5.1) (Morton, 

1996). This varies over a broad range of time scales in response to sediment erosion and 

deposition, changes in water level, and land uplift and subsidence. Changes in shoreline 

position affect transportation routes, coastal infrastructure, communities and natural 

ecosystems. A number of geomorphological features provide clues to the active physical 

processes of a shoreline, its natural history and associated natural hazards. The detailed 

shape and sedimentary character of a beach (e.g. beach slope, cusp dimensions, bar 

position and morphology, barrier crest and berm elevation, sediment size and shape) are 

highly sensitive to oceanographic forcing, such as deep-water wave energy, nearshore 

wave transformation, wave setup, storm surge, tides and, nearshore circulation patterns 

(U.S. Global Change Research Information Office website). As a result, they are 

supplementary indicators of shoreline movement (Morton, 1996). 

Shoreline Position 

High Tide Level 

Low Tide Level 

Figure 5.1: Illustration of the shoreline position geoindicator. For this study, the backshore was 
considered to be the area that extended landward from the cliff-line and active beach interface. 

Foreshore was the area that extended from the cliff-line to the low tide level. Nearshore (offshore) 
was the area that extend seaward from the low tide level. 
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Literature review of 
geoindicator-based hazard 

assessment. 

+ 
Determination of 

Pilot study to determine 
effectiveness of chosen 

appropriate geoindicators geoindicators in identifying 
on which mapping is to be sensitive locations within 

based. study area. 

• J Geomorphological field 
mapping at a scale of 1:12 

500. 

+ 
Division of coastline into 
coastal segments based 

on geoindicators/ 
morphology . 

• 
Analysis of interaction 

Desk study to identify 
areas that have 

Examination and between coastal 
experienced 

intepretation of data. processes and 
erosion/flooding problems 

morphology. 
in the past. 

Creation of specific 
nearshore. foreshore and 

backshore morphology 
maps . 

• Allocation of hazard 
sensitivity scores to 
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characteristics . 

• Amalgamation of hazard 
scores for each coastal 

segment. 

• .I Construction of hazard 
sensitivity maps. 

+ 
Review of morphology 

maps and hazard 
sensitivity assessment 

maps . .. 
Final map. 

Figure 5.2: Flow diagram illustrating the procedure for the production of a 

geoindicator-based hazard assessment map (modified from Petley, 1998:192). 
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Critical observation of these features can help assess the relative intensity of various 

processes that have acted in the past and can therefore provide an indication of the level 

of safety or risk a particular location has (Young et al., 1996). For example, site elevation 

is a key indicator of susceptibility to inundation (Young et al., 1996), while barrier crest 

height on gravel-dominated systems is directly related to wave run-up, overtopping and 

overwashing processes (Forbes and Liverman, 1996). Beaches that form features such as 

spits or bayrnouth barriers (barachoix), with open water on both sides of the landform, are 

potentially susceptible to overwash, flooding or erosion. Inlets are often unstable and 

liable to migrate, posing a risk of erosion on nearby shores (Young et al., 1996). 

Vegetated washover fans suggest a stable shoreline, and thus a lower-risk area, although 

they could have a future risk of overwash. Vegetated hillslopes reduce surface flow rates 

during storms and also lower erosion potential (Young et al., 1996). 

Detailed evaluation of the Conception Bay South - Holyrood coastline for the 

purposes of creating coastal hazard sensitivity maps was based on the geoindicators 

approach (Figure 5.2). Field mapping was undertaken using a modification of the 

geoindicator-based assessment of shoreline change developed by Young et al. 

(1996:Tables 1 and 2) (Tables 5.1 and 5.2). They developed a checklist of geoindicators 

to be used for the qualitative assessment of shoreline erosion or accretion, for qualitative 

shoreline monitoring and for the evaluation of other potential coastal hazards. Their 

system allows sites to be evaluated quickly and effectively, particularly where 

quantitative data are absent. Shoreline change is evaluated using a visually-assessed 
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checklist based on specific geomorphic and vegetation indicators, thus providing solid 

documentation of when, where and to what degree change is occurring (Young et al., 

1996). The checklist is biased towards eroding, storm-impacted systems such as barrier 

islands and unconsolidated shorelines and as such is ideally suited to the Conception Bay 

South-Holyrood coastline. Initial field assessments were conducted between September 

30 and October 16, 2000. Additional fieldwork was conducted in November 2000, June 

and July 2001. 

Table 5.1: Conception Bay South coastal hazard assessment site evaluation form. 

Parameter High Risk Moderate Risk Low Risk 

Site elevation 1-5m 6-15m >15m 

Beach width and slope 1-5m: narrow and flat 
6-1 Om: wide and flat or >10m: wide with well 

narrow and steep developed berm 

Beach material type and 
unlithified sand to cobble 

Unlithified cobble to 
lithified 

size boulder 

Beach thickness 
backshore vegetation - -exposed on beach 

Overw ash 
overw ash apron (frequent overw ash fans 

no overwash 
overw ash} (occassional overw ash} 

bare face, recent or no talus Vegetated face and well-
bluffs vegetated with 

Cliff configuration 
ramp (severe to slow erosion) developed ramp (stable} 

vegetated ramp at toe 
(accreting) 

lots and close to beach *man- some and more removed 
little to none or on high 

Infrastructure made structures now on from beach or on middle 
ground 

beach or offshore ground 

well-established shrubs 
mature vegetation, 

little vegetation or toppled and grasses, none 
forested , no evidence of 

Vegetation on site vegetation, overw ash fans toppled; herbaceous 
erosion; overw ash fans 

unvegetated vegetation on overw ash 
well vegetated 

fans 

Distance tow aterbodies very close (flood potential) within sight distant 

Area landward of site lagoon, marsh or swamp 
floodplain. low elevation 

upland 
terrace 

Drainage poor moderate good 

Coastal shape concave or embayed straight convex 

Natural offshore 
none. open water offshore boulders 

limited fetch, offshore 
protection boulders 

Offshore shelf wide and shallow moderate steep and narrow 
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Table 5.2: Modifications made to the geoindicator-based assessment of shoreline change 
developed by Young et a/.(1996: Tables 1 and 2). 

Parameter MOOitiCatiOn 

Site evaluation 
Values were changed to more accurately reflect vulnerable elevations in Eastern 
Newfoundland. 

This parameter was omitted as the checklist incorporated geoindicators for dune 
Shoreline change rating coastlines. Dunes are not present along the southern Conception Bay coastline. 

from Table 1 Geoindicators that were applicable were combined into the coastal hazard assessment 
site evaluation. 

Beach width, slope and 
This parameter was divided into two categories, beach width and slope and beach 

thickness 
thickness. The beach thickness description was changed from "mud, peat or stumps 
exposed" to "backshore vegetation exposed on beach." 

Overwash No change. 

Site position relative to inlet 
Changed to "distance to waterbody." 

or river mouth 

Dune configuration Omitted as dunes are not present along the southern Conception Bay coastline. 

Bluff configuration 
Low risk descriptor changed from "low angle (large ramp), mature cover of vegetation" to 
"bluffs vegetated with vegetated ramp at toe." 

Coastal shape Omitted due to small size of study area and uniform coastal shape. 

Vegetation on site No change. 

Drainage No change. 

Area landward of site No change. 

Moderate risk descriptor changed from "frequent bars offshore" to "offshore boulders 
Natural offshore protection present." Low risk descriptor changed from "submerged reef, limited fetch" to "limited 

fetch, offshore boulders." 

Offshore shelf Omitted. 

Beach material type and 
Parameter added to coastal hazard assessment site evaluation form. 

size 

Infrastructure Parameter added to coastal hazard assessment site evaluation form . 

5.2: Description of Geoindicators 

Geoindicators selected for field evaluation of the Conception Bay South-Holyrood 

coastline were chosen based on their applicability for assessing coastal hazards; 

specifically those that influence or are influenced by natural coastal processes. For 

example, site elevation is directly related to susceptibility to innudation, as low-lying 

areas are subject to destructive wave attack, overwash, and stom1-surge flooding. Higher 

elevations protect coastal areas from the direct impacts of waves and sea ice (Young et 

al., 1996; Sheppard, 1997). 
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Distance to lagoon, in conjunction with site elevation, is related to flooding potential 

as the barrier beach in front of the lagoon is often low in elevation and likely to be 

overwashed, flooded or eroded. As well, if a lagoon outlet is blocked, flooding potential 

in the back-barrier area increases. 

Bathymetric slope influences wave and sea ice climate. Relatively steep bathymetry 

allows higher waves to impact the coastline and also allows sea ice to reach the shore, 

potentially causing flooding (due to ice jams) and physical damage to infrastructure. Low 

slopes cause waves to dissipate further offshore, thus reducing their direct impact on the 

coastline, as well as preventing ice from reaching the shore (Sheppard, 1997). 

Beach material type and size are important as bedrock coastlines are more resistant to 

erosion than unlithified sediments. Clast size ofunlithified sediments is also important, as 

smaller clasts (sand and pebbles) are easily eroded and transported by wave action. 

Higher wave energy is required to move larger sediments. 

Wide beach areas (beach width) absorb the majority of wave energy and can prevent 

the movement of ice to back-beach areas. Overwash fans or aprons along the backside of 

a barrier indicate overtopping by storm waves, with aprons indicating more frequent 

overtopping events. 
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Unlithified cliffs may be undercut by waves, resulting in cliff edge retreat (cliff 

status). Cliff failures produce talus cones at the base of the cliff, slowing down wave 

attack. However, as the cone is eroded, stability is reduced and cliff failure is repeated. 

Unvegetated talus cones on the beach indicate active backshore erosion processes. 

Vegetated talus cones suggest current stability, but indicate past instability. 

The presence of vegetation is an indicator of coastal stability and lower hazard 

potential,- as well-developed grasses, shrubs and trees on the backshore suggests little 

erosion has occurred. Leaning or toppled vegetation indicates active erosion processes, 

while sparsely vegetated back-barrier fans are indicative of active overwash processes. 

Vegetation also reduces surface flow rates during storms, further reducing erosion. 

Therefore site drainage is an important parameter, with good drainage suggesting lower 

risk. The presence of backshore vegetation exposed on the beach face is directly related 

to active foreshore erosion as it means that the land-water interface has migrated 

landwards over the former backshore (terrestrial) environment. At the time that the 

vegetation initially developed, the foreshore was seaward of its current position (Figure 

5.3). 
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Figure 5.3: illustration of beach thickness geoindicator. (A) Stable foreshore and backshore 
environment, with abundant backshore vegetation. (B) Landward migration of beach sediments 

over the backshore environment burying vegetation. Continued migration results in the exposure 
of former backshore vegetation in the foreshore environment. 

The amount of infrastructure along a coastline increases the impact of coastal hazards, 

particularly if they are located close to the land-water interface. Flooding, erosion, waves 

and sea ice can have a direct impact on infrastructure. 

In terms of natural protection, offshore boulders afford protection against erosiOn 

processes through dissipation of incoming wave energy. Wave action IS the primary 

process controlling coastal morphology, sediment redistribution and biota in the shore 

zone. 

Fetch distance determines the size of waves that can strike a coastline. Greater fetch 

distances result in higher wave energy and thus larger waves, which have a more 

pronounced effect on the shoreline in terms of increased erosion potential and damage to 

infrastructure. Therefore, shorter fetch distances provide a degree of protection from 
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significant wave damage. Wind direction (frequency) and strength, along with an 

extensive fetch distance, may enhance the effects of waves and ice on the coastline. 

5.3: Evaluation of Geoindicators 

Site Slope 

Site elevation was based on numerical slope gradients (measured in degrees) derived 

from contour interval data using simple trigonometric calculations made on 1 :2500 

topographic map sheets. Tan angles were calculated for a series of transects constructed 

normal to the shoreline. Transects were spaced approximately 12 to 25m apart depending 

on continuity of coastal morphology. The landward extent of transects varied depending 

on location, but usually ended at the 10 m contour interval. On barriers, transects 

extended to the highest contour interval. Along coastal bluffs transects extended to the 

break in slope at the top ofthe bluff or to the T'railway (a province-wide recreational trail 

system that follows the former Newfoundland Railway line) where it bordered the 

coastline. Similar successive values were averaged together for simplicity. Individual 

transect values that were significantly different from the values of adjacent transects were 

not included in the average and were mapped as separate data points. 

Bathymetric slope 

Bathymetric slope angles were calculated from transects constructed normal to the 

shoreline on 1:15 000 and 1:60 000 hydrographic charts the same way they were 

calculated for site slope. On the 1:15 000 hydro graph charts (Fox trap and Holyrood 
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Marinas and wharf at the Holyrood Generating Station), transect were spaced every 50 m 

and extended to the -2 m bathymetric depth interval. On the 1 :60 000 hydrographic 

charts, transects were spaced every 450 m and extended to the -5 m depth interval. 

However, steeper nearshore bathymetry resulted in exceptions at the Holyrood 

Generating Station (to-10m depth interval), from the Holyrood Generating Station to 

the Ultramar storage facility (to -20 m depth interval) and from the Ultramar storage 

facility to the end of the study area (to - 10 m depth interval). 

Beach width 

Beach width was based on values obtained from beach profiles constructed using the 

Emery pole surveying methodology (Emery, 1961 ). 

Beach material type and size 

Beach material type and s1ze was categorized as either 1ithified or unlithified. 

Unlithified segments were classified according to a field estimation of clast size, (sand, 

pebble, cobble, boulder) based on the Udden-Wentworth grain size classification scheme 

(Wentworth, 1922), and distribution. 

Beach thickness 

Beach thickness was visually noted in the field as the presence or absence of 

backshore vegetation (turfed ground) exposed on the beach face. As no measurements 
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were made from an established datum, absolute values of beach thickness were not 

derived. 

Overwash 

Overwash was visually noted in the field as either present or absent. If present, a 

further distinction was made between washover fans and aprons (amalgamated washover 

fans). Prese11ce of vegetation on overwash fans and aprons was also noted. 

Area landward of site 

Backshore areas were classified as lagoon, marsh, low elevation plain or upland for 

the purposes of defining unique coastal segments. 

Cliff configuration 

Composition of cliffs/upland areas was noted as being either lithified or unlithified. 

Unlithified cliffs were evaluated as having bare faces with cliff sediments present on the 

beach (presence of a talus cone), or vegetated faces with either a non-vegetated or 

vegetated talus cone on the beach. 

Vegetation on site 

Vegetation on site was visually assessed in the field by presence or absence, type 

(herbaceous versus arboreal), and status (well established or toppled). Specific plant 

species were not noted. 
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Drainage 

Site drainage was visually assessed in the field as good, moderate, or poor. 

Classification was based on lagoons having or not having an outlet, whether these outlets 

were open, presence of standing water, and the status of watercourses and marshes. 

Distance to waterbodies 

Distance to waterbodies was a qualitative measure of site proximity to a lagoon, marsh 

or watercourse, used for the purposes of defining unique coastal segments. It allowed 

coastal segments with laterally extensive morphologic continuity to be subdivided into 

smaller segments. It was insignificant in differentiating hazard sensitivity and was 

therefore not included in the sensitivity assessments. 

Infrastructure 

Presence of infrastructure in the backshore was classified qualitatively as "abundant," 

"some," and "little to none." Infrastructure type and proximity to the foreshore were also 

noted, as was the presence of man-made structures now on the beach or offshore. As 

well, the presence and type of erosion control measures, such as seawalls or riprap, was 

also recorded in the field. A more detailed evaluation of backshore infrastructure, 

particularly around lagoons, was made after the initial field investigation using 1:12 500 

black and white aerial photographs (1985-1986) and 1:12 500 colour aerial photographs 

(1995). 
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However as hazards are geologic processes that can potentially injure or damage 

human life and infrastructure, the amount of infrastructure present in a particular coastal 

segment will not affect whether processes such as erosion or flooding occur (except in the 

case of protective works such as seawalls or dykes). As the purpose of the hazard 

sensitivity assessment is to determine the susceptibility of any coastal segment to the 

effects of erosion or flooding, only the presence of protective works was included in the 

analysis. 

Natural offshore protection 

Natural offshore protection was visually noted in the field by the presence or absence 

of offshore (nearshore) boulders. Coastal segments sheltered by Bell, Little Bell and 

Kelly's Islands were also noted as having a limited fetch. Additional quantitative 

measurements of fetch were subsequently made. Effective fetch distance for each unique 

coastal segment was calculated from 1:50 000 topographic maps based on direction of 

incidence [shore normal, and shore oblique ( 45° right and 45° left)] and azimuth. 

However, similarity in azimuth and effective fetch data values determined through these 

calculations for the majority of coastal segments led to the exclusion of the fetch 

geoindicator in the sensitivity assessments. 

5.4: Construction of Hazard Sensitivity Maps 

The basic concept underlying the field mapping procedure follows that of Howe et al. 

(1994) in that the shore zone was subdivided and described in terms of the systematic 
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collection of physical characteristics (geoindicators). This approach to mappmg IS 

descriptive in nature (functional relationships are not incorporated into the classification 

scheme) and allows non-technical users of the data to recognize the basic nature of the 

shoreline. 

Geoindicator data collection and field mapping (using Table 5.1) involved walking 

the Conception Bay South-Holyrood coastline and subdividing it into unique segments 

based on along-shore and across-shore morphologic continuity. This resulted in the 

creation of 65 distinct coastal segments. Morphologic continuity was fundamental to the 

creation of unique coastal segments, as a change in one or more along-shore components 

(i.e., a change in form, texture, elevation or vegetation status) defined a new segment 

(Plate 5.1 and 5.2). Segment boundaries were mapped in the field on 1:12 500 black and 

white aerial photographs. Additional data on infrastructure were subsequently collected 

from aerial photographic interpretation, although they were later determined not to be 

particularly useful to the final hazard sensitivity evaluation and were not included. 
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Plate 5.1: This photograph illustrates a simple alongshore variation is sediment texture: coarse­
grained sediments (cobble to boulder) characterize the western side of the beach (left 

middleground), while the eastern side has a significant amount of sand present (right foreground). 
This is segment 8383.5 - 8843.5 min Kelligrews. 

