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ABSTRACT 

The Marmara Sea Gateway connects the hypersaline ( <36 %o) Aegean Sea and the 

low-salinity ( -17-22 %o) Black Sea through the Straits of Bosphorus and Dardanelles and 

the landlocked Marmara Sea. This gateway forms a natural laboratory in which to study 

the effects of climate change, sea-level fluctuations and water-mass exchange between 

small basins. 

Surface sediment samples were collected from 13 7 stations across six transects in 

the Black Sea, the Marmara Sea and the Aegean Sea. At each station grab samples and 

CTD (conductivity, temperature, depth) measurements were also collected. 

In the Marmara Sea, CTD data revealed the presence of a low salinity surface 

water mass representing Black Sea outflow and a high salinity deeper water mass, 

separated by a sharp mixing zone. Across the Southwestern Black Sea shelf the CTD 

data showed the presence of 3 water masses: 1) a low salinity surface water mass 

extended down to 10m; 2) a low salinity, but colder water mass occupies water depth 

below 40 m; 3) and a higher salinity Mediterranean water occurs between these two water 

masses. In the Aegean Sea CTD data revealed a relatively low salinity Black Sea outflow 

water mass at the surface, and high salinity water mass at the bottom separated by a 

mixing zone. 

The mollusc shells from grab samples were identified using a number of 

taxonomic keys and analyzed qualitatively and quantitatively in order to investigate the 

relationship between the community structure and the environment. The mollusc absence 

and presence data in quadrats was used to delineate seven different mollusc assemblages, 
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with each assemblage representing a distinct set of environmental conditions. Principal 

component analysis was used to constrain mollusc faunal assemblages and their 

relationship to environmental variables. Seven hypothetical faunal assemblages and three 

hypothetical environmental variables were extracted, explaining 73.9% and 73.8% of 

the variance in the faunal and environmental data, respectively. Cross-plots of scores for 

the major faunal and environmental components revealed empirical relationships between 

the three oceanographically different seas. The separation of the Black Sea from the 

Marmara Sea and the Aegean Sea assemblages was found in the cross-plot of Faunal 

Component 1 versus Environmental Component 1. The separation from the Marmara 

Sea to the Aegean Sea was found in the cross-plots of Faunal Component 1 versus 

Environmental Component 3 and Faunal Component 4 versus Environmental Component 

3. 

Mollusc shells were also identified and counted in a ~8 m long piston core 

recovered from the SW Black Sea shelf. Visual inspection of the data revealed four 

distinct faunal assemblages in the core. To test the validity of using the principal 

components determined from the surface samples to deduce past environments in a core, 

the same mollusc species found both in the surface samples and core units/subunits were 

used to calculate faunal scores for each unit/subunit. Principal components scores for 

units/subunits provided little basis for making strong interpretations about the changing 

paleoenvironment. Because only five species that were used in the principal component 

analysis on surface samples were present in the core MAR 02-45P. 
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CHAPTER! 

INTRODUCTION 

The Aegean Sea, the Marmara Sea and the Black Sea are located in the eastern 

Mediterranean region between 34.5. and 46.N latitude (Figure 1.1). Today, the Marmara 

Sea and the Straits of Dardanelles and Bosphorus form an oceanographic gateway 

connecting the hypersaline ( <36 %o) Aegean Sea and the low-salinity ( ~ 17-22 %o) Black 

Sea This gateway functions as the only link between the world's largest anoxic basin, 

the Black Sea, and the eastern Mediterranean Sea. The straits are narrow and have 

shallow sills ( 40--70 m deep). This gateway forms a natural laboratory in which to study 

the effects of climate change, sea-level fluctuations and water-mass exchange between 

small basins during the Quaternary paleoceanographic evolution of the eastern 

Mediterranean. In this thesis, ecological characteristics are delineated by comparison 

between the present-day oceanographic parameters (such as temperature, salinity, 

dissolved oxygen, etc.) and the mollusc assemblages found in surface sediments. 

1.1. Physical Oceanography of the Study Area 

1.1.1. Black Sea Bathymetry 

The Black Sea covers an area of --423 000 km2 and has a volume of ~530 000 km3 

(Figure 1.2). It is connected to the Azov Sea via the <5 m deep Kerch Strait, and to the 

Marmara Sea via the <40 m deep Strait ofBosphorus. The continental shelf in the 

northwestern Black Sea is very broad (190 km wide) but narrows to <20 km along the 
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Figure 1.1. Map of Mediterranean region, showing the location of study area (large box). 



Turkish coast, and southeast of the Crimean Peninsula. The shelf-slope break occurs at 

~ 1 00 m, and steep slopes, excluding the gentle slopes near the Danube and Kerch fans, 

lead to abyssal depth of ~2000 m. The continental slope is dissected by several 

submarine canyons (Ross et al., 1974), including the prominent canyons north of the 

Strait of Bosphorus, and those related to the mouths of major rivers such as the Danube, 

Dnieper, Dniester, Sakarya, and Klz1hrmak. A broad bathymetric high, the Arkhangelsky 

(Ye~ihrmak) Ridge, extends northward off the mouth of the Ye~ihrmak River, and 

divides the Black Sea into western and eastern basins (Figure 1.2; Oguz et al., 1991). 

The Danube fan is a prominent feature of the basin apron (200--2000 m depth), extending 

from the Romanian shelf into the abyssal depths (Oguz and Be~iktepe, 1999). The center 

of the Black Sea basin is called the Euxine Abyssal Plain, which reaches a maximum 

depth of2206 m. 

1.1.2. Black Sea Oceanography 

"The Black Sea is a 'miniature ocean' complete with intermediate layer ventilation 

and deepwater formation" (Murray, 1991). It has a two-layer system with a low density 

surface layer and a higher density deep layer. 

1.1.2.1. River Input 

Large rivers discharge into the Black Sea from the northwest, the Caucasus, and 

the coasts of Turkey, Bulgaria and Romania (Figure 1.3). They play an important role in 

the water balance. The total fresh-water discharge into the Black Sea ranges between 294 

3 



ROMANIA 

BULGARIA 

TURKEY 

Eastern 
Basin 

RUSSIA 
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Figure 1.3. Large rivers discharging into the Black Sea, after Jaoshvili, 2002. 
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km\ear- 1 and 474 km3year-1 (Table 1.1; Jaoshvili, 2002). The largest discharges of 

freshwater into the Black Sea occur in April and May. 

Table 1.1. The drainage area and annual discharge rates of major rivers draining to the 

Black Sea, from Jaoshvili (2002). 

River Drain area (kmz) Mean annual Mean annual 
discharge (m3s-1

) volume (km3
) 

Mzymta (Russia) 885 49.50 1.562 
Rioni (Georgia) 13400 119.00 3.773 
Chorokhi (Georgia) 22100 276.00 8.710 
Bzyb (Georgia) 1510 120.00 3.790 
Kodori (Georgia) 2030 132.00 4.170 
Inguri (Georgia) 4060 165.00 5.232 
Y e~ihrmak (Turkey) 36100 183.00 5.300 
Kizdumak (Turkey) 78600 184.00 5.900 
Sakarya (Turkey) 56500 182.00 5.600 
Filyos (Turkey) 13100 134.00 2.900 
Veleka (Bulgaria) 995 9.41 0.025 
Kamchea (Bulgaria) 5358 27.70 0.873 
Danube (Romania-Ukraine) 817000 6300.00 200.000 
Dniester (Ukraine) 72100 320.00 10.200 
Southern Bug (Ukraine) 63700 69.00 2.200 
Dnieper (Ukraine) 503000 1683.00 53.367 

The biggest river entering the Black Sea basin is the Danube with a total annual 

discharge of200 km3year-1
• In addition to the Danube, the Dniester (10.2 km\ear-1

), the 

Rioni (13.37 km3year- 1
), the Chorokhi (8.71 km3year-1

), and the Dnieper (53 km3year-1
) 

feed the Black Sea with a total volume of 285.2 km3year-1
• These rivers constitute ~ 72 % 

of the fresh water discharge into Black Sea; the remaining small rivers do not play an 

important role in the water balance. 
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1.1.2.2. Evaporation and Precipitation 

Precipitation and evaporation over the water surface play an important role in the 

Black Sea water balance with an annual average of ~300 km3year-1 (Table 1.2). Highest 

precipitation occurs during the winters. In general, the east and the southeast regions 

receive the largest amount of precipitation. All data indicate that evaporation 

significantly exceeds precipitation. 

Table 1.2. Precipitation and evaporation values in the Black Sea from various authors 

(Jaoshvili, 2002). 

Author Atmospheric Precipitation Evaporation 
(km3year-I) (km3year-1

) 

Leonov (1960) 230 365 
Solyankin (1963) 129 332 
Ozturgut (1971) 300 353 
Serpoianu (1973) 120 340 
Fonselius (1974) 230 350 
Bondar (1986) 119 332 
Unltiata (1990) 300 353 
Altman (1991) 238 396 
Reshetnikov (1992) 225 370 

1.1.2.3. Water Masses 

The surface water mass is 150-200 m thick and includes a surface mixed layer, a 

cold intermediate layer, and a permanent pycnocline-halocline-thermocline system at the 

lower boundary (Figure 1.4; Ozsoy and Unltiata, 1997). The surface mixed layer (0-30 

m) has a salinity of~ 17-18.5 %o, but the salinity decreases to ~ 14 %o near the mouths of 

large rivers in the western Black Sea. In April, this surface mixed layer extends to ~0 m 

depth. By the end of June, the water mass becomes thinner (~10m) and warmer (~21 ·c) 
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(Murray, 1991). In the winter, surface temperatures range between 0 OC and 8 OC, 

whereas in the summer temperature reaches 23 OCto 27 °C. A seasonal pycnocline 5 m 

thick occurs at ~15-25 m depth. In this zone, salinity increases downward from 17.9 %o 

to 18.3 %o and temperature decreases from ~22 OCto 10 OC (Oguz and Be~iktepe, 1999). 

The minimum temperature in the coastal areas occurs at ~50 min the water 

column and in the basin it occurs deeper than 100 m (Be~iktepe et al., 2001 ). This 

relatively cold and oxygen-rich water is called the Cold Intermediate Layer. In winter, 

the Cold Intermediate Layer forms in the northwestern shelf area and in the centers of the 

cyclonic eddies (discussed below). The newly formed Cold Intermediate Layer extends 

from 25m to 150m and can be readily identified by its temperature of6.5-7 OC in the 

western basin and ~7.5 OC in the eastern basin. In the spring and summer, this water 

mass spreads over the entire basin and becomes thinner ( 40-1 00 m thick) and warmer 

(8 OC) (Oguz et al., 1991; Eremeev, 1995; Be~iktepe et al., 2001). 

Below the Cold Intermediate Layer, a strong pycnocline separates the high-density 

bottom waters ( cr-r==----17 kgm-3
) from the lower density upper waters ( cr-r==----11 kgm-3

) 

(Be~iktepe et al., 2001), preventing vertical mixing and ventilation. At the base of the 

pycnocline a suboxic layer (a transition layer between the oxic and anoxic domains) 

occurs. The suboxic layer has a mean salinity of20.8 %o, temperature of 8.5 OC and 

corresponding density of crr=16.2 kgm-3
. It extends downward to a depth of 105-115 m 

within the central Black Sea Basin, 140 m within the Rim Current system, and ~ 190 m 

within the centers of the Batumi and Kaliakra Eddies (Figure 1.5; Oguz and Be~iktepe, 

1999). This layer is known for its very low concentration of both dissolved oxygen and 
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low hydrogen sulphide. The suboxic layer is situated beneath the highly productive 

surface water and above the sulfidic subsurface waters (Oguz et al., 2005). It acts as a 

"buffer layer" that confines highly efficient biological production and material recycling 

near the surface without much loss to the deep anoxic water mass. It also blocks the 

ascent of the highly concentrated sulfidic water mass. 

Anoxic deep water lies below the Suboxic Layer. The variability of temperature 

and salinity in the waters from ~200-500 m depth is much smaller than in the near 

surface waters. Below 500 m, deep waters show no changes in these properties (Ozsoy 

and Unliiata, 1997). Below 1 700 m, a bottom convection layer ---400 m thick has a 

uniform potential temperature of8.8 ·c and salinity of22.32 o/oo (Ozsoy and Unliiata, 

1997). 

1.1.2.4. Water circulation 

Surface circulation above the permanent pycnocline (~200m) consists of a 

cyclonically meandering peripheral current system called the Rim Current or Main Black 

Sea Current (Figure 1.5). This counterclockwise-rotating peripheral Rim Current is 

dominated by a series of anticyclonic coastal eddies, such as the Crimea Eddy, 

Sevastopol Eddy, Kaliakra Eddy, Bosphorus Eddy, Sakarya Eddy, Sinop Eddy, 

K.tzllmnak Eddy, Batumi Eddy, Caucasus Eddy, and two cyclonic eddies over the eastern 

and western parts of the basin. During the summer, the circulation is dominated by the 

central cyclonic eddies, whereas during the winter the Rim Current becomes stronger and 
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the anticyclonic coastal eddies weaker (Oguz et al., 1991). The Rim Current separates 

the coastal zone from the central basin (Oguz et al. , 1993). In the summer, salinity 

variations control the thermohaline structure; in the winter, temperature effects dominate 

and are associated with the formation of a cold-water mass toward the northwest (Oguz 

and Be~iktepe, 1999). 

