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Abstract

An algorithm is developed and tested to interpret ocean wave spectra from
the backscatter return of one or more narrow beam HF radars. The basis of this
measurement is the inversion of the integral equation representing the second order
radar cross section of the ocean surface (Barrick and Lipa, 1986; Srivastava, 1984;
Walsh and Howell, 1990). This equation is numerically inverted by approximating
it as a matrix equation and factorizing the resultant kernel matrix using a singular
value decomposition to obtain its pseudo-inverse.

Due to the limitations of the assumption used to lincarize the integral equation,
the proposed inversion algorithm is best suited for general use at high HT frequencies
(= 20 to 30 MHz). However, this algorithm may still be applied for the crucial task
of monitoring large sea state conditions at even very low HF frequencies (< 10 MHz).

As a test of this algorithm, comparisons are made between wave spectrum esti-
mates obtained from a WAVEC buoy and a set of two 25.4 MHz ground wave radars
that were deployed during the 1986 Canadian Atlantic Storms Program (CASP).
Overall, the results of this experiment have been positive and have demonstrated
both the basic feasibility of the inversion algorithm and the wave sensing capability
of HF radar.

When using the data of a single radar, the principal information that can be
obtained is the nondirectional or one-dimensional (1-D) wave spectrum. Although
directional information may be obtained from a single radar it suffers from a left /right
directional arnbiguity. In general, the comparison of single radar estimates for the 1-D
spectrum with those of the buoy at CASP have been good. This is demonstrated by
the reasonable average difference from the buoy of = 15% for significant waveheight
estimates. This figure is roughly the same for all cross section models.

When using the data of two radars, not only can more accurate estimates of the
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1-D spectrum be obtained but full directional information as well. The comparison of
dual-radar wave spectrum estimates with those of the bucy at CASP have been very
good. For the Walsh and Howell (1990) cross section model, dual-radar significant
wavchcight estimates differed from the buoy by only 4.6% on average. For the Barrick
and Lipa (1986) and Srivastava (1984) models this average difference is 9.1%. For all
models, the average difference for dominant direction estimates is =~ 10°.

Although all cross section models produced estimates that correlated well with the
buoy, it was the Walsh and Howell (1990) model which consistently provided the best
agrcement. This would seem to indicate that the Walsh and Howell theory provides
a better model for the radar spectrum. Due to the somewhat small size of the CASP

data sct it is not yet possible to be statistically confident of this finding.
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Chapter 1

Introduction

1.1 General Introduction

The measurement of ocean wave information is of great importance for a variety
of marine applications. Among its uses include: the preparation of marine forecasts;
occanographic and fisheries research; vessel navigation; and the planning and opera-
tion of many ocean engineering projects and activities (e.g., resource development).
Reliable and economic monitoring of ocean surface conditions over large areas is of
considerable interest and importance.

A remote sensing device which has the potential to help meet this important need
is HF Doppler radar. On the basis of its radio propagation mode, two types of HF
radars may be identified that are applicable to this problem, namely ground wave
and sky wave radars.

Ground wave radars employ the ground wave mode of radio propagation where the
radar signal is guided by a good conducting surface such as the ocean to follow a path
that essentially matches the carth’s curvature. Cons- .ently, ground wave signals
may reach well beyond the normal line-of-sight horizon that limits conventional radar
systems. Operation in the HF band (3 - 30 MHz) not only permits efficient ground
wave propagation so that large detection ranges are obtained (potentially 200 km
for wave measurements) but causes the transmitted signal to react strongly with

the ocean surface. The resulting echo return will contain a wealth of information
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concerning ocean surface conditions. The use of these radars for the mapping of
surface currents is now a well established practice. A new challenge for these systems
is the measurement of wave spectra.

Sky wave radars take advantage of the mirror-like properties of the charged particle
layer of the atmaosphere called the ionosphere to reflect a HF radio wave out to ranges
up to 3000 km. Although great range is achieved by ionospheric propagation, the
variable motions of the ionosphere present a problem for wave sensing due to the
(often considerable) smearing of the radar Doppler spectrum it introduces. This
contamination generally precludes sky wave radars from measuring ocean currents
and often prevents them from extracting detailed wave information from the radar
return. However, it is still possible to obtain many important statistical parameters
regarding the wave spectrum from sky wave returns.

HF radars offer several advantages over conventional in situ wave measurement
techniques (e.g., wave buoys). Perhaps the most important of these is the ability
of these radars to monitor a large region of ocean (subdivided into cells) out to
considerable distances from shore. This clearly differs from in situ devices which
would require the expensive deployment of many such units to match the coverage
of a single radar. In situ sensors are also generally less reliable than HF radars since
they are difficult to access for maintenance and sometimes experience data loss during
high sea states. They are also generally constrained to operate near the coast in order
to find safe anchorage.

An excellent discussion of the benefits offered by HF radars may be found in van
Heteren et al. (1986). This paper discusses the Netherlands' interest in using HF
ground wave radars for its wave and current measurement program which is alrcady
one of the most sophisticated in the world.

Much progress has been made in understanding the relationship between the

Doppler spectrum of the backscattered radar signal and the ocean wave spectrum.



The echo return is in the form of a Doppler spectrum due to the Doppler frequency
shifts induced to the incident radio wave by the moving ocean waves. The physi-
cal mechanism for the interaction of the radar signal with the ocean surface is that
of Bragg scattering (Crombie (1955)). Theoretical formulations for the backscatter
spectrum have been developed by Barrick (1972), Srivastava (1984), and Walsh and
Howell (1990). It was found from these analyses that wave information may be in-
terpreted from the second order component of the received Doppler spectrum. This
requires the inversion of a two-dimensional integral equation of the first kind. Al-
though this integral equation is nonlinear, it may be easily approximated as a linear
equation for the Doppler region of interest.

Integral equations arise frequently in many remote sensing problems. However,
these are often such that an analytical solution is not feasible. The usual recourse is to
employ model fitting or numerical inversion techniques to obtain the solution. Model
fitting techniques attempt to solve the equation by fitting a parametric model of the
unknown quantity to the measured data (usually in a least squares manner)., Numeri-
cal inversion for linear problems involves the discretization of the integral equation so
that it may be expressed in matrix form. By inverting this matrix equation, whether
dircctly or iteratively, the solution may be found. Since it provides a more general
solution method, numerical inversion using matrix methods is generally preferred over
model fitting techniques.

In this thesis, a numerical inversion method is employed to extract ocean wave
information from the return of one or more narrow beam radars, i.e., a radar whose
receive becam pattern is highly directive. This same inversion technique has been
adapted elsewhere for wide beam (Gill, 1990) and omnidirectional (Howell and Walsh,
1990) antenna configurations. The solution for the matrix equation of this problem is
found in a direct manner by computing its pseudo-inverse from the matrix’s singular

value decomposition (with all small singular values set to zero). Once this inverse
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matrix is calculated, it may be swred in computer memory where it may be called
upon again and again to process radar data.

Using this solution method, radar data processing to extract wave information
becomes a simple and computationally swift task. Given a set of inverted matrices
corresponding to different radar operation parameters (e.g, water depth, angular
separation between receive beams of two radars, etc.), processing work will only
involve retrieving the appropriate inverse matrix from memory and multiplying it
with a column vector of radar spectral values. As such, relatively little time will be
required to carry out this simple procedure.

The amount of processing time that is required to to perform wave measurements
is an important consideration due to the large coverage that HEF' radars may provide.
In order to map wave condilions over the radar’s extcnsive coverage area in near real-
time, the inversion algorithm that is applied must be fast. If this were not so, the
radar would lose much of its operational practicality for a number of applications.

As with any other inversion method designed to recover detailed information it
may only be successfully applied to data of reasonably good resolution and quality.
This is generally not so much of a problem for ground wave radars with their good
success rate in obtaining high quality data, however, for sky wave radars it may be
crucial due to ijonospheric contamination. Hence, the inversion algorithm proposed
in this thesis is perhaps more suited for usage with ground wave radars then it is for
sky wave radars.

Although this problem is not considered in this thesis, algorithms may be devel-
oped that can be applied to poor quality data to obtain only statistical parameters
of the wave spectrum (e.g., significant waveheight). A possible mcans of accompliish-
ing this is to examine only integrated quantities (moments) of the radar Doppler
spectrum’s sidebands. Such an algorithm may then be relatively insensitive to the

condition of the data.



1.2 Literature Review
1.2.1 Radar Spectrum Models

Presently, three separate models cxist that describe electromagnetic scatter from
the ocean surface at HF. Based upon Rice’s (1951) perturbation technique, Bar-
rick (1972) was the first to derive expressions for the first and second order radar
cross section of the occan surface. These expressions were later updated by Barrick
and Lipa (1986) to take into account finite water depth. In developing this model for
the backscatter return, a plane wave transmitting source was assumed.

Using a scattering analysis based upon the general formulation of Walsh (1980)
(also Walsh and Srivastava, 1987a), Srivastava (1984) also derived expressions for
the radar cross section to second order. Although these expressions were derived
assuming deep water, they may be easily modified for the case of arbitrary depth
using Hasselmann’s (1962) expression for the second order component of the height
profile of the ocean. In applying the Walsh scattering analysis technique to this
problem, a pulsed dipole was assumed for the transmitting source. The use of this
finite source to model the transmitteris preferred as it is more representative of actual
HF radar systems (e.g,, CODAR and OSCR) than the less realistic plane wave source
used by Barrick.

[rom Srivastava's analysis, the second order cross section is shown to consist of
three parts. The first part, known as the onpatch term, is equivalent to Barrick’s
result and the other two parts may be viewed as the interaction of the transmitting
source with the surrounding ocean surface and a multipathing effect commonly known
as offpatch scatter. The source interaction component has been analysed by Walsh
and Srivastava (1987b) while offpatch second order scatter has been analysed by
Howell et al. (1987) and Srivastava (1987). From these studies, it has been determined
that these two terms do not significantly affect the critical regions of the radar Doppler

spectrum near the first order peaks, It is these regions of the radar spectrum that
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are targeted for extracting ocean wave parameters (the reasons for which will be
discussed later). Thus, for the purpose of wave measurements, these last two parts
may be neglected so that only that part of Srivastava's result which is equivalent to
Barrick’s result needs to be taken to represent the second order return. These last
two terms, however, may be important for target detection problems.

In a recent approach, Walsh and Ilowell (1990) employed the Walsh scattering
analysis technique to develop cross section equations up to third order in interaction,
Like the Srivastava approach, a pulscd dipole is assumed for the transmitting source.
The second order component of this cross section model differs slightly from the
mutually agrecing results developed by both Barrick and Srivastava. However, there
is still strong agreement between this second order model and the other two. The
very fact that these widely different approaches have produced results that largely
agree lends a degree of confidence to the overall second order theory.

One of the important new results of the Walsh and Howell analysis is the ex-
pression for the third order cross section. Walsh and Howell (1990) have studied the
contribution of the third order term to the overall cross section and have found that
for the region of the radar spectrum near the first order peaks the third order com-
ponent may, as a first approximation, be neglected. However, the importance of this
term to the radar spectrum increases with distance from the first order peaks. Ilence,
if one desires to interpret wave data from a greater portion of the radar spectrum it

would be crucial to include third order interactions in the analysis.

1.2.2 Data Interpretation Techniques for Estimation of Wave
Spectra
The interpretation of ocecan wave information from HF radar sca echo has been
treated by a number of investigators using a variety of methods. An important aspect
of most of the methods to be discussed here is the initial linearization of the second

order integral equation through use of the first-order return. As it shall be seen later,
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this lincarization leads to a convenient normalization of the radar spectrum which
removes the need to quantify the path gains or losses of the received signal.

Using a solution method similar to that presented in this thesis for narrow beam
(i.e., large aperture) systems, Gill (1990) and Howell and Walsh (1990) developed
techniques to extract wave data from smaller aperture HF radars. In Gill’s analysis,
broad beam antennas are considered with particular emphasis on 4-element square
arrays. In Howell and Walsh’s analysis, the problem of extracting the nondirectional
waveheight spectrum from an omnidirectional ship-mounted radar is considered. For
both techniques, very good inversion results have been obtained.

In another numerical inversion approach, Lipa and Barrick (1980) developed an
iterative sclution method for the narrow beam integral equation based upon the
regularization methods of Phillips (1962) and Twomey (1963). A similar technique
is also used by Barrick and Lipa (1979) to solve the integral equation corresponding
to a broad beam system composed of a cross-loop antenna mounted on a monopole,
Although regularization allows the formulation of a well posed problem it imposes
additional constraints, such as smoothness, on the solution. As yet, this inversion
algorithm has been tested with only one measured radar spectrum (Lipa et al., 1981).
For this case, reasonable results were found.

In a different approach, Lipa and Barrick (1982) developed a model fitting tech-
nique to analyse narrow beam radar data. The model used for the wave spectrum
is that of an amplitude spectrum multiplied by a cardioid directional distribution
function where all model parameters are a function of ocean frequency. In order to
perform a practical least squares fit to the radar data the assurnption is made that
there is an effective one-to-one mapping of ocean frequency to a set of radar Doppler
frequencies. This assumption is generally only valid for those Doppler frequencies
very close to the first-order peaks where the range of ocean frequencies that maps

onto the radar spectrum is small. Consequently, information may only be extracted
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for the low frequency end of the wave spectrum.

Recognizing the need to be able to perform measurements for a greater range of
ocean frequencies, Wyatt (1986) extended the Lipa and Barrick model fitting tech-
nique. It was determined that, for many circumstances, the range of ocean frequencics
that contribute significantly to a given Doppler frequency may be small compared to
the total range. Information for higher ocean frequencies may then be obtained in
much the same manner as for the lower frequencies. This approximation is best suited,
however, for cases where the angular separation between the dominant wave direction
and the radar look direction is less than approximately 45°. If significant amounts of
energy are propagating orthogonally to the radar beam this assumption will not hold.
This assumption also implies a reasonably smooth variation of the model parameters
over frequency.

A variety of tests have been performed upon the Wyatt model fitting technique
using both simulated and measured radar data. When using the data of asingle radar
(Wyatt, 1986; Wyatt et al., 1986) good results were found in many circumstances.
However, waveheight results degraded when significant amounts of wave energy were
travelling perpendicular to the radar beam. Typical mean discrepancies in significant
waveheight estimates using real data were observed to be +16% with a 21% standard
deviation.

Wyatt (1987) later extended the technique to analyse the data of two radars view-
ing the same patch of ocean from different vantage points. Tests of this method using
simulated data demonstrate the increased accuracy that two radars may provide. The
use of two radars also eliminates the lett/right ambiguity of wave direction estimates
inherent to a single radar.

In another model fitting approach, Maresca and Georges (1980) performed a least
squares fit to narrow beam radar data to determine the five parameters of the JON-

SWAP spectrum (Hasselmann et al., 1976) using an assumed directional distribution



for the ocean waves. The JONSWAP spectrum is a model for the waveheight spec-
trum of a fetch-limited sea corresponding to a set of given wind conditions. Hence,
this model spectrum may not be fully representative of a sea if it contains significant
amounts of swell. For the two cases presented, corresponding to principally wind
gencrated sca with little swell, good results were found.

A number of techniques have also been developed to extract only a few statis-
tical parameters of the wave spectrum (e.g., significant waveheight) by examining
integrated paramecters of the radar spectrum. Such methods include the use of ap-
proximate closed-form (Barrick, 1977) or semiempirical (Maresca and Georges, 1980;
Wyatt, 1984) formulae to relate these statistical parameters to the radar return, and
the use of least squares fitting techniques to extract such parameters for the swell
region of the wave spectrum (Lipa and Barrick, 1980, 1982). Although it is preferred
to obtain detailed wave spectra information, situations may arise where the quality of
the radar data is such that there may be no choice but to apply methods which exam-
inc only integrated parameters. This problem is especially acute for sky wave radars

due to the contamination imparted to the sky wave return by ionospheric motion.