Plate 5.2: This photograph illustrates a more subtle change between two coastal segments. fu this 
case, slight differences in elevation (the middle section, denoted by arrows, is lower that the 

surrounding landscape). The middle section is segment 6342.5-6411.5 min Foxtrap. 
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To create the hazard sensitivity maps, the various parameters of Table 5.1 were 

classified as either a nearshore, foreshore, or backshore geoindicator (Table 5.3). The 

morphologic information for each specific nearshore, foreshore and backshore 

geoindicator was then mapped onto separate 1:12 500 composite orthophoto maps. Each 

morphology type was assigned a hazard sensitivity score based on its susceptibility to 

flooding or erosion. These values were then transcribed onto composite maps that 

combined the relevant geoindicators for each specific hazard being assessed (applicable 

to determining either flood or erosion sensitivity). Overall hazard sensitivity for each 

unique coastal segment was determined by totalling the hazard sensitivity scores of 

applicable geoindicators (Appendix 2). Individual segment boundaries are given as 

distance alongshore, which was measured in metres starting at the northeastern end of 

Topsail Beach Rotary Park (0). Distance along lagoons was measured in a clockwise 

direction starting at the eastern edge. 
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Table 5.3: Classification of coastal hazard assessment parameters as nearshore, foreshore or 
backshore geoindicators for use in constructing hazard sensitivity maps. 

Parameter Nearshore Foreshore Backshore 
Site slope X X 

Bathymetric slope X 

form of foreshore X 

Beach width and slope X 
Beach material type and size X 

Beach thickness X 
Overwash X 
Cliff configuration X 

Infrastructure X 

Vegetation on site X X 
Distance to waterbodies X 

Area landward of site and 
X 

backshore composition 

Drainage X X 

Coastal shape X 
Natural offshcre protection -

X 
presence of offshore boulders 

Offshore shelf X 

Four hazard classes were created: 

Extreme - areas with a very high level of hazard. There is evidence of currently 

active erosion processes or the presence oflow lying, flood sensitive topography. 

High - areas of high hazard. There is evidence of past erosion activity or a history of 

flooding. 

Moderate - areas of moderate hazard. There is limited evidence of the presence of a 

flood or erosion hazard. 
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Low - areas of extremely low hazard. Areas show little evidence of the presence of a 

flood or erosion hazard, and it is judged that such geomorphological hazards are only 

likely to be triggered by extremely low frequency/high magnitude events (i.e. extreme 

events). 

A "no hazard" category was not created because, although some areas may not currently 

experience geomorphological hazards, this does not necessarily mean that they are 

complete-ly free from the effects of extreme events, particularly under changing climatic 

conditions. 

5.4.1: Flood Hazard Sensitivity Map 

For the flood hazard sensitivity map (Appendix 1), the only geoindicator component 

map used was backshore slope as this was considered a reasonable proxy for determining 

which areas were susceptible to inundation: low-lying areas being at greater risk. Flood 

hazard sensitivity was defined as follows: 

Sensitivity Class Sensitivity Score 

Extreme Slopes less than 2° 
High Slopes between 3° and 7° 
Moderate Slopes between 8° and 14° 
Low Slopes greater than 15° 

5.4.2: Foreshore Erosion Hazard Sensitivity Map 

Four foreshore morphology geoindicators were considered in the construction of the 

foreshore erosion hazard sensitivity map (Appendix 1): form of foreshore, sediment type, 
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presence of offshore boulders and bathymetric slope. In terms of the sensitivity scoring, a 

score of 1 represented a low sensitivity, while a score of 4 represented an extreme 

sensitivity. Lagoons, watercourses and anthropogenically modified foreshore segments 

were excluded from analysis and not given a sensitivity score. Assigning numerical 

sensitivity scores in this manner implies that each geoindicator is of equal weight in the 

overall sensitivity analysis, i.e. each variable contributes equally to the process of 

foreshore erosion. While this simplifying assumption may not be strictly valid, it allows 

for a more uniform estimate of hazard sensitivity. 

Form of Foreshore Sensitivity Score 

Marsh 4 
Washover fans present 4 
Barrier beach 3 
Fringing beach 2 
Bedrock dominated coastline 1 

Sediment Type Sensitivity Score 

Pebble, cobble 4 
Cobble 3 
Cobble, boulder 2 
Pebble, cobble, boulder 2 
Boulder 1 
Bedrock dominated coastline 1 

Bathymetric Slope Sensitivity Score 

Slopes greater than 20° 3 

Slopes between 6° and 20° 2 

Slopes less than 5° 1 

·The scoring for form of foreshore was unique in that segments classified as fringing or barrier beach 
could also be classified .as having washover fans present, meaning that two forms of foreshore were 
possible. This was considered the best method for highlighting coastal segments where overwash fans were 
present. Thus the minimum vulnerability score for form of foreshore is 1 and the maximum is 7. 

71 



Offshore Boulders Sensitivity Score 

Absent 2 
Present 1 

Foreshore eros10n hazard sensitivity was defined as follows. As the rmmmum 

combined sensitivity score was 4 and the maximum was 16, these formed the end points 

of hazard sensitivity class extremes. The maximum value of 16 was based on a segment 

characterized as being a barrier beach, with pebble to cobble sized sediments, with 

washover present, with bathymetric slope greater than 20° and with offshore boulders 

absent. 

Sensitivity Class Sensitivity Score 

Extreme 14-16 
High 11-13 
Moderate 7-10 
Low 4-6 

5.4.3: Backshore Erosion Hazard Sensitivity Map 

The construction of the backshore erosion hazard sensitivity maps (Appendix 1) was 

based on consideration of four backshore morphology components: slope, backshore 

composition, presence of erosion control measures, and status ofbackshore vegetation. 

Backshore Slope Sensitivity Score 

Slopes greater than 15° 4 

Slopes between 8° and 14° 3 
Slopes between 3° and 7° 2 

Slopes less than 2° 1 
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Backshore Composition Sensitivity Score 

Unlithified 3 
Discontinuous unlithified 

2 over bedrock 
Bedrock 1 

Erosion Control Measures Sensitivity Score 

Present 2 
Absent 1 

Vegetation Status Sensitivity Score 

Anthropogenically modified 3 
Little to none 3 
Moderate 2 
Abundant 1 

Backshore erosion hazard sensitivity was defmed as follows. The highest possible 

score attainable was 12 and set the upper limit of the extreme category. The lowest 

possible score was 4. The upper limit of the low backshore erosion sensitivity class was 

determined as a result of the steep (greater than 15° slope), bedrock dominated coastline 

in Holyrood. Although the slope value was high, the highly resistant nature of the 

bedrock meant that the sensitivity of these coastal segments to backshore erosion 

processes was low. Therefore, the upper limit of the low sensitivity score was set at 7: 

this value representing the rating for a well vegetated, bedrock dominated coastal 

segment with slope greater than 15° and no erosion control measures present 

Sensitivity Class Sensitivity Score 

Extreme 11 -12 
High 9-10 
Moderate 8 
Low 4-7 
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The foreshore erosion sensitivity hazard scores were not taken into consideration 

when determining the backshore erosion sensitivity hazard. Even though the potential for 

foreshore erosion will have a substantial impact on the stability of backshore cliffs (i.e. 

removal of beach sediments allows for direct wave attack on cliffs with resulting 

undercutting and removal of cliff sediments), it does not consider hillslope processes that 

act independently: for example, slope washing and gully headwall retreat. Incorporating 

the foreshore erosion sensitivity hazard may underestimate the backshore erosion hazard 

as the threat may not be entirely from foreshore coastal processes. 
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Chapter 6: 
Results 

6.1: Coastal Morphology Descriptions 

Topsail 

Topsail Beach is a combination barrier/fringing beach approximately 30-35 m wide 

and 1.8 km long. It is composed of a variety of clast sizes (pebbles to boulders), with a 

distinct alongshore variation in their distribution. In the extreme northeast, cobbles and 

boulder-sized sediments dominate, with numerous boulders present in the nearshore zone. 

The barrier beach fronting Topsail lagoon is composed of finer-grained pebbles and 

cobbles. Two transects (GSC-450 and GSC-451) were installed by the Geological Survey 

of Canada across the barrier beach as part of a joint provincial-federal coastal monitoring 

program (Figure 6.1) (Liverman et al. , 1994). Transect GSC-450, across the eastern end 

of the barrier, has a weakly convex profile and is dominated by pebble-sized clasts, with 

occasional cobbles. Transect GSC-451, across the western end of the barrier, has a 

steeply sloped, concave profile (Figure 6.2). Sediments are in the pebble to cobble range 

and scattered boulders are present. West of the lagoon, all grain sizes (pebbles to 

boulders) are present, with pebbles more frequent near the inter-tidal zone. Bathymetric 

slope averages 1.4° along the entire beach system. 

Amalgamated washover fans are present along the entire length of the barrier beach. 

Lobes to the west are well vegetated and stable, while frequent shifting of the outlet in 
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the east has prevented the establishment of vegetation there. West of the lagoon, 

landward migration of beach sediments over the former backshore surface has occurred. 

Extremely well developed cusps are present along the entire length of the beach system, 

although not at all times. Detailed measurements can be found in Prentice (1993). Cusp 

horns are composed of relatively coarse-grained clasts (cobbles), while fmer-grained 

sediments dominate the cusp embayments. 

Topsail Beach: Transect Profiles 

3~--------------------------------------, 

Distance (m) 

Figure 6.2: Beach transect profiles conducted for Topsail Beach, September 30, 2000. 

The majority oft he backshore is composed of u nlithified Q uatemary bluffs, which 

rapidly rise from less than 2 m elevation west of the lagoon to 20 m elevation. The bluffs 

west of 1 495 m are actively eroding, with vegetation and sediment s liding downslope 

onto the beach (Plate 6.1). These bluffs were stable prior to 1992 (trees cored by 

Liverman et al. (1994) were found to be over 70 years old). Photographs from the early 

201
h Century (Plate 6.2) indicate that cliff erosion has been an ongoing problem. 
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Plate 6.1: Photograph taken September 30, 2000 showing eroding slopes behind the Topsail United Church 
(segment 1702 - 1783 m). The Geological Survey of Canada established survey lines to monitor erosion 

rates at this location in July 1993. 

Plate 6.2: Unlithified bluffs west ofTopsaillagoon (coastal segment 1127- 1392 m). Note exposed 
sediments in the foreground. Trees are no longer present at this location and current cliff vegetation is 

dominantly herbaceous (photograph courtesy Provincial Archives ofNewfoundland and Labrador- PANL 
A6-45 -date unknown). 
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Chamberlains 

Chamberlains 1s also characterized as a combination barrier/fringing beach. The 

barrier beach at Chamberlains Pond varies between 25 m and 40 m wide and is composed 

dominantly of pebbles and cobbles, with scattered boulders. Two transects installed by 

Memorial University's Department of Geography are located at the eastern and western 

ends of the barrier (Figure 6.1). The barrier morphology is characterized by a steeply 

sloping, peaked profile with small steps along the seaward face (Figures 6.3 and 6.4). 

The adjacent fringing beaches are considerably coarser-grained than the barrier beach, 

with pebbles being absent. Significant offshore boulders extend from the point at 1783 m 

west to 2303 m and between 3048 m and 3151 m. Cuspate structures are common along 

the fringing beach west of the barrier, although not at all times. They are approximately 

10-15 m long and 2-4 m wide, with their size increasing towards the barrier. Offshore 

baythmetric slopes average 2.0° east of the barrier, and average 1.1° in front of the barrier 

and towards Manuels. 

A number ofunvegetated washover fans are present along the back of the barrier and a 

permanent lagoon outlet is lacking. This lack of a permanent outlet has often resulted in 

severe flooding of the low-lying land surrounding the pond. Outlets are occasionally 

dredged to alleviate flooding, the channels fill quickly as the water level within the 

lagoon decreases. Infilling occurs rapidly as there is no headland present to deflect the 

direction of longshore sediment transport. For example, an outlet dredged in the spring of 

1999 filled within ten days (Don Pittman, personal communication) (Plate 6.3). With 
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outlet infilling occurring so rapidly, there is not sufficient time for channel migration 

alongshore. 

Chamberlains Beach: Transect Line CB1 
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Figure 6.3: Beach transect profile CB 1 conducted for Chamberlains Beach, September 30, 2000 
and June 17, 2001, showing changes in morphology. 

Chamberlains Beach: Transect Line CB2 
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The backshore is characterized by steeply sloping, unlithified bluffs. Bluffs to the east 

of Chamberlains Pond are moderately to well vegetated with grasses and shrubs, while 

the bluffs to west of the pond are unvegetated and actively failing. 

Plate 6.3: Outlet dredged in the Chamberlains Pond barrier beach (2507 - 2818 m) in the spring 
of 1999 to alleviate flooding problems filled within ten days (photographs courtesy Don Pittman). 

Manuels 

The barrier beach fronting the Manuels Rivers (forming Manuels Pond) is 30 to 35m 

wide and composed of pebble to boulder sized clasts. Two transects installed at either end 

of the barrier by Memorial University (Figure 6.1) indicate a steeply sloped morphology 

with numerous well-defined convex steps on the seaward face of the barrier (Figures 6.5 

and 6.6). Offshore boulders fringe the headland at the western end of the barrier where a 

small permanent outlet drains the lagoon. This headland protects the outlet against 

longshore sediment infilling from the southwest. A number of unvegetated washover fans 

are present along the back of the barrier. Bathymetric slope averages 1.1°. 

81 



3.5 

3 

2.5 --.s .., 
L 

= 1.5 

I 
i!i 0.5 

0 

Manuels Beach: Transect Line MN1 

/!I 
-.,. 

_,..---' 
/~ 

// 
• I 

0 10 

_w _ _ _ 

_,.+, 

/ \ 
/ ~ 

\ 
\ 

I 

20 

Distance (m) 

/ .\ .. _ __.,. 
*'--. 

I 

30 

I 

J 

l 
water's e dge 

' "---.. 
40 

Figure 6.5: Beach transect profile MNl conducted for Manuels Beach, September 30, 2000. 

Manuels Beach: Transect Line MN2 
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Figure 6.6: Beach transect profile MN2 conducted for Manuels Beach, September 30, 2000 and 
June 17, 2001, showing changes in morphology. 
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Bluffs composed of unlithified Quaternary sediments characterize the backshore, 

although the western edge of the lagoon is characterized by bluffs composed of 

weathered shale bedrock overlain by Quaternary sediments. Cliff faces lack a protective 

vegetative cover and are actively eroding. 

Long Pond 

The initial segment of the Long Pond barrier beach, from 4278 - 4531 m, connects to 

Burnt Island, a small glaciofluvial outwash feature. Beach sediments along this segment 

are characterized by pebble to boulder sized clasts and there is an exposure of former 

backshore vegetation on the present beach face, indicating active terrestrial overstepping. 

This segment also shows evidence of washover activity, but it has been obscured by 

recent anthropogenic activity (a road was constructed along the back of the barrier in 

2000). 

The principal section of the barrier beach, which is approximately 1.3 km long, is very 

steep, with a well-defined berm and concave profile. It is composed of pebbles and large 

cobbles, with occasional scattered boulders. Jetties have been constructed at the 

southwestern end of the barrier (6038 m) and at the Port of Long Pond (6141 m), with a 

navigation channel behind the barrier being routinely dredged. Bathymetric slopes are 

quite shallow (1.1 ° - 1.3 °) and offshore boulders are absent. The Long Pond barrier 

beach is the subject of a detailed geomorphic study by Don Pittman of Memorial 

University ofNewfoundland (M.Sc. Thesis, Department of Geography, in preparation). 
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Foxtrap 

Coarse-grained fringing/barrier beaches also characterize the Foxtrap section of the 

Conception Bay South-Holyrood coastline. The coastline fronting the pyrophyllite mine 

storage area (6141 - 6343 m) consists of low (five metres elevation) bluffs, fronted by a 

narrow fringing beach composed of riprap boulders. The remaining fringing beach in 

Foxtrap is composed of pebble to cobble sized sediments. Two small, pebble-cobble 

barrier beaches are located east of the Foxtrap Marina (6659 - 6785 m and 6958 - 7199 

m). Washover fan deposits are present along the back of each barrier and there is 

evidence that each lagoon has a temporary outlet (each barrier has a small, partially 

infilled channel). Offshore boulders are present from the Port of Long Pond through to 

the second small pond and at Foxtrap Head, west of the marina. Bathymetric slope 

averages 1.6°. A small marsh area is located in the backshore of segment 7303-7567 m. 

Kelligrews 

The Kelligrews coastline is characterized by an.extensive fringing beach dominantly 

composed of cobbles and scattered boulders, with the occasional patch of pebbles and 

coarse sand. A barrier beach fronts Keligrews Pond. Along the backshore, the T'railway 

recreational trail (which follows the former railway line) begins to parallel the coastline 

at Foxtrap Head (7866 m). With its seaward side lined with riprap boulders, it offers 

protection against coastal erosional processes. Backshore elevations are low and 

vegetative cover varies from moderate herbaceous cover to well-established, mature 
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trees. Nearshore boulders are numerous and extend for nearly the entire length of the 

Kelligrews coastline. Bathymetric slope averages 1.5°. 

The former railway impacted the morphology of the barrier beach fronting Kelligrews 

Pond, as it ran across the barrier crest. At the northeastern end of the barrier, the beach is 

less than five metres wide and composed of cobbles and boulders, with some backshore 

sections heavily riprapped. From 9948 - 10 063 m, the entire barrier is composed of 

riprap, except for some cobbles in the inter-tidal zone. The back of the barrier beach is 

extensively vegetated and backed by a low, marshy, wetland and then lagoon. At 

Kelligrews Point (10 201 - 10 511 m), which is approximately three metres above sea 

level, the beach widens considerably and is composed of small pebbles and coarse sand, 

before progressing into a dominantly boulder deposit that continues offshore as a spit. A 

transect installed at the western end of the point by Memorial University has a fairly 

straight, sloping profile (Figure 6.1 and 6. 7). Herbaceous vegetation is sparse to 

moderate. At less than one degree, bathymetric slope at the point is extremely low. 
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Kelligrews Beach: Transect Line KG1 
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Figure 6.7: Beach transect profile KG1conducted for Kelligrews Beach, October 1, 2000 and 
June 17,2001, showing changes in morphology. 