The intensity of the Rim Current below the permanent pycnocline (>200m) is 

reduced considerably as the current weakens and decelerates. However, the anticyclonic 

eddies along the Turkish coast and the Caucasus and Crimea eddies become more 

pronounced at these depths. Below 400 m along the upper slope the Rim Current gives 

way to the weaker and narrower Mid-Basin Current. 

1.1.3. Marmara Sea Bathymetry 

The Marmara Sea is a small ( ~ 11500 km2
) enclosed sea lying between the Black 

Sea and the Aegean Sea (Figure 1.6). It is bordered to the south by an ~30 km-wide and 

shallow (~100m) shelf, and to the north by a narrower (5-10 km) shelf. The shelfbreak 

occurs at ~ 100 m. The southern slope has an average gradient of~ T -9°, except~ 15 °-

20° just beyond the shelf edge. The northern slope is very steep, ~6° -10°, and the grade 

reaching ~30° at the top of the slope (Aksu et al. , 1999). Three 1000--1300 m-deep 

basins are separated by two 800--400 m-deep saddles. These basins create the east-west

trending Marmara Trough. The easternmost <;marcik Basin is also referred to as the 

Istanbul Basin (Ergin and Bodur, 1999) and has a maximum depth of 1240 m. The 

westernmost Tekirdag Basin and Central Marmara Basin have maximum depths of 1097 
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m and 1389 m, respectively, are elongate, southwest-trending rhombohedral depressions 

(Aksu et al., 2000). A ~800 m-deep shallow basin is perched on the broad eastern ridge, 

whereas a --400 m-deep crescent-shaped depression is perched high on the southern slope 

of the <;marclk Basin (Aksu et al., 2000). The <;marclk Basin and this 400 m-deep 

perched basin are separated by a west-trending ridge ~100m shallower than floor of the 

shallow perched basin (Aksu et al., 2000). 

Two canyons, the Dardanelles Canyon and South Bosphorus Canyon, extend 

basinward from the straits of Dardanelles and Bosphorus, respectively (Figure 1.6). The 

Dardanelles Canyon extends to a depth of 1 000 m. The head of the canyon lies at ~80 m 

depth and the canyon broadens eastward. The South Bosphorus Canyon heads in ~ 1 00 m 

of water off the southern exit of the Bosphorus Strait and extends to 1000 m depth 

(Figure 1.6). 

1.1.4. Marmara Sea Oceanography 

1.1.4.1. River Input 

The volume of river discharge from the north is minor (Ergin et al., 1997). To the 

south, three small rivers enter the Marmara Sea of which the Kocasu (or Simav) River is 

the largest. The Biga and Gonen Rivers are of secondary importance (Figure 1.6; Table 

1.3). 
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Table 1.3. The drainage area and annual discharge rates of major rivers draining to the 

Marmara Sea, from Ergin et al. (1991). 

Rivers Drain area (km2
) Mean annual Mean annual 

discharge (m3s-1
) volume (km3

) 

Simav 21611.2 171 5.422 
Biga 2095.6 3.4 0.107 
Gonen 1192.8 5.6 0.177 

1.1.4.2. Water Masses 

A permanent two-layer water flow characterizes the hydrography of the Marmara 

Sea: ( 1) a surface outflow from the Black Sea toward the Aegean Sea via the straits, and 

(2) a reverse subsurface inflow from the Aegean Sea to the Black Sea via the straits 

(Ergin and Bodur, 1999). Surface and subsurface water masses are separated by a 

permanent pycnocline at a depth of ~50 mat the southern end of the Strait ofBosphorus 

and ~10m at the eastern end of the Strait of Dardanelles, with a depth of20-25 m within 

the Marmara Sea. The surface water mass shows the seasonal characteristics of Black 

Sea water (Be~iktepe et al., 1994). The surface Black Sea water entering the Marmara 

Sea has a salinity of 19-21 %o, which increases to 22-25 o/oo by the time the water mass 

reaches the Dardanelles entrance (Be~iktepe et al., 1994). In winter, surface salinity 

reaches a maximum value of ~27 o/oo, owing to increased wind mixing in the Marmara 

Sea and a reduction in the influx from the Black Sea. The salinity values decrease during 

the summer when the inflow of brackish water from the Black Sea increases. Winter 

surface temperatures range from 7-15 OC, increasing to 22-25 OC in the summer 

(Be~iktepe et al., 1994). 
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Cold Intermediate Water forms in the spring at the halocline. The upper 15 m

thick layer becomes warmer than below 15 m because of solar warming. Cold 

Intermediate Water is identified by its constant temperature of 8 OC throughout the year 

(Be~iktepe et al., 1994). 

The bottom water mass of the Marmara Sea is supplied by inflow of Aegean Sea 

water via the Dardanelles Strait. This water mass can be distinguished by its high salinity 

(~38.6 %o) and high temperature (14-15 OC) at water depths greater than 150m. The 

distribution of the bottom water of the Marmara Sea is determined by the bottom 

topography (Be~iktepe et al., 1994). 

1.1.4.3. Water Circulation 

The overall water circulation of the Marmara Sea is mostly driven by prevailing 

winds and by the seasonal variations of the Black Sea surface-water inflow from the 

Bosphorus Strait. The prevailing circulation in the Marmara Sea is a jet flow from the 

Bosphorus flowing southwards to the Bozburun Peninsula (Figure 1. 7a). This flow turns 

west and then northwest, defining an anticyclonic eddy attached to the Trachian coast 

(Figure 1.7a). From the Trachian coast the surface flow follows the northwestern 

coastline and exits through the Dardanelles Strait (Figure 1. 7a; Be~iktepe et al., 1994). 

At the beginning of autumn, the anticyclonic circulation becomes strong and moves to the 

west. In autumn, summer circulation changes significantly to a winter pattern that lasts 

until the early spring because of a change in the prevailing winds. There is a cyclonic 

eddy in the eastern basin and an anticyclonic eddy in the central basin (Be~iktepe et al., 

1994). 
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Denser Mediterranean waters enter the Marmara Sea through the Dardanelles 

Strait and form the bottom water in the Marmara Sea. The bottom water flows eastward, 

following the bottom topography (Figure 1.7b; Be~iktepe et al., 1994), then travels 

northeast across the Strait of Bosphorus and penetrates into the Black Sea. 

1.1.5. Aegean Sea Bathymetry 

The Aegean Sea is one of the major basins of the Eastern Mediterranean and is 

situated between Turkey and Greece (Figure 1.8). It is connected to the Marmara Sea via 

the Dardanelles Strait in the northeast, to the Mediterranean Sea by the Rhodos, 

Karpathos, and Kasos straits, and to the Ionian Sea by the Cervi, Kithira, and Andikithira 

straits. It has a surface area of ~200 000 km2 which is approximately 10% of the whole 

Mediterranean Sea (Yiice, 1992). An arcuate volcanic arc at latitude of3T-38° N divides 

the Aegean Sea into two physiographic provinces: the North Aegean Basin and the South 

Aegean Basin. The deepest area (~2500 m) is located in the Southern Aegean Basin 

whereas in the Northern Aegean Basin the deepest areas are 1200 m and 1400 m. The 

mean water depth is ~362m, and ~33.6% of the Aegean Basin is <200m deep (Y~ar, 

1994; Figure 1.8). 

The Northern Aegean Basin is composed of the North Aegean Trough, the North 

Skiros Basin ( ~500 m deep), the South Skiros Basin, and the North Ikaria Basin (Figure 

1.8). A <200 m-deep shelf encircles it. The widest part of the shelf is located at the exit 

of the Strait of Dardanelles around the islands ofLimnos, Gok9eada, and Bozcaada. This 

shelf is dissected by the North Aegean Trough, which extends from the Gulf of Saros to 
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Figure 1.8. Bathymetry of the Aegean Basin. Depth contours are labelled in meters. 
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the Greek coastline. Four sub-basins are located along the North Aegean Trough 

including the North Sporades (~1470 m deep), Athos (~1150 m deep), Lemnos (~1550 m 

deep), and Saros basins. These sub-basins are separated from each other by sills at 

depths of ~500 m (Zervakis and Georgopoulos, 2002). The deepest part of the North 

Aegean Trough (North Sporades Basin) is situated at the western end of the trough. 

The South Ikaria Basin and the Cretan Trough comprise the Southern Aegean 

Basin. The South Ikaria Basin is situated on the Aegean Volcanic Arc. To its east is a 

wide <200 m-deep shelf, and to its west the Cyclades Islands. The Cretan Trough is 

situated between the Cyclades Islands and Crete. It is generally ~ 1 000 m deep but has 

two deep basins to the east, both deeper than 2000 m (Figure 1.8). 

The Aegean Sea Basin is surrounded by narrow (1-1 0 km) and broad (25-95 km) 

continental shelves. Narrow shelves leading to steep 1:20 slopes are generally found in 

the west and around islands. Broad shelves are generally found to the east and north, 

especially seaward of major deltas (Figure 1.8). 

1.1.6. Aegean Sea Oceanography 

1.1.6.1. River input 

Several rivers drain into the Aegean Sea mostly from the east and north (Figure 

1.8, Table 1.4). River discharges show seasonal variations: rivers from Greece show 

maximum discharge from December to April, whereas rivers from Turkey show 

maximum discharge between October and March (Poulos et al., 1997). 
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Table 1.4. Drainage areas and annual discharge rates of major rivers draining into the 

Aegean Sea, from Ya~ar (1994). 

Rivers Drainage area Mean annual Mean annual 
(km2) discharge (m3s-1

) volume (km3
) 

Bakrrvay (Turkey) 2888 19.8 0.624 
Gediz (Turkey) 15617 85.1 2.684 
Kiiviik Menderes (Turkey) 3255 25.8 0.814 
Biiyiik Menderes (Turkey) 23889 154.5 4.872 
Meriv (Turkey) 45374 298.8 9.423 
Strimon (Greece) 10937 110.0 3.440 
Axios (Greece) 22450 159.0 5.031 
Aliakmon (Greece) 6075 73.0 2.292 
Pinios (Greece) 7081 81.0 2.529 
Sperchios (Greece) 1158 62.0 1.966 

1.1.6.2. Precipitation and Evaporation 

The water budget in the Aegean Sea is mostly driven by the outflow from the 

Dardanelles (300 km3yr- 1
, Unliiata et al., 1990) in the north, precipitation ( 400-700 mm 

yr-1
; Poulos et al., 1997), and evaporation (~1460 mm yr; Poulos et al., 1997). Rainfall is 

more pronounced over the eastern part with its 65-75% relative humidity (Poulos et al., 

1997). Evaporation is at a minimum (730 mm yr-1
) in late spring and autumn, but at a 

maximum (1825-2555 mm yr-1
) in February and July/August (Poulos et al., 1997). The 

maximum and minimum values of evaporation rate are related to seasonal variations in 

the prevailing winds and to air-sea temperature differences (Jakovides et al., 1989). 
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1.1.6.3. Water Masses 

Three different water masses occupy the Aegean Sea: surface, intermediate, and 

bottom. The surface water mass in the north originates in the Black Sea and forms a 40-

50 m-thick layer in the Northern Aegean Sea. The surface water mass in the south 

originates in the Mediterranean Sea and forms a <50 m-thick layer in the Southern 

Aegean Sea. During the winter, surface water temperatures range between 10 OC in the 

north and 16 OC in the south. During the summer, surface temperatures range from 20 OC 

in the north to 25.5 OC in the south (Yiice, 1991). Salinity distribution in the surface 

water has a similar gradient to surface temperature because of the Black Sea inflow. 

Summer salinity values range from 27 o/oo in the northeast and 30 %o in the northwest, to 

39 o/oo in the south. Winter salinity values range from 36 o/oo in the north to 39 o/oo in the 

south (Yiice, 1991). 

The Aegean Sea Intermediate Water originates in the Levantine Sea Intermediate 

Water and occupies water depths between -50 m and 200-300 m (Zervakis and 

Georgopoulos, 2002). The temperature difference from north to south is less marked 

than for the surface water mass. During the winter, intermediate water temperatures 

range from 11 OC in the north to 16 OC in the south, and during the summer they range 

from 15 OC in the north to 18 OC in the south. Salinity values of this water mass have 

small seasonal variations, ranging from 39 %o to 39.1 %o (Y~ar, 1994). In the Gulf of 

Saros there is a maximum salinity of -38 %oat a depth of250-350 m (Yiice, 1991). 

The Aegean Sea Bottom Water is found in water depths >300m. This water mass 

exhibits nearly constant salinity and temperature and shows very little seasonal variation. 
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Salinity ranges between 38.7 %o and 39 %o and temperature range between 12.70 OC and 

14.6 OC (Yuce, 1992). 

1.1.6.4. Water Circulation 

Water circulation in the Aegean Sea is driven by the inflow from the Black Sea, 

river discharge, meteorological conditions (mostly prevailing winds), bottom topography, 

and the geographical distribution of island chains (Poulos et al., 1997). 