1.3 Scope of the Thesis

In this thesis, a data interpretation algorithm is developed and tested to extrart
directional ocean wave spectra from the backscatter return of rne or more narrow
beam HF Doppler radars. The basis of this algorithm is the numerical inversion of
the integral equation representing the second order radar cross section of the ocean
surface at HF. This inversion will take place for that region of the radar spectrum
close to the first order peaks. Within this region, the sccond order integral equation
may be easily lincarized thus allowing it to be expressed as a matrix equation.

The inclusion of third order interactions in the inversion solution will not be

considered here as they do not contribute significantly to the region of interest (Walsh



and Howell, 1990). However, it does represent a goal of future work for refinement of
the inversion algorithm to include such higher order effects.

Initially, the second order integral equation is linearized using Lipa and Bar-
rick’s (1982) method. This linearization also serves as a convenient normalization
for the data that removes the need to account for the path gains or losses of the
backscatter. The overall accuracy of this linearization method depends upon the
radar operating frequency. For high HF frequencies it may be accurately applied for
almost any general sea state whereas for low HF frequencies it may only be applied
for large sea state conditions. As the only measured radar data available to test the
inversion algorithm in this thesis corresponds to a high HF frequency (25.4 MHz), the
development of a new and more general linearization method will not be considered
here. Its development, however, represents an important goal for future refinement
of the algorithm.

The matrix equation is derived from the linearized integral equation by discretiz-
ing the ocean wave spectrum. This is done by expanding the ocean spectrum in a
truncated Fourier series over angle and assuming that the Fourier coeflicients remain
constant within equal length bands of ocean frequency. The variables of this system
of equations are these coefficients. Due to symmetries in the mapping of the occan
wave spectrum onto the radar spectrum, the integral equation has negligible depen-
dence upon the odd Fourier coefficients of the series expansion. Consequently, only
ambiguous directional information regarding the wavefield may be obtained from the
data of a single radar. The use of two or more radars viewing the same area of occan
from different directions overcomes this problem and permits the extraction of odd
Fourier coefficients. The level of accuracy of wave spectra estimates provided by two
radars will, of course, depend upon the angular separation between radar beams with
the best case occurring when the beams are orthogonal.

The solution to this equation is found, in a direct manner, by calculating its
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generalized inverse from the singular value decomposition of the kernel matrix with
all small singular values set to zero. A general procedure is outlined which may be
used to determine the required number of singular values to be retained to create the
inversion solution. As a direct solution is found to the integral equation, the task of
processing a large number of radar spectra on a routine basis becomes inexpensive
in computation time. This contrasts with iterative solution techniques which would
require an inordinate amount of time to converge to a solution for a large number of
cases.

The performance of the algorithm is tested for both single and dual- radar usage
by comparing its results to those of a WAVEC buoy using data collected during the
1986 Canadian Atlantic Storms Program (CASP). Simulated data is also used to test
the algorithm and to help confirm some of the general properties of the solution that
were observed from the CASP data. In the CASP experiment, two 25.4 MHz ground
wave radars were deployed on the coast of Nova Scotia, Canada so that their beams
intersected at the location of the buoy. The angular separation between radar beams
was 56°.

The CASP data set also affords the opportunity to conduct an initial study on
cach of the various models for the second order cross section (Barrick, 1972; Srivas-
tava, 1984; Walsh and Howell, 1990) to see which better represents the radar return.
This will be done by substituting each model into the inversion algorithm in turn
and determining which leads to the best agreement with the buoy for wave spectral

estimates.
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Chapter 2

The Radar Cross Section of the
Ocean Surface at HF

2.1 General

In this chapter, the expressions for the first and second order radar cross section
of the ocean surface at HF are presented. As all three cross section models are of
very similar form, full first and second order expressions necd be presented for only
one model of this set. The cross section model chosen for this task is that developed
by Barrick and Lipa (1986). The other two cross section models (Srivastava, 1984;
Walsh and Howell, 1990) will be introduced by comparing their first and second
order expressions with those of Barrick and Lipa. All manipulations perforined on
the Barrick and Lipa equations presented here apply to the other cross section models
as well.

To better understand the significance of these equations and some of their basic
properties, a discussion is first made regarding the underlying physical mechanism
responsible for the backscatter return. This discussion also serves as a means of
introducing several important properties regarding the physics of ocean gravity waves.

After performing some elementary reductions on the second order equation, it is
linearized using the method of Lipa and Barrick (1982). Due to the limitations of this

lincarization technique and for several other reasons discussed within, the inversion
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is restricted to those Doppler frequencies close to the first order peaks. This is the
principal Doppler region of interest for inversion as it contains the most important
information regarding the wave spectrum.

In preparation for the inversion of the integral equation, a study is made of its
mapping properties to determine what implications they may hold for inversion. Of
particular interest is the amount of wave informetion that may be obtained from a

HF radar and what factors may affect the accuracy of the inversion.

2.2 Description of the Interaction Mechanism

Electromagnetic backscatter from the ocean surface has been a topic of investi-
gation since the inception of radar. The first major advance in the understanding
of the underlying physical interaction process came about from the discovery made
by Crombic (1955) as a result of his pioneering experiment. From examination of
measured radar Doppler spectra he observed that the principal features of the signal
return were the two well defined spikes symmetrically placed about the radar car-
rier frequency, but not necessarily of the same amplitude (Fig. 2.1). These resonant
peaks were later te be known as the first order or Bragg peaks. Crombie also observed
that the placement of these peaks was proportional to the square root of the radar
wavenumber.,

Insight into the nature of this phenomenon may be obtained from examination of
that fundamental property of ocean wave physics known as wave dispersion. As the
ocean surface acts as a dispersive medium, the phase speed of an ocean wave will be
proportional to its wavelength with longer ocean waves travelling faster. Based upon
the governing hydrodynamic equations and boundary conditions (Kinsman, 1965,
ch. 2), the relationship between the radian frequency of a ocean wave, w, and its

wavenumber, k, may be derived as (Kinsman, 1965, ch. 3)

w = y/gk tanh(kd) (2.1)
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Figure 2.1: Example of a radar Doppler spectrum recorded by a 25.4 MHz narrow
beam system. First order peaks are designated by F.
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where d is water depth and g is the acceleration due to gravity. The above equation
is the well known dispersion rclationship for ocean gravity waves. For the limiting

case when kd is large the dispersion relationship becomes

w=1/gk (2.2)

Equation (2.2) is commonly referred to as the deep water dispersion relationship.
This approximation is satisfied, in general, if the water depth is greater than half the
wavclength.

Based upon the dispersive properties of ocean waves, Crombie found that the
placement of these peaks was consistent with a target velocity that matches that of
an occan wave whose wavelength is equal to one-half the radar wavelength. It is
then logical to conclude that these narrow first order peaks are the result of resonant
backscatter from ocean waves of this length that are either advancing directly to-
wards (positive Doppler peak) or receding directly from (negative Doppler peak) the
radar. Since these waves satisly the geometry for coherent Bragg scatter, Crombie
correctly deduced that it was this diffraction-grating mechanism which is responsible
for occan backscatter. The two ocean waves that are responsible for the Bragg peaks
are commonly referred to as the Bragg waves.

Based upon the dispersion relationship (2.1), the radian Doppler shift of the first

order peaks, wp, is given by

wp = \/ng,, tanh(2k,d) (2.3)

where k, is the radar wavenumber. The above equation holds for monostatic operation
of the radar (transmitter and receiver co-located) with the transmitted signal directed
at near grazing incidence.

From Fig. 2.1 it may be seen that there is a complicatled sideband structure sur-
rounding the first order peaks. It is generally accepted that this continuum is the

result of higher order interactions of which second order forms the dominant contribu-

15



tion. The radar cross section equation for the ocean surface, o(wq), may be expressed
as

o(wa) = o wa) + o (wg) + - - (2.4)

where o( ){wq) represents the contribution to the overall cross section from each order
of interaction and wy is Doppler frequency.

In order for two ocean waves to produce second order return their corresponding
wavenumber vectors, say i and l;', must satisfy the geometry for Bragg scattering,
ie.,

-

k+ R =—-2£, (2.5)

where the vector &, lies in the direction of the boresight of the narrow beam radar
pointing out to sea. The radian Doppler shift from the carrier frequency, wqy, of the

scattered electromagnetic field is given by
wy = mw + m'w’ (2.6)

where the ocean frequencies w and v’ correspond respectively to ocean wavenumbers
k and k' through the dispersion relationship (2.1). The coeflicients m and m’ take
on the values +1 to represent the four possible combinations of direction that the
two scattering wave vectors may take, with wavenumber magnitudes unchanged, that
satisfies (2.6).

From consideration of equations (2.5) and (2.6) it may be observed that the second
order return will form a continuous spectrum and will involve the entire occan gravity
wave spectrum. Consequently, this makes it a desirable quantity to analyse for the
extraction of wave information.

Two possible sources for second order interactions may be identified (Hasselmann,
1971). One such mechanism involves hydrodynamic effects and consists of a single
scattering from a second order ocean wave with wave vector k + & produced from the

nonlinear interaction of two crossing waves. Alithough these “interference” waves are
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not, freely propagating they will produce radio backscatter if they match the Bragg
wavelength and direction. The other mechanism involves two scatterings. For this
multiple scattering effect, a portion of the radio energy scattered from a first order
ocean wave & is scattered from another first order ocean wave &', If this wave vec-
tor combination satisfies (2.5), backscatter will be directed towards the transmitting

source.

2.3 Basic Equations

By definition, the distribution of wave energy as a function of frequency (or
wavenumber) and direction is the ocean wave spectrum. In this thesis we shall dis-
tinguish between two such spectral density functions. These are the temporal ocean
wave spectrum e(f,0) and the spatial ocean wave spectrum s(k,0). The quantities
J and 0 represents temporal frequency and wave direction respectively. These wave
spectral quantities are defined such that the mean square waveheight (h?) of the ocean
surface is

h?:/()“/:"e(f,o)dfdo=/0°°/:"ks(k,o)dkdo (2.7)

where h is the root-mean-square (rms) waveheight of the ocean surface above the
mean level.

Based upon the above equation, a physical interpretation can be given to each
of the two wave spectrum forms as they are defined here. Whereas the temporal
spectrum follows oceanographic convention and is directly related to wave energy,
the spatial spectrum contains wave slope information which in turn depends on wave
cnergy. This definition for the spatial spectrum was useful in analysing electromag-
netic scatter from the ocean as it is wave slope rather than wave amplitude which is
primarily responsible for the scattering to take place.

The relationship between the temporal and spatial wave spectrum may be found

through use of the dispersion relationship (2.1) and (2.7). Using these equations, it
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can be shown that

g tanh(kd) + gkdsech?(kd)
41rk\/gk tanh(kd)

s(k,0) = ] e(f,0) (2.8)

As mentioned before, this thesis will focus on the first and second order expressions
of the Barrick and Lipa (1986) model in presenting the radar cross sectinn of the ocean
surface. This simplifies the presentation of all three models as they are all closely
related. The other two models will be described by comparing their first and second
order expressions with those of Barrick and Lipa.

For convenience, the first and second order radar cross section equations will
be expressed in dimensionless form. To accomplish this the following normalized

variables are defined:

water depth: D 2kod
wave vector: K= E/2ko
wavenumber: K= k[2k,
ocean frequency: Fe f/ \/27,,
Doppler frequency: ) = wa [we (2.9)
first order cross section: o1(7) = w0V (wy)
second order cross section: @(n) =  wy P (wy)

spatial ocean wave spectrum: S(I,0) = (2k,)*s(k,0)

temporal ocean wave spectrum: E(F,0) = (2k,)*/%e(f,0)

Applying the above definitions to the form of the cross section equations presented
in Lipa and Barrick (1986), the dimensionless form of the average first and second
order radar spectral cross section of the ocean surface per unit surface area for vertical
polarization at HF, grazing incidence, and narrow beam reception may be given as

oi(n)=4r Y. S(1,(1+ m')x/2)8(n - m') (2.10)
m'=%1
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aa(n) =87 3 /0°° "2 S(K, @)S(K, a!)(n — my /Ky — m'\[K) K dIKdD (2.11)

m,m/==41 =

with the restriction that

K'>K (2.12)

and where
Ky = K tanh(KD) (2.13)
K} = K'tanh(K'D) (2.14)

All directions for the above sct of cross seclion equations are with respect to
the look direction of the narrow beam radar looking out to sea. 6 is the Dirac
delta function. It is interesting to note that the argument of the delta function in
(2.11) represents the dimensionless form of (2.6) after substitution of the dispersion
relationship (2.1). This is assuming that tanh(D) ~ 1 as it will be for all but the
shallowest water depths which are excluded from this analysis.

The form of the first order expression differs for each cross section model. The Bar-
rick and Lipa model represents the first order return as two impulse functions located
at the Bragg frequencies whereas Srivastava (1984) and Walsh and Howell (1990) has
the first order return as a continuum. This continuum, however, consists primarily
of two narrow spikes also located at the Bragg frequencies. In any event, the exact
form of the first order cross section is not pertinent to this thesis as the first order
return is only used to linearize the second order expression. For this purpose, the
only quantity of interest from the first order return is the total power contained in
each first order peak which is virtually the same for all models. For all three models

then, the total energy contained in each of the two first order peaks is given by
R = 47 S(1, (1 + m')7/2) (2.15)

where the sign of m' identifies whether R, the energy of the peak, is for the positive

or negative Doppler half of the radar spectrum.
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The second order equation (2.11) may be classified as a nonlinear, two-dimensional
integral equation of the first kind (Delves and Mohamed, 1985). The two-dimensional
nature of this equation is a result of the fact that the ocean spectrum is a two-
dimensionui quantity. The presence of the product of two wave spectra terms in this
equation’s integrand is the source of its nonlinearity.

A number of integrable singularities (of the square root type) appear in the second
order spectrum for reasons explained by Barrick (1972). These occur in the radar
spectrum at Doppler shifts of £1/2 and £2%* times the Bragg frequency. Fig. 2.2
is an example of a radar spectrum in which the peaks these singularities produce
may be clearly seen for the negative Doppler half of the spectrum. Although these
singularities are not readily apparent in Fig. 2.1 they are detectable nevertheless.
Other second order peaks arc present in Figs. 2.1 and 2.2 which lie adjacent to the
first order peaks. These arise simply because the wave spectrum is maximum for the
wavenumber range corresponding to these Doppler shifts.

The two scattering wave vectors I and K responsible for the second order return

obey the dimensionless form of (2.5), i.e.,

-

K+ Rt = ~£k, (2.16)

In polar form, the wave vectors K and K’ have coordinates (K£,0) and (K',0') re-
spectively. Using (2.16) and the law of cosines and sines, the polar coordinates of the

wave vector I’ may be expressed in terms of the coordinates of A as
Yy P

K = \/]&’2 + 2K cos(0) + 1 (2.17)
0 = B+ (2.18)

where
B = arcsin( [ sin(0)/K') (2.19)

The angles o and o represent the direction of the wave vectors mkK and m'K’
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Figure 2.2: Example of a 25.4 MHz narrow beam radar Doppler spectrum with strong
second order singularities. These singularities, designated by S, are readily apparent
in the negative Doppler half of the spectrum,
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respectively. In terms of 0 and ¢’ these angles may be defined as

a = 0+(1—m)rn/2 (2.20)

o = 0+(1-m)r/2 (2.21)

The two alternate definitions for a and o are, in fact, equivalent since either adding
or subtracting 7 to an angle will give the same result.