Riverdale and Upper Gullies 

West of Kelligrews Point, the backshore rapidly rises in elevation to approximately 

20 m above sea level. The unlithified cliffs are moderately vegetated with grasses and 

shrubs, and a small patch of trees from 11 178 - 11 236 m. However, extensive rilling 

occurs on both the landward and seaward sides of the T'railway. Then arrow fringing 

beach is composed of cobble to boulder sized clasts. Nearshore boulders are numerous 

and bathymetric slope approaches 2°. 

Towards Upper Gullies Pond (11 581 - 11 684 m), the backshore cliffs decrease in 

elevation until they are approximately 5 to 10 m above sea level and the fringing beach 

widens. The barrier beach fronting Upper Gullies Pond is composed of boulder riprap. 
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Boulder riprap. As are two short segments of fringing beach on either side of the barrier 

beach. Upper Gullies Pond has a permanent, maintained outlet. 

Southwest of Upper Gullies Pond, backshore elevation increases to approximately 20 

m above sea level and herbaceous vegetation is sparse to moderate. Numerous active 

failures, with cliff sediments present on the beach, have occurred on the seaward side of 

the T'railway (Plate 6.4) and there is substantial rilling of the landward cliff face. A 

metal railway tie and boulder riprap seawall has been constructed between 13 076 m and 

13 225 m. While the fringing beach remains wide, it is dominated by pebble to cobble 

sized sediment, with only scattered boulders. Nearshore boulders extend for 

approximately 400 m alongshore and bathymetric slope varies between 1.2° and 3.2°. 

Plate 6.4: Debris flows initiating from the T'railway Recreational trail in Lance Cove (13 225-
14 203m). 
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Lance Cove 

The fringing beach east of the Lance Cove barrier is composed of cobble to boulder 

sized sediments and offshore boulders are absent. Backshore cliffs decrease in elevation 

to approximately 10 m and are well vegetated with shrubs, grasses and trees. Offshore 

bathymetry averages 1.1 °. 

The Lance Cove barrier beach is 55 to 60 m wide and over 6 m high. As a result the 

back of tl1e barrier is heavily vegetated with abundant shrubs, grasses and a few trees. 

Two beach transects installed by Memorial University (Figure 6.1) reveal a steeply 

sloping profile with a well-developed berm between 10 m and 20 m wide (Figure 6.8 

and 6.9). Bathymetry in front of the barrier averages 1.9°. The barrier is primarily 

composed of cobble to boulder sized clasts, although pebbles are quite common in the 

inter-tidal zone and within the embayments of large cusp formations: sand is rarely 

encountered within the barrier, although it is occasionally present in the nearshore zone. 

Large, moderately developed cusps are occasionally encountered in the central portion of 

the barrier. Approximately 11-22 m long and 2-8 m high (dimensions increasing towards 

the west), they are characterized by coarse,..grained horns (cobble-sized clasts), with [mer­

grained embayments. Pebbles are most common, although coarse sand may form the 

embayments of smaller cusps formed at the waterline. At either end of the barrier, metal 

railway ties have been hammered into the beach as a stabilization measure. 
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Lance Cove Beach: Transect Line LC1 
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Figure 6.8: Beach transect profile LC1 conducted for Lance Cove Beach, October 1, 2000 and 
June 17, 2001, showing changes in morphology. 

lance Cove Beach: Transect LC2 
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Figure 6.9: Beach transect profile LC2 conducted for Lance Cove Beach, June 17, 2001 . 

89 



The morphology of the backshore, southwest of the lagoon, has been substantially 

modified by a sand and gravel excavation operation at Lance Cove Head (15 376- 15 

698 m). Extraction activities are strictly limited to the backshore region. Vegetation is 

sparse along the 15m high cliff face and active erosion is occurring. The narrow, fringing 

beach is composed solely of boulder-sized clasts and is fronted by a nearshore boulder 

fringe. 

Seal Cove 

Between Lance Cove Head and Seal Cove, the fringing beach is wide, but narrows in 

front of the Seal Cove lagoon. It is composed dominantly ofboulder-sized sediments, but 

cobbles are present from 16 434 - 16 549 m. A fringing beach composed of cobbles and 

boulders occurs southwest of the lagoon. Bathymetic slope averages 1.8° along the 

eastern portion of the Seal Cove coastline and increases to 2.2° southwest of the Seal 

Cove barrier. 

The short Seal Cove barrier beach is composed of cobbles and boulders and a 

permanent outlet is artificially maintained. Offshore boulders are found west of the 

barrier. Bathymetry directly in front of the barrier averages 1.1 o . Unlithified slopes east 

and west of the lagoon are sparsely vegetated and actively eroding, with the slope failures 

(debris flows) originating offthe seaward side of the T'railway. 
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Indian Pond 

The Indian Pond coastline is characterized by a combination fringing/barrier beach 

composed of cobble to boulder sized sediments. The barrier beach is of considerable 

width, with numerous grassy washover fans located along the back of the barrier. 

Offshore boulders are numerous and bathymetric slope averages 2.3°. The backshore is 

composed ofunlithified sediments that are sparsely to moderately vegetated. 

Holyrood 

From the generating station to the loading wharf (18 941 - 21 344 m), the coastline is 

dominated by a fringing beach composed of cobbles and pebbles. The unlithified 

backshore is moderately vegetated with both herbaceous vegetation and mature trees. 

From 21 344 m to the Ultramar Refinery at 32 994 m, the coastline is dominated by 

bedrock cliffs. These cliffs are well vegetated with extensive stands of mature trees, 

shrubs and grasses. Small amounts of pebble to boulder-sized sediments occur at the base 

of the cliffs. Towards the refinery, the bedrock is overlain by unlithified sediments. 

Bathymetric slope averages 8.0°. 

Holyrood beach is a 20 to 25 m wide fringing beach dominantly composed of pebbles 

and cobbles. It is weakly concave in profile (Figure 6.10). A small creek runs behind the 

beach, with a permanently maintained outlet at the eastern end of the beach. Offshore 

boulders are absent and bathymetric slope averages 5.5° within the first 100 m. The 

former railway embankment, now the T'railway recreational trail, runs across the beach 
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crest and acts as a back berm for the beach, providing a coarse sediment supply and 

stability to the beach system, and controlling onshore sediment movement. At the 

Holyrood Marina, the coastline has been anthropogenically modified, as there is a large 

boulder riprap jetty and extensive wooden seawall. The remainder o fthe study region 

coastline (34 995 ~ 35 788 m) is composed of riprap boulders. Backshore vegetation is 

moderate and dominantly herbaceous. 

Holyrood Beach: Transect Profiles 
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Figure 6.10: Beach transect profiles HRl, HR2 and HRJ conducted for Holyrood Beach, June 
17,2001. 

6.2: Hazard Sensitivity Assessments 

6.2.1: Flood Hazard Sensitivity Assessment 

In the flood hazard sensitivity assessment, 60 263 m of coastline, including lagoons, 

was analyzed to determine susceptibility to inundation (Appendix 1). Overall, two-thirds 

of the Conception Bay South-Holyood coastline has a low (42.3%) to moderate (26.6%) 
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sensitivity to flooding (Table 6.1 ). However, when analyzed separately, the results of the 

flood hazard sensitivity assessment for the open water section of coastline facing 

Conception Bay (subsequently referred to as "straight exposed") differ significantly from 

the coastline surrounding the inner lagoons. Hazard sensitivity class ratings for individual 

coastal segments are listed in the flood hazard sensitivity component tables located in 

Appendix 2.1 and 2.2*. 

Table 6.1: Results of the flood hazard sensitivity assessment. 

Hazard Sensitivity Sensitive Coastline 
Class m % 

Low 25 494 42.3 
Moderate 16 033 26.6 

High 12 363 20.5 
Extreme 6355 10.5 

Total coastline assessed: 60 263m 

Table 6.2: Results of the flood hazard sensitivity assessment based on type of coastline. 

Hazard Sensitivity "Straight Exposed" Coastline Lagoon Coastline 
Class m % m % 
Low 21 956 61.4 3538 14.5 

Moderate 8766 24.5 7267 29.7 
High 2730 7.6 9633 39.4 

Extreme 2404 6.7 3951 16.1 

Total "straight exposed" coastline: 35 788 m 
Total lagoon coastline: 24 475 m 

Distance alongshore was measured in metres starting at the northeastern end of Topsail Beach Rotary 
Park (0 m). Individual segment boundaries are referred to their distance along the coastline from this point. 
Distance along lagoons was measured in a clockwise direction starting at the eastern edge. 
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The "straight exposed" coastline facing Conception Bay is characterized by a low 

(61.4%) sensitivity to flooding. In contrast, only 14.5% of the lagoon coastlines have a 

low flood hazard sensitivity, with 39A% having a high sensitivity to flooding and 29.7% 

being moderately sensitive. This difference in results reflects the geomorphology of the 

study area. Twenty to thirty metre high cliffs of unlithified, Quaternary sediments and 

steeply sloped barrier beaches dominate the coastline of Conception Bay South, while the 

majority of the Holyrood coastline is backed by steep bedrock cliffs. Low-lying land 

more susceptible to inundation is seldom encountered along the coastline. It is only found 

in the Kelligrews region of Conception Bay South, along the numerous lagoons and at the 

head of Conception Bay in Holyrood. 

6.2.2: Foreshore Erosion Hazard Sensitivity Assessment 

In the foreshore erosion hazard sensitivity assessment, 35 788 m of coastline fronting 

Conception Bay was assessed to determine susceptibility to foreshore erosion processes. 

The majority of the Conception Bay South-Holyood coastline has a low (59.9%) to 

moderate (27.3%) sensitivity to foreshore erosion (Table 6.3). A reflection of the 

dominance of very coarse-grained, fringing beaches; relatively shallow bathymetry 

(averaging 2° within the first 300 m of the shoreline); and a prevalence of nearshore 

boulders, which dissipate incoming wave energy. Hazard sensitivity class ratings for 

individual coastal segments are listed in the foreshore erosion hazard sensitivity 

component tables located in Appendix 2.3. 
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Table 6.3: Results of the foreshore erosion hazard sensitivity assessment. 

Hazard Sensitivty Sensitive Coastline 
Class m % 
Low 21 446 59.9 

Moderate 9755 27.3 

High 3047 8.5 

Extreme 1437 4.0 

Total foreshore assessed: 35 788 m 

However, these results consider the overall sensitivity of the entire coastline and mask 

important differences in sensitivity based on the different types of foreshore . This is 

especially true as bedrock dominated coastlines represent a third of the entire coastal 

study length (Table 6.4). Anthropogenically modified and bedrock dominated sections of 

coastline received only low hazard sensitivity ratings, while no section of coastline 

classified as barrier beach did. Fringing beaches have a low to moderate sensitivity to 

foreshore erosion, with no coastal segment receiving an extreme rating. This reflects the 

coarse-grained nature of beach sediments, as pebble to boulder sized sediments 

characterize the southern Conception Bay coastline. Coastal segments where nearshore 

boulders were present received low sensitivity ratings, while the absence of nearshore 

boulders resulted in a moderate rating. Barrier beaches have a moderate to extreme 

sensitivity to foreshore erosion process and are the only form of foreshore to receive an 

extreme erosion sensitivity rating. Segments receiving an extreme rating had relatively 

finer grained sediments and washover fans were present, indicating past erosion activity. 
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Table 6.4: Results of the foreshore erosion hazard sensitivity assessment based on form of foreshore. 

Hazard Sensitivity Fringing Beacha Barrier Beachb Bedrockc Anthropogenicd 

Class m % m % m % m % 

Low 8474 23.7 0 0 12 029 33.6 943 3 
Moderate 8881 24.8 874 2.4 0 0 0 0 

High 575 1.6 2714 7.6 0 0 0 0 
Extreme 0 0 1437 4.0 0 0 0 0 

a: Total fringing beach coastline: 17 930 m 
b: Total barrier beach coastine: 5025 m 
c: Total bedrock coastline: 12 029 m 
d: Total anthropgenic coastline: 943 m 



6.2.3: Backshore Erosion Hazard Sensitivity Assessment 

In the backshore erosion hazard sensitivity assessment, 31 941 m of coastline was 

assessed to determine susceptibility to backshore erosion processes. Barrier beaches were 

not considered in this sensitivity assessment. Hazard sensitivity class ratings for 

individual coastal segments are listed in the backshore erosion hazard sensitivity 

component tables located in Appendix 2.4. 

Analysis of the overall backshore erosion sensitivity results shows that half of the 

Conception Bay South-Holyood coastline has a low to moderate sensitivity (54.2%) to 

backshore erosion, or has a high to extreme sensitivity (44.3%) (Table 6.5). The reason 

sensitivity is nearly equally split between low and high ratings is mainly due to geology 

(Table 6.6). Where bluffs of unlithified Quaternary sediments outcrop along the coast, 

there is a higher sensitivity to erosion processes. In contrast, the granite of the Holyrood 

Instrusive Suite is highly resistant to erosion. Overall, the unlithified coastline has a high 

(22.1 %) to extreme (11.6%) sensitivity to backshore erosion, while the lithified coastline 

is characterized by a low (29.0%) sensitivity. 
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Table 6.5: Results of the backshore erosion hazard sensitivity assessment. 

Hazard Sensitivity Senstive Coastline 
Class m % 

Low 12 029 38.9 

Moderate 4733 15.3 

High 9600 31 .0 
Extreme 4110 13.3 

Total backshore assessed: 31 941 m 

The presence of vegetation also affected sensitivity to backshore erosion processes. 

Segments of coastline where vegetation was abundant received lower sensitivity ratings 

than segments where vegetation was sparse or lacking (see Appendix 2.4). 
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Table 6.6: Results of the backshore erosion hazard sensitivity assessment based on backshore composition. 

Hazard Sensitivty Bedrocka Unconsolidatedb Discontinuousc Anthropogenicd 
Class m % m % m % m % 

Low 8964 29.0 1328 4.3 817 2.6 920 3.0 

Moderate 46 0.1 1710 5.5 3007 9.7 0 0 
High 104 0.3 6847 22.1 441 1.4 0 0 

Extreme 0 0 3585 11.6 525 1.7 0 0 

a: Total bedrock coastline: 9114 m 
b: Total unconsolidated coastline: 13 470 m 
c: Total discontinuous coastline: 4790 m 
d: Total anthropgenic coastline: 920 m 



7.1: Accuracy of Results 

Chapter 7 
Discussion 

The results of the hazard sensitivity assessments conducted as part of this study are 

only meaningful if they are an accurate description of the actual sensitivity of any 

particular segment along the Conception Bay South-Holyrood coastline. Therefore, was 

the geoindicator-based hazard assessment methodology developed in this study able to 

correctly identify those coastal segments where erosion and/or flooding were known to 

occur as being highly to extremely sensitive. As well as correctly identifying those 

segments with known low sensitivities to flooding and erosion processes? In addition, 

was the method able to highlight the sensitivity of very short segments of coastline, or 

was it overwhelmed by the results for larger, surrounding segments? Accuracy of the 

hazard sensitivity assessment results was verified by comparing sensitivity class ratings 

with a series of sites along the Conception Bay South-Holyrood coastline for which there 

was pre-existing hazard information. 

The coastline west of the Holyrood Thermal Generating Station is steeply sloped and 

composed of highly resistant granite bedrock. It is therefore not prone to flooding, nor is 

it susceptible to foreshore or backshore erosion processes. As a result, this section of 

coastline should receive low hazard sensitivity ratings in the flood, foreshore and 

backshore erosion hazard sensitivity assessments. This section thereby provides an 

opportunity to test the accuracy of the methodology developed in the study for 
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identifying coastal segments with low hazard sensitivity. It should be noted that is the 

only such suitable location within the study area. To confirm the accuracy of coastal 

segments assigned an extreme hazard sensitivity rating, two sites with known problems 

for each of the flood, foreshore and backshore erosion hazard sensitivity assessments 

were chosen for comparison. For the flood hazard sensitivity assessment, Chamberlains 

and Kelligrews Ponds were selected; for the foreshore erosion hazard sensitivity 

assessment, the Topsail and Long Pond barriers were selected; and for the backshore 

erosion hazard sensitivity assessment, the cliffs behind the Topsail United Church and 

between Long Pond and Chamberlains Pond were selected. Although there are other 

locations along the Conception Bay South-Holyrood coastline susceptible to flooding or 

erosion activity, supporting documentation and data is lacking. 

Results for the flood hazard sensitivity assessment indicate that the methodology was 

able to accurately identify sections of coastline with a low flood hazard. However, further 

refinement may be required to increase the accuracy of the methodology in identifying 

coastal sections with a high to extreme flood hazard. Flooding has been documented at 

both Chamberlains and Kelligrews Ponds throughout the 1990s (Taylor, 1994; Plate 6.3), 

with historical accounts of flooding at Kelligrews Pond dating back to the 1920s 

(Batterson et al., 1999). The flood hazard sensitivity assessment classified the majority of 

the Kelligrews Pond coastline as having a high to extreme flood hazard, and this result is 

supported by historical data. However, there were two segments classified as having a 

moderate hazard and one segment classified as having a low hazard. This suggests that 
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either the flood hazard sensitivity methodology is highly accurate, with more defined 

descriptions of how extensive past flooding was at each locality being required to test 

validity. Although further refinement may be required for the flood hazard to be 

accurately represented, the occurrence of historical flooding indicates that the 

methodology is valid at least in part. The Chamberlains Pond coastline was classified as 

having a high to extreme flood hazard, except for one coastal segment that received a 

moderate rating. These results suggest that more detailed spatial data for historical flood 

occurrences are required to confirm the accuracy of the flood hazard sensitivity 

methodology. 