The most pronounced characteristic of the circulation in the North Aegean Sea is 

the spreading of the Black Sea water (Poulos et al., 1997). In general, the brackish 

surface water leaving the Strait of Dardanelles follows a cyclonic (counterclockwise) 

path towards the southwest and south (Figure 1.9). In summer, after entering the Aegean 

Sea, one branch of the Black Sea water flows anti cyclonically to the north and joins an 

anticyclone to the northeast (Zervakis and Georgopoulos, 2002; Figure 1.9). In winter, 

surface waters are divided into two branches: one flows north and circulates in the 

northeast as an anticyclone, and the other moves southwest forming a cyclonic gyre in the 

south. Poulos et al. (1997) noted that the southerly flow of surface waters in summer is 

driven by northerly winds, called Etesian winds, which also generate coastal upwelling 

along the Turkish coast and downwelling along the Greek coast. In the southern part of 

the Aegean Sea, summer circulation is mostly an east - northeast movement of 
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Figure 1. 9. Present -day sea surface water circulation in the Aegean Sea. 
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Mediterranean Water (Poulos et al., 1997). In winter, two small cyclonic gyres are active 

in the southern Aegean, fed by inflow from the Levantine Sea. 

The circulation of the bottom water mass is predominantly a cyclonic gyre. 

Zervakis and Georgopoulos (2002) suggested that, in May a tongue of water with salinity 

38.6 %o from the northwest traces a cyclonic route, although in September this circulation 

is reversed. The overall cyclonic circulation brings the saline Mediterranean water to the 

north where it is diluted by mixing with low salinity waters from the Dardanelles. Thus, 

the subsurface water returning towards the south has a lower salinity than the 

Mediterranean inflow (Zervakis and Georgopoulos, 2002). 

1.2. Water Exchange Between the Aegean Sea and the Black Sea 

The Marmara Sea Gateway regulates the water exchange between the Aegean Sea 

and the Black Sea (Onliiata et al., 1990). Low salinity water (~18 %o) from the Black Sea 

moves to the Mediterranean as a surface current; conversely, the more saline (~40 %o) 

Mediterranean water flows into the Marmara and the Black seas as an undercurrent. 

1.2.1. Physiography and Physical Oceanography of the Straits 

1.2.1.1. Bathymetry of the Straits 

The Bosphorus Strait is 31 km long and 0.7-1.3 km wide, with a mean depth of35 

m (Onliiata et. al, 1990). There are two sills: one is located ~4 km north of the northern 

exit at a depth of 59 m, and the other is located ~3 km north of the southern exit at a 

depth of35 m (Onliiata et al., 1990, Algan et al., 2001). 
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The Strait of Dardanelles is 62 km long with widths varying from 1.3-7 km. The 

strait extends into the Marmara Sea, creating the Dardanelles Canyon, which reaches 

~1000 m water depth (Onliiata et al., 1990). Although the average depth is 55 m and the 

maximum depth is 100 m, several 60-70 m-deep sills are present in the Strait of 

Dardanelles. 

1.2.1.2. Water Exchange 

Water exchange through the Straits of Bosphorus and Dardanelles is partly driven 

by the density difference between the low density (cr-r= 14-18; Be~iktepe et al., 1994) 

Black Sea and the high density (cr-r= 29-29.5; Be~iktepe, 2003) Aegean Sea. Based on 

data from Be~iktepe et al. (1994), satellite altimetry shows that the mean sea-level drop 

from the Black Sea to the Marmara Sea is 30 em with smaller seasonal differences (±10 

em), and from the Marmara Sea to the Aegean Sea the drop is a minimum of 5 em in 

October and a maximum of 17 em in June. This sea-level difference is the second main 

cause of water exchange. 

The relatively dense Aegean Sea water enters the Strait of Dardanelles below a 

depth of 15-25 m (Figure 1.10). It continues to flow at ~30 em s-1 by following the 

bottom topography without much change in water characteristics. The Aegean waters 

enter the Dardanelles Canyon at the entrance of the Marmara Sea and follow the canyon 

axis before spreading horizontally into the Marmara Sea subsurface waters (Onliiata et 

al., 1990), fmally joining the bottom water circulation of the Marmara Sea. In the 

northeastern Marmara Sea, the bottom waters follow the topography of the South 
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300 

Figure 1.1 0. Water circulation across the Marmara Sea Gateway, after Ozsoy et al. 
(1995). Flow directions and water exchange are shown with arrows; average salinity 
values are in parentheses; mean annual volume fluxes are given in units ofkm./yr 
and salinity in units of ppt. 

Bosphorus Canyon and enter the Strait ofBosphorus. The ~30m southern sill does not 

prevent the entrance of Aegean water because the top of this water mass occurs at ~20m 

depth (Yiice, 1991). The bottom water in the Strait ofBosphorus flows at a speed of ~40 

cm/s in the south, decreasing to -20 crnls towards the north (Onliiata et al., 1990). After 

crossing the Strait of Bosphorus, the Aegean waters enter the contiguous shelf-crossing 

channel north of the Strait of Bosphorus, flow 8 km towards the northeast, turn northwest 

across the shelfbreak, and eventually join the Black Sea deep water (Yiice, 1991). 
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The low density Black Sea water enters the Bosphorus Strait as a surface outflow. 

The low salinity ( ~ 17 %o) surface layer within the confines of the strait increases its 

salinity to~ 19 o/oo at the southern exit. The upper layer average current speed is 50 em s-1 

in the north and 20 em s-1 in the south of the Strait ofBosphorus (l}nluata et al., 1990). 

This strong outflow enters the Marmara Sea as a thin surface jet, which bifurcates and 

circulates within the surface layer of the Marmara Sea (l}nluata et al., 1990). The surface 

layer salinity has increased by nearly 6 %o by the time it enters the Dardanelles Strait with 

25 %o salinity. By the time this water reaches the Aegean Sea, it has an even higher 

salinity of ~29 o/oo (l)nliiata et al., 1990). 

1.3. Biological Oceanography of the Study Area 

The Marmara Sea Gateway plays an important role in the biology of the Black Sea 

and the Aegean Sea. It is a transitional zone and it constitutes either a barrier, a corridor 

or an acclimatization zone for different organisms (Zaitsev et al., 2002). The Strait of 

Dardanelles serves as a barrier between the Aegean Sea and the Marmara Sea and the 

Strait ofBosphorus as a barrier between the Marmara Sea and the Black Sea. For 

instance, a Mediterranean endemic seagrass, Posidonia oceanica, is limited by the 

Dardanelles Strait. Some Mediterranean zooplankton and phytoplankton species 

penetrate through the Marmara Sea Gateway into the Black Sea. In contrast, several 

endemic elements of the Black Sea zooplankton are also found in the Aegean Sea. The 

Bosphorus Strait also acts as an acclimatization zone for some Mediterranean species, 

such as decapod crustaceans, anthozoans and sponges that expand their distribution to the 
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Black Sea via the Bosphorus Strait thus, they are gradually acclimatized to the 

environmental conditions of the Black Sea (Oztiirk and Oztiirk, 1996). 

1.3.1. The Black Sea 

Because of its high degree of isolation from the world ocean, its depth (maximum 

2212 m), its large catchment area and the large number of discharging rivers, nearly 87% 

of the Black Sea volume is entirely anoxic and contains high levels of hydrogen sulphide 

(Zaitsev et al., 2002). Thus, deep pelagic and benthic organisms are largely absent in the 

Black Sea 

The number of species in the Black Sea is around one third of that found in the 

Mediterranean Sea. However, the total biomass, abundance and productivity of the Black 

Sea are much higher than in the Mediterranean Sea (Zaitsev et al., 2002). This difference 

is explained by the eutrophic characteristics of the Black Sea, mainly from anthropogenic 

influence (Siokou-Frangou et al., 2004). The greatest part of the Black Sea coastal 

waters and continental shelf are eutrophic, the central part is mesotrophic and the 

northwestern part, which is influenced by inflow from large rivers (Danube, Dniester and 

Dnieper), is hypertrophic (Zaitsev et al., 2002). 

The phytoplankton, as primary producers, have an important place in the Black 

Sea ecosystem. Their abundance and biomass increase with increasing nutrient 

concentrations. Thus, in the Black Sea, phytoplankton become the first target of 

anthropogenically-induced stress, resulting in alterations in species composition, 

abundance and biomass (Moncheva et al., 2001 ). The dominant species at the surface are 
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dinoflagellates in March-April and diatoms and coccolithophores in October (Eker et al., 

1999). The Black Sea shows two phytoplankton blooms, one during winter-early spring, 

the other during autumn. Phytoplankton abundance is on annual average around 7 

million individuals/litre but in cases of phytoplankton blooms may reach extreme values 

of 800 million individuals/litre (Zaitsev et al., 2002). Abundance and biomass of 

phytoplankton at the surface in spring are higher in the western Black Sea than in the 

eastern region due to the outflow of large rivers from the northwestern Black Sea (Eker et 

al., 1999). 

The zooplankton community of the Black Sea is influenced by seasonal dynamics 

that control the species assemblage, and the biology and seasonal variability of its 

component organisms (Siokou-Frangou et al., 2004). In coastal waters, cold-water 

copepods and some eurythermal species are dominant in winter, and in late spring-early 

summer meroplankton such as the larvae of some bivalves, polychaetes and gastropods 

are dominant. The community structure of the Black Sea offshore waters is dominated 

by some copepod species and some cladoceran species. During the annual cycle, there 

are two peaks of zooplankton abundance and biomass. The first occurs in spring 

following the phytoplankton bloom, and the second towards the end of summer-early 

autumn resulting from the bloom of warm-water species during summer (Siokou-Frangou 

et al., 2004 ). Maximal concentrations of zooplankton are found in the coastal waters of 

the northwestern part of the Black Sea and the average biomass falls from west to east 

(Zaitsev et al., 2002). 
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The macrophytobenthic community of the Black Sea is mostly represented by red 

algae, (e.g. Phyllophora), brown algae, (e.g. Cystoseira), and the sea grass Zostera 

(Zaitsev et al., 2002). During the last three decades, increasing eutrophication has 

considerably changed the ecology of the Black Sea (Bologa et al., 1995). The most 

diverse group, red algae, was extensive in shallow waters up to 60 m depth and was an 

important source of oxygen. After habitat destruction due to human activity, especially 

in the northwest Black Sea, the area covered by eelgrass (Zostera) has decreased tenfold 

and the Phyllophora habitat has declined from 10,000 km2 to 50 km2 (Bologa et al., 1995; 

Zaitsev et al., 2002). The present day benthic flora is dominated by several species of 

Enteromorpha and the red alga Ceramium (Bologa et al., 1995). 

The Black Sea zoobenthos is composed of29-35% Mollusca, 25-33% 

Polychaets, ~27% Crustacea and only four species of Echinodermata (Zenetos et al., 

2000). The composition of the zoobenthos in the Black Sea has changed during recent 

decades because of very intense algal blooms, that leave large amounts of decaying 

organic material in the water column and trigger an oxygen shortage. This has resulted in 

the gradual decrease in biodiversity, mainly affecting the benthos (Bologa et al., 1995). 

For example, some mollusc species such as Corbula mediterranea and Hydrobia 

ventrosa, which accounted for 96 % of the benthic biomass in the fine sands biocoenosis, 

are about to disappear (Bologa et al., 1995). The populations of Mytilus galloprovincialis 

and Modiolus phaseolius have also decreased, but they still form an important part of the 

silt biocoenosis. However, some opportunistic species such as Mya arenaria and 
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Scapharca inaequivalvis have increased in diversity and become dominant (Bologa et al., 

1995). 

As a result of increasing hydrogen sulfide concentration and anoxia under the 

thermocline, the number of macro benthic species decreases rapidly with increasing depth. 

The only macrobenthic species found below 120m is the polychaete worm Notomastus 

profundus (Zaitsev et al., 2002). Because of decreasing oxygen content with increasing 

depth along the Turkish coast of the Black Sea, the larvae of aerobic benthic organisms 

tend to settle to the seabed only in depths less than 70 m (Mutlu et al., 1993). 

1.3.2. The Marmara Sea 

The Marmara Sea forms a transition between the Black Sea and the Aegean Sea. 

Thus, its biological properties as well as its oceanographic properties are influenced by 

the two neighboring seas (Ergin et al., 1993b). The oxygen-rich (~9 ml r 1 0 2) waters 

from the Aegean Sea enter the Marmara Sea below 20-30 m. Because of the oxygen 

demand of the vertically sinking organic matter, the Marmara Sea deep water loses a 

large proportion of its oxygen and becomes hypoxic (0.1-1.0 ml r2 02) (Ergin et al., 

1993b). The continuous supply of oxygen from the Aegean Sea prevents the 

development of anoxic conditions below the halocline (25-30 m depth), as in the Black 

Sea (Be~iktepe et al., 1994). 

Primary production occurs only in the upper layer. The main sources of organic 

matter for this primary production are natural input to the subhalocline waters by vertical 

mixing and Black Sea inflow, along with land-based sources such as domestic/industrial 
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waste, especially from the city of Istanbul (Polat et al., 1998). Primary production in the 

Marmara Sea is controlled by diatom and dinoflagellate blooms during the winter-spring 

and summer periods (Ergin et al., 1993b). The most abundant dinoflagellate is Noctiluca 

scintillans, and at the beginning of the spring and summer this species sometimes 

produces a 3-5 em-thick surface layer ofbloom called "red tide" (Baykut et al., 1987). 