The quantity I'y is a coupling coefficient that includes contributions from both

second order mechanisms, i.e., a single scattering from a second order wave (I';) and

double scatter from two first order waves (I'z):
P, = F) + Fz (2.22)

For the Barrick and Lipa model the individual coupling coefficient terms have the

form
—i LKK, - K - K1 (1 + n2)
I, = — |Kq+ K+
1 2 [ d d \/Kdl\'c'i 1_,,]2
(VEa + LyJK) (K3 ?csch?(K D) + LK"Y *csch?(K' D))
- e (2.23)
72N E 7 A ) 7 AL
Py = % (K Lo)(_f{ .‘Lo) 2K - K (2.94)
VE - K= N2
where
L = mm (2.25)

i = V=1 (2.26)

The A term appearing in the denominator of I'; refers to the normalized surface
impedance at the air-sea interface. It has bcen found adequate (Lipa and Barrick,

1986) to use the following constant value for A across the HF band:
A =0.011-1:0.012 (2.27)
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A more accurate choice for A is not required as it exerts negligible influence on the
second order cross section for the Doppler region of interest for inversion (close to the
first order peaks).

For all three cross section models, I'y is the same. Although Srivastava (1984)
derived his radar cross section expressions assuming deep water, his analysis may be
casily modified for the case of arbitrary depth using Hasselmann’s (1962) derivation
for the second order correction to the height profile of the ocean. The resulting new
expression for I'; will agree exactly with that presented here.

Except for the —A/2 term appearing in the denominator of Iy, the onpatch
component of Srivastava’s (1984) second order cross section is identical to Barrick
and Lipa’s result after accounting for finite water depth, The —A /2 term did not
arise from Barrick’s (1972) analysis for the scattering problem; instead, it was added
to the denominator of I'; after the analysis for reasons put forward in Lipa and
Barrick (1986). For the same reasons then, this term could be included in Srivastava’s
result if one so desires, Hence, there is no intrinsic difference between this component
of Srivastava’s second order cross section and that developed by Barrick and Lipa.

The Walsh and Howell (1990) expression for I'; differs significantly from both
Srivastava’s and Barrick and Lipa’s result. This difference lies in the numerator term
of I'; and not in its denominator which, with the exception of the surface impedance
term, must be the same for all models. The physical source for this difference is the
fact that the Walsh and Howell expression for I'; is zero if the wave vectors /X and K"
arc aligned or opposed to one another whereas I'; for the other models is maximum
for this case.

Although the Walsh and Howell second order expression differs from the other
two due to its I'; term, the overall difference is actually only slight. This is due to the
fact that, in general, the contribution of I'; to the total coupling coeflicient is small

in comparison to I'y. This is to be expected as T'; represents a physical process that
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involves a lower number of scatters than I's.

Having established the close relationship between all three cross section models
for their second order component, this thesis will treat (2.11) from this point on as
being a general expression which applies to all cross section models. To this end, the
coupling coefficient I', will be considered as being an arbitrary function whose form
depends on what cross section model is being examined.

In applying (2.11) for the problem of interpreting wave information from the radar
spectrum, its limitations in representing the total radar cross section outside of the
first order peaks must be established. It is known that for increasing distance from the
first order peaks other cross section terms, particularly third order (Walsh and Howell,
1990), become the dominant contributors to the overall cross section spectrum. From
studies of the second and third order cross section (Walsh and Howell, 1990), it has
been found that the overall cross section may, in general, be well approximated by the
second order term only for 0.6 < || < 0.9 and 1.1 < || < 1.4. This set of limits has
the advantage that they avoid the singularities occurring at |5| = /2 which would
greatly complicate the inversion problem if they were included. It should also be
neted that the linearization method to be employed on this integral equation applies

best within these limits.

2.4 Simplification and Reduction of the Integral
Equation

Using the sifting properties of the Dirac delta function, one of the integrals in
(2.11) may be evaluated in closed form. The I integral is chosen for this purpose.

The second order equation now becomes

el = 1o T, JS(K, 0)S(K', o) K32 dO (2.28
U -

m,m'=%1
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where the restrictions

7 — my/K tanh(KD) — m'\ﬁ(’ tanh(K'D) =0 (2.29)

and (2.12) apply. Equation (2.29) will be referred to in this thesis as the delta function

constrainl. In evaluating (2.28) the above constraint equation must be solved for each
0 to determine the values of K that satisfy it. Once K is found the value of K’/ may
be determined from it using (2.17). As (2.29) is a nonlinear equation its solution for
K must be found using numerical techniques. For the case of deep water however, the
constraint equation becomes linear and a closed form solution may be easily obtained.

The Jacobian of transformation, J;, used in evaluating the outer integral may be

derived as
1
Jy = -y = T (2.30)
5}{_ 4+ K seCI(J) + LVE (cos 0).{_1\)(7‘__%_,_25_%?;{&_1)'

Lipa and Barrick (1986) proved in closed form, for the case of deep water, that
dilferent combinations of m and m' define disjoint ranges of Doppler frequency. These
disjoint ranges shall be referred to here as “sidebands”. For a given Doppler the deep
water version of the delta function constrainl (2.29) will yield solutions for the wave
veclors Iy and K" for only one combination of (m2,m'). This proof is not transferable
for the case of arbitrary depth, however, as the the nonlinear form of (2.29) does not
make it amenable for a closed form proof. It is simple to prove numerically though,
that this property holds for arbitrary depth. The values of m and ' corresponding

to cach of the four sccond order sidebands are as follows:

m=m'=1 for 5 >1
m=-1,m'=1 for 0 <py<1 (2.31)
m=1lm=-1 for —1<9<0

m=m'=-1 for n <-1
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It is interesting to note that as a result of these conditions m’ and 5 will have the
same sign.

From the above set of conditions it may be scen that the delta function constraint
is an even function of . This is so since both m and m' ehanges sign if n changes
sign so that (2.29) remains effectively the same. Using (2.31) the parameter I takes
on the value —1 for the region between the first order peaks and +1 outside. This is

equivalent to

1 for|y| >1
= 92
- { ~1 for|yl <1 (%32)
Those second order sidebands that lie between the first order peaks (L = —1) shall

be referred to as the “inner” sidebands while those who lie outside this region (L = 1)
shall be referred to as the “outer” sidebands.

Another important property of the delta function constraint is that il is also an
even function of 0 as K’ depends only upon cos(8) by virtue of (2.17). Since the
coupling coefficient and the Jacobian of transformation are also even functions of 0,
the closed integral of (2.28) may then have its integration points occurring at =0

summed to yield the second order equation
oa(n) = 167 _[r T, JLH {S(K,a)S(K', &) + S(K,—a)S(K', —a')} K**d0 (2.33)

with restrictions (2.12), (2.29) and (2.31). The function H appcaring above prevents
the integral from having its integration points occurring at ¢ = 0 and 0 = 7 from

being summed twice. It is defined as

1 for0=0o0rr
—_— 2 ¢
i { 1 otherwise (2.34)

The second order integral (2.33) was written without the summation over the in-
dices m, m' as (2.31) now makes this unnecessary. Since (2.31) represents a restriction
on (2.33) it demonstrates an important feature of the second order integral, i.c., it is

not one intcgral equation but in fact four such equations, one for cach second order
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sideband. The inversion of radar sea echo therefore involves the solution of a system

of independent integral equations.

2.5 Linearization of the Integral Equation

In this section the second order integral equation (2.33) is linearized using the
method of Lipa and Barrick (1982). To understand the basis of this linearization
technique it is first neccssary to examine the properties of the wave vector K' which
along with the wave vector I are the two scattering waves responsible for the second
order return. In analysing the wave vector I it shall be useful to define a dimension-
less parameter, u which is the magnitude of the normalized Doppler frequency shift

from the first order peaks:

u=m(np—m) (2.35)

In terms of the parameter u, the Doppler frequency limits for the second order equa-
tion (Section (2.3)) may be conveniently expressed as 0.1 <u < 0.4 .

As the delta function constraint is an even function of 7, its solution for both
K and K’ for a given value of 0 will be the same for all Doppler frequency points
having the same value of u and L. For every such set of Doppler frequencies, there
is a distinct range of values for both A" and K" that solutions to the delta function
constraint for all # may take. The endpoints for both of these continuous ranges are
given by the solution for K and K’ at 0 equal to 0° and 180°.

Fig. 2.3 is a sct of curves showing the deep water solution for the wavenumber K’
up to u = 0.4 for 0 equal to 0°, 90° and 180°. The family of solution curves for all
values of 0 are bounded by the 0 equal to 0° and 180° curves.

From these solutions curves, it may be observed for all sidebands that the range
of values for the normalized wavenumber K’ at each u is approximately centered
about a value of one. This is a significant result as it means that the scattering

wave represented by K’ is of comparable length to the Bragg waves, i.e., those waves
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responsible for the first order return. Although the width of the range of values for
K' at each u may increase substantially for increasing values of u the value for K’ at
the lower extent of this range still remains large.

As both K’ and the Bragg waves are substantially large wavenumbers they will
generally lie in the saturated region of the gravity wave spectrum. At this equilib-
rium stage where no further growth is possible, the wave spectrum will depend upon
wavenumber as &~ or correspondingly upon frequency as f~° (Phillips, 1966). As
these short saturated waves are essentially wind driven they tend to share the same
directional propertics. Typically, the distribution of wave energy over direction for
these short waves is very broad.

By making this assumption of saturation and further assuming tha! saturated

waves share the same broad directional distribution, spectral components with wavenum-

ber K’ may be related to those having the Bragg wavelength as

!
S(K',o!) = %f—) (2.36)

The suitability of the above approximation depends upon the radar opecrating
frequency. At higher HF frequencies (= 20 to 30 M Hz) the assumption of saturation
is valid for all but the lowest sea states. As the operating frequency decreases the
Bragg wave becomes longer with the result that a larger sea state is required in
order to drive this wave to saturation. This approximation will then need to be
modified so that it may be used with generality at lower HF frequencies. This thesis
will not concern itself with this problem as the only measured data available to test
the inversion algorithm is from the 1986 CASP experiment which had an operating
frequency of 25.4 Mllz.

From examination of (2.18) it may also be observed that the direction of the wave
vector /7 is also closely matched to that of the Bragg waves as well, The difference
in direction between the wave vector £’ and the Bragg waves is represented by the

parameter f (equation (2.19)). Fig. 2.4 is a vlot showing the maximum value of 8
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for each Doppler point up to u = 0.4, It may be observed from this diagram that j3
is generally small. For a broad directional distribution there will be little difference
between wave components having this difference in direction. It is then appropriate
to assume

B0 (2.37)

Using (2.21) this approximation may be reexpressed as
o ~£(14m')r/2 (2.38)

The alternate definitions for o are equivalent as adding or subtracting = to an angle
gives the same result.
Substituting (2.36) and (2.38) into (2.33) the second order equation may be ap-

proximated as

S(1,(1 +m')x/2)
K"

oi(n) = 167 [ L[ S H (S(K, o) + S(K,~a)} Kd0 (239)

The above equation may be linearized to remove the Bragg wave spectral term
S(1,(1 + m')r/2) by dividing each Doppler half of the spectrum by the energy con-
tained in the local first order peak (Ry). This linearization approach has the elegant
advantage that it also serves as a convenient normalization for the data that removes
the need to account for unknown path gains or losses of the reccived radar signal.

The resulting linearized second order equation, o21(%), is given by

oan(n) = a;;’,) ~ 4 / ITs E{‘H (S(K,a) + S(K, —a)} K2 do (2.40)

In preparation for the inversion of (2.40), its spatial wave spectrum terms will
be converted to temporal spectra using (2.8) and (2.9). The temporal spectrum is
preferred over the spatial spectrum for inversion purposes as it follows oceanographic

convention and has a much simpler physical interpretation in terms of wave energy.

Performing this conversion the linearized second order cquation hecomes
o (n) = [ C{E(F,a)+ E(F,~a)} d0 (2.41)
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where
4|, J HTK?

c == (2.12)
and T represents the dimensionless form of (2.8), i.e.,
2
T gtanh (K D) + g K Dsech®(KD) 2.49)

47r1(\/g1( tanh(K D)

By definition, C is the kernel of the integral equation. The above expression for the
second order cross section has the constraint conditions (2.12), (2.29) and (2.31).
In general, this integral equation will represent the radar spectrum by itself for

0.l1<u<04.

2.6 Mapping Properties of the Integral Equation

In this section, several important properties are described regarding the mapping
of the ocean wave spectrum onto the second order cross section. The properties of
the K’ wave vector were examined in the last section. Attention is restricted to the
regions of the radar spectrum close to the first order peaks as the inversion algorithm
is to be applied there only. The structure of this mapping is determined by both the
delta function constraint (2.29) and the kernel of the integral equation (2.42). The
delta function constraint governs what ocean wave vectors may contribute to a given
Doppler frequency of the rada: spectrum while the kernel function determines how
strongly each wave vector pair contributes to this Doppler point.

Perhaps the most important aspect of this mapping is the folding of the occan
spectrum about the radar beam as a result of the delta function constraint being an
even function of #. Stated another way, the radar spectrum does not depend so much
upon the wave spectrum quantity E(F,a) as it depends upon E(F,a)+ E(F,-a)
which itself cotresponds to a folded wave spectrum. As a result of this folding about
the radar beam, a single narrow beam radar may only provide ambiguous information

regarding the direction of the wavefield. This directional ambiguity is left /right in
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nature as a single radar may determine the angle a moving target makes with its
beam but cannot tell which side it is arriving from rclative to this beam. The use of
two radars viewing the same patch of ocean from different vantage points overcomes
this ambiguity and permits the extraction of full directional information.

Shown in Fig 2.5 is a set of curves showing the deep water solution for the
wavenumber & up to u = 0.4 for # equal to 0°, 90° and 180°. The family of so-
lution curves for all values of @ are bounded by the 0 equal to 0° and 180° curves.

From these solution curves, it may be observed that the normalized wavenumber
K occupies the important long wave region of the ocean wave spectrum. It is this
region of the wave spectrum which is targeted for measurement as the longer waves
contain the bulk of the total wave energy. It may be further observed from these
solution curves that the range of values for K at each u becomes wider and the values
larger as u increases. At v = 0.4 and L =1, K has its maximum value of 0.36 for
0 = 180°

Although the radar spectrum up to u = 0.4 will contain information for a substan-
tial range of ocean wavenumbers, this information is incomplete as the only directional
components present for large values of K will be those that are travelling along the
radar beam. This is a consequence of the fact that the 0 = 0 and 180° solution
curves in Fig. 2.5 diverge rapidly for large values of u. This divergence is indeed fast
when onc considers that for the outer sidebands (L =1) the maximum value of K at
u = 0.36 is 0.24 while only a short distance away at u = 0.4 it jumps by 50 % to 0.36.

It is doubtful whether much useful information can be extracted for these large
wavenumbers as they are only represented by their radial components. As the kernel
function for the outer sidebands (L = 1) is maximum at § = 180° it may not be
possible to ignore these wavenumber components when analysing radar data. As a
result, it may be more practical to forego any attempt to extract information for these

large wavenumbers and concentrate on a lesser range of values for u in performing
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the inversion (perhaps up to u = 0.36 only).