Results for the foreshore eros10n hazard sensitivity assessment indicate that the 

methodology is able to accurately identify coastal segments with both low and high to 

extreme vulnerabilities to foreshore erosion processes. The bedrock foreshore in 

Holyrood received a low rating, accurately reflecting the highly resistant character of the 

Holyrood Intrusive Suite granite. The hazard sensitivity assessment identified the Topsail 

Beach barrier as having an extreme foreshore erosion hazard. This result is supported by 

previous research that indicates that the Topsail Beach barrier has been reduced greatly in 

size and extent since the 1940s and remains susceptible to erosion activity (Catto, 1994; 

Catto et al., 1999; Prentice, 1993). Although the Long Pond Barrier was breached in 1976 

and in 1992 (Pittman, in preparation; Taylor, 1994), research by Pittman (in preparation) 

indicates that various segments of the barrier respond differently. He notes that the 

extreme western end of the barrier is currently prograding and is not susceptible to 
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erosiOn processes. This study found that that segment had a moderate sensitivity to 

foreshore erosion. Pittman found that the middle portion of the barrier, between Burnt 

Island and the prograding section is highly unstable morphologically. This location is 

where the breaches in 1976 and 1992 occurred. The hazard assessment accurately 

identified this segment as having an extreme foreshore erosion hazard. Pittman concluded 

that the northeastern past of the barrier was stable and not prone to changes in 

morphology, while this study identified this portion of the barrier as having high erosion 

sensitivity. However, it is important to consider the variation in the temporal scale 

between the two studies. Pittman's study assessed historical morphological change, while 

the purpose of the present study was to assess current and potential future change. 

The results for the backshore erosion hazard sensitivity assessment indicate that the 

methodology is able to accurately identify segments of coastline with either low or high 

erosion sensitivity. In July 1993, the Geological Survey of Canada in partnership with the 

Geological Survey of Newfoundland and Labrador established three survey lines to 

monitor erosion along the cliff behind the Topsail United Church. Prior to 1992, the cliff 

had been stable for 50 to 80 years based on ring counts obtained from three tree cores 

(Liverman et al., 1994). After a major nor' easter in early October 1992, the cliff began 

actively eroding, resulting in the downslope displacement of trees and sediments. This 

activity has continued to the present with a significant loss of trees (Plate 6.1). With 

active erosion occurring for nearly a decade and resulting in a substantial loss of 

vegetation and sediment, it would be expected that this segment would receive an 
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extreme backshore erosion hazard sensitivity rating. As the segment was rated as having 

a high sensitivity to backshore erosion, the methodology was able to accurately identify a 

serious backshore erosion hazard. 

Analysis of the change in cliff position on rectified aerial photographs from 1951 to 

1995 by the Geological Survey of Canada indicate that the cliffs between Long Pond and 

Chamberlains have retreated 10 to 40 em/year (Figure 7.1). The backshore erosion 

hazard sensitivity assessment correctly identified this section of coastline as having an 

extreme sensitivity. The granite cliffs along the Holyrood coastline were accurately 

identified as having a low to moderate backshore erosion hazard. Segments where 

unlithified Quaternary sediments overlay bedrock, received moderate sensitivity ratings, 

while segments characterized wholly by bedrock received low sensitivity ratings. 
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Figure 7.1: Mean erosion rate (em/year) 1951-1995 for the Long Pond to Chamberlains coastal 
section of the study area. Barrier retreat rates are in orange, cliff erosion rates are in blue 

(unpublished data courtesy of Dr. Don Forbes, Geological Survey of Canada, Bedford Institute of 
Oceanography). 

7.2: Limitations of the Methodology and Possible Solutions 

Overall, the methodology developed for this project performed well. I t was able to 

accurately identify both low and extremely sensitive coastal segments and was sensitive 

enough to highlight the sensitivity of very short sections of coastline (the length of which 

were constrained only by the scale of the display map). However, there were a number of 

problems with the methodology that resulted in potential under-estimations of the hazard 

sensitivity. 

A significant shortcoming oft he flood sensitivity assessment methodology was the 

dominant use of backshore slope data and not foreshore slope data (except in the case of 

barrier beaches, as they are backed by lagoons). Although all slope calculations began at 
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the land-water interface, the values generated were a more accurate representation of 

backshore slope conditions as opposed to foreshore slope conditions. For flat to gently 

sloping backshore environments, this was not an issue, but where a coastal segment 

consisted of a beach backed by a steep cliff (as along the T'railway between Kelligrews 

and Lance Cove), the slope values would favour the cliff and the flood sensitivity of the 

segment would be underestimated. The lower sloped beach more sensitive to inundation 

would not be highlighted on the flood sensitivity map. 

Another limitation of the flood sensitivity methodology developed for this study was 

that it was designed to assess flood risk to rising water levels, but not the risk of extreme 

or storm wave activity. While it is inherent that low-lying areas will be highly susceptible 

to these processes, this methodology underestimates the potential risks steeper sloped 

areas face since elevation was not included as a variable in the assessment. Steeply 

sloped areas a_t elevations below the one year significant wave height (6.9 m) will have a 

high to extreme risk of inundation from higher wave events, but may have lower 

vulnerabilities to steadily rising sea level (Shaw et al., 1998; Catto, in press). 

To improve the accuracy of the flood maps, two improvements to the current 

methodology should be made. First, for geomorphologically complex coastal segments, 

two slope values (the foreshore and the backshore) should be used to determine both a 

foreshore and a backshore flood sensitivity. Such detailed, site-specific results would 

have a greater applicability and usefulness to land use planning. Secondly, determination 
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of flood sensitivity should be based entirely on detailed elevation data rather than slope 

values. The development of a detailed digital elevation model on to which rising sea-level 

and current and future predicted storm surge levels were superimposed would produce a 

more informative flood sensitivity map and allow for more comprehensive land use 

decision making. This approach has been used with great success in a recent, detailed 

study of the effects of sea-level rise on Charlottetown, Prince Edward Island (Forbes et 

al., 2002; McCulloch et al., 2002 ). 

In addition, the flood hazard sensitivity assessment methodology could be improved 

through the inclusion of additional geoindicators such as vegetation type and the presence 

of strandlines or elevated water levels. Detailed mapping of coastal vegetation types may 

indicate the presence of "flood" tolerant species and the absence of high water table 

intolerant species. Noting locations where these species are present would identify those 

areas with an increased sensitivity to flooding. Mapping indicators of recent flooding 

events such as strandlines or water plane levels would also aid in classifying those 

locations susceptible to flood activity. 

A possible weakness with the foreshore erosion hazard sensitivity assessment was the 

decision to exclude fetch data. Further analysis indicated more variability in wave 

incidence and azimuth data values than was initially considered. As fetch is an easily 

quantifiable geoindicator of erosion potential, improvements to the accuracy of the 

foreshore erosion sensitivity assessment would be made through the inclusion of fetch 
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data, in combination with wind and wave directional data, particularly variations in wave 

activity due to ice protection and storms. 

A potential problem with the backshore erosion sensitivity assessment arose from 

difficulties with the way the vegetation geoindicator was scored. The coastal segments 

with the lowest sensitivity to backshore erosion processes were characterized by well­

established and abundant vegetation. Generally, areas with well-established forest 

vegetation are less susceptible to erosion than areas lacking vegetation cover, due to the 

role roots play in substrate cohesion. As such, segments with abundant, mature vegetation 

were scored as least sensitive (score of one). However, in eastern Newfoundland, the 

presence of tuckamore (windswept white spruce) at cliff tops may actually accentuate 

erosion. As a result, it is possible that the current scoring of the vegetation variable may 

have underestimated the actual backshore erosion hazard for some segments. Where 

tuckamore is killed by salt spray, block failure of unlithified Quaternary bluffs and well­

jointed bedrock is enhanced. Areas where dead tuckamore cover is present erode more 

quickly than sites covered by grasses or herbaceous vegetation. The tuckamore roots 

wedge the substrate apart, while dead vegetation acts as a top-heavy impediment to wind, 

increasing the risk of failure (Catto, in press). This process can be actively observed 

along the bluffs backing the Topsail United Church (Liverman et al., 1994). In addition, 

frost lifting of shallow root systems in areas where peat overlays Quaternary sediments 

increases the risk of failure due to the higher centre of gravity in the overlying vegetation. 
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As a result, sites where tuckamore vegetation is present should have received a vegetation 

sensitivity score of two (sensitive) to reflect their increased susceptibility to erosion. 

An additional problem with the backshore erosion sensitivity assessment arose from 

the scoring of the backshore composition geoindicator. While the Conception Bay South­

Holyrood coastline is dominantly characterized by extensive bluffs of either unlithifed 

Quaternary (Conception Bay South) sediments or highly resistant granite bedrock 

(Holyrood), there are segments characterized by a discontinuous or thin deposit of 

unlithifed sediments over bedrock. As a result, a "discontinuous unlithified over lithifed" 

category was included to increase the accuracy of the backshore erosion sensitivity 

assessment. However, the thickness of the unlithified sedimentary deposits was not taken 

into account. The accuracy of the backshore erosion sensitivity assessment will increase 

if a distinction is made between thin veneers ( < 1 m) and thicker blankets (> 1 m) of 

unlithifed Quaternary sediments that overlie bedrock. Segments characterized by thick 

blankets of unlithified sediments (i.e. Kelligrews) should receive higher sensitivity 

ratings (more sensitive) than segments characterized by thinner veneers of unlithified 

sediments (i.e. eastern end of Topsail Beach). Where the overlying layer of unlithified 

deposits is thin, the sensitivity of the segment to backshore erosion processes will depend 

on the geotechnical characteristics of the bedrock. 

The constraints and problems intrinsic to the hazard assessment methodology that was 

developed for this study could be mitigated by establishing more tightly defined 
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geoindicator criteria on which to base the assessment. During the initial field assessment, 

the state of a number of geoindicators that were not important to the final sensitivity 

assessments were measured and appraised. Had a pilot assessment been conducted, it 

would have been found that a number of geoindicators should have been excluded from 

final analysis and that the evaluation of certain geoindicators should have been modified 

to more accurately represent the unique conditions of eastern Newfoundland. Site 

drainage, distance to waterbodies, amount of infrastructure and fetch were geoindicators 

that were assessed in the field, but not used in the final hazard sensitivity assessment. 

Reasons for their exclusion are discussed in Chapter 4: Methodology. In addition, a 

detailed description of vegetation type (i.e. tuckamore) should have been made to reflect 

the unique conditions of eastern Newfoundland. However, it is also important to 

remember that this type of approach is subject to temporal variability in local conditions, 

regardless of the changes made to increase accuracy. Qualitative assessments represent 

coastal conditions at one moment in time and in a dynamic setting, such as the coastal 

zone of eastern Newfoundland, changes can occur yearly, monthly, daily and even 

hourly. As a result, the accuracy of the hazard assessment depends on the long-term 

maintenance of the conditions on which the sensitivity ratings were initially based. 

Frequent, short-term changes in the condition of the system will significantly affect the 

accuracy of the sensitivity assessments. Despite these shortcomings, a qualitative 

approach to hazard assessment can successfully identify coastal segments susceptible to 

coastal hazards and is extremely useful where qualitative data are lacking or time is 

limited (Bush et al., 1998, 1999; Daniels et al., 1998; Petley, 1998) 
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As well, it must be stressed that the hazard classifications described in this paper are 

by no means definitive. The hazard classes were based on the observed geomorphology 

and the nature of the geomorphic processes. For other assessments, a new set of 

appropriate hazard classes would need to be derived, and as the techniques used to 

identify, examine and classify the hazards can vary from one practitioner to another, so 

could the resulting hazard classes (i.e. Catto, in press). As Petley (1998: 199) notes, 

geomorphological mapping "is hindered by the fact that the hazard ratings are based on a 

qualitative judgement of the conditions and from an analytical point of view the 

technique, therefore, falls short of the rigorous statistical techniques that tend to be used 

in conventional hazard mapping." 

In spite of these constraints and limitations, overall the methodology performed well. 

No coastal segments with known and/or documented flooding or erosion problems were 

identified as having a low sensitivity. Importantly, none of the coastal segments identified 

by the methodology as having a low sensitivity were historically known to have 

experienced flooding or erosion activity. Therefore, from a pragmatic planning 

perspective or an impacts and adaptations perspective, this methodology works well in 

identifying coastal segments sensitive to flooding and foreshore and backshore erosion 

processes. 
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7.3: Justification of Methodology 

Although the robustness of the methodology m accurately identifying coastal 

segments sensitive to flooding or eros10n activity would be improved through the 

inclusion of other, more detailed, geoindicator data, the greatest potential weakness of the 

method was the ranking and cumulative scoring utilized in predicting the hazard classes. 

With geoindicator-based hazard assessment methodologies that employ numerical 

scaling, difficulty arises in the relative weight given to values or characteristics within 

each geoindicator and the relative weight of geoindicators relative to other geoindcators. 

Although data specific to Conception Bay existed that stated the relative importance of 

particular geoindicator characteristics (i.e. with regards to 'form of foreshore,' barrier 

beaches are more sensitive than bedrock dominated coastlines), data that indicated a 

precise weight of each characteristic did not exist. Nor did data exist that indicated that 

relative weight of different geoindictors compared to each other (i.e. form of foreshore 

compared to sediment type). As a result, in the present study, the decision was made to 

assume an equal weight between the different values or characteristics within any 

particular geoindicator rather than assign inaccurate weights. This practice follows that 

employed by Gornitz (1990) and Shaw et al. (1998) in other studies of erosion sensitivity. 

In addition, the different geoindicators. used in the foreshore and backshore erosion 

sensitivity assessments were assumed to contribute equally to overall hazard sensitivity, 

as shown below: 
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Foreshore 
Form of Sediment Bathymetric 

Presence of 
Erosion = + + + Offshore 

Sensitivity 
Foreshore Type Slope 

Boulders 

Backshore 
Backshore Backshore 

Presence of 
Vegetation 

Erosion = + + Erosion Control + 
Sensitivity 

Slope Composition 
Measures 

Status 

With certain geoindicators, such as 'form of foreshore' or ' sediment type,' the 

difference between certain characteristics was distinct enough (i.e. barrier beach versus 

fringing beach versus bedrock dominated coastline) that assigning different rank values 

was simple. However, difficulty arose with the backshore and bathymetric slope 

geoindicators, as a continuous value was being measured. The result was that arbitrary 

boundaries in slope values had to be made. The decision to place the boundaries at 2/3°, 

7.8°, and 14/15° for the backshore slope and at 5/6° and 20° for bathymetric slope was 

made in consultation with other researchers familiar with the study area (Don Forbes and 

Don Pittman, personal communication). 

Although four qualitative hazard assessments had previously been conducted within 

the Conception Bay region (Taylor, 1994; Sheppard, 1997; Shaw et al., 1998; Catto, 

2000), in order to accurately evaluate the methodology developed in this study, the 

results that were generated could only be assessed against known events or sites for 

which there existed documented evidence of a flooding or coastal erosion problem (Dave 

Liverman, personal communication). As a result, the lack of documented flooding or 
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erosion events and detailed quantitative data on erosion rates limited the opportunity for 

rigorous testing of the hazard sensitivity assessment methodology developed in this 

study. Evaluation of sites predicted to have moderate sensitivities to flooding or erosion 

hazards was not conducted as there was no historical data available for comparison. 

Monitoring efforts are generally focused on sites with high to extreme risks to geological 

hazards. Although highly qualitative observations of current or past coastline behaviour 

was relied upon for base comparison, it is acknowledged that they only provide evidence 

of past erosional events. However, coastal processes that have acted in the past can be 

assumed to act in the future. 
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Chapter 8 
Implications of Climate Change 

8.1: Implications of Climate Change in Atlantic Canada 

Within Atlantic Canada, climate change impacts will be felt in the coastal zone. 

Climate change is predicted to cause an increase in global sea-level of 50 em by 2100 

(Kemp, 1991; Forbes et al., 1997; Hengeveld, 2000), as well as changes in atmospheric 

circulation patterns which may lead to increased storm intensity, and possible changes in 

storm tracks and frequency, ocean wave climate, sea-ice cover, and ecological zonation 

(Forbes et al., 1997). All of these factors can potentially affect coastal stability, flood and 

storm hazards, and socio-economic activity or investment within the coastal zone (Table 

8.1) (Forbes et al., 1997; Mclean et al., 2001). The impacts of climate change on the 

coastal zone of Atlantic Canada, including Newfoundland, and their resulting 

consequences are summarized as (Shaw, 1997a): 

• accelerated sea-level rise leading to increased flood risks, enhanced coastal 

erosion, coastal sedimentation and sediment redistribution; 

• increased storm frequency and magnitude leading to increased erosion and 

risk of storm surge flooding; 

• reduced extent and duration of sea ice leading to increases in open water fetch 

and associated wave energy. 

115 



Table 8.1: Potential impacts of climate change and sea-level rise on coastal systems. 

Potential Impacts of Climate Change and Sea-level Rise on Coastal Systems 

Biophysical impacts can include: 

- Increased coastal erosion 

- Inhibition of primary production processes 
- More extensive coastal erosion 

- Higher storm surge flooding 

- Landward intrusion of seawater in estuaries and aquifers 

- Changes in surface water quality and groundwater characteristics 
- Changes in the distribution of pathogenic mircoorganisms 

- Higher sea surface temperatures 
- Reduced ice cover 

Related socio-economic impacts can include: 

Increased loss of property and coastal habitats 

- Increased flood risk and potential loss of life 

- Damage to coastal protection works and other infrastructure 

- Increased disease risk 

- Loss of renewable and subsistence resources 

- Loss of tourism, recreation and transportation functions 

- Loss of non-monetary cultural resources and values 
- Impacts on agriculture and aquaculture through soil decline and water quality 

(Mclean et al., 2001:356) 

8.2: Sea-Level Rise 

The first Intergovernmental Panel on Climate Change (IPCC) assessment report 

concluded that sea-level rise was the most significant component of climate change in the 

coastal zone (Warrick and Oerlemens, 1990). It has been estimated that global sea-level 

will rise by approximately 50 em by the year 2100 mainly as a result of the thermal 

expansion of the oceans, although the melting of temperate glaciers and changes in the 

volume of the polar ice sheets will also contribute (Kemp, 1991; Forbes et al., 1997; 

Hengeveld, 2000). The Canadian Centre for Climate Modelling and Analysis ' CGCM1 

general circulation model predicts a 40 em rise in the Atlantic Ocean east of the 
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Maritimes (Hengeveld, 2000). Evidence already indicates that global sea-level is rising at 

rates of 1 to 2 mm/year and this is expected to accelerate well into the 23rd century 

(Warrick and Oerlemens, 1990; Mclean et al., 2001). These increases in global sea-level 

will be in addition to relative sea-level changes due to continuing isostatic rebound and 

crustal submergence affecting Atlantic Canada, leading to an acceleration of the existing 

sea-level rise currently being experienced. Within the southern Conception Bay study 

area, current rates of relative sea-level rise have been on the order of 20 to 30 em/century 

through the Holocene (Catto et al. , 2000). As a result, the rise in relative sea-level by 

2100 within Conception Bay could be as high as 70 em. 