There is a spatial distribution to the primary productivity in the Marmara Sea. 

Average annual primary production rates based on chlorophyll-a data are higher (161 g C 

m-2 year-1
) on the southern shelf of the Marmara Sea and lower (83 g C m-2 year-1

) on the 

northern shelfErgin et al., 1993b). The higher productivity on the southern shelf is 

attributed to nutrient supply from major rivers in this area and an organic-rich surface 

outflow from the Black Sea. The low productivity on the northern shelf is attributable to 

the lack of rivers. 

Uysal et al. (2002) reported that the dominant zoobenthic groups in the Marmara 

Sea are the Polychaeta, Echinodermata and Crustacea. The polychaete Mel/ina palmata 

is the most common macrobenthic species. As in the Black Sea, the bivalve mollusc 

species Mytilus galloprovincialis and Modiolus phaseolinus have the greatest abundance 

and biomass in the Marmara Sea. Mollusc species, especially the bivalves Mysella 

bidendata, Cingula sp. and Myrtea spinifera, are abundant in the northeastern region of 

the Marmara Sea (the Bosphorus entrance) (Ergin et al., 1991). 
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1.3.3. The Aegean Sea 

Owing to the geographic position of the Aegean Sea within the eastern 

Mediterranean Sea, the Black Sea to the northeast and the Levantine Sea to the southeast 

directly influence its biological oceanography. In general, the Aegean Sea can be 

characterized as being oligotrophic. Because of the influx of eutrophic Black Sea water, 

the northeast Aegean Sea is less oligotrophic than the southern Aegean Sea (Sempere et 

al., 2002; Siokou-Frangou et al., 2004). Phytoplankton concentration and chlorophyll a 

concentration are both higher in the northern Aegean Sea; the lowest values of 

phytoplankton abundance (<14000 cell r 1
) are reported in the eastern part of the central 

Aegean Sea. Consistent with its oligotrophic character, annual primary productivity in 

the Aegean Sea is low, especially in the southern basin (30 g C m-2
) (Stergiou et al., 

1997). 

Diatoms such as Nitzschia closterium and Rhizosolenia stolterfothii generally 

dominate coastal phytoplankton assemblages in winter and spring, but in summer and 

autumn dinoflagellates such as Cryptomonas sp., Prorocentrum mican and Gymnodinium 

sp. are dominant (Stergiou et al., 1997). The species dominating the offshore 

phytoplankton assemblages are similar to those of the coastal phytoplankton assemblages 

(Stergiou et al., 1997). In addition, coccolithophores such as Coccolithus pelagicus and 

Coccolithus .fragilis constitute a very important element of the winter and summer 

offshore phytoplankton assemblages, especially in the central and southern Aegean Sea 

(Stergiou et al., 1997). 
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Zooplankton abundance and biomass generally parallel phytoplankton abundance 

(Stergiou et al., 1997). ·In May, very high values of zooplankton abundance (> 11732 

individuals m-3
) are observed in the 0-20 m layer in the northeastern Aegean Sea, with 

decreasing numbers westwards and southwards (to 12-536 individuals m-3
; Siokou

Frangou et al., 2004). Zooplankton abundance declines rapidly with increasing depth. At 

depths from 500 m to 1000 m, zooplankton abundance is <1-10 individuals m-3 (Stergiou 

et al., 1997). 

Copepods such as Paracalanus parvus, Oithona plumifera and Acartia clausi 

dominate the zooplankton communities of the offshore and coastal surface waters 

(Stergiou et al., 1997). In summer and autumn, cladocerans represent 50 % of the total 

zooplankton in the 0-50 m layer of coastal surface waters, and in late winter to early 

spring, as well as in summer, appendicularians constitute ~ 17 % of the total zooplankton 

in the 0-50 m layer (Siokou-Frangou et al., 2004). 

Among the phytobenthic communities of the Aegean Sea, Stergiou et al. (1997) 

reported 452 species of Chlorophyceae, Phodophyceae and Phaeophyceae, and four 

species of phanerogram: Posidonia oceanica (1 m to 30 m), Zostera noltii (few em to 2 

m), Halophila stipulacea and Cymodocea nodosa. 

The zoo benthic community of the Aegean Sea is dominated by polychaetes ( 48 %) 

such as Avicidea claudiae and Chaetozone setosa, followed by molluscs (15-25 %; 

Zenetos et al., 2000). The most important mollusc species are A bra alba, Nucula 

nucleus, Timoclea ovata and Gouldia minima (Stergiou et al., 1997). The rest of the 
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benthic fauna includes 5-10 % Crustacea and 5-8 % Echinodermata (Stergiou et al., 

1997). 

1.4. Grain Size of the Sediment in the Study Area 

The type of sediment found in the Black Sea, the Marmara Sea and the Aegean 

Sea is determined by climate, geological source, organic productivity, environmental 

conditions, and depositional setting. 

1.4.1. The Black Sea 

The source of sediment in the Black Sea is mainly rivers or erosion of coastal 

rocks. On average of 52.2 million m3 of sediment reaches the Black Sea every year as 

river load (Jaoshvili, 2002). The Danube River is the most important sediment supplier 

of the Black Sea. Its influence extends to the deep sea floor (Panin et al., 1999). 

Although there is a relatively high supply of terrigenous sediment input into the Black 

Sea, pelagic sedimentation plays the major role in the deepest parts of the basin (<;iftyi et 

al., 2002). Surface sediments (0-5 em) of the Black Sea, shallow-water deposits of the 

northwestern shelf consist of coarse-grained biogenic and terrigenous limey sediments 

(mostly 30-50% CaC03) and gravely-sand (Mitropolsky and Olshtynsky, 1999). 

However deep-water deposits consist of fine-grained terrigenous and biogenic limey 

sediments (mostly 10-30% CaC03 and silt). 
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1.4.2. The Marmara Sea 

Several rivers release their fme-grained terrigenous loads into the Marmara Sea 

(Figure 1.6). The largest, the Simav (Kocasu) River, supplies a mean annual suspended 

load of approximately 6.5x1 05 tons; the smaller Gonen and Biga Rivers provide 5000 and 

7800 tons year-' suspended solids, respectively (Ergin et al., 1997). In addition, the 

inflows from the straits of Bosphorus and Dardanelles transport suspended solids to the 

Marmara Sea with an annual discharge of 12.5x105 tons and 9.0x105 tons, respectively 

(Ergin and Bodur, 1999). 

The surficial sediments of the Marmara Sea show a wide range of grain size 

composition from clay to sandy gravel, whereas the sediments of the southern shelf of the 

Marmara Sea show three distinct coarse-grained zones: west of the Bozburun Peninsula, 

southeast of Marmara Island and southwest of Marmara Island. Total sand and gravel 

comprise 30-90% of total sediment in three zones, which are all surrounded by [me

grained sediment (Ergin et al., 1997). Away from the coarser-grained substrates, silt 

percentages are mostly around 50% and clay content is around 90%, especially on the 

southwestern shelf (Ergin and Bodur, 1999). The sediments of the northeastern shelf of 

the Marmara Sea are mostly composed of clay (up to 90 %) and silt, and small amounts 

of sand and gravel (Ergin and Bodur, 1999). In the upper South Bosphorus Canyon, 

higher level of coarse-grained sediments occur (70-90 % ), whereas there is an increase of 

fine material (17 %to 88 %) in the down-canyon direction (Ergin et al., 1991 ). The 

deep-water sediments of the Marmara Sea generally constitute 70-90% clay and 30-50 

% silt with very small amounts of sand and gravel (Ergin and Bodur, 1999). 
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1.4.3. The Aegean Sea 

The main source of fluvial detritus to the eastern Aegean Sea is from the Meriy, 

Gediz, Biiyiik Menderes, Kiiyiik Menderes, Bakrryay and Dalaman rivers. Bottom 

sediments of the eastern Aegean Sea show a wide-range of grain-sizes, from silty clay to 

sandy gravel (Ergin et al., 1993a). High percentages of silt and clay characterize the 

areas of high terrigenous input (off the Meriy, Gediz and Kiiyiik Menderes rivers) and 

areas of low energy conditions (Ergin et al., 1993a). The coarse sediment fractions (sand 

and gravel) are composed ofbioclasts derived from bivalves, gastropods, foraminiferas, 

ostracods, algae and echinoids, and occur in high energy coastal environments. For 

instance, at the western entrance of the Strait of Dardanelles sediments contain little mud 

but higher amounts of sand and gravel because of the high current velocities and the low 

fluvial discharge from the adjacent land masses (Bayhan et al., 2001). 

1.5. Previous Studies 

Previous investigations of benthic community structure in the Black Se~ the 

Marmara Sea and the Aegean Sea were largely confined to nearshore areas such as gulfs 

or islands. The very few studies dealing with mollusc assemblages in surface sediments 

and their relationships with the physical oceanographic parameters in these seas were 

mostly written in Russian, Bulgarian, Turkish or Romanian and this literature is not 

easily accessible. 

Zenetos et al. (2000) determined the composition of the coastal macro benthic 

communities in the Black Sea and Aegean Sea. They compared species diversity, 
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population abundance (individuals m-2
) and community diversity (Shannon Index (H')) 

with the anthropogenic input into these seas, and found that benthic faunal diversity in 

the Black Sea is about 113 of that in the Aegean Sea, although the total population 

abundance is greater in the Black Sea than in the Aegean Sea. 

Moncheva et al. (200 1) carried out a comparative study of the western Black Sea 

and the Aegean Sea, focusing on the responses of the phytoplankton to anthropogenic 

nutrient enrichment. They discussed environmental factors, such as temperature, salinity 

and nutrient ratios, to determine the difference between the two basins using cluster 

analysis and principal components analysis. They found that temperature and salinity are 

key factors accounting for the differences between the Aegean Sea and the Black Sea 

ecosystems. In addition, nutrients and their ratios locally are significant factors in 

explaining differences between sites. 

Uysal et al. (2002) studied the distribution of macro benthic communities around 

the Strait of Bosphorus with additional stations in the Marmara Sea and the Black Sea. 

They were particularly interested in the effects of lower-layer saline flow on these 

communities. Univariate measures, such as population abundance (individuals m-2
) and 

Shannon Index (H'), and multivariate methods such as cluster analysis were utilized to 

characterize community structure. There were significant differences among stations in 

species composition and diversity and these differences reflect hydrodynamic processes 

as well as anthropogenic impact. 

Demir (2003) determined the occurrence and abundance of mollusc species in the 

eastern Aegean Sea, the Marmara Sea and the southern Black Sea. He examined a total 
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of 610 mollusc species and many varieties belonging to various classes, subclasses, 

families and subfamilies of the Mollusca. 

Siokou-Frangou et al. (2004) carried out a comparative study of the 

mesozooplankton communities of the Aegean Sea and the Black Sea. They found 

dissimilarities in species composition and abundance of zooplankton between these seas. 

Although most of the Black Sea zooplankton species are of Mediterranean origin, 

Siokou-Frangou et al. (2004) found that the great majority of Mediterranean species are 

absent in the Black Sea, including number of common eurytherm and/or euryhaline 

Aegean copepod species form the bulk of the zooplankton. They suggested that the link 

between the species composition of the northern Aegean Sea and the Black Sea is related 

to water exchange between the Black Sea and the Aegean Sea, and viewed the northern 

Aegean Sea as a transitional zone between the Black Sea and the eastern Mediterranean 

Sea. 

1.6. Objectives of the Thesis 

In this thesis, the ecological characteristics of mollusc assemblages in the Black 

Sea, Marmara Sea and Aegean Sea are outlined by comparison of the present-day 

oceanographic variables (such as temperature, salinity, dissolved oxygen) with the 

distribution of mollusc assemblages found in surface sediments. Sampling was not 

restricted to coastal areas, but was undertaken along a number of transects at water depths 

ranging from 13 m to 500 m. 

The objectives ofthis thesis are: 
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1. to characterize the occurrence and abundance of mollusc species in surface sediment 

samples; 

2. to determine the relationship between the distribution of mollusc species and 

environmental variables including the composition of the substrate; 

3. to delineate assemblages that can be used in the identification of discrete water 

masses; and 

4. to develop a tool to read environmental history from a sediment core by comparing 

present day mollusc assemblages to buried mollusc assemblages. 

41 



CHAPTER2 

METHODS 

The data for this thesis were collected during two research cruises to the Black 

Sea, the Marmara Sea and the Aegean Sea on the RV Koca Piri Reis of the Institute of 

Marine Science and Technology (IMST), Dokuz Eyliil University, in 2002 and 2003. 

During these cruises 137 grab samples and CTD (conductivity, temperature, depth) 

measurements were collected along six transects. Navigational fixes were obtained using 

a ship-based GPS (global positioning system). 

2.1. Field Methods 

2.1.1. Collection of Sediments and Shells 

Sediment samples were collected at approximately 10 m water-depth increments 

from ~13m to ~501 musing a Shipek grab. A ~100-150 cm3 sub-sample was extracted 

from the grab sample and sieved through a 2 mm screen. All shells were separated, 

stored in plastic bags, and shipped to Memorial University of Newfoundland for analysis. 