Although the overall shape and size of the kernel function C may differ for each
value of u, it consists primarily of two main lobes which have their maxima at § equal
to 0° or 180°. This property holds for all cross section models. As a demonstration of
this behaviour, Fig. 2.6 shows polar plots of the Barrick and Lipa (1986) expression
for C for various values of u. From these plots, it may be observed that, in general,
a narrow beam radar is most strongly coupled to those long ocean waves which are
travelling along the radar beam while most weakly coupled to those long ocean waves
which are travelling roughly perpendicular to the beam.

This property of narrow beam radars has important implications for the accuracy
of the inversion as it will mean that results may depend upon the orientation of the
wavefield with respect to the radar beam. For cases when the waves are predominantly
travelling in a direction that lies along the receive beam, the radar return will be
stronglv coupled to the bulk of the wave spectrum’s energy. It is expected then that
the radar should be able to estimate this energy with good accuracy. However, if large
amounts of wave energy are travelling in a direction perpendicular to the receive beam
the narrow beam radar will not clearly “see” this energy as its contribution to the
radar spectrum will be weighted such that it will be of similar importance as the
weaker radial waves. It is then likely that the radar may underpredict the total wave
energy. This underestimation of waveheight estimates should increase progressively
as the wavefield direction relative to the bcam approaches orthogonality.

This variation in waveheight accuracy can be greatly reduced by using two or
more narrow beam radars viewing the same patch of ocean from different directions.
The additional information that two or more radars can provide will do much to
eliminate this directional dependence on results as each radar will act to complement
one another so that one can cffectively monitor waves travelling in one direction that

the other cannot. More accurale results will be achieved as the inversion must satisfy
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maximum value. The marker 4+ designates the angles at which # is maximum.
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all radars. The use of two radars also serves to eliminate the left/right directional

ambiguity inherent in a single radar.
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Chapter 3

Solution of the Integral Equation

3.1 General

In this chapter, the linearized second order integral equation (2.41) is inverted, us-
ing matrix methods, for the region of the radar spectrum close to the first order peaks
(u < 0.4) and for one or two narrow beam radars. For two radars viewing the same
patch of ocean from dilferent directions there will be two such equations as (2.41),
both having a common frame of reference. The extension of the inversion algorithm
to the set of equations resulting from three or more radars is straightforward.

Prior to calculating the solution of (2.41) for one or two radars, several practical
considerations in analysing HF radar data must be first addressed and plans made
for their incorporation into the inversion algorithm. One such problem is the lesser
range of Doppler that can be examined due to the enlarged width of the first order
peaks occurring in actual radar observations. Another more important concern is that
of noise. In many circumstances, poor signal-to-noise ratios for some of the second
order sidebands will make their data unavailable for use in calculating the inversion
solution. Consequently, the solution must be found using the remaining sidebands.

The matrix equation is formed by discretizing the integral equation. In order to
express the integral equation at each Doppler point as a finite term algebraic equation,
the wave spectrum needs to be represented by a finite number of variables. This is

accomplished by expanding the wave spectrum in a truncated Fourier series versus
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angle and assuming that the Fourier coefficients are constant over equal length bands
of ocean frequency. For a single radar the systems of equations for all Doppler points
will have only even Fourier coefficients as its variables. This is a result of the fact that
(2.41) folds the wave spectrum about the radar beam. For two radars the number of
cquations will double and both even and odd coefficients will be present in the matrix
equation.

The solution to the matrix equation [or cither one or two radars is found by
calculating its generalized (pseudo-) inverse using a singular value decomposition
(SVD). In computing this inverse, all small singular values are set to zero.

As integral cquations of the first kind are inherently ill-posed (Delves and Mo-
hamed, 1985) it is expected that the matrix equation of this problem will be of less
than full rank and that it will also experience conditioning problems. SVDs are par-
ticularly suited for problems such as this as they provide the solution which is of
smallest norm even if the matrix is not of full rank. In addition, it is also possible to
explore, in a qualitative sense, the condition of the matrix equation by studying the

rate at which the singular values go to zero.

3.2 Preliminaries

3.2.1 The Integral Equation for Two Radars

The second order equation (2.41) was written with respect to the look direction of
the narrow beam radar. For two such radars it is neccssary to adopt a common frame
of reference in describing the equation for each. A convenient reference for this task
is the line bisccting the two narrow heams. It will also be convenient to distinguish
between the two radars by assigning each a number.

Proceeding in this manner, the convention will be adopted that if the two receive
beams have an angular separation of 2¢, radar # 1 will be that radar whose receive

beam is separated from the bisector by an angle of ¢ while radar # 2 will be that radar
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having an angular separation of —¢. The system of second order integral equations

for two radars may then be expressed as

waun) = [ C{E(F¢+a)+E(F¢+-a)} do (1)
wa(n) = [ C{E(F,~¢+ o)+ B(F,~p+ -a)} df (3.2)

where the left subscript of each second order equation identifics the radar. As with
(2.41) the above obeys the constraints (2.12), (2.29) and (2.31). By virtue of (2.31)
each of the above equations will represent a set of four integral cquations, one for
each second order sideband. Combined, the above represents a sct of eight integral

equations.

3.2.2 Doppler Limits and Noise Effects

Prior to performing the inversion of the set of integral equations for both one
and two radars, it will first be necessary to establish practical limits on what range
of Doppler frequencies may be used for the analysis and also what effects noise may
have on the radar spectrum. Of particular interest, is the reduction of the number of
second order sidebands that may be used due to poor signal-to-noise ratios.

In the last chapter it was established that the second order cross section may be
used to represent the total cross section by itself for 0.1 < v < 0.4. In studying the
mapping propertics of the integral equation it was decided that an upper limit of 0.36
for u would be more practical for the analysis. This has the advantage of excluding
those large wavenumber terms which are only represented by their radial directional
components.

In many circumstances, it may not be possible to achieve a lower limit of 0.1
for u in performing the inversion due to the enlarged width of the first order peaks
encountered in actual radar observations. The widening of these peaks are the result
of smearing effects associated with currents and the problem of finite sample size

in calculating the estimate for the Doppler spectrumn from the radar time serics.
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Although it will generally be possible to still approach u = 0.1 for many cases, a
more general (and perhaps conservative) restriction of v > 0.15 will be applied in
this thesis. As a result, the total range of Doppler that will be used in the present
inversion is 0.15 < u < 0.36 .

An important consideration for any inversion problem is that, because of noise,
the measured data is often only imprecisely known. For integral equations of the first
kind this problem can be acute due to their poorer condition, i.e., an arbitrarily small
perturbation in the data may give rise to a large perturbation in the solution. To
combat the problem of noise for equations of the first kind, regularization methods
have been developed (see Delves and Mohamed, 1985) to impose stability on the
solution. A drawback to regularization however, is that it also constrains the solution
to be smooth.

Although the HF band is often very congested and hence noisy, the problem of
noise in performing wave measurements using HF radars may be overcome so that at
lcast one-half of the radar spectrum may still be inverted. The crux of this solution
lies in the fact that, unlike many other radar systems, HF radars operate as a coherent
device. That is, a HF radar monitors its target for a long period of time (typically
one-half hour for wave measurements) and collects a time series of its observations.
With this lengthy time series a substantial amount of incoherent averaging may be
performed so that the noise level for the estimate of the radar spectrum will be
greatly reduced. From this point on it shall be assumed that enough averaging has
been performed on the data so that the noise level of the radar spectrum is fairly low
(approximately 40 dB down from the largest first order peak).

Although the noise level of the radar spectrum may be brought down, it will
still have a significant impact on the radar spectrum as some second order sidebands
may still be only slightly above the noise level or perhaps buried beneath it. Shown

in Fig. (3.1) is a plot of a measured radar Doppler spectrum which illustrates this
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problem.

It may be observed from this example spectrum that except for its first order peak,
the positive half of the radar spectrum lies at such a low level that it has been buried
in noise. As a result, this half of the radar spectrum is not accessible for processing.
On the other hand, the negative half of the spectrum stands well above the noise and
may still be used for the inversion.

The loss of the positive Doppler half of the radar spectrum for this case is a direct
result of the fact that the short ocean waves had far more energy propagatling away
from the radar than towards it. This fact can be confirmed from the much greater
height of the negative Doppler first order peak over the positive Doppler peak. In
general, the mismatch in height between each Doppler half of the first order return
will be approximately the same for the second order spectrum. This is so as one of
the two scattering waves that produce the second order return for a given Doppler
will always be very much like the Bragg wave that produced the nearby first order
peak.

The dependence of cach half of the radar spectrum upon the height of its local
first order peak is also demonstrated in Figs. 2.1 and 2.2. In Fig. 2.1 the heights of
the two Bragg waves are nearly equal and as a consequence the radar spectrum is
nearly symmetric about zero Doppler. In Fig. 2.2 the disparity between the heights
of the two Bragg waves is not so great as it was for Fig. 3.1 and as a result. second
order peaks may be clearly observed in the positive half of the spectrum. However,
these peaks are only marginally above the noise floor and may still not be suitable
for inclusion in the inversion algorithm. As a general rule, in order for second order
data to be of use for inversion it should stand about 10 dB above the noise floor.

On the basis of the above discussion, it is generally reasonable to expect that at,
least one-half of the radar spectrum will be available for processing. The other two

sidebands corresponding to the weaker half of the spectrum may be excluded from
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Figure 3.1: Example of a 25.4 MHz narrow beam radar Doppler spectrum showing
strong noise contamination. Except for its first order peak, the positive Doppler half
of the spectrum has been buried in noise.
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the analysis depending upon their signal-to-noise levels.

If any sidebands are indeed discarded then the integral equations they represent
must also be removed from the total system of integral equations. The solution
must then be found using the remaining cquations. Solutions must then be prepared
for several different cases, each case being identified by what pairs of sidebands are

available for analysis from the spectra of one or more radars.

3.3 Discretization of the Integral Equation

3.3.1 Fourier Series Expansion for the Wave Spectrumn

A common and very useful representation for the ocean wave spectrum is to
expand it into a Fourier series versus angle. Such an expansion has the form
[ o]
e(f,0) = Y {an(f) cos(n0) + ba(f) sin(n)} (3.3)

n=0

where each Fourier coefficient is a function of frequency. These coeflicients are defined

such that 5 far
( ;/0 e(f,0)d0 for n=0
ax(f) = { o (3.4)
| - e(f,0) cos(nl) df otherwise
0
(0 forn=0
() =93 1 jor (3.5)
= / e(f,0)sin(n0)d0 otherwisc
\ T JO

The Fourier coefficient ag(f) is of special interest for many applications. It is
directly related to the spectral density function e(f) which is commonly referred to
as the one-dimensional (or simply 1-D) wave spectrum. The 1-D wave spectrum
e(f) is defined such that its represents the distribution of wave energy as a function
of frequency only, i.e., it is equivalent to the integration of the 2-D wave spectrum

e(f,0) over angle. Hence,

df)= [ elr,0)d0 (3.6)
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Comparing the above with (3.4) it may be seen that

e(f) = ao(f)7/2 (3.7)

By and large, the most sought after information for wave studies is the 1-D wave
spectrum. From this spectral density function the most important ocean spectral
parameters may be determined (e.g., rms waveheight). Indeed, most wave buoys

have been designed to measure e(f) only.

Using (2.9) and (3.3) the Fourier series expansion for the normalized wave spec-

trum E(F,0) may be written as

E(F,0) =3 {an(F)cos(n8) + bu(F) sin(nf)) (3.8)

n=0

where the normalized Fourier coefficients (an(F'), b,(F)) are defined such that

(an(F), ba(F)) = (2ko)*/(an(f), ba(/)) (3.9)

Using the above representation for E(F,0), the set, of integral equations for one

radar (2.41) may be rewritten as

oar(u,mm’) =2 /o’r Cm™a,(F) cos(nd)do (3.10)

n=0

As a result of the folding of the wave spectrum about the radar beam, the cross
section equation for one radar depends only upon the even Fourier coeflicients of
the expansion. Without the odd coefficients it is impossible to resolve the left/right
directional ambiguity inherent in (3.10).

For future convenience, the n argument of the above second order equation has
been replaced with the parameters u, m, and ' which are related to n by virtue of
(2.35) as

n=m'+mu (3.11)

In a similar fashion, the set of integral equations for two radars ((3.1) and (3.2))

may be reexpressed as

1021 (e, m,m')y=2 i /ORCm" {an(F) cos(nd) + b,(F)sin(ng)} cos(nb)dd (3.12)

n=0
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202r(u,m,m')=2 f: /OWCm" {an(F) cos(ng) — by(F') sin(nd)} cos(nd)dd  (3.13)

n=0

With the data of two radars it is possible to extract information for both even and odd
Fourier coefficients. Hence, unambiguous directional information may be obtained.

T'wo radars, however, may still not provide full spectral information as both (3.12)
and (3.13) will not depend upon certain coefficients for a given value of ¢. For
example, if @ were equal to 30° then the set of even coefficients a3, ag, ays,... and the
set of odd coefficients bg, b12, bys, ... will be missing from (3.12) and (3.13). Even if
¢ was not exactly 30° it may be unwise to attempt to extract information for these
coefficients as they may be weighted by such a small value that the integral equations
will only weakly depend upon them. A choice must then be made to determine what
coefficients should be excluded from the analysis for a given value of ¢.

In the following sections the Fourier series is to be truncated after n = 2. There-
fore, the only case of concern in trying to determine if a Fourier cocfficient is to be
excluded from (3.12) and (3.13) is when the two radar beams are almost orthogonal
(¢ = 45°). For this case it shall be considered acceptable, in general, to exclude the
az(F) Fourier coefficient if 85° < 2¢ < 95°.

Some of the n = 1 coefficients may also be excluded if the angle of intersection
between the two radars is equal to 0 or 180°, however, these are not practical sit-
uations. If the angle between the radar beams were close to zero then the Doppler
spectrum observed by each radar will be essentially equivalent. Hence, there will have
been no effective increase in information in using two radars over one. In a similar
manuer, little additional information over that of one radar will be obtained if the two
radars are opposed to one another. For this case it is easy to show that the Doppler
spectrum observed by each radar will be the mirror image of one another.

The preceding paragraph brings to attention an important limitation in using
two radars, i.e., the success of the inversion will depend upon the angular separation

between the two receive beams. In all likelihood, the best inversion results should be
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obtained when the two beams are orthogonal. The accuracy of the results should also
decrease as the Lwo receive beams approach alignment or opposition to one another.

This property will be examined further in the next chapter.

3.3.2 Matrix Equation for One and Two Radars

The matrix equation for both one and two radars is formed by approximating
(3.12), (3.12), and (3.13) as finite term algebraic equations. The set of discretized
integral equations for each Doppler point will then represent a system of equations
(or equivalently, a matrix equation). The variables of this system are the Fourier
coeflicients of the wave spectrum.

As the radar spectrum will exist over discrete values of 7 there will be also a
discrete set of values which u may take over the range 0.15 < u < 0.36. These

discrete values u; are given by
ui=uy +(G—-1)Au for i=1,...,1 (3.14)

where Au is the resolution of the Doppler spectrum, I is the total number of Doppler
points per sideband for 0.15 < u < 0.36, and u; is the smallest discrete value of u
lying within this range for u.

In order to express the equation for each Doppler point as a finite term algebraic
equation, the ocean wave spectrum must be discretized into a finite number of vari-
ables. As a first step towards this end, E(F,0) will be assumed constant over equal
length bands of frequency F. Hence, the values of the Fourier coefficients for each
band will be assumed constant as well. The total number of bands will be represented
by the number J.