A rise in mean sea-level has a direct impact on the level of tides, storm surges, storm 

wave run-up and wave energy. An accelerated rise in sea-level, in combination with a 

possible increase in storm activity, can be expected to increase flood hazards, coastal 

erosion, storm damage, and associated property losses. 

8.2.1: Flooding 

Flooding of coastal property, utility infrastructure, and port facilities has been 

recognized as a potential impact of future sea-level rise (Forbes et al., 1997). Low-lying 

coastal lands are susceptible to flooding under high tides and storm surges and the 

frequency and landward extent of such flooding could be expected to increase with a rise 

in mean relative sea-level (Forbes et al., 1997; Mclean et al., 2001). Significant flooding 

is known to have occurred at Chamberlains Pond and in Kelligrews. Reports of the sea 
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washing away a considerable length of railroad in Kelligrews date back to 1921 

(Batterson et al., 1999). More recently, a severe nor'easter in October 1992 produced 

considerable damage to property along much of the Conception Bay shore. Numerous 

boats were damaged or sunk, particularly at the Royal Newfoundland Yacht Club in Long 

Pond, where the barrier bar was breached, and substantial erosion occurred on the cliffs 

behind the Topsail United Church. A moderate nor'easter in the autumn of 1994 also 

caused significant coastal modifications and erosion in the Conception Bay region 

(Liverman et al., 1994; Batterson et al., 1999). 

The flood sensitivity assessment conducted in this study noted that extensive coastal 

segments with high sensitivity to flooding are found west of the Topsail Beach barrier; 

along Chamberlains, Long, Upper Gullies and Lance Cove Ponds; along the western side 

ofKelligrews Pond; and along Holyrood Beach at the head of Conception Bay. Properties 

surrounding and adjacent to Chamberlains Pond, including the sewage treatment plant, 

were noted as being extremely sensitive to flooding. As well, the coastline from Foxtrap 

to Kelligrews, including Cronin's Head, the proposed site of a new sewage treatment 

plant (Canning and Pitt Associates, 2000a), and commercial properties along the eastern 

side of Kelligrews Pond are presently extremely sensitive to flooding. With a rise in 

relative sea-level (including both isostatic and eustatic increases), the frequency and 

severity of flooding in these areas can be expected to increase. Although the actual 

increase in sensitivity is site specific and depends on how the level of tides, storm surges, 

storm wave run-up and wave energy increases with a rising sea-level. 
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Between 1973 and 2000, coastal flooding has cost the Province of Newfoundland and 

Labrador over $40 million and the federal government over $27 million (Table 8.2) 

(Dennis Shea, Newfoundland and Labrador Emergency Measures Organization, personal 

communication). 

Table 8.2: Recent expenditures in Newfoundland and Labrador by the Federal-Provincial 
Disaster Financial Assistance (DF A) Program (1973-2000) • 

Date Event Total Costs Federal Share Comments 

A sudden severe storm struck the Atlantic 
1973 Storm $1 400 000 $435 000 provinces on June 17, 1973 causing 

extensive damages to fisherman's gear. 
1974 Ice Storm $5 151 752 $3 540 871 -
1978 Flood $5 235 779 $3 588 601 -
1983 Flood $3 979 778 $2 426 000 -
1984 Ice Storm $3282619 $1 786 357 -
1990 Flood $2 327 777 $1 029 958 -

1990 Flood - $3 600 000 Damages associated with flood along 
West Coast. 

1994 Storm - - Request for federal assistance did not 
meet the DFA threshold. 

1995 Storm $1 675 710 $549 235 -
1995 Hurricane Luis - $3 000 000 -
1996 Flood - $1 000 000 Damages associated with Flat Bay Flood 

1998 Hurricane Earl - $1 300 000 Affected Baie Verte Peninsula 

Damages associated with January 22, 
2000 Storm Surge - $5 000 000 2000 storm that affected southwest coast 

from Port aux Basques to Trepassey. 

(data courtesy Dennis Shea, Newfoundland and Labrador Emergency Measures and 
Planning and Len Leriche, Office of Critical Infrastructure Protection and Emergency 
Preparedness). 

• It is important to note that under the DF A program, the province is wholly responsible for the first 
$500 000 of expenditures. As a result, the total financial costs incurred through floods, storms and erosion 
are much greater than those listed above (Dennis Shea, personal communication). For example, the 
construction of 50 m of gabions and armour stone in Chamberlains, Conception Bay South, to repair 
erosion sustained during the October 1992 nor' easter cost $13 000 to $28 000 and was covered entirely by 
the province (Batterson et al. , 1999). In fact, damages due to the 1992 storm do not appear on this table as 
either no request for assistance was made, or the request did not meet the DF A threshold. 
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These costs can be expected to increase with higher sea-levels, increased property values 

and greater coastal development. For example, damages following a severe storm in 

1966, which completely destroyed the community of La Manche on the Southern Shore, 

only approached $1 million. Were a storm of similar magnitude to strike today, the cost 

would be significantly higher, reflecting the increase in land values and coastal 

infrastructure. 

8.2.2: Erosion 

Wave action at the base of coastal cliffs is one of the primary factors controlling the 

rate of shoreline retreat, as toe erosion and undercutting exert a critical control on the cliff 

profile and its overall stability (Forbes et al., 1997). With higher sea-levels, waves break 

higher on the beachface, resulting in higher run-ups and shear stresses, thus increasing 

the potential for overtopping and flooding of coastal landforms and structures and greatly 

enhancing the potential for subsequent erosion (Forbes et al., 1997). The Conception Bay 

South coastline is dominated by extensive backshore cliffs composed of unlithified 

Quaternary sediments with a high to extreme sensitivity to erosion. Cliff sediments are 

present on the beach in numerous areas indicating active erosion is occurring (Plate 8.1). 

The sensitivity of these cliffs to erosion can be expected to remain high or increase in the 

future. 
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Plate 8.1: Active erosion in the Topsail region (segment 1127- 1392 m), with cliff sediments on 
the beach. 

However, the coastal response to sea-level rise will likely be quite complex. Erosion 

of coarse-grained glacial deposits can lead to the accumulation of protective boulder lags 

at the cliffbase and across the nearshore, reducing wave energy and erosion rates (Forbes 

and Syvitski, 1994). These protective boulder lags are present along extensive segments 

of the southern Conception Bay coastline from Topsail to Lance Cove. As well, coastal 

progradation can occur where sediment supply exceeds that required for the maintenance 

of shoreline stability. In fact, it is possible that accelerated sea-level rise may increase 

sediment supply from eroding coastal cliffs, leading to more rapid shoreline progradation 

downdrift. The unlithified coastal bluffs between Seal Cove and Lance Cove and between 

Manuels and Topsail are presently important sediment sources. Allowing natural erosion 

processes to continue at these sites will provide much needed sediment to downdrift 
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beaches to mitigate against the effects of a rising sea-level, and acts as a natural 

adaptation measure. As such, it is important that the serious implications of preventing 

the continued erosion of these cliffs are fully understood before any mitigative work is 

undertaken. Changing sediment budgets can also lead to the closure of tidal inlets or to 

changes in inlet configuration, causing localized erosion and flooding (Forbes et al., 

1997). For barrier beaches currently susceptible to significant changes in morphology, 

such as the Topsail Beach barrier, the impacts will be substantial. 

8.2.3: Coarse Clastic Barrier Evolution 

In addition to unlithified coastal cliffs, the coastal areas with the greatest sensitivity to 

accelerated sea-level rise are coarse gravel beaches and barriers, especially if sediment 

starved (Bijlsma et al., 1996; Mclean et al., 2001). As the Conception Bay South 

coastline is dominated by the nearly continuous development of extensive gravel barriers 

and beaches, this is of great importance. Shaw et al. (1994, 1998) noted the region as 

susceptible to coastal erosion. The results of the present study showed that the barrier 

beaches had a moderate to extreme sensitivity to erosion. 

Gravel barriers develop under both rising and falling sea levels (Orford et al., 1991), 

and thus their evolution and morphological stability are closely linked to changes in 

relative sea-level. Indeed, research has shown that the majority of coarse clastic barriers 

in Atlantic Canada show a constant landward migration under stationary and rising sea­

levels, due to the lack of seaward directed sediment transport (Carteret al., 1987, 1989; 
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Forbes et al., 1995). When and where sediment supply is constrained, the barriers must 

respond by altering their morphology to withstand the impact of rising sea-level (Orford 

et at., 1991, 1995b; Dubois, 2002). Morphological change can be accomplished through 

modification of barrier geometry (slope, width and height) or through the reworking (or 

cannibalization) of existing forms to supplement some, or even all, of the deficits in the 

sediment budget. These changes lead to barrier stretching, segmentation and ultimately 

breaching and sediment dispersal away from the coastline (Forbes et al., 1989; Shaw et 

al., 1993). Where sea-level rise is rapid (>20 em/century), there is less opportunity for a 

barrier to mature in terms of sediment distribution and morphology, as it must constantly 

readjust to an ever-changing sea-level. As barriers not only provide limited protection 

against direct wave attack, but also control the delivery and pattern of sedimentation 

within estuaries and lagoons, the effects of rapid fluctuations in barrier form and 

behaviour are directly transferred to these adjoining waterbodies (Carter et al., 1989). 

Where substantial anthropogenic development has occurred along a lagoon, as at 

Chamberlains, Kelligrews and Long Ponds, the effects could be significant. 

8.3: Variable Storminess and Extreme Events 

While the potential impacts of a rise in sea-level have been studied extensively, much 

less attention has been given to the effects of changes in wave climate and storminess 

(Mclean et al., 2001). Temporal variations in storminess, including possible increases in 

storm frequency or intensity, wind climatology, and wave patterns can be expected to 

have significant effects on rates of coastal erosion and storm surge flooding (Forbes et al., 
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1997; Mclean et al., 2001). The greatest risks of climate change are associated with 

changes in the frequency and intensity of extreme events (Bijlsma et al., 1996; 

Hengeveld, 2000). Omission of changes in extreme events and/or climate variability will 

likely underestimate climate change impacts and sensitivity (Schneider et al., 2001). 

Future hazard assessments, development guidelines and environmental impact 

assessments will need to not only consider future changes in climatic conditions, but also 

climate variability and changes in climate extremes. As Forbes et al. (1997:55) state, 

"ft]he challenge in determining probable impacts of changing storm climate in the 
coastal zone lies both in the specification of storm climatology (frequency, intensity, 
storm track) and in predicting the coastal response . . .It is not always clear to what extent 
changes are driven by extreme events, by secular changes in climate, or by internal 
feedback within the coastal system. The response of a given coastal system, particularly 
gravel-dominated ones, may depend critica1ly on the antecedent conditions of the shore 
and its susceptibility to erosion or overtopping." 

Nor'easters are the extreme events most likely to affect the southern Conception Bay 

study region. The most recent nor' easters to affect this area occurred in the autumn of 

1992 and 1994. The severe storm of October 1992 caused rapid coastal erosion (1-2 m 

near Chamberlains Pond) (Plate 8.2 and 8.3) and beach modification, including the 

formation oflarge swash cusps, and a major breach of the Long Pond barrier. This breach 

cost over $40 000 to repair and resulted in hundreds of thousands of dollars of damage to 

boats and infrastructure at the Royal Newfoundland Yacht Club. With an increase in the 

frequency and intensity of severe nor'easters in the future, erosion events can be expected 

to become more frequent, with greater rates of retreat. 
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Plate 8.2: Chamberlains beach (segment 2818-2898 m) before the passage of the October 1992 
nor'easter (photograph courtesy Martin Goebel, Department of Environment, Government of 

Newfoundland and Labrador). 

Plate 8.3: Severe erosion to the beach and nearby road following the passage of the October 1992 
nor'easter (photograph courtesy Martin Goebel, Department of Environment, Government of 

Newfoundland and Labrador). 
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Research in the New England states indicates that since nor'easters affect larger areas 

and occur more frequently than hurricanes, their potential to cause damage is greater 

(Davis and Dolan, 1993). In Newfoundland, however, hurricanes are more frequent than 

nor' easters. As well, nor' easters tend to occur during the winter, when there is protective 

ice cover on the beaches. The extreme sensitivity ofbeaches in Conception Bay South to 

damage from nor' easters results from the northeast orientation of Conception Bay. With 

the maximum fetch direction oriented in the direction of the storm, the coastline of 

southern Conception Bay is directly impacted by refraction of the largest storm-generated 

waves. With population density along the coast continuing to grow, severe storms will 

have an even greater impact upon the lives and livelihoods of coastal residents. 

8.3.1: Storm Surge Flooding and Wave Action 

The key to determining the impact of increased storminess and extreme events lies in 

studying the effects of waves produced by these storms. For example, although 

nor'easters are capable of generating strong winds, the majority of damage is caused by 

high waves (heights of 5 to 10 m are common) and storm surges (the most severe storms 

can produce surges up to 2.5 m high in Eastern Canada) (Dolan et al., 1988; Davis and 

Dolan, 1993). Increases in water depth at the coast due to storm surges contribute to 

conditions that permit higher wave action closer to the shoreline, thus increasing the 

potential for infrastructure damage and coastal erosion (Davis and Dolan, 1993; Forbes et 

al., 1997). Coastal segments noted as having high to extreme sensitivies to flooding and 

foreshore erosion in the present study, particularly those where there is significant 
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anthropogenic development, will be the most vulnerable. The most damaging storms are 

those with storm surges that coincide with a high tide, or storms of long duration that last 

over several tidal cycles, particularly spring tides (Forbes et al., 1997; Douglas et al., 

2002). 

Changes in coarse clastic barrier morphology under rising sea-level conditions are 

primarily the result of wave action and erosion along the shoreline (Orford et al., 1991, 

1995a, 1995b; Dubois, 2002). Barriers respond to extreme wave activity, which may 

result in surge and swash overwashing and destabilization of the barrier crest as shoreface 

sediments are moved onto the backbarrier slope, thus generating barrier rollover (Carter 

et al., 1987; Orford et al., 1995a; Taylor and Frobel, 1999; Dubois, 2002). The barrier at 

Long Pond has been breached by extreme wave activity associated with major winter 

storms in 1976 and 1992, and is vulnerable to flooding and overtopping during surges 

associated with exceptionally high tides (Don Pittman, personal communication). 

In the North Atlantic, a multi-decadal trend of increased wave height has been 

observed, with visual estimates from merchant ships and instrumental records suggesting 

significant wave height increases of 0.1 to 0.3 m, although the cause is poorly understood 

(Canavan, 1997; Mclean et al., 2001). Examination of storm wave data between 1957 

and 1995 off eastern Canada by Swail (1997) showed an increase in storm wave height 

off the Scotian shelf. This was accompanied by a similar increase in wind speed. Wave 

analyses for the northeast Atlantic also indicated an increase in significant wave height 
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over the previous 30 years. However, data from the Grand Banks and in the Labrador 

Basin showed no change and a decrease, respectively, in storm wave height (Thomas, 

1996). 

Several recent extreme storm and wave events in the northwest Atlantic Ocean have 

exceeded published estimates of extreme wave climatology. These include the Halloween 

Storm of October 1991, which was characterized by 17.3 m significant waves and 

maximum waves greater than 31 m, and the Storm of the Century in March 1993, with 

significant wave heights of 16.3 m (Thomas, 1996; Swail, 1997). Hurricane Luis, in 

September 1995, hit the ocean liner Queen Elizabeth II with maximum waves estimated 

at 29 m in height. A nearby moored buoy measured 17 m significant waves and estimated 

maximum waves exceeding 30m (Swail, 1997). Large waves associated with Hurricane 

Gert-Harvey (1999), estimated at 16 m height, caused hundreds of thousands of dollars 

worth of damage to the St. Bride's, Newfoundland harbour and boats moored within 

(Anonymous, 1999; Freake, 1999). 

8.3.2: Coastal Erosion 

The length and intensity of any particular storm, the specific characteristics of incident 

waves, and storm impacts can vary considerably (Figure 8.1). Extreme events can leave 

an imprint on the coast that lasts many years, such as swash cusps, which may then 

control washover processes and·other aspects of beach response during subsequent large 

wave run-up events (Carter and Orford, 1984; Orford et al., 1991; Forbes et al. , 1997). 
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On gravel-dominated systems along Newfoundland's Avalon Peninsula, swash cusps 

older than three years have been observed and reflect the long recurrence intervals of 

storms that can generate waves of significant strength to mobilize cobble-sized 

sediments. Swash cusps formed on Topsail Beach during the October 1992 nor' easter 

were still visible in the late 1990s and were known to focus washover activity, as were 

cusps formed on the Long Pond barrier . 

., / 

C:hang_es to~T QP&all Beach (at Carter'a Lane) 
·" · · After a Winter St9m) ' 

Distanc. (m) 

Figure 8.1: Significant beach modification resulting from the passage of the October 1994 
nor' easter (data courtesy David Liverman, Geological Survey of Newfoundland and Labrador). 

Coastal erosion can be a major cause of concern where valuable land, residential 

dwellings, and other infrastructure are threatened by cliff retreat. In Topsail, the loss of 

shorefront property initially resulted in a new landowner being prevented from 

constructing a new house (Batterson, 1999). However, permission has been recently 

granted and a new home has been constructed (Plate 8.4). Although the 30 m 

construction setback from the high tide line has been met (Canning and Pitt Associates, 
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2000a), a boulders eawall wasp reviously constructed a long the 1 ow bluff fronting the 

property to halt erosion activity (Plate 8.5). The bluffs fronting the adjacent property are 

actively eroding and mitigation measures have not been put in place, potentially 

undermining the effectiveness of the seawall. 

Plate 8.4: New home in Topsail (segment 679-759 m) constructed within a coastal hazard area. 