A Shipek grab consists of a half cylinder sampling scoop of ~3000 ml volume, 

~25 em length and ~10 em diameter. The Shipek grab is deployed with a 50 kg weight 

by a winch. When the open grab touches the bottom, inertia from the weight releases a 

catch; helical springs then rotate an inner half cylinder by 180°. After this rotation, the 

spring keeps the scoop closed like a clam shell. Because the rotation of the inner half 

cylinder is extremely rapid, the sediment is cut cleanly, particularly soft clays, silts, and 

sands. The grab sampler is then retrieved from the sea floor. On the deck of the ship, the 

scoop is quickly removed from the frame by releasing two retaining latches, one at each 

side of the sampler, and sediment samples are then removed. 
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2.1.2. CTD (Conductivity-Temperature-Density) Measurements 

The CTD probe ·used in this survey was a SEA CAT SBE 19plus profiler, which 

collects real-time data through a conductor cable, connected from the base of the probe to 

a computer on board the ship. The sampling is conducted via a pwnp-controlled influx of 

water through the water intake cell located at the base of the probe. 

The primary function of the CTD device is to record conductivity, temperature and 

pressure of the water column of a function of depth. Conductivity (Siemens/m) measures 

how easily electric currents pass through the water sample being tested. By measuring 

conductivity, a measurement of salinity can be obtained. Salinity is measured in psu 

(practical salinity units), equivalent to parts per thousand by weight (%o). A CTD probe 

also measures the temperature COC) of the water. Finally, a probe measures pressure. 

Pressure is recorded in decibars. Since depth (meters) and pressure are directly related, a 

measurement in decibars can be converted to depth in meters. Conveniently, the pressure 

at x meters of depth is almost exactly equal to the pressure in x decibars. The density of 

the water can be calculated from the measurements of conductivity (salinity), temperature 

and pressure. The CTD probe was equipped to provide data on pH, dissolved oxygen (ml 

r\ chlorophyll concentration (Jl/l), and light transmission(%). Chlorophyll 

concentration is measured by using a fluorometer probe. The fluorometer emits specific 

color wavelengths and simultaneously reads the wavelength that travel through the water 

column. The amount of green light that is recorded is an indirect measure of the amount 

of chlorophyll a, and therefore the biomass of phytoplankton. 
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2.2. Laboratory Methods 

2.2.1. Identification of shells 

The mollusc shells separated by sieving on board ship were individually cleaned 

with distilled water, placed in foil dishes dried in an oven at 40 OC and then placed in 

glass or plastic vials and labeled. The shells were examined using a lOx hand lens and 

identified using a number of taxonomic keys, descriptions and illustrations (Abbott and 

Dance, 1998; Demir, 2003; Graham, 1971; Grossu, 1995; Muller, 1995; Poppe and Goto, 

1991; Tebble, 1966). Primary taxonomy was completed using specific features such as 

dentition, color, presence of pallial line, pallial sinus and muscle scars. Other attributes 

used in identification were ratios of shell dimensions and the habitat and depth range of 

each species. 

2.2.2. Grain Size Analysis 

Grain size distribution in sediment samples from six transects was determined 

using a standard sieve technique for the >63 Jlm fraction for all transects, a Sedigraph 

5100 particle size analyzer for the <63 JliD fraction for Transects 1, 3, 5, and pipette 

analysis of total silt and total clay for Transects 2, 4, 7, 8. 

Approximately 15 g of sediment were placed in a beaker with 100 ml 1 0 % 

hydrogen peroxide. Approximately 400 ml distilled water was added and the suspension 

brought to a boil in order to remove the organic matter. The excess hydrogen peroxide 

was removed and the wet sample passed through a 63 JliD sieve. The fraction passing the 

sieve was kept for Sedigraph or pipette analysis. 

The >63 Jlm fractions were dried, then passed through a stack of 14 sieves grades 

from -3 <I> to 4 <I> on a Ro-Tap mechanical shaker for 15 minutes ( <1> = -log2 size in 
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milimeters). After 15 minutes, the sediment retained by each sieve was transferred to a 

large sheet of paper and weighed. 

The <63 1-1m fractions were suspended in 1 % sodium hexametaphosphate 

(Calgon) as a dispersant, poured into a small beaker and stirred as a 50 ml aliquot was 

pi petted off for Sedigraph analysis. The Sedigraph 5100 uses Stokes's Law of settling to 

determine the grain size. According to Stokes's Law, three forces act upon a particle 

falling through a viscous liquid: 

1. gravitational force, acting downward, 

2. buoyant force, acting upward, 

3. drag force (friction), acting upward. 

Knowing the gravitational acceleration, the density of the particle, the density and 

viscosity of the distilled water, and the time it takes for the particle to settle, the 

equivalent spherical diameter of that particle can be calculated (Sedigraph 5100 

Operator's manual, 1989). The Sedigraph 5100 uses these parameters and collects data 

on sedimentation velocity of settling particles by measuring the concentration of 

particles, using attenuation of an X-ray beam remaining in suspension as a function of 

time (Sedigraph 5100 Operator's Manual, 1989). 

The remaining <63 1-1m fractions were transferred into 1000 ml cylinders and 

suspended in distilled water and 20 ml stock 1 % Calgon solution for pipette analysis. 

Cylinders were stirred for 2 minutes and a reference sample was extracted and transferred 

to an evaporating dish. After a 15 minute settling period, a sample was removed by 

pipette from 20 em depth and transferred to an evaporating dish. According to pipette 

withdrawal times calculated from Stokes's Law this sample contained only particles finer 

than 4 <j>. After a settlement period of 2 hours and 1 minute, a sample was withdrawn 

from 10 em depth and placed in an evaporating dish. This last sample contained only 
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particles fmer than 8 <j). All pipetted volumes were the same. After evaporation and 

weighing, the weight oft=O sediment (wto) gives a reference concentration of the entire 

<63 Jlm fraction, the weight at 15 minutes divided by wto gives the wt% for particles 

fmer than 4 <j), and the weight at 121 minutes divided by wto gives the wt% for those 

finer than 8 <j). From these values, the wt % of silt ( 4---8 <P) and clay (8 <P) can be 

determined. 

2.2.3. Carbon element and isotope analysis 

Approximately 2 g of sediment sample was treated with 30% HCl and distilled for 

one day until effervescence stopped. During the dissolving reaction, all calcium 

carbonate (CaC03) in the sample was removed. Samples were cleaned, centrifuged with 

distilled water and dried at 40 °C. Subsequently, CaC03-free samples were ground in a 

mortar. 15 mg sample and >0.2 mg vanadium pentoxide 0/205) were weighed and put 

into 4x6-mm-thin aluminum capsule for analysis with a Carlo-Erba NA 1500 Elemental 

Analyzer coupled to a Finnigan MAT 252 isotope ratio mass spectrometer (IRMS). Total 

organic carbon (TOC) was converted to C02, H20 and other gaseous oxidation products 

in the oxidation chamber and then passed through a reduction reagent, a Mg(Cl04)2 water 

trap and 1.2-m Poropak: QS 50/80 chromatographic column at 70 oc for final isolation. 

TOC in generated C02 was determined using an external standard (sulfanilamide, 

C6H8N202S) and a thermal conductivity detector. From the thermal conductivity 

detector, the C02 was transported by He to a ConFloll interface, which allowed a portion 

of the He and combustion gases to enter directly the ion source of the IRMS for carbon 

isotopic measurement. The TOC concentration in the sample was back-calculated as a 

weight percentage of sediment dry weight. All isotopic analyses are reported in standard 

o notation referenced to Pee Dee Belemnite (PDB). 
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2.3. Data Analysis 

2.3.1. Qualitative Analysis 

An assemblage is defined as a unique community that reflects the associated 

characteristics of the environment. Assemblages were identified after considering the 

relationships between stations and oceanographic parameters from all transects. Each 

assemblage reflects a distinct set of environmental conditions. Some species are only 

present in one assemblage, although others are more cosmopolitan and can be found in 

more than one assemblage. Qualitative analysis was done by using absence and presence 

of mollusc species. Abundance of species was calculated as a percentage contribution to 

each assemblage, using the following equation: 

Species A percentage= 100 x (number of shells species A) I (total number of shells) 

2.3.2. Quantitative Analysis 

The counts of dead molluscs were converted to percent occurrence data and 

analyzed using the computer software package MINIT AB 14. Ordination techniques 

such as Principal Component Analysis were used to describe relationships between 

variables (mollusc species), and to identify variables significant to the identification of 

particular assemblages. 

An ordination is a map of samples, which reflects the similarities of biological 

assemblages. For example, nearby samples on the ordination show similar assemblages, 

and samples that are far from each other reflect different assemblages (Clarke and 

Warwick, 2001). 
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Principal Component Analysis is used to reduce the number of variables (in this 

thesis 12 species), while accounting for a majority of the total variance in the data set. 

Principal Component Analysis also constructs new axes so that a maximum of variation 

is explained on the first axis; second most variation is represented on the second axis and 

so on. 
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CHAPTER3 

PHYSICAL OCEANOGRAPIDC DATA 

3.1. The Marmara Sea 

3.1.1. Transect 1 

Transect 1 was run in the southwest Marmara Sea, east of the Dardanelles Canyon 

(Figure 3.1, Figure 3.2). Summer CTD measurements along transect 1 revealed the 

presence of two different water masses separated by a mixing zone (Figure 3.3). The 

upper water mass is characterized by low salinity (-22 %o) and density (crt: 12-13), and 

by high temperature (26-27 OC) (Figure 3.4, 3.5, 3.6). It occupied the upper 10m of the 

water column and represents the Black Sea outflow into the Marmara Sea. Below the 

surface water mass, a mixing layer was identified through which there is a temperature 

drop of 14 OC and a salinity increase of 16 %o. This layer forms a thermocline-halocline

pycnocline at ~ 10 - ~ 32 m depth across transect 1. Below the pycnocline, a second water 

mass characterized by high salinity (37-41 %o) and low temperature (15-18 OC) (Figure 

3.4, 3.5). This water mass generally occupies depths below ~30m and forms the bottom 

water mass in transect 1. It defines the intermediate waters of the Marmara Sea and is 

interpreted as the Mediterranean water intrusion into the southwest shelf of the Marmara 

Sea (Be~iktepe et al., 1994). Because this water mass is significantly denser than the 

surface water mass, it is intruded presumably beneath the surface layer and lies below the 

pycnocline. 

The dissolved oxygen concentration in the upper water mass is generally low (0-3 

mVl; Figure 3.7). Low dissolved oxygen values probably represent high secondary 
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production in the surface waters. Dissolved oxygen in the bottom water mass show a 

decline from 5-6 ml/1 to 2 ml/1 as water depth increase. The low (2 ml/1) oxygen 

concentrations below ---60 m are ascribed to oxidation of the sinking particulate organic 

matter in a strongly stratified water column. The stratification prevents vertical mixing 

and ventilation (e.g. Be~iktepe et al., 1994). 

Surface sediments across the transect consisted primarily of a mixture of clayey

silt, silty-clay, sandy-silt and sandy-silty-clay (Figure 3.8). There is a general trend 

towards fmer sediment from the shore into the deeper water. For example, bottom 

sediments at stations 1 (13m) and 2 (17m) reflect their proximity to the Biga River as 

well as higher energy conditions in shallower depths. Conversely, the deepest station 

(98) is clayey-silt, associated with low energy conditions in deep water. 

Total organic carbon (TOC) in surface sediments is a function of (i) preservation 

of organic matter in sediments as a consequence of sub-floor oxygen levels (ii) 

productivity in surface waters and (iii) input of terrigenous organic carbon into a basin. 

Total organic carbon (TOC) content of the surface sediments across transect 1 vary 

between 0.50 and 1.81 %. TOC values generally higher (1.20-1.80 %) in shallow water 

sediments than in those from deep waters (>100m), especially deep stations 98, 99, 100, 

and 101 where TOC values ranged between 0.60% and 0.80% (Figure 3.9). 

The 813Corg values ranged from -26.05 %o near the coast to -23.02 %o in the deepest 

stations. Using 813Corg data and the following mixing equations, the origin of the TOC in 

sediments can be estimated: 
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o13Corg = Ft X o13Ct + Fm X o13Cm and Ft + Fm = 1 

where Ft and Fm are the fractions of terrestrial and marine organic carbon, and o13Ct and 

o13Cm are the carbon isotopic composition of terrestrial and marine source end-members, 

which are estimated to be -27 %o and -22 %o, respectively (Aksu et al., 1999). According 

to this equation, the percentage of marine organic carbon ranges between 19.1 % and 

79.4 % along transect 1. For example, the ~ 1.3 % TOC at station 1 consisted of 19.1 % 

marine organic carbon and 80.9% terrestrial, suggesting a large terrigenous input from 

the Biga River. There is a gradual seaward increase in the fraction of marine organic 

carbon (Figure 3.10). In transect 1, the distribution of organic carbon in the sediments 

can be related to the dissolved oxygen concentration in the water column. Due to high 

oxygen (5-6 ml/1) in the shallow waters, TOC values are high as a result of the high rate 

of organic influx caused by increased primary productivity. 