The total range of frequencies which is to be divided up in J bands has as its lower
endpoint the value of F' occurring at (v = u;, L = —1,0 = «) and an upper endpoint
corresponding to the value of F occurring at (v =u;, L =1,0 =7). At 25.4 MHz

the resulting total (unnormalized) range of ocean frequencies will be approximately
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0.07 < f < 0.25 Hz. This is a particularly advantageous range of frequencies for
measurement as it will contain the bulk of the total ocean spectral energy.

This range becomes more restricted however, as the operating frequency decreases.
At 10 MHz this range becomes approxiinately 0.044 < f < 0.157 Hz which may not
be sufficient to produce an estimate for the rms waveheight h. The range of values
for other operating frequencies may be calculated by multiplying the endpoints of
the 25.4 MHz range by the square root of the ratio of the operating frequency to
25.4 x 109,

To complete the discretization of the wave spectrum into a finite number of vari-
ables its Fourier serics expansion needs to be truncated after a certain value of n.
In general, this Fourier series may be well approximated by its first nine terms only
(n = 4). As to how many terms may be practically retained to represent the wave
spectrum will depend upon Au, the resolution of the rada: spectrum. If too many
terms are retained such that the number of variables exceeds the number of available
equations (Doppler points), the matrix equation will become underdetermined and
thus difficult to solve.

Owing to the sampling rate limits of the radar equipment used at CASP, this
thesis will truncate the Fourier series after n = 2. For other reasons, this limitation
also applies to most wavebuoy systems including those used at CASP. This can be
considered an acceptable compromise as, for many circumstances, the main features
of the directional distribution will still be preserved if the series is approximated by
its first five terms only. However, some accuracy will be sacrificed from the inversion
if this done. This will be especially true for those frequency bands which have a
narrow directional distribution. This topic will be explored in more detail in the next
chapter.

Following the discretization scheme for E(F,8) described above, the set of dis-
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cretized integral equations for one radar (3.10) may be rewritten as
2 o
oar(ui,m,m’) = 2"2%/0 Cm™;an(F) cos(n0) d0 (3.15)
where ja, (also ;b,) are Fourier coefficients for the jth frequency band. The value
of j in the above integral depends upon 0 by virtue of the delta function constraint
(2.29). This constraint equation in turn controls the value of F.

In order to express the above integral equation in terms of an algebraic equation,
the overall contribution to the integral from each frequency band must be isolated.
As a given frequency band j will correspond to a continuous range of values for 0,
the second order integral may be reexpressed as the algebraic equation

J 2
oo (uiymym’) =235 / Cm";an(F)cos(n0) do (3.16)
j=0n=0"%,L
where 0; ; 1, represents the @ limits for band j for a given u; and L. For this set of
Doppler points, if there are no values of 0 ranging from 0 to = which will have a
solution F' to (2.29) that belongs to band j then the 0 integral will be zero for that j.

In practice, it is a simple matter to determine 0; ; 1, for a given Doppler point. This
may be done numerically by reviewing the solutions for F' to the delta function con-
straint for values of 0 ranging from 0 to 7. A closed form expression for 6; ; ;, may also
be derived using the delta function constraint if it is assumed that tanh(X'D) ~ 1.
In general, this can be considered to be a very good approximation for all but very
low HF frequencies.

In a similar fashion, the set of integral equations for two radars ((3.11) and (3.12))
may be reexpressed in discretized form as

J 2

1oau(us, mym) =23 3" /o Cm" {;an(F) cos(ng) + jbu(F)sin(ng)} cos(nd) df
=0 n=0"YinlL
’ (3.17)
J 2
oy (uiymym’)=23"5" /0 Cm" {jan(F) cos(nd) — jbn(F)sin(ne)} cos(nl) do
J=0n=0""%utL
(3.18)
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Having expressed the integral equations in discretized form, the set of algebraic
equations for all u;,m and m’ may be directly expressed in matrix form for both one
and two radars as

Cz=0 (3.19)

wherez=1,...,]and j =1,...,J

The solution vector a of the equation is defined as

x,
m?
o=, (3.20)
zy
where i
( ja2
ja1 | for one radar
[ @0
z;j =1 [ ja2 ] (3.21)
%1
jao | for two radars
i
\ L Jb2 _

The data vector of the problem is represented by o which is composed of normal-

ized radar spectral values. This data vector has the form
o,
o,
o=, (3.22)
o

where each element o; of o represent the grouping of all Doppler points having the
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same value of u;:

&y =2 4

.

0'2[,(1!.', -—1, -—1)
o20(uiy 1,-1)
oan(uiy—1,1)
aar(uiy 1, 1)

10or(usy —1,-1)

IGQL(Uiala-l)
1021, (i, —1,1)
ID'ZL(uh 1) 1)

202r(uiy —1,

2021(ti 1,-1)
2090 (ui, —1,1)

| 2020(uiy 1,1)

-y

for one radar

.

for two radars

(3.23)

The rectangular matrix C represents the kernel matrix of this problem. The

elements of C are defined as

{ -

L
Ci; =4
.l
where
(r1rq1)
(p2, (12)
(Paaqa)
and

P1
Ub
0
51

™1
81
S1
st
™
S1
81
1

—p2
q2
—q2
P2

-T2
S2

T2

S2

T2

P3
VK]
3
p3

3
83
33
T3
T3
83
33
r3

for one radar

for two radars

2 Ccos(20)d0 for L = (1,-1)

oi.).l.

2 Ccos(0)d0 for L =(1,—1)

0i,9,L

of ©do for L=(1,~1)

05,1
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(3.24)

(3.25)
(3.26)

(3.27)



(r1y81) = (p1,q1) cos(29) (3.28)

(r2,82) = (p2,q2) cos(¢) (3.29)
(rays3) = (p3,4s) (3.30)
(ra;84) = (p2,q2) sin(¢) (3.31)
(rsy85) = (p1,q1)sin(2¢) (3.32)

If poor signal-to-noise ratios for some second order sidebands prevent their use for
inversion, those rows of o; corresponding to these sidehands will have to be deleted.
The rows of C;; having the same row numbers as the deleted rows of o; will also

have to be deleted.

3.4 The Pseudo-Inverse of the Matrix Equation

Having expressed the set of integral equations in matrix form (equation (3.19)) it
is now desired to solve this equation. The problem of finding a solution to a matrix
equation falls within that well known category of matrix problems referred to as
“inversion”. Ideally, the inversion of a matrix equation can be achicved if it were
multiplied by an inverse operator C~*. The solution vector & for this problem would
then be simply C~'o. However, it is often the case as it is for this problem that this
inverse matrix does not exist. As a result, there will be no unique solution to the
problem. The matrix equation is then said to be singular.

In practice, a somewhat more gencral notion of inversion is usually applied to find
the solution of a matrix equation. Instead of insisting that (3.19) has a solution, it
shall only be required that there is some vector & which is “solution-like” in the sense
that it minimizes

lo — Callz
where || - ||, is the vector two-norm. Such a vector @ is called a linear least squares
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solution. The problem of determining this solution is called the linear least squares

problem.
As with any least squares problem it is desired to find the solution of smallest
norm (length). It has been proven by (among others) Strang (1983) that the optimal

solution to the linear least squares problem is
z=C'%eo (3.33)

where the matrix C* is the pseudo-inverse or Moore-Penrose generalized inverse of
C. Even if the matrix C is not of full rank (singular) the above is still the optimal
solution for the problem. It is of interest to note that if C were not singular then its
pscudo-inverse C1 would be equivalent to its left-inverse C~*.

The psecudo-inverse of a matrix is obtained from a simple but valuable matrix
factorization technique called singular value decomposition (SVD), which according

to Gilbert Strang (1983, ch.3) is a method that is
not nearly as famous as it should be.

It has been shown by Stewart (1973, ch.6) and others that by using the method of

singular value decomposition any general m by n matrix C can be factored into the

diagonal form

— 2 o 7
c:'..U(0 O)V (3.34)

where U is an m by m orthogonal matrix, V' is a n by n orthogonal matrix, and X

is a diagonal matrix having the form
5 = ding{pin, 2y » fin) (335)

with
1222y 20 (3.36)
The numbers gy, ptay ..., ty are called the singular values of C. The columns of U

are called the right singular vectors of C while the columns of V' are called the left
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singular veclors of C. There is a close relationship between the singular values and
vectors of a matrix and its eigenvalues and eigenvectors.

Library rontines are availaole to calculate the SVD of a general matrix. One such
FORTR AN routine is SSVDC which is part of the public domain LINPACK
library (Dongarra et al., 1979). This same routine was also used as a basis for the
IMSL subroutine LSVRR (IMSL Math/Library User’s Manual, 1987). In this the-
sis, the SVD of the kernel matrix C is calculated using the IMSL routine DLSVRR
which is a double precision version of LSVRR.

Having calculated the SVD of C, its pseudo-inverse [ollows immediately by invert-
ing the right hand side of (3.34) after all small singular values have been set to zero.
It is important to truncate these small values as the inverse of X' is simply the recip-
rocal of its non-zero clements. If a singular value g; were very small then 7' would
be very large and may possibly overwhelm the pseudo-inverse. Assuming that only
the first 7 singular values have been retained and that jtr4y = ptr42 =+ = p, = 0,

the pseudo-inverse of C may be written as

Cct =V ( = ) uT (3.37)

o o
where, of course, the inverse of an orthogonal matrix is simply its transpose. The
parameter r should be close in value to the rank of the matrix X which in turn is
quivalent to the rank of C.
With (3.37), the solution to the integral equation has been formulated. What is

now required to calculate this solution is a choice for r.

3.5 Selection of r and the Condition of the Kernel
Matrix

The only remaining problem to overcome in completing the inversion algorithm is
to determine how many singular values should be retained for the inversion. This will

be done by exploring what values of r give the most accurate results for simulated
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radar data. A sample of these wave spectrum solutions for the selected value of » will
he presented in the next chapter.

An important aspect of the problem of selecting r is the stability of the inversion
solution, i.e., how sensitive is it to changes in r. If there a good amount of flexibility
available in the choice of r to achieve the “best” solution, for a given set of conditions,
the problem of choosing r is greatly simplified. However, if this is not the case, much
care must be taken in the choice of r.

Another possible concern is if 7 is dependent on sea state. If this is so, the selec-
tion of 7 may become very difficult as a priori knowledge of the wave spectrum will
probably be required. However, if it is not, the inversion algorithm will become robust
as it may be applied in the same manner each time for the same radar deployment.

To illustrate the general properties of the selected value of r, consider the de-
composition of the single end dual-radar kernel matrix C for the case of deep water,
[ = J =30, and 2¢ = 60° for two radars. If only two sidebands are available from
the data of a single radar, J will be set to 15. Except for the water depth, these
parameter values are the same as, or very close to, that used for the CASP data set.

Shown in Fig. 3.2 is a set of logarithmic plots for the singular values resulting
from the double precision decomposition of the single radar kernel matrix (with two
or four sidebands).  Fig. 3.3 is a similar set of plots for the dual-radar singular
values (with six or cight sidebands). Both Figs. 3.2 and 3.3 were generated using the
Barrick and Lipa (1986) sccond order model. The properties of the decompaosition to
be discussed here as well as the selection method for r is the same for all three second
order models.

It may be observed from these singular value plots that the logarithm of the
singular values of this problem is characterized by an initial linear descent of small
slope which eventually undergoes a relatively sharp downturn with the singular values

rapidly approaching zcro. For all cases, except the single radar case with only two
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Figure 3.2: Logarithmic plot of the singular values resulting from the decomposition
of the single radar kernel matrix for the case of deep water, I = 30, and J =15 (two
sidebands) or 30 (four sidebands). All singular values have been normalized by the
first singular value. The marker 4+ indicates the cut-off point after which singular
values are discarded.
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sidebands, the initial linear portion of the curve contains the bulk of the singular
values.

Also shown in Figs. 3.2 and 3.3 is a marker indicating the position of that » which
resulted in the best inversion solution for simulated data. The value of this optimal
r for each case is listed next to the diagram. It has been found from these simulation
tests that the choice of r is independent of sca state or wave direction. For actual
radar data, this same property also holds. As a matter of fact, the value of » used for
these cases also gave the best results for the CASP data.

That r remains the same irrespective of sca state or wave dircction greatly sim-
plifies the problem of choosing r. All that r does depend upon are radar operation
parameters such as water depth, number of radars and ¢, / and J, number of available
sidebands, etc.

From the singular value plots shown in Figs. 3.2 and 3.3, it may be observed that
the choice of r for each case demonstrates a consistent trend, i.c., r lies very close to,
but usually just a little past, the end of the linear portion of the curve. This same
property also holds for the CASP data. From examination of a similar set of plots
corresponding to an extensive range of operation parameters, it was found that the
choice of r also lies in the same general location. Hence, it is now known, in general
terms, where r should lie. How precise a specific choice for r should be will depend
upon how sensitive the inversion solution is to changes in » from the optimal value.

As is turns out, an exacting choice for r is not required as the inversion solution
remains stable over an extensive range of values for r. For example, for the four
sideband case of Fig. 3.2 where » was selected to be 60, single radar estimates for
e(f) will change only upon the order of a few percent for 20 < r < 65. The same
property also holds for dual-radar estimates of e(f). For the cight sideband case of
Iig. 3.3 where » was selected to be 115, e( f) estimates remain stable over the range

30 < < 120. In general, e(f) estimates will be virtually the saine for all but the
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smallest value of r that lies on the lincar portion of the curve.

With regards to the measurement of directional information, a more restricled
range for r is required. For the eight sideband case of Fig. 3.3, directional parameter
estimates remain steady for approximately 90 < » < 120. It is of interest to note that
for frequencies near the spectral peak, these parameters remain stable for a much
larger range of . In any case, even for this more restricted, although still very wide
range, there is a great amount of flexibility for the choice of r.

That the inversion solution demonstrates such good stability with respect to r may
be indicative of the kernel matrix’s conditioning. An elegant benefit of factorizing
a matrix using a SVD is that it gives insight into its rank and conditioning. This
information may be obtained from its singular values.

An estimate for the rank of a matrix may be easily determined from its singular
values (Gladwell, 1974). This is accomplished by testing the singular values against a
small tolerance value, The rank of the matrix will simply be the number of singular
values that exceed this tolerance.

To study the rank of this problem, a tolerance of 10~¢ will be applied against the
double precision examples presented in Figs. 3.2 and 3.3. The resulting estimate for
the rank is listed next to each diagram. It may be observed from these estimates that
the kernel matrices of this problem are very close to full rank, i.e., almost equal to the
number of columns. Although this does not mean that the problem is well conditioned,
it is encouraging nonetheless as it suggests that it is not badly conditioned.

A qualitative measure of the conditioning of this problem may be obtained from
the rate that the sequence of singular values go to zero (Baker, 1977, ch. 15.5; Miller,
1974). In general, the faster the rate of decay of the singular values the more ill-
conditioned the problem.

Based upon this rationale, it would seem that this problem is relatively well con-

ditioned as the initial sequence of singular values has a slow rate of decay. Listed
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next to each of the diagrams of Figs. 3.2 and 3.3 is the singular value ratio g,/ .
For this problem, this ratio is rather large and is typically of the order of 107!, As r
is rather large and is close to the total number of singular values, this large singular
value ratio demonstrates that the singular values do indeed fall off at a very slow rate
for the linear region. Irom a practical point of view this problem may be considered

to be recasonably well conditioned.
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Chapter 4
Test Results

4.1 General

In this chapter, the inversion algorithm is tested. The principal source of data
which will be used to test this algorithm are the 25.4 MHz dual-radar observa-
tions collected during the 1986 Canadian Atlantic Storms Program (CASP). The
“groundtruth” information for this experiment is provided by a WAVEC directional
wave buoy.