Plate 8.5: Boulder seawall constructed to halt erosion activity in segment 679- 759 m. Note that 
the adjacent property is actively eroding and mitigation measures have not been put in place, 

potentially undermining the effectiveness of the seawall. 
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Cliff erosion may occur through removal of material at the cliff base, a process largely 

controlled by wave energy (which increases with the square of the wave height) and 

water level (enhanced by high tide, storm surge, wave setup or run-up), or through 

slumping and gullying of the cliff top, processes dominated by lithological and 

geotechnical properties of the soil and by runoff and groundwater conditions. The latter 

can lead to rapid headwall erosion and property loss. Weather conditions (wind, storm 

surge, waves versus precipitation) may favour one type of erosion over another, 

complicating the prediction of climate change impacts (Forbes et al., 1997). Significant 

cliff erosion has occurred behind the Topsail United Church, along the unlithified cliffs 

between Chamberlains and Manuels Ponds, and along the T'railway east of Lance Cove 

through to Seal Cove. Erosion activity has been episodic rather than continuous, with 

significant erosion events (0.5 - 1.0 m retreat) often triggered by a single storm event 

(Catto, 1994; Liverman et al., 1994; Batterson, 1999). Rates are dependent on shoreline 

orientation, wave climate, slope vegetation and human interference. Annual recession 

rates approach 0.5 m (Batterson, 1999). 

8.4: Reduced Extent and Duration of Sea-Ice 

Possible increases in open-water fetch and wave energy during the winter months, due 

to higher sea-surface temperatures and a reduction in the extent and duration of winter 

sea-ice may also contribute to increases in wave energy and coastal erosion losses 

(Forbes et al. , 1997; Mclean et al., 2001). Ice-foot development is an important winter 

phenomenon along the coastline of Atlantic Canada. It commonly serves a protective role 
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on beaches by acting as a natural seawall and resulting in the seaward displacement of 

breaking waves. Less common or persistent ice-foot development under warmer climate 

conditions might contribute to shore erosion in a minor way (Forbes and Taylor, 1994). 

As sea-ice has a negligible to non-existent impact on southern Conception Bay and ice­

foot development is not very extensive, pervasive or persistent (Catto, in press), the likely 

impacts of a reduction in sea ice and ice-foot development on the Conception Bay South­

Holyrood coastline will be limited. However, increases in winter storm wave climate, 

combined with a reduction in ice-foot development could lead to an increase in winter 

beachface erosion and washover. Northeast-facing segments of coastline currently highly 

sensitive to the effects of winter storms, and the numerous barrier beaches of Conception 

Bay South will be particularly sensitive. 
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Chapter 9 
Adapting to Climate Change and Sea-level Rise 

9.1: Adapting to Climate Change and Sea-level Rise 

Rising sea levels and changes in storm frequencies and intensities, along with 

associated storm-surge flooding and coastal erosion, only become a hazard when they 

impact human populations and developments (Lawrence, 1994; Godschalk et al., 2000; 

Mclean et al., 2001). The southern Conception Bay coastline is already experiencing a 

rise in relative sea-level and is susceptible to the effects of extreme events, such as 

hurricanes and nor'easters. With predicted rises in global sea-level, an increase in 

storminess and potentially higher than average winds, it is reasonable to expect that more 

substantial coastal modifications will result from climate change. In 1992, the 

Intergovernmental Panel on Climate Change (IPCC) defmed three options for coastal 

adaptation to sea-level rise and other impacts of climate change: 

• retreat or avoidance 

• accommodation 

• protection 

Retreat or avoidance involves abandoning settlements or structures in currently 

threatened coastal areas and preventing future development in areas that may be affected 

by future sea-level rise (Al-Farouq and Huq, 1996; Rijsberman and van Velzen, 1996; 

Klein and Nicholls, 2001). While retreat may be the optimal adaptation response for areas 
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with limited development, it is impractical for areas with substantial coastal infrastructure 

or with significant heritage resources (Forbes et al., 2002). 

Accommodation involves a continued, although altered, occupation and usage of 

sensitive coastal lands (Al-Farouq and Huq, 1996; Rijsberman and van Velzen, 1996). It 

can involve the redesign of buildings and other structures to minimize impacts, changes 

in zoning laws to encourage appropriate land use, and the rehabilitation of disturbed 

ecosystems, such as dunes, to enhance natural resilience (Klein and Nicholls, 2001; 

Forbes et al., 2002). Typically, accommodation measures involve using advance 

planning, modification of current land use patterns and building codes, protection of 

natural ecosystems, and the development of hazard zone regulations to avoid the negative 

impacts of climate change (Forbes et al., 2002). In both avoidance and accommodation, 

natural coastal erosion and flooding processes are allowed to continue, with the resulting 

loss or change of some coastal functions and values (Klein and Nicholls, 2001 ). 

Protection attempts to maintain the. present shoreline position by constructing 

protective structures, such as seawalls and revetments ('hard' protective measures) or by 

artificially nourishing or maintaining beach and dune systems ('soft' protection 

measures) (Pope, 1997; Klein and Nicholls, 2001; Forbes et al., 2002). Often the most 

widely applied strategy to protect coastal settlements against existing coastal hazards, it 

has the potential to severely modify the natural coastal system, by affecting wave 
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conditions, currents and sediment supply, particularly downdrift from the protection 

structure (Pethick, 1984; Pope, 1997). 

9.2: Recommendations 

Along with attempting to maintain the present shoreline position through the 

construction of protective measures, or abandoning development in threatened areas, 

recent studies of coastal sensitivity and adaptation to sea-level rise have concluded that 

appropriate adaptation responses should also include (United Nations Department of 

International Economic and Social Affairs, 1982; Godschalk et al., 2000; Healy and 

Dean, 2000; Burton et al., 1998; Forbes et al., 2002): 

• raising public awareness; 

• planning urban growth; 

• preserving wetlands; 

• improving coastal zone management planning, including developing setbacks and 

lowering financial incentives for developing high risk areas. 

Indeed, there are a number of specific adaptation options that can be recommended in 

preparation of accelerated sea-level rise and climate change in southern Conception Bay. 

9.2.1: Hazard Identification and Monitoring 

The preliminary erosion hazard sensitivity ranking scheme based on shore-zone 

morphology and sediments developed in this study was useful for obtaining an overall 
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qualitative view of risk distribution. However, detailed quantitative methods are required 

for purposes of specifying setback distances and further consideration needs to be given 

to a realistic definition of erosion rates and potential future erosion, especially 

considering that coastal erosion in Conception Bay South tend to be episodic as opposed 

to continuous (Catto, 1994; Liverman et al., 1994; Batterson, 1999). The Geological 

Survey of Canada - Atlantic (GSCA) has started to analyze longterm erosion rates using 

aerial photogramrnetry and detailed field surveys. Initial results have indicated a high 

variability in the historical erosion measurements (a function of variable storminess and 

differing coastal responses) (Figure 8.1) (Don Forbes, personal communication). Not 

only does this variability need to be recognized, but so does the potential for barrier 

breaching, overtopping and overwashing during extreme storm events. This is especially 

true as these sort of changes are not captured in historical retreat rate estimates (Forbes et 

al., 2002). As well, with an increase in relative sea-level and a possible increase in wave 

energy, erosion rates could accelerate. An active partnership between the Towns of 

Conception Bay South and Holyrood and the GSCA needs to be developed and fostered 

with active sharing of both data and technical expertise to help develop realistic and 

workable development setbacks that consider the dynamic condition of the southern 

Conception Bay shoreline. 

Changes in a location's sensitivity to erosion and the need for regular reassessment of 

erosion rates points to the need for ongoing environmental and coastal monitoring. 

Existing coastal erosion and beach profile monitoring reference sites provide control 
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points for the derivation of more accurate erosion rates and provide baseline data for 

future studies. It is highly desirable that these control sites be maintained in support of the 

planning, adaptation and ongoing risk assessment needs (Forbes et al., 2000). In order to 

provide an adequate database for reassessment, fluctuations in the position of the 

shoreline should be monitored at least once or twice a year (Gibb, 1983). Memorial 

University of Newfoundland's Department of Geography, the Geological Survey of 

Newfoundland and Labrador and the GSCA have all established monitoring reference 

sites in southern Conception Bay in the last ten years (Liverman et al., 1994; Pittman, in 

preparation). Continued monitoring of these sites is required on an annual to semi-annual 

basis and after every significant storm event. However, with three different organizations 

collecting data, a concerted effort needs to be made to streamline data collection and 

analysis. Responsibility for data collection and analysis should be given to one 

organization, although the availability of highly accurate global positioning system (GPS) 

equipment and processing facilities may mean that this responsibility needs to be shared. 

The Towns of Conception Bay South and Holyrood need to have one designated 

organization from which they can acquire the necessary monitoring data for developing 

appropriate land use management strategies. It is recommended that the communities 

assume responsibility for undertaki.ng beach and cliff profile monitoring using simple 

Emery Pole (Emery, 1961) surveying techniques, with detailed GPS surveys being 

undertaken by the federal or provincial geological surveys as they would have the 

necessary equipment and expertise. 
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Most importantly, the development of a digital elevation model (DEM) for accurate 

flood hazard zone delineation and mapping needs to be undertaken, particularly for the 

many coastal lagoons in Conception Bay South. Detailed ground truthing would be 

required to validate the results of the DEM and any derived flood hazard maps. 

Additionally, a statistical analysis of flood levels and recurrence probabilities would be 

required to accurately define the flood hazard. With a historical record of severe flooding 

events in the community (Taylor, 1994; Sheppard, 1997; Batterson et al., 1999), the 

creation vf an accurate DEM and flood hazard zone map is seen as a priority for the 

Town of Conception Bay South. 

9.2.2: Managed Retreat or Avoidance 

The simplest form of avoidance is to restrict development in sensitive locations, since 

minimizing development in erosion and flood-prone locations is more cost-effective than 

constructing expensive protection works (Al-Farouq and Huq, 1996; Rijsberman and van 

Velzen, 1996; Klein and Nicholls, 2001; Forbes et al. , 2002). The maintenance of 

protective environmental features such as dunes, maritime forests, vegetation and 

wetlands which reduce wind and wave impacts is also important (Godschalk et al., 2000). 

It is recommended that the situation of new developments and infrastructure in sensitive 

areas, such as the proposed sewage treatment plant in Kelligrews at Cronin's Head 

(Canning and Pitt Associates, 2000a), be avoided and that other less sensitive locations 

be actively considered. Where existing development may become increasingly sensitive 

to the effects of flooding and erosion; such as on the low lying land surrounding 
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Kelligrews and Chamberlains Ponds, along the failing slopes in Topsail, and along the 

back beach at Holyrood, it is recommended that they be relocated to safer locations. The 

relocation of the sewage treatment plant in Chamberlains, already affected by erosion, 

should be considered once it becomes obsolete or when maintenance costs (due to 

increased erosion and the effects of sea-level rise) become prohibitively high. Where 

building lifespans are relatively short (less than twenty-five years), it may be more 

acceptable to allow the current landuse to continue as at present, but for the property to 

be abandoned once the building needs to be replaced. 

9.2.3: Accommodation 

Since retreat may not be a feasible option in a (sub )urban setting, alternative 

adaptation strategies such as accommodation may need to be considered. 

Accommodation strategies allow for a continued use of the land, while still protecting 

developments and infrastructure from hazards (Al-Farouq and Huq, 1996; Rijsberman 

and van Velzen, 1996). Accommodation measures can include land use zoning, creation 

of development setbacks, strengthening buildings and infrastructure through amendments 

to building codes and engineering design (i.e. floodproofing basements and raising 

foundation heights or the heights of protection structures, wharves, and other coastal 

infrastructure) in an effort to increase the resilience of structures exposed to hazards, to 

more stringent assessments of building proposals in potentially hazardous locations 

(Godschalk et al., 2000: Forbes et al., 2002). As Gibb (1983:16) notes, "prevention is 

better than cure." 

139 



Land use zoning is a particularly effective accommodation strategy as it allows for 

more stringent control of coastal land development. Development in sensitive coastal 

locations can be limited by designating a site as suitable only for green space 

development or limiting development to temporary structures (lifespans less than 25 

years) than can be easily removed, relocated or rebuilt in a less sensitive location. Land 

use zoning is a proactive adaptation strategy that requires forward thinking and an 

understanding of future conditions. It is best used in combination with setbacks. 

Primarily used to protect development from coastal hazards, particularly erosiOn, 

setbacks provide a buffer zone between the shoreline and coastal infrastructure (Gibb, 

1983; Healy and Dean, 1999). They can also be used to preserve the natural character of 

the coastline or to protect sites of special interest (Healy and Dean, 1999). As tourism in 

Conception Bay South and Holyrood is and has been historically tied to the marine and 

natural environment (Grandy, 1969; Hyde, 1973; Rowe, 1980; Hochwald and Smith, 

1988; Catto, 1994; Poole, 1994; Veitch, 1989; Canning and Pitt Associates, 2001), the 

ability to maintain the unique natural character of the coastline for the future is of 

particular concern. In addition, such coastline preservation will allow natural erosion 

processes to continue, thereby providing much needed sediment to downdrift beaches to 

mitigate against the effects of a rising sea-level. 

The Town of Conception Bay South has already developed a 30 m development 

setback from the high tide line (Canning and Pitt Associates, 2000a:38) in an attempt to 
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protect existing development from coastal hazards. However, although it is mentioned in 

the Conception Bay South municipal plan 2001-2011: strategy for growth (Canning and 

Pitt Associates, 2000a:38), the shoreline protection development setback is not found in 

the Town of Conception Bay South development regulations 2001-2011: land use zoning, 

subdivision and advertisement regulations (Canning and Pitt Associates, 2000b). In 

addition, the development setback does not take elevation into account or the area 

influenced by storm waves, meaning buildings can continue to be constructed in highly 

hazardous coastal locations. As well, in areas where flooding is the primary hazard, a 

horizontal setback distance will not be appropriate, as elevation is not considered. In this 

situation, a vertical setback based on elevation and flood probability may be more 

effective in reducing sensitivity (Forbes et al., 2002). It is recommended that the Town of 

Conception Bay South consider implementing new development setback limits that 

include topography and elevation, such as minimum flood heights or landward limit of 

storm wave impact damages, particularly for the land surrounding the numerous coastal 

lagoons. 

The communities are cautioned against using setback distances based on fixed time 

intervals (i.e. X metres of erosion over a century), as it implies an ability to predict 

erosion rates into the future over a specific time interval. Simple extrapolation of 

historical rates may not be appropriate, particularly when erosion is episodic and not 

continuous, as in Conception Bay South (Catto, 1994; Liverman et al., 1994; Batterson, 

1999). And if the potential for a significant increase in the rate of coastal retreat is not 

141 



incorporated into the calculations, the intended factor of safety may not be achieved 

(Forbes et al., 2002). 

Another accommodation strategy is to limit government expenditures for construction 

of infrastructure, such as roads and bridges, in sensitive areas. Public subsidies can 

"discourage sound economic decisions by artificially lowering the cost of developing 

property and creating a market bias in favour of development and against preservation of 

property -in its natural state" (Godschalk et al., 2000:17). It is recommended that the 

Towns of Conception Bay South and Holyrood do not extend municipal services, such as 

sewer and water, to areas sensitive to the effects of coastal flooding and erosion that have 

not yet been fully developed. Where municipal services have been extended to 

developments in sensitive areas, it is recommended that the towns implement a hazard 

notification requirement for real estate transactions, whereby hazard conditions and 

their potential impacts on a property are disclosed to potential purchasers prior to 

purchase (Godschalk et al., 2000). 

9.2.4: Protection 

Although managed retreat and accommodation are more cost-effective and perhaps 

sensible adaptation strategies, there are situations, such as when high-value properties or 

infrastructure are involved, where these strategies will not work and protection is 

required. However, serious consideration should first be given to accommodation or 

retreat and soft protection measures should be examined as alternatives to hard structural 
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solutions (Pope, 1997; Forbes et al., 2002). As coastal protection structures have the 

potential to alter coastal dynamics, by influencing nearshore wave fields, nearshore 

currents, and sediment transport, careful consideration of the entire relevant coastal 

system is required when selecting the location and design of coastal protection works 

(Pethick, 1983; Pope, 1997; Allsop and McConnell, 2000; Headland et al., 2000; Forbes 

et al., 2002). If seawalls or revetments are determined to be an appropriate solution, they 

need to be designed in light of an acceleration in sea-level rise and be based on potential 

changes in sea ice and wave climate as detennined from the most recent global and 

regional climate models. As well, whenever protection is chosen as an adaptation 

strategy, future maintenance needs, as well as the longterm feasibility of "holding the 

line" must be considered from the start (Forbes et al., 2002). 

In Conception Bay South, areas where protection will be required include the sewage 

treatment plant in Chamberlains (already subject to erosion), the Port of Long Pond, and 

the Foxtrap Marina. In Holyrood, protection will be required for the seaward side of the 

Holyrood Thermal Generating Station at Indian Pond, the Ultramar Refmery storage site 

and the Port of Holyrood. At these sites, consideration will need to be given to the 

resulting implications on coastal dynamics and it is therefore recommended that qualified 

engineers undertake the development of possible protection strategies. 
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9.2.5: Coastal Management 

Adequate provision needs to be made in planning schemes for the sensible 

management of land exposed to coastal hazards and to protect existing developments 

from their effects (Plate 9.1) (Gibb, 1983). Integrated coastal zone management is 

increasingly being seen as a valuable tool for incorporating adaptation requirements, to 

both present climate variability and future climate change, into the planning process 

(Forbes et al., 2002). Defined as the "management of the coastal zone as a whole in 

relation to local, regional, national and international goals," integrated coastal zone 

management focuses "on the interactions between the various activities and resource 

demands that occur within the coastal zone, and between coastal zone activities and 

activities in other regions (Penning-Rowsell, 1993:16)." 