3.1.2. Transect 4 

Transect 4 was run in the Marmara Sea immediately south of the Bosphorus Strait 

(Figure 3.1, 3.11 ). The CTD data revealed the presence of three water masses (Figure 

3.12). A mixing zone present, corresponding to a thermocline-halocline-pycnocline layer 

between ~10m and ~20m depth across which there is an approximately 11 OC decrease 

in temperature and 7 %o increase in salinity (Figure 3.13, 3.14). The upper water mass is 

characterized by its seasonally high temperature (24-27 OC) and low salinity (21-24 o/oo) 

values. It occupies the upper 10 m of the water column and represents the surface water 

mass in the Marmara Sea (Be!?iktepe et al., 1994). The water mass below the 
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thermocline-halocline a temperature of 13-14 oC and a salinity of29-37 %o. It lay 

between 20 m and 40 m, and corresponding to the intermediate water mass of the 

Marmara Sea (Be~iktepe et al., 1994). However, along transect 4 this intermediate water 

mass has a higher temperature (14 OC) than reported elsewhere in the Marmara Sea (cf. 

Be~iktepe et al., 1994), possibly because of the high summer temperatures of the surface 

waters when the transect was run and an unusual amount of vertical mixing of this 

surface water with subsurface waters. The deepest water mass on transect 4 has a high 

salinity (38 %o) and a constant temperature of 15 OC (Figure 3.13, 3.14), and lay below 40 

m. It represents the bottom water mass of the Marmara Sea, which is supplied by the 

Mediterranean Sea inflow into the Marmara Sea (Be~iktepe et al., 1994). 

The dissolved oxygen concentration along transect 4 varied in complex ways from 

0--5 rnVl (Figure 3.16). Low dissolved oxygen values (0--3 ml/1) are generally found in 

the surface layer. At the pycnocline, high dissolved oxygen concentrations ( 4-5 rnVl) 

occur especially at the seaward stations; however, at station 25, the dissolved oxygen 

value is ~0 ml/l in the same layer. This difference might result from high primary 

productivity at seaward stations or oxygenation by wave action. Dissolved oxygen 

concentration near the bottom is very low ( ~ 1 rnVl) as a result of the oxidation of sinking 

particulate organic matter from the surface waters. 

The surface sediments composed of silty-sand, sandy-silt, clayey-silt, and sandy

silty-clay (Figure 3 .17). 

Most stations are characterized by sapropelic (0.5-2% organic carbon in sediment) 

sediments having a TOC of 1.01-1.87 %o. Two stations at the landward end of the 
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Figure 3.18. Total organic carbon(%) in sediments along transect 4. 
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Figure 3.19. Percentages of marine organic carbon along transect 4. 
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transect (23 and 24) have sapropel (~2% organic carbon) with 2.82 %o and 2.91 % TOC 

(Figure 3.18). The 813Corg ofthe TOC ranged between -23.86 o/oo and -24.47 %o. The 

mixing equation suggests that ~55% of the TOC was of marine origin (Figure 3.19). 

3.2. The Black Sea 

3.2.1. Transect 2 

Transect 2 was completed on the southwestern Black Sea shelf (Figure 3.1, 3 .20). 

There three different water masses (Figure 3.21 ). The upper water mass has a low 

salinity (17-18 %o) and seasonally high temperature (26-27 OC), and extended from the 

surface to a depth of~ 10 m (Figure 3 .22). This water mass represents the surface mixed 

layer of the Black Sea (Murray, 1991), beneath which lies, a thermocline-halocline

pycnocline ( ~ 15-22 m); this layer exhibited a 8 OC decline of water temperature and 3 o/oo 

downward increase of salinity and so is the typical seasonal pycnocline of the Black Sea 

(Oguz et al., 1994; Figure 3.22, 3.23). Below the pycnocline, a distinct water mass 

occurred between ~22m and ~40 m with salinity of20-23 %o and temperature of 10-12 

OC (Figure 3.22), representing the penetration of Mediterranean water into the Black Sea 

{Dnliiata et al., 1990). The lowest water mass on transect 2 occurred below ~0 m depth 

and it was characterized by low temperature (7-8 OC) and salinity (18-20 %o) (Figure 

3.22). Between 60 m and 100-120 m depth (Figure 3.22), the temperature was nearly 

constant at TC, which is typical of the Cold Intermediate Water of the Black Sea (Oguz 

et al., 1991). 
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Figure 3.20. Bathymetry of transect 2 (A) and station numbers across transect (B). Contours are in meters. 
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Oxygen concentrations were high ( 4--6 ml/1) above ~90 m throughout the transect, 

and are typical of the well-oxygenated Black Sea surface waters, reflecting the lack of 

vertical mixing (Yllmaz, 2002). However, at depths <10m there were isolated lower 

values of2-3 ml/1, probably as a result of a seasonal zooplankton bloom following a 

phytoplankton bloom. Below ~90 m depth, the dissolved oxygen values felt rapidly to 1 

ml/1 by 115m depth, forming the oxycline layer. According to Yllmaz (2002), this rapid 

drop in dissolved oxygen concentration is a result of oxidation of particulate organic 

matter settling through the water column. 

Surface sediments along transect 2 were clayey-silts, except those at station 55, 

which sandy-silt (Figure 3.24). Total organic carbon content in the surface sediment 

ranged from 1.87-3.59% (Figure 3.25). These high TOC values suggest either a higher 

flux of sinking organic matter caused by increased primary productivity, or increased 

preservation of organic carbon in surface sediments due to low dissolved oxygen 

concentrations in the overlying bottom waters, or both. The mixing equation discussed in 

section 3 .1.1. suggests that 65o/<r-68% of the TOC is of marine origin (Figure 3 .26). 

3.2.2. Transect 3 

Transect 3 was run across the southwestern shelf of the Black Sea (Figure 3.1, 

3.27). There were three distinct water masses (Figure 3.28). The upper water mass is 

identified by seasonally high temperature values (25-27 ·c) and low salinity values (17-

18 %o). It occupied the upper ~12m of the water column (Figure 3.29, 3.30). Below the 

upper water mass, a thermocline-halocline-pycnocline between ~10- ~20m was 
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characterized by a 12 ·c decrease in temperature and 1 %o increase in salinity with 

increasing depth (Figure 3.31). The upper water mass and the thermocline-halocline

pycnocline layer represent the surface mixed layer and the seasonal pycnocline of the 

Black Sea (Murray, 1991). The water mass below the thermocline-halocline-pycnocline 

was characterized by low temperature (7-1 0 ·c) and low salinity (18 %o) and lies 

between 22m and 100m. In the nearshore area between stations 81 and 74, there a 

tongue of higher salinity water (~23 o/oo), which occupied the 25--40 m depth zone; this 

represents Mediterranean Water inflow from the Bosphorus Strait (Figure 3.29, 3.30). 

The lowest water mass on transect 3 was found at the seabed beyond station 70, in water 

depths greater than 100 m. It characterized by low-intermediate salinity (25- 27 %o) and 

temperature (9- 11 ·c) (Figure 3.29, 3.30). This water mass represents another plume of 

Mediterranean Sea inflow which reaches the Black Sea via the Bosphorus Strait (Onliiata 

et al., 1990). The size and location of the tongues of higher salinity Mediterranean water 

would be expected to vary from week to week, or certainly whenever shelf currents 

fluctuate. Therefore, a re-survey of transect 3 in another year would be expected to 

reveal a different pattern of salinity variation with depth for many stations. However, the 

bulk of the water from ~22-100 m should have temperature of7- 10 ·c and salinity of 

~18 %o. 

The dissolved oxygen concentrations generally high, ranging between 2 and 7 ml/1 

(Figure 3.32), its highest values being at station 65 (8-11 ml/1). These very high 

concentrations are typical of the eutrophic Black Sea waters, reflecting the excess 
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Figure 3.33. Grain size data of surface sediments along transect 3. The classification triangle is from Shepard (1954). 
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nutrient input from large rivers entering the Black Sea. High dissolved oxygen 

concentrations are also promoted by storm mixing and entrainment of oxygen by waves. 

Surface sediments along transect 3 consist of a mixture of clayey-silt, silty-clay 

and sandy-clay (Figure 3.33). The more sandy sediments mostly found near the coast and 

fmer sediments found in the deeper water. Total organic carbon content of the surface 

sediments ranges between 0.51% and 4.62% (Figure 3.34). Surface sediments deeper 

than 70 m are sapropelic muds, having a TOC around 1.00 % and 1.50 % except at 

station 69, where the TOC reached 2.31 %. Surface sediments above 40 mare sapropel, 

except at station 84 (0.51 % TOC). These relatively high TOC values are probably the 

result of preservation of enhanced organic matter in waters low in dissolved oxygen 

(Figure 3.32). 

The mixing equation suggests that the TOC in the nearshore sediments is 

predominantly of terrestrial origin, but increases to ~55--60% marine organic carbon in 

deeper water sediments (Figure 3.35). 

3.3. The Aegean Sea 

3.3.1. Transect 7 

Transect 7 was run in the Saros Bay, northeast Aegean Sea (Figure 3.1, 3.36). 

Two different water masses are present (Figure 3.37). The upper water mass 

characterized by seasonally high temperature (23-25 OC) and relatively low salinity (32-

35 o/oo). It occupied the upper ~10m of the water column (Figure 3.38) and represents the 

Black Sea Water outflow into the Aegean Sea via the Strait of Dardanelles. This Black 
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Figure 3.34. Total organic carbon(%) in sediments along transect 3. 
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Sea influenced water mass forms the 40 m-deep surface water in the Aegean Sea 

(Zodiatis, 1994), but in transect 7 only occupied 5 m ofthe water column. A mixing zone 

forms the thermocline-halocline-pycnocline between ~10m and ~15m and marks a 9 OC 

decrease in temperature and 7 o/oo increase in salinity with increasing water depth (Figure 

3.38, 3.39). The water mass below the thermocline is characterized by low temperature 

(14-15 OC) and high salinity (39-40 %o) (Figure 3.38), corresponding to the Intermediate 

Water Mass of the North Aegean Sea (Ya~ar, 1994). 

High dissolved oxygen concentrations across the profile, ranging between 4 and 7 

mVl, probably represent entrainment of atmospheric oxygen through wind mixing or 

wave breaking. The lowest value was 2 rnVl at ~ 10 m depth at landward station 30 

(Figure 3.39). 

Surface sediments along transect 7 consisted primarily of silty-sand, sand, clayey

sand, and clayey-silt (Figure 3.40). The sandier sediments occurred in depths <90 m, the 

more muddy sediments farther offshore. Total organic carbon content in the surface 

sediments is generally between 0.05 and 1.85% (Figure 3.41). The 813Corg values ranged 

from -18.11 o/oo to -22.56 o/oo. According to the mixing equation, surface sediments 

contain almost exclusively marine organic carbon (Figure 3.42). 

3.3.2. Transect 8 

Transect 8 was run on at the north side of Edremit Bay in the Aegean Sea (Figure 

3.1, 3.43). Three different water masses present (Figure 3.44). The upper water mass 

identified by high salinity (39-40 %o) and temperature (22- 24 OC), and occupied the 
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Figure 3.40. Grain size data of surface sediments along transect 7. The classification 
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Figure 3.41. Total organic carbon(%) in sediments along transect 7. 
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Figure 3.42. Percentages of marine organic carbon along transect 7. 
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upper ~10m of the water column (Figure 3.45). The next water mass characterized by 

high salinity (41-42 %o) and low temperature (17-18 OC), and extended from ~15m to 

~ 30 m depth. These two water masses were separated by a thermocline-halocline

pycnocline between ~ 10 m and ~ 15 m. The third water mass had a salinity similar to that 

of the surface waters (39-40 o/oo), but colder (16-17 OC). It situated below ~40 m depth. 

The deepest part of transect 8 was only at 67 m. The three water masses described above 

are still within what is traditionally recognized as the surface waters of the Aegean Sea 

(Yiice, 1991). 

The dissolved oxygen profiles generally showed high values ( 4-8 ml/1), which is 

attributed to wind mixing and wave activity (Figure 3.45). However, surface 

measurements at stations 54, 52 and 51 had lower values of2-3 rnl/1 dissolved oxygen. 

The surface sediments of transect 8 consisted of clayey-silt and silty-sand (Figure 

3.46). The total organic carbon content is moderate, ranging between 0.54% and 1.81% 

(Figure 3.47). The 813Corg values ranged between -23.34 and -24.89 o/oo. According to the 

mixing equation, stations 56, 55 and 54 have ~70% marine organic carbon and stations 

53, 52 and 51 had almost equal amounts of marine and terrestrial organic carbon (Figure 

3.47). 
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CHAPTER4 

TAXONOMY 

The phylum Mollusca is one of the largest, most diverse groups in the animal 

kingdom. There are six major classes of molluscs: Monoplacophora, Polyplacophora, 

Gastropoda, Cephalopoda, Scaphopoda, and Bivalvia. In this thesis only three classes of 

Mollusca and 77 species were collected and identified from the grab samples. 