With this data set, the algorithm can be tested for both single and dual-radar
usage. The angular separation between the two receive beams at CASP is 56°.
Some of the results presented here from CASP have already appcared in Howell
and Walsh (1988, 1989).

The CASP data set also provides the opportunity to test the various models for
the second order cross section to see which better fits the measured data. This will be
done by comparing the inversion results for each model to the WAVEC’s estimate for
the wave spectrum to see which model provides the best agreement. For convenience,
the mutually agreeing Barrick and Lipa (1986) and Srivastava (1984) models shall
be collectively referred to from this point as simply the BL/S model. Likewise, the
Walsh and Howell (1990) model shall be referred to as the WII model.

Another mecans by which the algorithm will be tested is to use simulated radar

data. The model for the wave spectrum used to create this simulated data is that of a

61



OB s ooy asiroe S

Pierson-Moskowitz (1964) spectrum multiplied by a cardioid directional distribution
function (Longuet-Higgins et al., 1963).

Although measured radar data is preferred for analysis, the use of simulated data
in addition to the CASP data set will provide a more compreheusive test of the

inversion algorithm. Specifically, it is desired from these simulation tests to:

1. Examinc the accuracy of the dual-radar inversion for angular separations be-

tween receive beams other than 56°.

™

Confirm some of the trends observed in the inversion solution at CASP. Of
particular interest is the apparent lincar dependence on wave direction for the

a~curacy of e(f) estimates made by a single radar.

3. Assess the effects of using only the first five Fourier coeflicients in perfuiming

the inversion.

All simulation tests presented here were made using the BL/S second order model.
[t is not necessary to present the simulation results for the closely related WII model
as these results are virtually identical to that obtained using the other models. This
is not to say however that the WH model is indistinguishable from the other two.
Quite the contrary, it is only logical that these results should be so similar since if a
set of data was created using one theory and inverted using the same theory, then all
that was tested was the inversion algorithm. Hence, all that can be expected {rom
these simulation tests is to examine the properties of the algorithm.

The operating frequency at which these simulation tests will be performed is the
same as the CASP operating frequency of 25.4 MHz. To better compare with the
CASP inversion results, the values assigned to the Doppler resolution of the radar
spectrum, Au, and the number of ocean frequency bands, J, will also be the same as

that used for the CASP data. These values are: Au = 7.245 x 1072 (hence, 1 = 30);



and J = 30. If only two sidebands are available when processing the data of a single
radar, J will be set to 15.

For an operating frequency of 25.4 MHz, wave information can be measured using
the algorithm for the frequency range 0.07 to 0.25 Hz. The frequency resolution of
the radar estimated wave spectrum is 0.006 Hz for J =30 and 0.012 Hz for J = 15.

In general, the properties and accuracy of the inversion solution remains constant
over the upper extent of the HFF band (~ 20 to 30 MHz). Although the proposed
inversion algorithm may be applied for lower operating frequencies if the sea state is
sufficiently high to satisfy the linearization assumption of saturation, the main focus
of Lhis chapter will be on high HF frequencies. The inversion of the integral equation
for lower operating frequencies is, in fact, a different problem than the one addressed
here, since a different linearization technique is required and third order effects will
probably have to be accounted for. It is a future goal, however, to generalize the
inversion technique for a greater range of radar frequencies.

Prior to examining the inversion results, some background information is required
on how the measured Fourier cocflicients are interpreted to yield directional informa-
tion and several important statistical parameters. In this thesis, directional informa-
tion is interpreted from these coefficients by fitting them to the parameters of the
cardioid directional distribution model. This same model was used to interpret the
five Fourier cocefficients provided by the WAVEC buoy. A short description of this

model is provided here,

4.2 Interpretation of Ocean Spectral Parameters
from the Measured Fourier Coefficients

4.2.1 Definition of Common Statistical Parameters

For many applications, the information required from measured wave data cor-

responds to a few statistical parameters that summarize the properties of the wave
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spectrum. The most important parameter of this set has already been introduced,
i.e., rms waveheight, h. For many, h is the essence of sea state.

Although the most important statistical descriptor of the ocean spectrum is its
rms waveheight, it is more common to describe the wave spectrum in terms of its
significant waveheight, h,, instead. Significant waveheight is defined in terms of rms

waveheight as
2 - 2 - 2 o .
h; = (4h)" =4 ./0 e(f)df (4.1)

The Fourier coefficient ag(f) is directly related to e(f) by (3.7). Physically, signifi-
cant waveheight is a close approximation to the wave heights estimated by trained
observers at sea.

In order to provide a better comparison between all sensors at CASP, h, will be
calculated in this thesis using the frequency range 0.07 to 0.25 Hz. Since most of the
ocean spectral energy will be contained in this range the difference between the values
of h, calculated here and the “full range” values will be only on the order of a few
percent.

Other parameters of interest include: peak frequency (f,); and dominant direction
(64). fpis simply the value of ocean frequency at which e(f) is maximum. 6, is defined
here as the direction of maximum energy propagation for the wave spectrum. The
value of 0 which achieves this will be the one which results in a maximum value for

the integral
[ enoq
0

where ¢(f, 0) will be approximated here by its first five Fourier terms only.
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4.2.2 The Cardioid Model for the Directional
Distribution of Ocean Waves

A currently popular model for the ocean wave spectrum is to express it as the

product of its 1-D spectrum e( f) and a directional factor g(0):

e(f,0) = e(f)g(0) (4.2)

In writing the above the assumption of separability has been madeso that e(f) and
g(0) can be treated as independent quantities.

A parametric model for g(0), originally proposed by Longuet-Higgins et al. (1963),

0-0
cos | —

where the parameter s is called the spreading function and 0 is called the mean wave

has the form
23

9(0) = A(s) (4.3)

direction. Both s and 0 are functions of frequency. A(s) is a normalization factor

such that
2
/ g(0)do =1
()}
This normalization criterion will be satisfied if

(s +1/2)

A(s) = m (4.4)

where I' is the gamma function.

As the above expression for g(0) is similar to a cardioid function it is commonly
referred to as the cardioid directional distribution model. In general, this symmetric
model will provide a good fit to actual wave spectra. However, this model may not
accurately represent frequency components that are multi-modal in direction or are
highly directive (e.g., swell).

An appealing feature of this model is that each parameter has an immediate
physical interpretation. The mean direction parameter 8 represents the direction of

maximum energy propagation for each frequency. The directional distribution will
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be symmetric about this direction. The spreading function s determines the width of
this distribution. For large s this distribution is narrow and concentrated. For small
s this distribution is wide and diffuse.

Another common representation for the width of the cardioid model is its half-
power beamwidth Af. By definition, A0 is siraply the half-power width of the distri-

bution. It is related to the spreading function s as

_ In(0.5)
= S1n(cos(A0)/4)

(4.5)

In many ways, A0 is a more meaningful physical parameter than s as it provides a
direct measure of the angular width of the distribution.

An estimate for the cardioid parameters s and § may be obtained from the wave
spectrum’s Fourier coefficients. Based upon (3.3) and (4.2), it is simple to show that

the relationship between these parameters and the Fourier cocfficients is
a,.(f)= s(s=1):-(s=n+1)
ao(f)  2(s+1)(s+2): - (s+n)

ba(f)  s(s=1)ere(s—n41) . -
aolf) = (s +1)(s +2) (st ) S (n0) (4.7)

In this thesis, the cardioid parameters are interpreted from the Fouricr coeflicients by

cos(n) (4.6)

performing a least squares fit to the set of four nonlinear equations corresponding to

the above for both n = 1 and 2.

4.3 Results Using Simulated Data

4,3.1 Data Simulation

For the purpose of crealing simulated data to test the inversion algorithm, the
wave spectrum will be represented by (4.2) with g(0) being represented by (4.3). For
simplicity, g(0) will be modelled as being the same for all frequencies. Therefore, only

one value of  and s need be taken to represent the spectrum. This simple model for
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the wave spectrum will be adequate to demonstrate some of the basic properties of
hoth the inversion algorithm and the radar spectrum.

To complete the description of the wave spectrum, a model is required to repre-
sent the 1-D wave spectrum e(f). Based upon observed wave spectra, Pierson and
Moskowitz (1964) proposed the following form for e( f) for the case of a fully developed

sea with no swell:

; s ¥ v 2 =5 _ N 9 1
e(f) =2r Cpg’w™exp [ 0.74 (wa) ] (4.8)

¥

where U/, represents the wind speed 19.5 m above the occan surface and C, is an
experimentally determined dimensionless constant. In this thesis, 0.0081 will be nsed
for ¢, (sce Earle and Bishop, 1984).

This model for e¢(f) has become widely accepted as a reasonable approximation
to the limiting spectrum of a simple wind-driven sea (Hasselmann et al., 1976). It
may be observed for the high frequency limit of this model that the spectrum will
cssentially have an w™® dependence. This agrees with Phillips (1966) finding for the
characteristic fallofl of saturated occan waves.

Using these parametric models for the wave spectrum as input into (2.15) and
(2.33), simulated first and second order radar data may be calculated. For the purpose
of inversion, the second order spectrum calculated using (2.33) must be divided by
the first order power calculated using (2.15).

As mentioned before, these simulation tests will be performed using the BL/S
sccond order model. For the purpose of exploring the properties of the inversion
algorithm, it matters little which of these closely related theories are used to create
the data so long as the inversion algorithm uses the same theory to interpret it. llence,

the results presented here will be very much the same for all cross section models.
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4.3.2 Results Using One Radar

Prior to analysing the results for one radar, it is worthwhile to first examine
the symmetry existing between some of the simulated radar spectra to be treated
here. As g(0) for the simulation tests has been modelled as being the same for all
frequencies, the dominant direction of the waveficld. 04, will be equivalent to a.

One such important symmetry is that the simulated radar spectrum will be the
same for wavefield directions +0;. This property is a direct result of the fact that
(2.41) folds the wave spectrum about the radar beam, i.e., the radar spectrum depends
only upon the even Fourier terms of the ocean wave expansion. Since the wave spectra
corresponding to these two wavefield directions are identical after folding about the
radar beam, the resulting radar spectra will be identical as well.

Another important symmetry is the mirror symmetry that exists between simu-
lated radar spectra for wavefield directions 04 and 03+ #. For this case, it is intuitively
obvious that these radar Doppler spectra will be mirror images of one another since
their corresponding wave spectra are also mirror images.

Due to these two symmetries, inversion results will also demonstrate symmetry.
Of particular interest is the symmetry of estimates for the a,(f) Fourier cocflicient
that exist for +0,4 and +£04 4+ 7. These four different wavefield directions have one
important property in common, i.c., they all have the same angle of intersection with
the radar beam. This angle of intersection shall be referred to here as the wave
crossing angle. The symbol ¢, shall be used to describe it.

Shown in Fig. 4.1 are the inversion results for ¢(f) corresponding to a single
25.4 MHz radar for U, = 30 knots, s = 2, and ¢. = 0°, 30°, 60°, and 90°. Recall that
e(f) is directly proportional to a,(f) by (3.7). A similar sct of test results are shown
in Fig. 4.2 for s = 4.

It should he mentioned that the inversion performed for the ¢. = 0° case for both

Figs. 4.1 and 4.2 used only two sidebands. This was done to reflect actual operating
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conditions as one-half of the radar spectrum for Bragg wave directions close to zero
or 180° will lie at such a low level that it will be likely buried in noise. As only two
sidebands are used, the accuracy of the inversion should lessen somewhat. It may be
observed from Figs. 4.1 and 4.2 that although the inversion solution compares well
with the original data for ¢, = 0°, the shape of this estimated spectrum substantially
differs from the actual spectrum in comparison to the inversion results for other wave
directions.

It may also be observed from Figs. 4.1 and 4.2 that the accuracy of estimates for
¢(f) made by a single radar will vary substantially depending upon the directional
distribution. In general, the best results are achieved when most of the wave encrgy
is concentrated along the radar beam but becomes progressively underestimated as a
greater percentage of the wave energy is distributed about the orthogonal to the beam.
Although the overall scale of the estimate for ¢(f) spectrum varies considerably, its
basic shape is preserved.

The physical cause for this behaviour was outlined in section 2.6. Due to the
properties of the integral equation’s kernel function C, a narrow beam radar will be
weakly coupled to those wave components travelling in directions distributed about
the perpendicular to the beam. Since the radar is largely unaware of these waves it
will tend to underpredict the total wave energy.

Two wave spectrum parameters affect this variation in accuracy. The most obvious
of these is the mean direction parameter 0. This parameter represents the orientation
of the directional distribution and is the most responsible for controlling the accuracy
of ¢(f) estimates. To a lesser but still appreciable extent, the spread parameter s also
influences this accuracy. This parameter determines how concentrated the directional
distribution is about @. From comparison of the ¢. = 90° cases of Figs. 4.1 and 4.2 it
may be observed that Fig. 4.1 with its lower value of s, and hence wider distribution,

provides the better estimate for e(f). With this wider distribution, less energy will
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be distributed about the orthogonal to the radar beam while more will travel along
the beam. A better estimate for the spectrum may then be obtained.

The width of the distribution as determined by the parameter s affects the ac-
curacy of the inversion in another way. From comparison of the ¢. = 0° cases of
Figs. 4.1 and 4.2 it may be observed that the total wave energy estimated for the
s = 2 case is comparable to that of the true spectrum but is overpredicted for the
s = 4 case. A possible explanation for this effect is the simple fact the inversion
was performed with the wave spectrum approximated by its first five Fourier terms
only. For a cardioid distribution with s = 2 the Fourier series expansion for the
wave spectrum will have exactly five non-zero terms (sce (4.6)and (4.7)). For s =4
the expansion has exactly nine such terms. Since the inversion has tried to fit five
Fourier terms to the data where in fact nine are required, it will tend to produce less
accurate estimates for thesc five cocfficients with overprediction taking place for the
ao(f) coefficient. This overprediction should increase as the directional distribution
narrows.

Further insight into the behaviour of the single radar inversion solution for e(f)
may be obtained if the percentage error of h, estimates are plotted against ¢.. These
plots for both s = 2 and s = 4 are shown respectively in Figs. 4.3 and 4.4. Both of
these error plots demonstrate the properties of the solution determined thus far, i.e.,
the accuracy of h, estimates inversely depend upon ¢, with this inverse dependence
becoming stronger with increasing s. However, these plots demonstrate the startling
result that this dependence is strongly lincar. The ¢, = 0° case was not included in
the regression fit for these plots as it was generated using only two sidebands while
the other results used four.

This linear trend for the accuracy of the inversion suggests the possibility that
the estimate for e(f) may be empirically “corrected” to give it the proper scale with

knowledge of the directional distribution of the wave spectrum. This would require
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of this fit is -0.99.
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the extraction of detailed directional information from the inversion results. It is not
required to resolve the left/right ambiguity for estimates of @ inherent to a single
radar as the parameter ¢, is unaffected by this ambiguity.

The extraction of directional information from a single radar is a difficult task.
One aspect of this problem is that the only data available to determine the cardioid
paramcters are the cven Fourier cocfficients. For many situations, several equally
valid solutions to (4.6) are possible when fitting these coefficients to this equation. For
example, there is virtually no difference for the values of the cven Fourier coefficients
resulting from a cardioid distribution with 0 = £19.5° and s = 1 as for 0 = £45° and
s = 2. In other words, the directional distribution represented by these two cases is
indistinguishable if it is folded.

Another more important problem is that the accuracy of the “directional” Fourier
cocflicients a,(f) and ag(f) will probably be much less than the a,(f) coefficient.
This is due to the fact that the radar is really only aware of those wave components
travelling in directions distributed about the beam. This will introduce a bias into
the inversion solution for these coefficients as they are dependent upon the behaviour
of the wave spectrum over all directions.