Plate 9.1: This building, adjacent to the Foxtrap Marina (segment 7866 - 7947 m), is located 
within the 30 m development setback and is less than five metres from the bluff edge. Although 
the placement of riprap will halt erosion processes, the site can still be impacted by storm waves. 
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With the passage of the Oceans Act in 1997, Canada committed to a comprehensive 

approach for the protection and development of its oceans and coastal waters. As it had 

been recognized that past management strategies operated independently, without 

considering the long-term impacts on social, economic and environmental systems 

(Fisheries and Oceans Canada, 2002). Although there is a long-term goal of developing a 

system of integrated management plans for all of Canada's coastal waters (Fisheries and 

Oceans Canada, 2002), there is at present, no effective process for short-term integrated 

coastal management in Canada (Forbes et al., 2002). Previous attempts to develop a 

comprehensive national approach to managing the coastal zone have never come to 

fruition partially due to the fact that no single department, at any level of government, has 

primary or overall authority over the coastal zone as a whole (Butler and LeBlanc, 1993). 

The Government of Canada's new Policy and Operational Framework for Integrated 

Management of Estuarine, Coastal and Marine Environments in Canada notes that the 

main role of the federal Department of Fisheries and Oceans is to act as facilitator in the 

development of integrated coastal management plans. Many of the important 

management issues that need to be addressed, including effects of land use and climate 

change, fall within provinciaVterritorial or municipal government jurisdiction (Fisheries 

and Oceans Canada, 2002). For local levels of government that may lack the necessary 

technical expertise and that often work in isolation of surrounding communities, the lack 

of a designated lead agency has serious implications on the success of any integrated 

management plan. 
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Integrated coastal zone planning and management needs to be holistic in its approach: 

incorporating both terrestrial and marine systems and moving beyond approaches that 

focus on individual coastal segments or properties rather than the coastal system as a 

whole. Strategies that are property specific tend to have inconsistent results and often 

unintended consequences (Forbes et al., 2002). It is recommended that the Towns of 

Conception Bay South and Holyrood base their coastal zone/land use management and 

planning strategies on a consideration of the entire southern Conception Bay coastal 

system and indeed, strive to work together to develop mutually beneficial management 

plans, rather that considering their communities in isolation. 

9.2.6: Public Education 

For adaptation to climate change to be successful, the public needs to be educated as 

to the various hazards, including their location and intensity, and the potential adaptation 

strategies that can be implemented in a region (Gibb, 1983; Godschalk et al., 2000). 

Hazard information should be made available through regional and municipal planning 

schemes, with sensitive locations identified on the planning maps (Gibb, 1983). Such 

hazard maps should be readily available to the general public, regularly updated, and 

easily understandable (Godschalk et al., 2000). The creation of a climate change impacts 

and adaptations poster that is specific to the study region would be an excellent way of 

providing information to the public. In combination with the poster, it is recommended 

that the Towns of Conception Bay South and Holyrood develop a website that provides 
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climate change information and community specific adaptation strategies to further 

educate their residents. 

Regardless of the adaptation strategies adopted, they need to be adaptable themselves. 

Sensitivity, understanding, technology and coastal dynamics can change with time, 

indicating that adaptation needs should be reassessed and possibly adjusted on a regular 

basis: such as when municipal plans are re-evaluated, usually every five to ten years 

(Gibb, 1983; Forbes et al., 2002). 
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Chapter 10 
Conclusion 

With increasing development pressure, many coastal regions are experiencing rapid 

alteration of their natural environment, leading to widespread impacts on natural systems 

(Lawrence, 1994) and increasing hazards for human populations. Coastal processes such 

as sea-level rise, storm surge flooding, wave attack, sea-ice impact ai,J.d shoreline erosion 

are impop:ant components of the climate-driven marine environment (Catto, in press). 

When human developments coincide with these physical processes, naturally occurring 

events become geologic hazards (Lawrence, 1994; Godschalk et al., 2000; Mclean and 

Tsyban, 2001). 

Over the last fifty years, the population growth rate in Conception Bay South has 

exceeded that of the Province of Newfoundland and Labrador. Historical data indicates 

that Conception Bay South's population has approximately doubled every twenty years. 

With an improved provincial and regional economy, there has been consistent population 

growth and demand for new housing (Canning and Pitt Associates, 2001). With the 

majority of development in Conception Bay South and Holyrood occurring within 2 km 

of the coastline, there are important implications for coastal land use management, 

especially since rapid urbanization, recreation and tourism have become significant 

economic activities within both communities over the past decade. With more and more 

people moving into the coastal environment, steps must be taken to ensure that people, 

property and infrastructure are not situated in environmentally sensitive locations, now or 
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in the future. This is particularly true when future environment conditions are likely to 

change. For the most immediate effects of climate change and variability on the physical 

environment and on social and economic activity will be felt along the coastline (Bijlsma, 

1996; Forbes et al., 1997; Klein and Nicholls, 2001; Mclean and Tsyban, 2001). 

Scientific research has shown that climate change is a reality in Newfoundland. 

Analysis of average annual temperature records for St. John's, Newfoundland show a 

general rise in temperatures during the first half of the twentieth century, a peak near 

1950, followed by a general decline in temperature (Pocklington et al., 1994). Atlantic 

Canada in general, experienced an overall cooling of 0.7 oc between 1948 and 1991 

(Gullett and Skinner, 1992; Pocklington et al., 1994; Lewis, 1997). More recent data 

indicates that three of the ten warmest years in Atlantic Canada for the period 1948-2002 

have occurred since 1998 (1998, 1999 and 2001), with 1999 being the warmest year on 

record (Climate Trends and Variations Bulletin, Environment Canada). Over the next 100 

years, temperature· increases of 3 to 4 °C are projected for the Atlantic Provinces. Along 

with anticipated changes in precipitation patterns and an increase in extreme events 

(Government of Canada website). The implications of regional and global climate change 

on the Conception Bay South-Holyrood coastline are substantial. Climate change is 

predicated to cause an increase in global sea-level, as well as changes in climate 

variability and extremes which may lead to increases in storm frequency or intensity, 

possible changes in storm tracks, wind climatology, wave patterns and sea ice cover. 

(Forbes et al. , 1997; Mclean and Tsyban, 2001). All ofthese factors can potentially affect 
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coastal stability, flood and storm hazards, and socio-economic activity or investment 

within the coastal zone (Forbes et al., 1997; Mclean and Tsyban, 2001). 

Results of the hazard sensitivity assessment indicate that overall, the Conception Bay 

South-Holyrood coastline has a low to moderate sensitivity to coastal flooding and 

erosion. However, subsequent analysis reveals that these results mask important 

differences in sensitivity based on differences in morphology. Results of the flood hazard 

sensitivity assessment indicate that the most sensitive segments of coastline surround the 

numerous lagoons located in Conception Bay South. The majority of the "exposed 

straight" coastline has a low sensitivity to flooding. In the foreshore erosion hazard 

sensitivity assessment sections of coastline classified as barrier beach are highly to 

extremely sensitive to foreshore erosion processes, while segments classified as fringing 

beach or bedrock dominated receive low to moderate sensitivity ratings. Results of the 

backshore erosion hazard sensitivity assessment indicate that the majority of the 

Conception Bay South-Holyrood coastline has a low sensitivity to backshore erosion, a 

reflection of the fact that a third of the coastline is composed of highly resistant, granite 

bedrock. Sections of backshore classified as unlithi:fied are highly to extremely sensitive 

to erosion and there are a number of segments actively eroding. 

With portions of the Conception Bay South-Holyrood coastline currently sensitive to 

coastal flooding and erosion and anticipated changes in climatic conditions and 

accelerated rates of sea-level rise potentially increasing the risk, there is a need for town 
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management and planning decision-making processes that are capable of supporting 

sustainable community practices. In anticipation of this increased risk, a number of 

specific adaptation options, including hazard identification and monitoring; managed 

retreat or avoidance; accommodation; protection; coastal management and public 

education, have been recommended to enable current protection and facilitate preparation 

for accelerated sea-level rise and climate variability in southern Conception Bay. 

To further assist the provision of accurate climate change impacts and adaptation 

information to Newfoundland coastal communities, there exist a number of opportunities 

for future research. 

• It is recommended that small scale, high resolution, climate change models that 

are specific to the Island of Newfoundland be developed to enable more accurate 

forecasting of future climate change, variability and extremes, along with their 

associated impacts, at a local scale. 

• It is recommended that detailed socio-economic impact analysis of future climate 

change on the coastal communities of Newfoundland be undertaken. With 

livelihoods still dependent on ocean resource extraction and with the majority of 

the population living along the coastline, detailed research on \.vhat the economic 

costs of climate change are and its related social impact is needed. 
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• It is recommended that research focus on providing highly accurate, relative sea­

level rise estimates for the Island of Newfoundland to allow for creation of 

detailed coastal flooding models and hazard maps. 

• It is recommended that research focus on developing a provincially applicable, 

non-specialist, climate change hazard assessment model that would allow all 

coastal communities to quickly and accurately assess their risk to the impacts of 

climate change for the purposes of town planning and land use management. 
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Appendix 1.1 
Flood Hazard Sensitivity Maps 

Quantification and Limitations of the Hazard Sensitivity Maps 

These maps are intended for regional purposes only, such as landuse planning, and 
should not be used for site-specific evaluations. 

These maps can be used with other criteria to help planners select potential areas for 
development, while avoiding geomorphologically vulnerable areas. However, they do not 
replace the need for site-specific geotechnical evaluations by qualified professionals 
prior to new construction or upgrading of existing buildings and facilities. 

Also, it should be noted that a low hazard on these maps does not mean freedom from 
coastal hazards, because all areas could be subject to significant modification during 
extreme storms and changing relative sea-levels. These maps cannot be used to 
directly predict the amount of damage that will occur at any one site. 
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Appendix 1.2 
Foreshore Erosion Hazard Sensitivity Maps 

Quantification and Limitations of the Hazard Sensitivity Maps 

These maps are intended for regional purposes only, such as landuse planning, and 
should not be used for site-specific evaluations. 

These maps can be used with other criteria to help planners select potential areas for 
development, while avoiding geomorphologically vulnerable areas. However, they do not 
replace the need for site-specific geotechnical evaluations by qualified professionals 
prior to new construction or upgrading of existing buildings and facilities. 

Also, it should be noted that a low hazard on these maps does not mean freedom from 
coastal hazards, because all areas could be subject to significant modification during 
extreme storms and changing relative sea-levels. These maps cannot be used to 
directly predict the amount of damage that will occur at any one site. 
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Appendix 1.3 
Backshore Erosion Hazard Sensitivity Maps 

Quantification and Limitations of the Hazard Sensitivity Maps 

These maps are intended for regional purposes only, such as landuse planning, and 
should not be used for site-specific evaluations. 

These maps can be used with other criteria to help planners select potential areas for 
development, while avoiding geomorphologically vulnerable areas. However, they do not 
replace the need for site-specific geotechnical evaluations by qualified professionals 
prior to new construction or upgrading of existing buildings and facilities. 

Also, it should be noted that a low hazard on these maps does not mean freedom from 
coastal hazards, because all areas could be subject to significant modification during 
extreme storms and changing relative sea-levels. These maps cannot be used to 
directly predict the amount of damage that will occur at any one site. 
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Appendix 2.1 
Flood Hazard Sensitivity Component Tables: 

Lagoonal Coastline 
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Distance Segment Hazard Sensitivity Sensitivity 
Location Alongshore (m) Length (m) Score Rating 

Topsail Pond 0 - 69 69 2 Moderate 
69-256 187 3 High 
256-450 194 2 Moderate 
450- 531 81 1 Low 
531-681 150 1 Low 
681 - 881 200 2 Moderate 

881 - 1063 182 3 High 
1063-1156 93 2 Moderate 

Chamberlains Pond 0- 119 119 4 Extreme 
119 - 338 219 3 High 
338- 681 343 4 Extreme 
681-718 37 4 Extreme 
718-776 58 3 High 
776-900 124 2 Moderate 
900 - 938 38 3 High 
938- 1025 87 2 Moderate 

Manuels Pond 0- 113 113 1 Low 
113-286 173 3 High 
286-389 103 2 Moderate 
389-726 337 1 Low 
726-846 120 2 Moderate 

846- 1035 189 1 Low 
1096- 1146 50 1 Low 
1146-1554 408 4 Extreme 
1554-2411 857 1 Low 

Burnt Island 0-380 380 2 Moderate 
380 - 541 161 3 High 

Long Pond Lagoon 0-188 188 3 High 
188- 306 118 2 Moderate 
306-463 157 3 High 
463-506 43 2 Moderate 

506-638 132 3 High 

638-782 144 1 Low 
782-913 131 2 Moderate 
913- 963 50 4 Extreme 

963 - 1088 125 3 High 
1088- 1119 31 2 Moderate 
1119- 1138 19 4 Extreme 
1138- 1857 719 3 High 
1857- 1951 94 4 Extreme 
1951-2151 200 4 Extreme 
2151 - 2199 48 3 High 

2199-2329 130 4 Extreme 
2329-2667 338 2 Moderate 
2667-2985 318 4 Extreme 
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Distance Segment Hazard Sensitivity Sensitivity 
Location Alongshore (m) Length (m) Score Rating 

Long Pond Lagoon 2985- 3198 213 3 High 
3198-3298 100 2 Moderate 
3298-3354 56 1 Low 
3354- 3485 131 2 Moderate 
3485-3929 444 3 High 
3929-4118 189 2 Moderate 
4118-4474 356 3 High 
4474-4539 65 2 Moderate 
4539-4817 278 3 High 
4817-4892 75 2 Moderate 
4892- 5210 318 3 High 
5210- 5242 32 2 Moderate 
5242-5292 50 1 Low 
5292-5342 50 3 High 
5342-5423 81 1 .Low 
5423-5660 237 2 Moderate 
5660-5908 248 3 High 
5908-5948 40 4 Extreme 
5948-6117 169 2 Moderate 
6117-6160 43 4 Extreme 
6160-6423 263 3 High 
6423-6473 50 1 Low 
6473-6704 231 3 High 
6704-7037 333 4 Extreme 
7037-7123 86 2 Moderate 
7123- 7209 86 4 Extreme 
7209-7723 514 2 Moderate 
7723-8004 281 3 High 

Foxtrap Pond (1) 0-56 56 2 Moderate 
56 - 119 63 3 High 
119- 175 56 2 Moderate 
175-225 50 4 Extreme 
225-256 31 2 Moderate 
256-344 88 3 High 

Foxtrap Pond (2) 0- 163 163 3 High 
163-250 87 2 Moderate 
250- 475 225 3 High 
475-769 294 3 High 
769 - 1381 61 2 2 Moderate 

Kelligrews Pond 0-606 606 4 Extreme 
606-950 344 2 Moderate 

950- 1644 694 3 High 
Upper Gullies Pond 0- 119 119 2 Moderate 

119- 169 50 3 High 
169-231 62 4 Extreme 
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Distance Segment Hazard Sensitivity Sensitivity 
Location Alongshore (m) Length (m) Score Rating 

Upper Gullies Pond 231 - 371 140 3 High 
371-469 98 2 Moderate 
469-988 519 4 Extreme 
988-1318 330 3 High 
1318- 1394 76 2 Moderate 

Lance Cove Pond 0-32 32 3 High 
32- 119 87 2 Moderate 
119- 755 636 3 High 
755-994 239 2 Moderate 

994- 1219 225 4 Extreme 
1219- 1288 69 3 High 
1288- 1407 119 2 Moderate 
1407-1819 412 3 High 
1819- 1888 69 2 Moderate 
1888- 1944 56 3 High 

Seal Cove Pond 0-44 44 3 High 
44-75 31 1 Low 

75 - 319 244 3 High 
319-675 356 1 Low 
675-719 44 2 Moderate 
719-788 69 1 Low 
788-900 112 2 Moderate 

900 - 1081 181 3 High 
1150- 1419 269 4 Extreme 
1419- 1481 62 3 High 
1481- 1575 94 2 Moderate 
1575-1681 106 3 High 
1681- 1788 107 2 Moderate 
1788- 1875 87 1 Low 
1875- 1919 44 2 Moderate 
1919-2000 81 1 Low 
2000-2050 50 2 Moderate 
2050-2119 69 3 High 

2119-2288 169 1 Low 
2288-2356 68 2 Moderate 

Indian Pond Lagoon 0- 181 181 2 Moderate 
181-225 44 3 High 
225-294 69 2 Moderate 
294-350 56 3 High 
350-480 130 1 Low 
480- 1024 544 2 Moderate 
1024-1181 157 3 High 
1181 - 1203 22 2 Moderate 
1203 - 1388 185 1 Low 
1388- 1969 581 3 High 
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Distance Segment Hazard Sensitivity Sensitivity 
Location Alongshore (m) Length (m) Score Rating 

Indian Pond Lagoon 1969-2006 310 2 Moderate 
2006-2275 272 1 Low 

Statistical Information: 

Shortest Segment Longest Segment 
Sensitivity Rating Length (m) Length (m) Range (m) Mean(m) 

Low 31 857 826 272 
Moderate 31 544 513 148 

High 32 719 687 321 
Extreme 19 606 587 198 
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Flood Hazard Sensitivity Component Tables: 

"Exposed Straight" Coastline 
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Distance Segment Hazard Sensitivity Sensitivity 
Location Alongshore (m) Length (m) Score Rating 

Topsail 0-104 104 1 Low 
104-518 414 2 Moderate 
518-575 57 1 Low 
575- 1070 495 3 High 
1070- 1392 322 1 Low 
1392- 1495 103 3 High 
1495- 1783 288 1 Low 

Chamberlains 1783- 1863 80 2 Moderate 
1863 - 1932 69 1 Low 
1932. 1990 58 2 Moderate 
1990.2105 115 1 low 
2105-2174 69 2 Moderate 
2174-2266 92 3 High 
2266-2335 69 4 Extreme 
2335-2565 230 2 Moderate 
2565-2875 310 1 Low 
2875 -2898 23 2 Moderate 
2898-3048 150 1 low 

Manuels 3048- 3692 644 1 Low 
long Pond 3692-3887 195 1 Low 

3887-3968 81 3 High 
3968-4071 103 1 low 
4071-4278 207 3 High 
4278-6038 1706 1 low 

Foxtrap 6141-6343 202 1 low 
6343-6412 69 2 Moderate 
6412 -6601 189 3 High 
6601-6659 58 2 Moderate 
6659 .6785 126 1 low 
6785-6958 173 2 Moderate 
6958-7303 345 1 Low 
7303 - 7567 264 2 Moderate 
7567-7947 380 4 Extreme 