Class: GASTROPODA 

Family: Fissurellidae 

Emarginula rosea (Bell, 1824) (Plate 1-a) 

Remarks: This species is found from the low tide line to 90 m deep in the 

Mediterranean Sea (Poppe and Goto, 1991). It lives under pitted rocks, often where there 

is a fme silt sediment (Graham, 1971), and was only found in samples collected at 33m 

in the Marmara Sea, transect 4 and at 50 min the Aegean Sea, transect 7. 

Family: Trochidae 

Calliostoma conulus (Linnaeus, 1758) (Plate 1-b) 

Remarks: This species is found in the Mediterranean Sea but is not present in the Black 

Sea It lives at water depths between 20 and 200 m (Poppe and Goto, 1991 ), and prefers 

a sandy gravel substrate. It was collected at 1 7 m depth in the Marmara Sea transect 1 

and at water depths of 14m, 20m, and 39m in the Aegean Sea, transect 7. 

Gibbula leucophaea (Philippi, 1836) (Plate 1-c) 

100 



Remarks: This species prefers shallow water on rocky shores in the Mediterranean Sea 

(Poppe and Goto, 1991 ). It was only obtained from water depths of 14 m and 59 m in the 

Aegean Sea, transect 7 and transect 8, respectively. 

Family: Tricollidae 

Tricolia tenuis (Michaud, 1828) (Plate 1-d) 

Remarks: This gastropod lives in Posidonia fields in shallow waters in the 

Mediterranean Sea (Poppe and Go to, 1991 ), and was only found at a water depth of 14 m 

in the Aegean Sea, transect 7. 

Family: Cerithiidae 

Cerithium rupestre (Risso, 1826) (Plate 1-e) 

Remarks: According to Poppe and Goto (1991), this species prefers rock and sand 

bottoms, and can be found from the intertidal (<1m) to a few meters deep in the 

Mediterranean Sea. It was only collected at 20m in the Aegean Sea, transect 7. 

Bittium latreilli (Payraudeau, 1826) (Plate 1-f) 

Remarks: This species is found in the Mediterranean Sea (Poppe and Goto, 1991). It 

lives under stones or rocky shores or in sandy mud at around the spring low tidal mark 

(Graham, 1971). The species was collected at 17m and 109m in the Marmara Sea, 

transect 1 and transect 4, respectively and at 14 m, 20 m, 50 m in the Aegean Sea, 

transect 7 and 49 m from transect 8. 

Bittium reticulatum ( da Costa, 1778) (Plate 1-g) 

Remarks: This species is found from the intertidal zone down to about 250m deep and 

it lives on seaweed such as Posidonia in the Mediterranean Sea (Poppe and Goto, 1991). 

101 



This species was collected at 79 m and from 106m to 112m in the Black Sea, transect 3; 

at 18 m and at 4 3 m in the Marmara Sea, transect 4; at 14 m in the Aegean Sea, transect 

7. 

Family: Turritellidae 

Turritella communis (Risso, 1826) (Plate 1-h) 

Remarks: This species is abundant in muddy sediments and lives in colonies partly 

buried in the sediment at water depths between 10 and 200m (Graham, 1971). It is 

found in the Mediterranean Sea, the Aegean Sea and the Marmara Sea and Bosphorus 

district in the Black Sea (Zapevalin, 1998). This species was collected from 23m to 74m 

deep at the Marmara Sea transects 1 and 4; from 14 m to 112 m deep at the Aegean Sea 

transects 7 and 8. 

Family: Rissoidae 

Rissoa auriscalpium (Linnaeus, 1758) (Plate 1-i) 

Remarks: This species is found from mean tide level to 15 m water depth in the 

Mediterranean. It lives under rocks or on algae. Species was only collected from a single 

sample at 14 m depth in the Aegean Sea, transect 7. 

Rissoa splendida (Eichwald, 1830) (Plate 1-j) 

Remarks: This species lives in the shallow waters of open bays with algae and it is 

found in the eastern Mediterranean and the Black Sea (Zapevalin, 1998). This species 

was only found in samples collected at 14 m and 20 m in the Aegean Sea, on transect 7. 

Rissoa lineolata (Michaud, 1832) (Plate 1-k) 
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Remarks: This species is found on all hard substrates but especilly on weeds in the 

Mediterranean Sea (Poppe and Goto, 1991). Rissoa lineolata was collected at 26m from 

the Aegean Sea, transect 8. 

Alvania cancellata ( da Costa, 1 778) (Plate 1-l) 

Remarks: This species is common under stones from the low tide line down to 90 m 

deep in the Mediterranean Sea (Poppe and Go to, 1991 ). This species was only collected 

at water depths of 14m, 20m, and 39m in the Aegean Sea, transect 7. 

Alvania cimex (Linnaeus, 1758) (Plate 2-a) 

Remarks: This species lives under stones in shallow waters of the Mediterranean Sea, 

the Aegean Sea, the Marmara Sea and Bosphorus district in the Black Sea (Zapevalin, 

1998). Alvania species was collected at 111 m in the Black Sea, on transect 3 and at 14 

m and 20 m in the Aegean Sea, on transect 7. 

Family: Tornidae 

Tornus subcarinatus (Montagu, 1803) (Plate 2-b) 

Remarks: This species found in the lower intertidal zone down to 3 m deep or deeper 

water into the Mediterranean Sea and the Black Sea (Poppe and Go to, 1991 ). It prefers to 

live under big stones and rocks laying on well oxygenated sand (Poppe and Go to, 1991 ). 

This species was only found at 39 m and 59 m in samples collected in the Aegean Sea, 

transects 7 and 8. 

Family: Truncatellidae 

Truncatella subcylindirica (Linnaeus, 1767) (Plate 2-c) 
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Remarks: This species lives at lower to upper littoral zone in the Mediterranean Sea and 

the Black Sea. It is found in the upper intertidal zone under stones, wood and plants and 

it prefers gravely or muddy bottoms (Graham, 1971; Poppe and Goto, 1991). It can 

tolerate salinity between 18 and 40 o/oo. Truncatella species was only collected at 74 m 

and 79 m in the Black Sea, transect 3. 

Family: Aporrhaidae 

Aporrhais pespelecani (Linneaeus, 1758) (Plate 2-d) 

Remarks: This species lives in colonies between 10 and 180 m deep on muddy sand or 

mud bottoms. It can be found from northern Norway and Iceland to Morocco and into 

the Mediterranean Sea and the Black Sea (Poppe and Go to, 1991 ). Species was only 

collected at 60 m in the Aegean Sea, on transect 7 and at 49 m and 59 m in the Aegean 

Sea, on transect 8. 

Family: Calyptraeidae 

Calyptraea chinensis (Linnaeus, 1758) (Plate 2-e) 

Remarks: This species is found from the intertidal to 70 m water depth, where it lives 

on shells or under stones. C. chinensis is common in the Mediterranean sea and in the 

Black Sea. This species was found from 17 m to 39 m deep in the Marmara Sea, on 

transect 1; at 79 m deep in the Black Sea, on transect 3; from 14m to 59 min the Aegean 

Sea, on transects 7 and 8. 

Family: Naticidae 

Lunatia pulcheUa (Risso, 1826) (Plate 2-f) 
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Remarks: This species lives infaunally in sand-rich substrates from the intertidal zone 

down to 200m deep and has also been recorded at 2000 m deep from northern Norway to 

the Mediterranean (Poppe and Go to, 1991 ). It can be found in the Mediterranean Sea, the 

Aegean Sea and the Marmara Sea (Zapevalin, 1998). This species was collected at 69 m 

and 109 m in the Marmara Sea, on transect 4 and at 14 m and 18 m in the Aegean Sea, on 

transects 7 and 8, respectively. 

Family: Muricidae 

Trophon breviatus (Jeffreys,1882) 

Remarks: This species was recorded from dredge samples of muddy sand between 10 m 

and 100 m in the Marmara Sea and in the Bosphorus district of the Black Sea (Zapevalin, 

1998). Trophon breviatus was collected at 17 m and 28 m in the Marmara Sea, on 

transect 1 and at 71 m in the Aegean Sea, on transect 7. 

Trophon muricatus (Montagu, 1803) (Plate 2-g) 

Remarks: This species can be found all European coasts including the Black Sea. It is 

common between 10 and 200 m deep and in the Mediterranean Sea it lives on coral 

bottoms or muddy sand (Poppe and Goto, 1991 ). This species was found at 89 m and 

106m in the Black Sea, transect 2; 74 m, 79 m, 106m, Ill m, and 112m in the Black 

Sea, transect 3; 112m in the Aegean Sea, transect 7 and 59 m and 66 min the Aegean 

Sea, transect 8. 

Family: Nassaridae 

Cyclope donovania (Risso, 1826) (Plate 2-h) 
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Remarks: This species lives on fine sand bottoms in shallow waters in the 

Mediterranean Sea including the Black Sea. They also prefer brackish water (Poppe and 

Goto, 1991). This species was collected at 17m in the Marmara Sea, transect 1 and at 74 

m, 79 m, 92 m, 1 06 m, 111 m in the Black Sea, on transect 3. 

Family: Turridae 

Mangelia attenuata ( Montagu, 1803) (Plate 2-i) 

Remarks: This species lives in the muddy gravel bottoms in the Mediterranean Sea 

(Graham, 1971). This species was only found in sample collected at the water depth of 

17 m in the Marmara Sea, on transect 1. 

Class: BIVALVIA 

Depending on environmental factors such as temperature, salinity, water depth or 

oxygenation, bivalves show different modes of life. Shallow infaunal bivalves live just in 

the sediment on the sea or river floor. Deep infaunal bivalves live deep within the 

sediment on the sea or river floor. Epifaunal bivalves secrete their sticky threads known 

as byssal threads and attach themselves to the sediment surface or rocks. Some bivalves 

(oysters) are able to physically cement themselves to hard surfaces. Pectinids lie on the 

sea floor but they can perform a swimming function over short distances to escape their 

predators. Boring bivalves tend to have a very thin soft shell with a hard tip able to bore 

into surfaces such as wood or rock. 

Family: Nuculidae 

Nucula nucleus (Linnaeus, 1758) (Plate 3-a) 
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Remarks: This species lives on gravel and mud bottoms from below the low tide line 

down to 150 m deep (Poppe and Goto, 1993). It is widely distributed, ranging from 

Norwegian Sea, into the Mediterranean Sea and the Black Sea (Tebble, 1966). This 

species was collected from transects 1, 3, 4, 7, 8 in the Black Sea, the Marmara Sea and 

the Aegean Sea. It was found from 21 Marmara Sea stations with lowest depth of 13 m 

and highest depth of 312 m and one Black Sea station at the depth of 111 m. In the 

Aegean Sea specimens were collected from 14 stations with lowest depth of 18 m and 

highest depth of 298 m. 

Nucula sulcata (Bronn, 1831) (Plate 3-b) 

Remarks: This species lives on mud or clay bottoms between 10 and 400 m deep. It can 

be found in the Mediterranean and in the Black Sea. Specimens were collected from the 

Marmara Sea and the Aegean Sea in three transects (transect 4, transect 7 and transect 8) 

and 14 stations. In the Marmara Sea, specimens were collected at 18 m, 23 m and 60 m. 

In the Aegean Sea, the lowest depth between the stations is 18 m and the highest depth is 

97m. 

Family: Nuculanidae 

Nuculana commutata (Philippi, 1844) (Plate 3-c) 

Remarks: This species lives on mud between 40 and 200 m deep. It is found in the 

Mediterranean Sea, the Aegean Sea, the Marmara Sea and the Bosphorus district of the 

Black Sea. This species was found in samples collected between 28 m and 171 m from 

transect 1 and between 43 m and 118m from transect 4, in the Marmara Sea. It was also 
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found in samples collected between 78 m and 173 m from transect 7 and between 49 m 

and 66 m from transect 8, in the Aegean Sea. 

Nueulana (Lemhulus) pella (Linnaeus, 1758) 

Remarks: This species lives on mud and muddy sand bottoms between 4 and 180 m 

deep (Poppe and Goto, 1993). It is found in the Mediterranean Sea, the Aegean Sea, the 

Marmara Sea and the Black Sea. This species was found only in the Marmara Sea 

transect 1 at water depths of 28 m, 34 m and 171 m. 

Family: Archidae 

Area noae (Linnaeus, 1758) (Plate 3-d) 

Remarks: This species lives attached with its byssus on rocks or shells and it can be 

found on all kinds of hard substrates, from low tide zone down to 120m (Poppe and 

Go to, 1991 ). It is distributed to Atlantic Ocean and in the Mediterranean Sea. It was 

only found in sample collected at 20 m depth in the Aegean Sea, on transect 7. 

Area tetragona (Poli, 1795) 

Remarks: This species lives from the extreme low tide line down to 120 m with 

attaching to all kinds of hard substrate such as, dead mollusc shells, stones, rock cervices 

with its massive green byssus from Norway into the Mediterranean Sea (Tebble, 1966; 

Poppe and Goto, 1993). This species were collected at the water depths of 14m, 50 m, 

60 m and 112 m in the Aegean Sea, on transect 7. 

Anadara diluvii (Lamarck, 1805) (Plate 3-e) 
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Remarks: This species lives on muddy bottoms over 30m deep in the Mediterranean. 

This species were collected from the Aegean Sea transect 8 (59 m) and the Marmara Sea 

transect 4 at 43 m and 98 m. 