Based upon these two problems, it is expected that, in general, the accuracy of
cardioid parameter estimates using a single radar will be poor. Thus far, parameter
estimates obtained from a least squares fit of the even coefficients to (4.6) have indeed
been poor. These results will not be presented here.

It may be possible that more elaborate techniques can be developed to better
interpret directional information from the measured even Fourier coefficients. This
problem will not be considered in this thesis,

For all the 25.4 MHz cases shown thus far, the wind speed parameter for the
Picrson-Moskowitz spectrum was selected to be 30 knots. In general, the properties

and accuracy of the inversion for a single radar is independent of the total encrgy of
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the wave spectrum with the exception of low sea states (wind speeds of 10 knots or
less). It is worthwhile to note that the error plots shown in Figs. 4.3 and 4.4 are very
much the same for all wind speeds.

For low sea states, the assumption of saturation for the Bragg waves used to
lincarize the integral cquation is no longer appropriate. This does not represent a
limitation of the inversion algorithin as there is little interest to perform measurements
for such cases. In any event, it may not be possible to process the radar spectrum

resulting from such low sea states as it will have a very low signal-to-noise ratio,

4.3.3 Results Using Two Radars

Shown in Fig. 4.5 are the dual-radar inversion results for e(f,0) obtained from
25.4 MHz simulated data for 2¢ = 60°, U,, = 30 knots, various wave directions relative
to the biscctor, and s = 2. A similar set of test results are shown in Fig. 4.6 for s = 4.

Overall, the inversion results presented in Figs. 4.5 and 4.6 are very good. This
demonstrates the increased accuracy that two radars may provide. The use of two
radars also eliminates the left/right ambiguity of wave direction estimates inherent
to a single radar. This is confirmed by the successful estimation of J over frequency
for all cases shown.

The estimate for e(f) also corresponds well with the true spectrum. Several prop-
erties of the inversion solution for this parameter are evident in Figs. 4.5 and 4.6.
One such property is that the accuracy of estimates for e(f) will depend upon the
number of Fourier coeflicients that is employed to represent the wave spectrum. Like
the single radar inversion, the best results are obtained for the s = 2 case (I'ig. 1.5)
as the wave spectrum will contain exactly five coefficients. The s = 4 case (Fig. 4.6),
however. requires more cocflicients to represent the spectrum. Consequently, over-
prediction occurs for wave directions along the bisector.

Another important property of the dual-radar inversion solution for e(f) is that the
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accuracy of this solution will moderately depend upon the orientation of the wavefield
with respect to the bisector. This is simply due to the fact that although two radars
separated by 60° can monitor wave energy travelling over an extensive range of wave
directions, this information is still incomplete. The best results are obtained when the
wavefield is travelling along the bisector. Both radars will then be highly sensitive to
the bulk of the total wave energy. However, progressive underestimation occurs as the
wavefield direction approaches orthogonality to the bisector. This underestimation
increases for incx'eaéing s.

The dependence upon the orientation of the wavefield for inversion results is sub-
stantially reduced if the two radar beams are orthogonal to one another. On the
other hand, this problem worsens as the angular separation between beams decrease.
In general, the inversion will still display a high degree of accuracy if the angular
separation is 40° or more. For angles less than this the accuracy of the inversion
descends rapidly. It is recommended for practical measurcments using two radars
that the angular separation between beams should be as close as possible to 90° but
not less than 40°.

In general, the estimates for A using two radars are good. The accuracy of
this parameter depends upon the number of Fourier coefficients used to represent
the wave spectrum. For the s = 2 case (Fig. 4.5) the beamwidth parameter is well
estimated since the wave spectrum can be represented by exactly five coeflicients, For
the s = 4 case (I'ig. 4.6) more coefficients are required and as a result the directional
distribution is estimated to be wider than it actually is.

As with the single radar results, the general properties of the inversion solution
presented here apply over a large range of sea states. Low sea states are excluded

however, as they violate the assumptions used to linearize the integral equation.
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4.4 Results Using Data from CASP
4.4.1 Introduction

During the winter of 1986, two narrow-beam ground wave radars were deployed
on the coast of Nova Scotia, Canada as part of the Canadian Atlantic Storms Program
(CASP). Each of these pulse Doppler radars were operated at 25.4 MHz and were
equipped with a 3-element Yagi antenna for transmission and a 12-clement linear array
with three-quarter wavelength spacing for reception. The half-power beamwidth of
cach receive beam was 6°. Both beaims were aimed such that they intersected at the
location of a WAVEC directional wave buoy. The angular separation between receive
beams was 56°.

The position of all sensors as well as the coverage provided by each receive heam
out to a range of 40 km is shown in Fig. 4.7. In this diagram, the reccive beams are
shown to be divided over range into uniform lengths of 1.2 km. These “cells” represent
distinct areas of the ocean surface for which wave measurements are performed.

In this experiment, cight sets of approximately 2% hour long dual-radar obscrva-
tions were collected over a 10 day period from March 19 to March 28, 1986. For those
periods within this time frame that the radars operated, the WAVEC estimated the
significant waveheight to have varied between 1.28 and 4.32 metres. In all, a good
range of sea states were collected.

The inversion algorithm to be applied to the CASP radar data is identical to that
used in the preceding section to process simulated data. The only change made was
to set the water depth to the CASP value of 50 m. The Doppler resolution of the
CASP data as well as the number of frequency bands used to perform the inversion
are given in section 4.1,

As before, wave information is collected for the frequency range 0.07 to 0.25 Hz.
The frequency resolution for most of the wave data is 0.006 Hz. This is comparable

to the WAVEC resolution of 0.005 Hz. For those single radar cases where the data of
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only two sidebands were available, the frequency resolution was set to 0.012 Hz.

4.4.2 Results Using the Barrick and Lipa/Srivastava Model

Shown in Fig. 4.8 is a comparison of CASP wave spectra estimates obtained
from the WAVEC buoy and the narrow beam radars. The radar inversion results
were gencrated using the BL/S model for the second order cross section. Radar
estimates include the 1-D spectrum e(f) (for both one and two radars) and the
cardioid directional distribution parameters of # and A@ (two radars only).

From Fig. 4.8 it may be observed that the general behaviour of CASP dual-radar
cstimates for e(f), in comparison to those of the WAVEC, corresponds to that of
simulated data. When using the data of tv-o radars very good correspondence with
the buoy’s estimate for e(f) exists. For dual-radar estimates made on March 20 (both
sets), 21, 24, 27, and 28 there is little difference from the buoy for e(f) estimates.
Some noticeable diflerences arise however, for such days as March 19 and 26. For
these ca.. : the radars predict a much broader 1-D spectrum than the buoy and as
a result there is a wide disparity between the overall height of the spectral peak.
However, thke total energy of the spectrum and the location of the spectral peak is
consistent with the buoy’s estimate.

The general behaviour of single radar estimates for e( f) also corresponds to what
was expected from the simulation tests. From Fig. 4.8 it may be observed that the
chief difference between the waveheight spectrum estimated by each radar and the
buoy is not one of shape, but rather of scale. In general, the shape of the 1-D spectrum
predicted by each radar is consistent with that predicted using both radars and the
buoy. Upon cleser examination of these spectra it may be seen that changes in the
overall encrgy levels of the spectrum varies inversely with the wave crossing angle ¢..

The cardioid directional distribution parameters of 8 and A#, estimated using two

radars, also demonstrates good agreement with the buoy. From Fig. 4.8 it may be
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Figure 4.8: Comparison of radar measured wave spectra at CASP (dotted line) using
the Barrick and Lipa/Srivastava model with those of the WAVEC buoy (solid line).
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observed that dual-radar estimates of 0 for all cases closely matches that made by
the buoy.

Although the comparison of dual-radar estimates of Af with the buoy is good
overall, this agreement is not consistent. For cases such as March 20 (both sets) and
26 there is close agreement with the buoy for this parameter. On the other hand, for
cases such as March 19, 21, and 28 the radar predicts the directional distribution to
be much broader than that estimated by the buoy. For the other cases of March 24
and 27 there is reasonable agreement with the buoy for Af estimates.

As well as comparing the overall wave spectrum, it will also be useful to compare
some of its main statistical parameters. By comparing such parameters, it will be
possible to quantify some of the important differences betweer each sensor’s wave
spectrum estimates.

Shown in Table 4.1 is a comparison of h, and f, estimates made by the buoy and a
single radar using the BL/S second order theory. An estimate of @, for each radar as
obtained from the buoy’s estimate for 0 is also presented in this table. The mean and
standard deviation of absolute value differences from the buoy for both parameters is
shown in Table 4.2.

From both Table 4.1 and Table 4.2 it may be seen that single radar estimates for
f» correspond well with the buoy. The average difference of 0.0048 Hz is reasonably
low and is within the buoy’s resolution of 0.005 Hz for the wave spectrum.

As expected, the accuracy of single radar estimates for h, varics substantially.
From Table 4.1 it may be observed that significant waveheight estimates are over-
estimated in comparison to the buoy for values of ¢, close to zero but progress to
underestimation as ¢, approaches 90°. For the CASP data set and this sccond order
model, the mean difference from the buoy (Table 4.2) for &, estimates is 16.5% with a
standard deviation of 10.2%. For many practical applications (c.g., marine forecasts)

this level may be deemed acceptable and may already be more accurate then present
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Table 4.1: Single radar (Barrick and Lipa/Srivastava model) and WAVEC buoy esti-

mates for significant waveheight (h,) and peak frequency (f,) from CASP. Also shown
is the wave crossing angle (¢.).

by (m) J, (Hz) ¢ (deg)
Date | Buoy Radar 1 Radar 2 [ Buoy Radar 1 Radar 2 | Radar 1 Radar 2
3/19/86 | 4.24 4.48 458 10.120 0.128 0.122 45 11
3/20/86 | 3.33 2.40 3.88 |0.095 0.098 0.086 71 15
3/20/86 | 2.93 2.08 3.54 0.095 0.098 0.098 72 16
3/21/86 | 1.37 1.18 1.58 |[0.090 0.101 0.098 75 19
3/24/86 | 1.43 1.68 1.22 | 0.100 0.104 0.098 [ 19
3/26/86 | 2.34 1.30 2.64 |0.140 0.140 0.146 89 35
3/27/86 | 1.36 1.17 1.53 {0.140 0.140 0.134 74 18
3/28/86 | 2.11 2.27 2.19 |0.100 0.098 0.110 45 11

Table 4.2: Statistical summary of absolute value differences from the buoy for single
radar parameter estimates of Table 4.1.

hy Jo

Mean 16.5 % | 0.0048
Standard Deviation | 10.2 % | 0.0035
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techniques (e.g., model predictions for wave heights using meteorological data as in-
put). However, it is still desirable to improve the accuracy of single radar estimates
for h,.

A possible means of improving this accuracy was suggested from the simulation
tests after studying the relationship between this accuracy and the directional distri-
bution. Recall from these simulation tests (Figs. 4.3 and 4.4) that the accuracy of h,
estimates was found to have an linear inverse dependence upon ¢, with the slope of
the linc being determined by the width of the distribution. With knowledge of the
directional distribution it may be possible to empirically “correct” the estimate for
hs. The problem of extracting the necessary directional information from the data of
a single radar ar.d how that data may be used to improve 2, will not be considered
here.

To demonstrate that this property of the inversion solution also holds for actual
radar observations, the percentage difference of radar derived h, estimates from the
buoy are plotted versus ¢, in Fig. 4.9. It may be seen from Fig. 4.9 that there is
indeed a strong linear dependence upon ¢, for h, estimates. This is evident from the
high value of -0.895 for the correlation coeflicient of the linear regression line.

In Fig. 4.9 there is a wide amount of variability about the regression line. This
is due in part that the accuracy of h, estimates also depend upon the width of the
directional distribution of the wavefield. Another prominent effect is the statistical
variability of estimates made by both the WAVEC buoy and the radars. Both the
radar Doppler spectrum and the buoy motion spectrum are subject to statistical
variability due to finite record lengths and the random nature of the wave field.

Another interesting feature about Fig. 4.9 is that the regression line has a value
of 25% for ¢. = 0°. Although the CASP data set is characterized by a narrow
directional distribution for its most encrgetic frequency components, this amount of

overestimation is more than was expected from the study of simulated data. From the
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Figure 4.9: Plot of the percentage difference from the buoy versus ¢, for CASP
single radar h, estimates made using the Barrick and Lipa/Srivastava model. The
correlation coefficient of the linear regression line is -0.895.
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last section it was determined that for s > 2 the regression line should overestimate
h, at ¢. = 0. In general, the upper limit for this overshoot is expected to be = 10%.
This was determined from simulated data tests for very large values of s. Although a
valuc of 25% for ¢. = 0 may only be an coincidence it may reflect upon the accuracy of
the BL/S second order model. This property will be examined further when studying
the inversion results for the WI second order model.

Shown in Table 4.3 is a comparison of ks, f,, and 0, estimates from CASP made by
the buoy and dual-radar system based upon the BL/S second order theory. The mean
and standard deviation of absolute value differences from the buoy for all parameters
is shown in Table 4.4.

The results presented in Tables 4.3 and 4.4 further demonstrate the increased ac-
curacy that two radars may provide. Like the single radar results, the comparison
of f, estimates is very good. Estimates for 04 are also well correlated with the buoy
and have an average diflerence of only 13.75°. Perhaps the most dramatic result is
the much improved accuracy for &, estimates. The mean difference for this critical
parameter is only 9.1% with a 3.5% standard deviation. This is a significant improve-
ment over a single radar and it highlights the greater stability of dual-radar estimates
for h, with its much lower standard deviation value.

Overall, the test of the inversion algorithm using the BL/S model and the CASP
data sct has been largely successful. This is especially true for wave measurements
made by two radars. For this case, wave measurements made by the radars and
the WAVEC buoy have good correlation. Not only does this demonstrate that the
inversion algorithm is an effective means of recovering wave data from the radar
return, it also shows that the BL/S secend order model provides a good fit to the

radar spectrum,.
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Table 4.3: Dual-radar (Barrick and Lipa/Srivastava model) and WAVEC buoy esti-
mates for significant waveheight (%,), peak frequency (f,), and dominant direction
(04) from CASP.

hs (m) fo (Hz) 04 (deg, T)
Date | Buoy Radar | Buoy Radar | Buoy Radar

3/19/86 | 4.24 4.84 [0.120 0.128 | 171 153
3/20/86 | 3.33  3.48 [0.095 0.098 | 199 193
3/20/86 [ 293 3.12 |0.095 0.098 | 201 194
3/21/86 | 1.37 1.48 | 0.090 0.098 | 203 188
3/24/86 | 1.43 1.60 |0.100 0.098 | 132 123
3/26/86 | 2.34 2.24 |0.140 0.140 | 218 198
3/27/86 | 1.36  1.48 |0.140 0.134 | 201 188
3/28/86 | 2.11  2.40 [0.100 0.110 | 173 151

Table 4.4: Statistical summary of absolute value differences from the buoy for dual-
radar parameter estimates of Table 4.3.

Mean 9.1% | 0.005 | 13.75°
Standard Deviation | 3.5 % | 0.0035 6°
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4.4.3 Results Using the Walsh and Howell Model

Shown in Fig. 4.10 is a comparison of CASP wave spectra estimates obtained
from the WAVEC buoy and the dual-radar inversion algorithm for the WII second
order model. Radar estimates include the 1-D spectrum e(f) (for one and two radars)
and the cardioid directional distribution parameters of 8 and Af (two radars only).