Kelligrews 7947-8430 483 4 Extreme 
8430-8648 218 3 High 
8648-9752 1104 4 Extreme 
9752.9948 196 2 Moderate 

9948 . 10 063 115 1 Low 
10 063 . 10 201 138 3 High 
10201 - 10511 310 4 Extreme 
10 511 -10 580 69 3 High 

Riverdale 10 580 . 10 672 92 2 Moderate 
10 672 -1 0 882 210 1 Low 
10 882 - 11 466 584 2 Moderate 
11 466 - 11 581 115 3 High 
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Distance Segment Hazard Sensitivity Sensitivity 
Location Alongshore (m) Length (m) Score Rating 

Riverdale 11 581 - 11 684 103 2 Moderate 
11 684 - 11 960 276 1 low 
11 960 - 12 029 69 2 Moderate 
12 029- 12 466 437 1 low 
12 466- 12 547 81 2 Moderate 

Upper Gullies 12 547- 12 627 80 2 Moderate 
12 627- 12 754 127 3 High 
12 754- 13 122 368 2 Moderate 
13 122 - 13 179 57 3 High 
13 179-13 237 58 4 Extreme 
13 237- 13 294 57 3 High 
13 294- 14 203 909 1 Low 

Lance Cove 14 203- 14 283 80 1 Low 
14 283- .14 513 230 2 Moderate 
14 513-14 582 69 1 Low 
14 582- 14 674 92 3 High 
14 674- 15 215 541 2 Moderate 
15 215-15 272 57 1 Low 
15 272- 15 376 104 2 Moderate 
15 376- 15 698 322 1 low 

Seal Cove 15 698- 15 962 264 1 Low 
15 962 - 16 020 58 2 Moderate 
16 020- 16 307 287 1 Low 
16 307-16 445 138 2 Moderate 
16 445- 16 549 104 1 Low 
16 549-16 687 138 2 Moderate 
16687-17227 540 1 Low 

Indian Pond 17 227-17 549 322 1 Low 
17 549 - 17 963 414 2 Moderate 
17 963- 18 837 874 1 Low 
18 837-18 941 104 3 High 

Holyrood 18 941-27 121 8180 1 Low 

26 896 - 28 666 1770 2 Moderate 
28 666- 29 647 981 1 low 
29 647-29 774 127 2 Moderate 
29 774- 30 786 1012 1 Low 
30 786 - 30 889 103 2 Moderate 
30 889- 31 821 932 1 low 
31 821-31 913 92 2 Moderate 
31913-32200 287 1 Low 
32 200 - 32 430 230 2 Moderate 
32 430 - 32 695 265 3 High 
32 695 - 32 994 299 2 Moderate 
32 994- 33 431 437 1 low 
33 431 - 33 865 434 2 Moderate 
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Distance Segment Hazard Sensitivity Sensitivity 
Location Alongshore (m) Length (m) Score Rating 

Holyrood 33 865-34 186 321 3 High 
34 186-35 263 1077 2 Moderate 
35 263 - 35 788 525 1 Low 

In addition, the area behind the Holyrood Marina and both sides of the creek behind the 
beach are rated as having a high flood vulnerability. 

Statistical Information: 

Shortest Segment Longest Segment 
Sensitivity Rating Length (m) Length (m) Range (m) Mean (m) 

Low 57 i' 8180 8123 593 
Moderate 23 1770 1747 266 

High 57 495 438 161 
Extreme 58 1104 1046 401 
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Distance 
Location Alongshore (m) 

Topsail 

Chamberlains 

Manuels 

Long Pond 

Foxtrap 

Kelligrews 

1 washover fans present 
2 marsh present 

0-173 
173- 242 
242-575 
575- 1783 
1783-2300 
2300-2507 
2507 - 2818 
2818- 3048 
3048- 3151 
3151 - 3370 
3370-3565 
3565-3692 
3692-4336 

4336-4531 

4531-4773 
4773-5773 
5773-6038 
6141 -6348 
6348-6659 
6659 - 6765 
6785-6958 

6958-7314 
7314-7544 
7544-7866 
7866-7947 
7947-8384 
8384-8844 

Segment Form of 
Length (m) Foreshore 

173 2 
69 2 
333 3 + 41 

1208 2 
517 2 
207 2 
311 3 + 41 

230 2 
103 2 
219 2 
195 3 + 41 

127 2 
644 2 
195 3 + 41 

242 2 + 41 

1000 3 + 41 

265 3 
207 2 
311 2 
126 3 
173 2 
356 3 + 42 

230 2 + 42 

322 anthropogenic 

81 2 
437 2 
460 2 

Sediment Bathymetric Offshore Hazard Sensitivity Sensitivity 
Type Slope Boulders Score Rating 

2 1 1 6 Low 

2 1 · 2 7 Moderate 

4 1 2 14 Extreme 
4 1 2 9 Moderate 

2 1 1 6 Low 

2 1 2 7 Moderate 

2 1 2 12 High 
2 1 2 7 Moderate 
2 1 1 6 Low 
2 1 2 7 Moderate 

2 1 2 12 High 

2 1 1 6 Low 
2 1 2 7 Moderate 

2 1 2 12 High 

4 1 2 13 High 

4 1 2 14 Extreme 
4 1 2 10 Moderate 
2 1 1 6 Low 
4 1 2 8 Moderate 
3 1 2 8 Moderate 
3 1 2 7 Moderate 

3 1 2 13 High 

3 1 2 12 High 
anthropogenic 1 2 3 Low 

1 1 1 5 Low 
2 1 1 6 Low 
2 1 2 7 Moderate 



Distance 
Location Alongshore (m) 

Kelligrews 8844-9568 
9568-9752 
9752-9856 
9856-9959 

9959- 10 201 
10 201- 10 339 
10 339- 10 580 

Riverdale 1 0 580 - 11 006 
11 006 - 11 133 
11 133 - 11 259 
11 259- 11 351 
11351-11408 
11 408 - 11 581 
11 581 - 11 684 
11 684 - 11 799 
11 799 - 12 54 7 

Upper Gullies 12 547 - 14 249 
Lance Cove 14 249 - 14 674 

14 674- 15 215 
15 215 - 15 560 
15 560- 15 698 

Seal Cove 15 698 - 16 422 
16 422- 16 549 
16 549- 16 641 
16 641 - 16 687 
16 687 - 16 744 
16 744- 17 227 

Indian Pond 17 227- 17 963 

1 washover fans present 
2 marsh present 

Segment Form of 
Length (m) Foreshore 

724 2 
184 2 
104 3 + 41 
103 2 + 42 
242 3 
138 2 
241 2 
426 2 
127 2 
126 2 
92 2 
57 2 
173 2 
103 3 
115 2 
748 2 

1702 2 
425 2 
541 3 
345 2 
138 2 
724 2 
127 2 
92 3 
46 3 
57 2 

483 2 
736 2 

Sediment Bathymetric Offshore Hazard Sensitivity Sensitivity 
Type Slope Boulders Score Rating 

2 1 1 6 Low 

2 1 2 7 Moderate 
4 1 2 14 Extreme 

2 1 2 11 High 

1 1 2 7 Moderate 

4 1 2 9 Moderate 
1 1 1 5 Low 

1 1 1 5 Low 
2 1 2 7 Moderate 
2 1 1 6 Low 

2 1 2 7 Moderate 

2 1 1 6 Low 
2 1 2 7 Moderate 

1 1 2 7 Moderate 
1 1 1 5 Low 
2 1 1 6 Low 
2 1 2 7 Moderate 

2 1 2 7 Moderate 
4 1 2 10 High 
1 1 1 5 Low 
1 1 2 6 Low 
1 1 2 6 Low 
2 1 2 7 Moderate 

2 1 2 7 Moderate 
2 1 1 7 Moderate 
2 1 1 6 Low 
2 1 2 7 Moderate 
2 1 2 7 Moderate 



N 
0 
0 

Distance 
Location Alongshore {m) 

lnd1an Pond .. 17963-18837 
18 837-18 941 

Holyrood 18 941- 21 068 
21 068- 21 160 
21 160 - 21 344 
21 344- 32 522 
32 522 - 33 373 
33 373- 33 477 
33 477- 34 098 
34 098 - 34 995 
34 995 - 35 788 

1 washover fans present 
2 marsh present 

Statistical Information: 

Shortest Segment 
Sensitivity Rating Length (m) 

Low 57 
Moderate 46 

High 103 
Extreme 104 

Segment Form of 
Length(m) Foreshore 

874 3 +41 
104 2 

2127 2 
92 2 
184 2 

11 178 1 
851 1 
104 2 
621 anthropogenic 

897 2 
793 2 

Longest Segment 
Length (m) 

11 174 
1208 
874 

1000 

Sediment Bathymetric Offshore Hazard Sensitivity Sensitivity 
Type Slope Boulders Score Rating 

2 1 2 12 High 
2 1 1 6 Low 
2 1 1 6 Low 
2 2 1 7 Moderate 
2 2 2 8 Moderate 
1 2 2 6 Low 
1 1 2 5 Low 
1 1 2 6 Low 

anthropogenic 2 2 4 Low 
4 1 2 9 Moderate 
1 1 2 6 Low 

Range (m) · Mean (m) 

11 117 607 
1162 348 
771 339 
896 479 
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N 
0 
N 

Location 

Topsail 

Chamberlains 

Manuels 

Long Pond 

Distance 
Alongshore (m) 

0-104 
104- 150 
150-242 
242-575 
575-679 
679- 759 

759- 1070 
1070- 1392 
1392- 1495 
1495- 1702 
1702 - 1783 
1783- 1863 
1863- 1932 
1932- 1990 
1990- 2105 
2105-2174 
2174- 2266 
2266-2335 
2335- 2565 
2565 - 2818 
2818 - 2875 
2875-2898 
2898-3048 
3048 - 3416 
3416-3565 
3565-3692 
3692-3887 
3887-3968 
3968- 4071 
4071-4106 
4106-4163 

Segment Backshore Backshore 
Length(m) Slo~e Composition 

104 4 1 
46 3 1 
92 3 2 

333 - -
104 2 3 
80 2 3 

311 2 3 
322 4 3 
103 2 3 
207 4 3 
81 4 3 
80 3 3 
69 4 3 
58 3 3 
115 4 3 
69 3 3 
92 2 3 
69 1 3 

230 3 3 
253 - -
57 4 3 
23 3 3 
150 4 3 
368 4 3 
149 - -
127 4 2 
195 4 3 
81 2 3 
103 4 3 
35 4 3 
57 2 3 

Erosion Vegetation Hazard Sensitivity Sensitivity 
Control Status Score Rating 

1 3 9 High 
1 3 8 Moderate 

1 1 7 Low 

- - - -
1 1 7 Low 

2 3 10 High 

1 3 9 High 

1 1 9 High 

1 1 7 Low 

1 3 11 Extreme 

1 2 10 High 

1 2 9 High 
1 2 10 High 

1 2 9 High 

1 2 10 High 

1 3 10 High 

1 3 9 High 

1 3 8 Moderate 
1 3 10 High 

- - - -
1 3 11 Extreme 
1 3 10 High 
1 3 11 Extreme 
1 3 11 Extreme 

- - - -
1 3 10 High 
1 3 11 Extreme 
1 3 9 High 
1 3 11 Extreme 
2 3 12 Extreme 
2 3 10 High 



Location Distance Segment Backshore Backshore Erosion Vegetation Hazard Sensitivity Sensitivity 
Alongshore (m) Length (m) Slope Composition Control Status Score Rating 

Long Pond 4163-4278 115 2 3 1 3 9 High 

4278-4531 253 - - - - - -
4531 - 4773 242 4 3 1 1 9 High 
4773-6038 1265 - - - - - -

Burnt Island 0-380 380 3 3 2 2 10 High 

380-541 161 2 3 1 1 7 Low 

Foxtrap 6141-6343 202 4 3 2 3 12 Extreme 

6343-6412 69 3 3 1 1 8 Moderate 
6412-6601 189 2 3 1 1 7 Low 
6601 -6659 58 3 3 1 1 8 Moderate 
6659-6785 126 - - - - - -
6785 - 6958 173 3 3 1 2 9 High 

6958 - 7303 345 - - - - - -

7303-7569 266 3 3 1 1 8 Moderate 
7567-7866 299 1 anthropogenic anthropogenic 3 4 Low 
7866-7947 81 1 3 2 3 9 High 

Kelligrews 7947- 8119 172 1 3 1 3 8 Moderate 
8119-8430 311 1 3 2 3 9 High 
8430-8648 218 2 3 2 3 10 High 
8648 - 8867 219 1 3 1 1 6 Low 
8867-9097 230 1 3 1 2 7 Low 
9097- 9315 218 1 3 1 1 6 Low 
9315-9419 104 1 3 2 3 9 High 
9419-9752 333 1 3 1 3 8 Moderate 

9752- 10 201 449 - - - - - -
10 201 -10 511 310 1 3 1 3 8 Moderate 
10 511 -10 580 69 2 3 1 3 9 High 

Riverdale 10 580- 10 672 92 3 3 1 3 10 High 
10 672- 10 882 210 4 3 1 3 11 Extreme 
10 882 - 11 178 296 3 3 1 2 9 High 
11 178 - 11 236 58 3 3 1 1 8 Moderate 



N 
0 
~ 

Location 

Riverdale 

Upper Gullies 

Lance Cove 

Seal Cove 

Distance 
Alongshore (m) 
11 236 - 11 466 
11 466 - 11 581 
11 581 - 11 684 
11 684- 11 753 
11 753 - 11 960 
11 960 - 12 029 
12 029- 12 466 
12 466- 12 547 
12 547- 12 627 
12 627- 12 754 
12 754- 13 122 
13 122- 13 179 
13 179- 13 237 
13 237- 13 294 
13 294- 14 203 
14 203- 14 237 
14 237- 14 485 
14 485- 14 554 
14 554 - 14 674 
14 674 - 15 215 
15 215 - 15 272 
15 272- 15 376 
15 376- 15 698 
15 698 - 15 916 
15 916- 15 997 
15 997- 16 307 
16 307- 16 434 
16 434-16 469 
16 469- 16 549 
16 549- 16 687 
16 687- 17 227 

Segment 
Length (m) 

230 
115 
103 
69 
207 
69 

437 
81 
80 
127 
368 
57 
58 
57 

909 
34 
248 
69 
120 
541 
57 
104 
322 
218 
81 
310 
127 
35 
80 
138 
540 

Backshore Backshore 
Slope Composition 

3 3 
2 3 
- -
4 3 
4 3 
3 3 
4 3 
3 3 
3 3 
2 3 
3 3 
2 3 
1 3 
2 3 
4 3 
4 3 
3 3 
4 3 
2 3 
- -
4 3 
3 3 
4 3 
4 3 
3 3 
4 3 
3 3 
3 3 
4 3 
- -
4 3 

Erosion Vegetation Hazard Sensitivity Sensitivity 
Control Status Score Rating 

1 2 9 High 

2 3 10 High 

- - - -
2 3 12 Extreme 

1 2 10 High 

1 2 9 High 

1 2 10 High 

1 2 9 High 

1 2 9 High 

1 2 8 Moderate 

1 2 9 High 

2 3 10 High 

2 3 9 High 

2 3 10 High 

1 3 11 Extreme 

1 3 11 Extreme 
1 1 8 Moderate 

2 3 12 Extreme 

2 3 10 High 

- - - -
1 3 11 High 

1 3 10 High 

1 3 11 High 

1 3 11 High 

1 3 10 High 

1 3 11 High 

1 3 10 High 

2 3 11 Extreme 

2 3 12 Extreme 

- - - -
1 3 11 Extreme 



N 
0 
Ul 

Location Distance 
Alongshore (m) 

Indian Pond 17 227- 17 549 
17 549- 17 963 
17 963- 18 837 
18 837- 18 941 

Holyrood 18 941- 19 278 
19 278- 20 735 
20 735 - 21 344 
21 344 - 26 896 
26 896 - 28 666 
28 666 - 29 572 
29 572- 29 647 
29 647 - 29 774 
29 774- 30 786 
30 786 - 30 889 
30 889 - 31 821 
31 821 - 31 913 
31 913 - 32 200 
32 200 - 32 430 
32 430 - 32 695 
32 695 - 32 994 
32 994- 33 431 
33 431 - 33 477 
33 477- 33 865 
33 865 - 34 098 
34 098 - 34 995 
34 995 - 35 263 
35 263 - 35 788 

Barriers excluded from analysis. 

Segment 
Length (m) 

322 
414 
874 
104 
337 
1457 
609 

5552 
1770 
906 
75 
127 

1012 
103 
932 
92 
257 
230 
265 
299 
437 
46 
388 
233 
897 
268 
525 

Backshore Backshore 
Slope Composition 

4 3 
3 3 

- -
2 3 
4 3 
4 3 
4 2 
4 1 
3 1 
4 1 
4 2 
3 2 
4 2 
3 2 
4 2 
3 2 
4 2 
3 2 
2 2 
2 1 
3 1 
4 2 
3 anthropogenic 

4 anthropogenic 

- -
2 2 
4 2 

Erosion Vegetation Hazard Sensitivity Sensitivity 
Control Status Score Rating 

1 3 11 Extreme 
1 2 9 High 

- - - -
1 1 7 Low 
1 2 10 High 
1 2 10 High 
1 1 8 Moderate 
1 1 7 Low 
1 1 6 Low 
1 1 7 Low 
1 1 8 Moderate 
1 1 7 Low 
1 1 8 Moderate 
1 1 7 Low 
1 1 8 Moderate 
1 1 8 Moderate 
1 1 8 Moderate 
1 1 7 Low 
1 1 6 Low 
1 2 6 Low 
1 2 7 Low 
1 2 9 High 

anthropogenic 3 6 Low 
anthropogenic 2 6 Low 

- - - -
2 3 9 High 
2 3 11 Extreme 



N 
0 
0\ 

Statistical Information: 

Shortest Segment 
Sensitivity Rating Length (m) 

Low 92 
Moderate 46 

High 46 
Extreme 34 

Longest Segment 
Length (m) Range (m) Mean (m) 

5552 5460 573 
932 886 278 
1457 1411 188 
909 875 228 