A comparison of the main statistical parameters describing the wave spectrum
are shown in Tables 4.5 (one radar) and 4.7 (two radars). The mean and standard
deviation of absolutce value diflerences from the buoy for these parameters is shown
in Tables 4.6 (one radar) and 4.8 (two radars).

From Iig. 4.10 it may be observed that many of the properties of of the inversion
solution based upon the WII model is the same as that using the BL/S model. In fact,
Fig. 4.10 is very similar to Fig. 4.8. However, there are several important differences
between these two sets of inversion results.

One such difference is the better agrcement with the buoy for &, estimates gener-
ated using the WH model over that of the BL/S model. In general, the 1-D spectrum
estimated by one or two radars using either model wiil be very similar (with the
exception of the dual-radar case of March 19). However, the overall spectral energy
predicted by the WH model better compares with the buoy than the other models.
This is not readily apparent for single radar estimates of &, (see Tables 4.5 and 4.6)
as they are only slightly better than that of the other models (compare a mean
difference of 14.4% with 16.5%). It is apparent from the dual-radar results (sce
Tables 4.7 and 4.8) that this new model provides better h, estimates for almost all
cases (compare a mean difference of 4.6% with 9.1%). The general accuracy of f,
estimates for all models is roughly the same,

One possible explanation for this better agreement for h, estimates is the fact that
the WH model predicts a slightly higher second order spectrum than the BL/S model

(this is especially so for wave directions along the radar beam, i.e., ¢. = 0°). As a
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Figure 4.10: Comparison of radar measured wave spectra at CASP (dotted line) using
the Walsh and Howell model with those of the WAVEC buoy (solid line). Separate
estimates for ¢(f) are presented for measurements made by each radar alone and
in combination. Radar estimates of the cardioid directional distribution parameters
have been made using two radars only. The number appearing in upper right hand
corner of single radar estimates for e(f) is ¢.. The date and start time (GMT) of
each approximately 2.5 hour long obs: ;vation is indicated on the left.
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Table 4.5: Single radar (Walsh and Howell model) and WAVEC buoy esti'nates for
significant waveheight (h,) and peak frequency (f;) from CASP. Also shown 15 the
wave crossing angle (¢.).

he (m) J, (Hz) . (deg)
Date | Buoy Radar1 Radar 2 | Buoy Radar 1 Radar 2 | Radar1 Radar2
3/19/86 | 4.24 4.18 430 10.120 0.128 0.122 45 11
3/20/86 | 3.33  2.24 3.62 [0.095 0098  0.086 71 15
3/20/86 | 2.93 1.94 3.32 ]10.095 0.098 0.098 72 16
3/21/86 | 1.37 1.10 147 [0.090 0.101 0.098 75 19
3/24/86 | 1.43 1.57 1.15 0,100 0.098 0.098 i 49
3/26/86 | 2.34 1.24 2.50 0.140 0.140 0.146 89 35
3/27/86 | 1.36 1.12 144 [0.140 0.152 0.134 74 18
3/28/86 | 2.11 2.12 2.02 |0.100 0.098 0.110 45 11

Table 4.6: Statistical summary of absolute value differences from the buoy for single
radar parameter cstimates of Table 4.5,

Mean 14.4 % | 0.0054
Standard Deviation | 13.5 % | 0.0038
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Table 4.7: Dual-radar (Walsh and Howell model) and WAVEC buoy estimates for
significant waveheight (k,), peak frequency (fp), and dominant dircction (64} from

CASP.

hs (m) f,(H2) | 0, (deg, T)
Date | Buoy Radar | Buoy Radar | Buoy Radar

3/19/86 | 4.24  4.43 [0.120 0.146 | 171 149
3/20/86 | 3.33 3.20 |0.095 0.086 | 199 193
3/20/86 | 2.93 2.88 [0.095 0092 | 201 194
3/21/86 | 1.37 1.32 [0.090 0092 | 203 185
3/24/86 | 1.43 148 |0.100 0098 | 132 126
3/26/86 | 2.34 2.08 [0.140 0.146 | 218 202
3/27/86 | .46 140 |0.140 0.140 | 201 187
3/28/86 | 211  2.24 |0.100 0.110 | 173 162

Table 4.8: Statistical summary of absolute value differences from the buoy for dual-
radar parameter estimates of Table 4.7.

Mean 4.6 % | 0.0072 | 12.5°
Standard Deviation | 3.3 % | 0.0084 | 6°
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result, the WH model will tend to estimate lower values of i, than the other models
when inlerpreting wave information from the radar spectrum. This would explain
why there is a general trend for the BL/S model to overestimate &, (see Table 4.3)
whereas this is much less so for the WH model (see Table 4.7). This suggests, but is by
no means certain, that the WH second order model may provide a better description
for the radar spectrum.

If the WH model does better represent the second order return it is expected that
the problem of single radar overestimation of h, using the BL/S model should be
most severe when ¢. = 0°. Shown in Fig. 4.11 is a plot of the percentage difference
of single radar h, estimates from the buoy versus ¢, for the WH model. It may
be seen from Fig. 4.11 that like Fig. 4.9 (BL/S model) that there is a strong linear
dependence upon ¢, for &, estimates. Animportant difference between Figs. 4.9 and
4.11 is that the value of the regression line at ¢, = 0° is only 16% for Fig. 4.11 while
it is 25% for Fig. 4.9. Recall from section 4.3.1 that this value is generally expected
to be 10%. This again lends credence to the supposition that the Walsh and Howell
model provides a better estimate of the second order spectrum.

With regards to the directional distribution, the WH model also displays better
agreement with the buoy than the other models. In general, @ estimates made by all
models is virtually the same. Compare a mean difference of 12.5° for 8, estimates
made by the WH model (see Table 4.8) with the 13.75° value obtained using the
other models. The iniportant difference with the other models is the much improved
comparison with the buoy for Al estimates. From examination of Fig. 4.10 it may
be observed that all eight CASP observations correlate well with the buoy for this
parameter whereas less than half the cases had such good agreement for the other
models (see Fig. 4.8).

Overall, the CASP dual-radar results obtained using the WH model are weli cor-

related with the WAVEC’s estimates. Better in fact than the results obtained using
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Figure 4.11: Plot of the percentage difference from the buoy versus ¢. for CASP
single radar h, estimates made using the Walsh and Howell model. The correlation
coefficient of the linear regression line is -0.891.
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the BL/S model. This is largely due to the WH model’s better estimates for 2, and
A0. This indicates that the WH model for the second order cross section may better
represent the radar spectrum than the BL/S model. Due to the somewhat small
size of the CASP data set, this finding may be considered only as preliminary. More
experiment data will be required in order to be statistically confident of this result.
With the good test results obtained from CASP using the WH model, especially for
two radars, the inversion algorithm has been further demonstrated to be an effective
means of rccovering wave information from the radar spectrum. Based upon the good
results found for all models at CASP, the basic feasibility of ground wave radar for

wave sensing has been estaklished.
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Chapter 5

Conclusions

5.1 General Summary

5.1.1 Solution Method

In this thesis, a data interpretation technique is developed and tested to recover
ocean spectral information from the backscatter return of one or more narrow beam
HF radars. The basis of this method is the numerical inversion of the first kind integral
equation representing the second order radar cross section of the occan surface at T,
In order to apply the method of Lipa and Barrick (1982) to linearize the equation
and to avoid third order effects, the inversion is restricted to that region of the radar
spectrum close to the first order peaks (u < 0.4).

In linearizing the integral equation, each Doppler half of the radar spectrum is
divided by the power contained in its first order peak. Not only does this serve to
linearize the equation it has the important advantage of normalizing it as well, i.c.,
all transmission factors are divided out. Hence, IIF radar is a device which requires
no calibration of its wave measurement to take into account the path gains and losses
of the received signal. For many microwave systems this is a worrisome problem (e.g.,
Young et al., 1985).

To preparc the linearized integral equation for inversion, it is approximated as a
lincar algebraic equation at cach Doppler frequency point by discretizing the wave

spectrum. This is accomplished by expanding the ocean wave spectrum in a trun-
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cated Fourier series versus direction and assuming that the Fourier coefficients remain
constant over equal length bands of ocean frequency. The system of equations cor-
responding to a range of Doppler frequencies will tlien represent a matrix equation
whose variables are the Fourier coefficients.

Due to the folding of the wave spectrum about the radar beam, the matrix equa-
tion for a single radar will only have even Fourier coefficients as its variables. Conse-
quently, a singlc radar may only extract ambiguous directional information regarding
the wave spectrum. The use of two or more radars overcomes this problem as its
matrix equation is dependent upon both even and odd Fourier coefficients.

The solution to the matrix equation is found, in a direct manner, by calculating its
pscudo-inverse using a singular value decomposition. A general procedure is outlined
to determine how many singular values (r) should be retained to calculate the solution.
Overall, there is a great deal of flexibility available for the choice of r. That the
solution remains stable over a large range of r and that the singular values decay at
a slow rate suggests that this problem is reasonably well conditioned.

As a direct solution is found to the integral equation, the problem of processing
radar spectra to recover wave data will become a computationally swift task. All that
is required for this analysis is to retrieve the appropriate inverse matrix from computer
memory and multiply it with a column vector of radar spectral values. Relatively little
time will be required to carry out this simple procedure. Consequently, the proposed
algorithm is suitable for near real-time analysis of radar data.

For the most part, this thesis has been concerned with developing an inversion
algorithm that is suitable for general use at high HF frequencies (= 20 to 30 MHz).
Although this algorithm may still be employed fo. -olatively low HF frequencies (<
10 MHz), it is limited at these frequencies to measurement of large sea states only.
This limitation is required in order to satisfy the assumption of saturation for the &’

wave components used in the linearization technique. As an example of this sea state
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limit, at 7 MHz the algorithm may be applied if, in general, h, > 5 m.

That the inversion algorithm is limited in this manner for low HF frequencies does
not represent a critical problem as the most crucial task for such systems is to monitor
large sea state conditions. However, it would be desirable to modify the lincarization
method so that the algorithm may perform measurements for a larger ringe of sca
states at lower operating frequencies.

Another important concern for Low HF measurement of wave spectra is the limited
range of frequencies that ocean spectral information may be obtained for. To extract
information for a greater frequency range a greater range of Doppler frequency must
be examined then the present limit of u < 0.4. At 10 MHz and u < 0.4, spectral
information can be extracted for frequencies ranging from 0.044 to 0.157 Hz which
will provide a good estimate of significant waveheight for only very large sca state
conditions. This contrasts with 25 MHz measurements where information can be
extracted for the frequency range 0.07 to 0.25 Hz which, in general, will contain the

bulk of the ocean spectral energy.

5.1.2 Test Results

The principal source of data used to test the inversion algorithm in this thesis are
the 25.4 MHz dual-radar observations collected during the 1986 CASP experiment.
Simulated radar data is used as well to confirm some of tlie trends observed in the
CASP inversion results and to provide additional testing of the algorithm.

With regards to single radar measurements of wave spectra, the principal infor-
mation that has been extracted so far is the 1-D wave spectrum e(f). The problem
of developing a set of techniques to interpret directional information from the single
radar inversion results has not been considered in this thesis. It should be cautioned
that a single radar may only provide partial directional information as it suffers from

a left/right directional ambiguity. This is a result of fact that a single radar folds the
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wave spectrum about the radar beam so that it depends only upon e(f,0) + e( f, —0).
Without independent information or the use of at least one other radar this ambiguity
cannot be resolved.

For both measured and simulated radar data, it was observed that the accuracy of
single radar estimates for ¢(f) depends, in a strong linear fashion, upon the orientation
of the wavefield with respect to the radar beam. In general, the best results are
obtained if the directional distribution is aligned with the radar beam (¢, = 0°) but
becomes progressively underestimated as the wavefield approaches directions that are
orthogonal to the beam (4. = 90°). Although the scale of the estimate for e(f)
changes with ¢, its basic shape is preserved. This fact suggests that e(f) estimates
may be semi-empirically corrected to give it the proper scale with knowledge of several
important directional parameters, particularly ¢..

Even with this directional dependence on the accuracy of single radar estimates
for ¢(f), the comparison of several important statistical parameters with the CASP
WAVEC buoy have been very encouraging. Using the BL/S sccond order model,
average diflerences (in an absolute value sense) from the WAVEC buoy are 16.5% for
h, and 0.0048 11z for f,. For the W sccond order inodel these differences are 14.4%
for h, and 0.0054 IIz for f,. For many practical applications (c.g., marine forecasts)
this level of accuracy may be considered acceptable and is perhaps already better
or comparable with present estimation techniques (e.g., wave model forecasts using
metcorological data as input).

In addition to providing full directional information, the use of two radars also
provides more accurate estimates of e(f). As to be expected, the accuracy of dual-
radar wave spectra estimates will depend upon the angular separation between radar
beams with the best results being obtained if the beams arc orthogonal. For practical
deploymients, it is reccommended that this angular separation should be as close to

90° as possible but not less than 40°. At CASP this angular scparation was 56°,
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Overall, there is a high degree of correlation between the CASP dual-radar system
and the WAVEC buoy for directional wave spectrum estimates. This is evidenced by
the good agreement with the WAVEC buoy for several important statistical parame-
ters. For the BL/S second order modei the average difference from the buoy for these
parameters arc: 9.1% for h,; 0.005 Hz for f,; and 13.75° for 0,. For the WH second
order model these average differences are: 4.6% for h,; 0.007 Hz for fp; and 12.5° for
04.

Although all three second order models produced estimates that agree well with
the buoy, it was the WH model which had the best agreement. This is largely due to
this model’s consistently better estimates for 2, and the directional distribution’s an-
gular width. Based upon this better agreement there is evidence to support the claim
that the Walsh and Howell (1990) second order model better represents the radar
spectrum than the mutually agrceing Barrick and Lipa (1986) and Srivastava (1984)
models. Owing to the the relatively small size of the CASP data set it is not yet
possible to draw a firm conclusion in this regard.

On the basis of the positive results obtained from the the CASP experiment,
the proposed inversion algorithm has demonstrated itself to be a suitable means of
analysing HF radar data. In addition, the basic feasibility of ground wave radar for

wave sensing has been established. ‘

5.2 Suggestions for Future Work

For many practical situations it is desired to perform wave measurcments at
operating frequencies generally less than 10 MHz. Oue of the advantages obtained
by opcrating at such low frequencies is the large sensing range that may he achieved.
In order to adapt tlie present algorithm for gencral use at low I frequencies several

modifications are recommencded:
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1. Develop a more general linearization method that does not require the assump-

tion of saturation.

2. Extend the range of ocean frequencies that spectral information is collected
for by analysing a greater Doppler frequency range. This will be a especially
difficult problem as it will require the inclusion of third order effects into the

inversion algorithm (Walsh and Howell, 1990).

It was suggesied from the algorithm tests that, with kwiwwledge of the directional
distribution, single radar estimates for e(f) may be semi-empirically corrected to
give it the proper scale. To accomplish this, a set of techniques must be developed to
interpret directional information from the measured even Fourier coefficients. It is not
yet certain how much useful directional information may be obtained from a single
radar, but it is hoped that it will at least be able to provide reasonable estimates of
=

As the radar data is subject to statistical fluctuations due to noise and the stochas-
tic nature of the ocean surface, the algorithm’s estimate for the wave spectrum will
also be subject to statistical variablility. In order to beitcr investigate the accuracy
of the solution, it is recommended that a technique be developed to determine con-
fidence intervals for the inversion estimate. This will require a careful study of the

integral equation to relate the statistics of the radar data with that of the estimate.
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