Bathyarca philippiana (Nyst, 1848) (Plate 3-f) 

Remarks: This species lives at depths around 150m deep on muddy bottoms in the 

Mediterranean Sea (Poope and Go to, 1991 ). Bathyarca philippiana was collected at 112 

m in the Aegean Sea, on transect 7. 

Scapharca inaequivalvis (Bruguiere, 1789) (Plate 3-g) 

Remarks: This species lives from inshore brackish waters down to 30m on sand, on 

rocks; mud and sand is associated with Zostera nana and Cymodocea nodosa (CIESM, 

2004). It is distributed in the Mediterranean Sea. This species were collected in the 

Marmara Sea at 146 m and 171 m in the transect I. 

Family: Noetidae 

Striarca lactea (Linneaus, 1758) (Plate 3-h) 

Remarks: This species is found in the Mediterranean and in the Black Sea It lives with 

algae or under stones from the intertidal zone to 130 m (Poppe and Goto, 1993). This 

species was only collected in the Aegean Sea at water depths of20 m, 50 m and 49 m. 

Family: Glycymerididae 

Glycymeris insubrica (Brocchi, 1814) (Plate 3-i) 

Remarks: This species is a Mediterranean species and it lives on muddy, sandy, or 

shelly gravely bottoms with burrowing its muscular foot in the infralittoral zone (Tebble, 

1966). This species was only collected in the Aegean Sea at 14 m and 29 m. 
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Family: Mytilidae 

Mytilus galloprovincialis (Linnaeus, 1758) (Plate 3-j) 

Remarks: This species is very common in Atlantic and all coasts of Europe that have 

hard substrates. They live from intertidal zone to 40 m deep, attached by byssus threads 

to rocks (Tebble, 1966). This species was collected in the Black Sea, on transects 2 and 3 

at water depths between 36 m and 111 m. 

Mytilaster lineatus ( Gmelin, 1791) 

Remarks: This species is found in the Mediterranean Sea, including the Black Sea. It 

lives attached to the rocks (Poppe and Goto, 1993). Specimens were collected in the 

Marmara Sea, on transect 1 at the water depth from 187 m to 34 7 m. 

Modiolula phaseolina (Philippi, 1844) (Plate 4-a) 

Remarks: This species is found in the Mediterranean Sea and the Black Sea. It lives 

from the low tide line down to 160 m, attached by byssus to rocks or in the base of the 

larger algae such as Laminaria (Poppe and Goto, 1993). This species was collected in 

the Black Sea and in the Aegean Sea. The Black Sea stations had the greatest abundance 

of Modiolula which were found at the water depths from 74 m to 112m. In the Aegean 

Sea they were found between 20 m and 49 m . 

Family: Pteriidae 

Pteria hirundo (Linneaeus, 1758) (Plate 4-b) 

Remarks: This species is common in the Mediterranean. They live in all types of 

bottom especially, mud, sandy mud or gravel attached by their byssus threads between 10 
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m and considerable water depths (Tebble, 1966; Poppe and Goto, 1993). This species 

was only collected from the Marmara Sea on transect 1, at 146 m depth. 

Family: Pectinidae 

Pseudamussium clavatum (Poli, 1795) (Plate 4-c) 

Remarks: This species lives between 5 and 1400 m deep on mud bottoms in the 

Mediterranean Sea, Marmara Sea and the Bosphorus district of the Black Sea. 

Specimens were collected in the Marmara Sea, transect 4 at the water depth of74 m and 

in the Aegean Sea, transect 7 at the water depths of71 m and 78 m. 

Palliolum incomparabile (Risso, 1826) (Plate 4-d) 

Remarks: This species is common in the Mediterranean and it is also found in the 

Marmara Sea. It lives on all types of bottoms between 10 and 250m deep (Poppe and 

Goto, 1993). Specimens were collected in the Marmara Sea transect 1 at 146m and in 

the Aegean Sea transect 7 at water depths from 20 m and 60 m. 

Chlamys varia (Linnaeus, 1758) (Plate 4-e) 

Remarks: This species is found in the Mediterranean Sea, the Aegean Sea, the Marmara 

Sea and the Bosphorus district of the Black Sea. It lives from the intertidal zone to 83 m 

deep, attached by its byssus, especially under rocks (Poppe and Goto, 1993). Specimens 

were collected from the Aegean Sea, on transects 7 and 8 with the lowest depth of39 m 

and the highest depth of 97 m. 

Chlamys glabra (Linnaeus, 1758) (Plate 4-f) 

Remarks: This species is a Mediterranean species and it is also found in the Black Sea. 

It lives in the infralittoral zone, from 6 m down to 900 m. It prefers sandy, muddy, and 
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rocky bottoms (Poppe and Goto, 1993). This species collected in the Aegean Sea at 59 m 

and 112m. 

Family: Ostreidae 

Ostrea edulis (Linnaeus, 1758) (Plate 4-g) 

Remarks: This species is distributed from the Norwegian Sea and into the 

Mediterranean Sea, including the Black Sea. It lives in shallow water down to 90 m on 

all types of bottoms, especially cemented to rocks. This species was found in the 

Marmara Sea and in the Aegean Sea in the deep water from 103m to 146 m, except 17 m 

in the Marmara Sea. 

Family: Lucinidae 

Loripes lucinalis (Lamarck, 1818) (Plate 5-c) 

Remarks: This species is found in the Mediterranean Sea and in the Black Sea. It 

burrows into fme mud, clay and gravel bottoms, from the intertidal zone down to 150 m 

(Poppe and Goto, 1993). This species was only collected in the Aegean Sea, on transect 

7 at water depths of 14m, 78 m, 97 m, 142m and 201m. 

Lucinella divaricata (Linnaeus, 1758) (Plate 5-d) 

Remarks: This species is distributed to the Mediterranean Sea and in the Black Sea 

(Tebble, 1966). It lives in fine sand and mud from below the low tide line to a depth of 

60 m (Poppe and Goto, 1993). This species was collected only from the Aegean Sea at 

water depths of 49 m and 59 min the transect 8 and water depth of 60 min transect 7. 

Myrtea spinifera (Montagu, 1803) (Plate 5-e) 
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Remarks: This species is found in the Mediterranean Sea, the Aegean Sea, the Marmara 

Sea and the Bosphorus district of the Black Sea (Demir, 2003). It lives on sand, mud and 

gravel bottoms between 7 and 250m deep (Poppe and Goto, 1993). This species was 

collected from the Marmara Sea and the Aegean Sea at water depths ranging between 18 

m and 247m and between 18m and 59 m, respectively. 

Family: Thyasiridae 

Thyasirajlexuosa (Montagu, 1803) (Plate 5-f) 

Remarks: This species is found in the Mediterranean Sea but not in the Black Sea. It 

lives on sand or mud bottoms between 10 and 2000 m deep (Poppe and Goto, 1993). 

This species was collected in the Marmara Sea, transect 1 and transect 4 at 54 m and 28 

m, respectively, and in the Aegean Sea, transect 8 at 59 m and 66 m. 

Family: Carditidae 

Cardites antiquata (Linnaeus, 1758) (Plate 5-g) 

Remarks: This species is distributed to the Mediterranean Sea and Atlantic Ocean, 

where it lives from the intertidal zone to a depth of 40 m (Poppe and Goto, 1993). This 

species was only collected in the Aegean Sea, on transcet 7 at 20 m. 

Glans trapezia (Linnaeus, 1767) (Plate 5-h) 

Remarks: This species lives on all kinds of hard substrates from the intertidal zone to 73 

m deep (Poppe and Goto, 1993). Specimens were collected in the Aegean Sea, transect 7 

at20 m. 

Glans aculeata (Poli, 1795) (Plate 5-i) 

113 



Remarks: This species is found in the Mediterranean Sea, the Aegean Sea and in the 

Marmara Sea (Demir, 2003). It lives in fine sand and gravel bottoms, often mixed with 

other small shells or attached by its byssus to the macrophytic algal holdfast between 1 0 

and 200 m deep (Poppe and Goto, 1993). Specimens were found in the Marmara Sea 

(transect 1) and in the Aegean Sea (transects 7 and 8) at the highest water depth of 112m 

and the lowest water depth of39 m. 

Family: Astartidae 

Gonilia calliglypta (Dall, 1903) (Plate 5-j) 

Remarks: This species common on gravel bottoms between 1 0 and 200 m depth and it 

is distributed into the Atlantic Ocean and the Mediterranean Sea. Specimens were 

collected in the Aegean Sea, on transect 7, at 50 m water depth. 

Family: Cardiidae 

Acanthocardia paucicostata (Sowerby, 1834) (Plate 5-k) 

Remarks: This species is found in the Mediterranean Sea including the Black Sea. It 

lives from the low tide line down to 250 m, especially on muddy bottoms (Poppe and 

Goto, 1993). Specimens were collected from the Black Sea and the Aegean Sea at 93 m 

in transect 2; 79 min transect 3; 97 min transect 7 and from 18m to 59 min transect 8. 

Parvicardium exiguum (Gmelin, 1791) (Plate 5-l) 

Remarks: This species ranges from the Mediterranean Sea to the Black Sea. It lives on 

mud, sand and gravel bottoms from the extreme low tide to about 55 m deep and it also 

prefers calm waters (Poppe and Goto, 1993). Collected specimens were found in all six 
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transects. The deepest station was in transect 1, the Marmara Sea with 146 m and the 

shallowest station was in transect 7 at 14 m depth. 

Parvicardium minimum (Philippi, 1836) 

Remarks: This species is found in the Mediterranean Sea, but it is absent in the Black 

Sea. It lives on mud, sand and gravel bottoms between 4 and 161 m water depth (Poppe 

and Goto, 1993). Specimens were collected in the Marmara Sea (transect 1 and transect 

4) and in the Aegean Sea (transect 7 and transect 8) with depths between 26 and 112 m. 

Parvicardium scab rum (Philippi, 1844) 

Remarks: This species is found in the Mediterranean but not in the Marmara Sea and 

the Black Sea. It lives on sand, mud and gravel bottoms from the intertidal zone to 

several hundered meters deep (Poppe and Goto, 1993). Specimens were only collected in 

the Aegean Sea with water depths of39 m and 60 min transect 7 and at 49 min transect 

8. 

Parvicardium papillosum (Poli, 1795) 

Remarks: This species is found in the Mediterranean Sea and in the Black Sea. It 

prefers coarse grained sand and gravel bottoms between 1 and 60 m deep and it is 

attached by its byssus (Poppe and Goto, 1993). Specimens were only collected in the 

Aegean Sea from transect 7 (20m and 112m) and transect 8 (49 m). 

Family: Dreissenidae 

Dreissena polymorpha (Pallas, 1 771) (Plate 5-b) 

Remarks: This species originated in the Black Sea and the Caspian Sea and has 

expanded its range westward to Europe and America. It lives in the littoral and 
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sublittoral zone as well as rivers, lakes and the less saline parts of inland seas (Zhadin, 

1965). Specimens were collected in the Black Sea at the depths of74 m and 79 m. 

Family: Mactridae 

Spisula subtruncata ( da Costa, 1778) (Plate 5-n) 

Remarks: This species is found in the Mediterranean and in the Black Sea (Tebble, 

1966). It lives from the intertidal zone down to 200 m in silty and fine sand (Poppe and 

Goto, 1993). Specimens were collected from the Black Sea (transect 3) and the Marmara 

Sea (transect 1 and 4). The deepest station was in the Black Sea with 106m and the 

shallowest station was in the Marmara Sea at 13 m water depth. 

Family: Solenidae 

Solen marginatus (Pulteney, 1799) (Plate 5-o) 

Remarks: This species is distributed from the Norwegian Sea, into the Mediterranean 

Sea and Black Sea. It burrows into sand or muddy sand from intertidal zone to a depth of 

20 m (Poppe and Goto, 1993). Specimens were collected from the Marmara Sea, on 

transect 1, at 13 m depth. 

Family: Tellinidae 

Tellina (Arcopagia) balaustina (Linnaeus, 1758) (Plate 6-a) 

Remarks: This species is found in the Mediterranean Sea, the Aegean Sea and the 

Marmara Sea. It lives from below the low tide line to a depth of750 min sand, mud and 

gravel bottoms (Poppe and Goto, 1993). This species was collected from the transect 4 in 

the Marmara Sea at 4 3 m and from the transect 7 in the Aegean Sea at 14 m. 

Tellina donacina (Linnaeus, 1758) (Plate 6-b) 
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Remarks: This species ranges from the Mediterranean Sea to the Black Sea. It lives in 

coarse sand and shell-gravel bottoms from the intertidal zone to 85 m deep ( Tebble, 

I966; Poppe and Goto, 1993). Specimens were collected in three transects (I, 7 and 8) 

from the Marmara Sea and the Black Sea. The deepest station was at 50 m and in 

transect 7 and the shallowest station was at I3 m in transect I. 

Family: Semelidae 

Abra nitida (0. F. MUller, I776) (Plate 6-c) 

Remarks: This species is found in the Mediterranean Sea, the Aegean Sea, the Marmara 

Sea, and in the Black Sea (Demir, 2003). It lives on mud, sandy mud or gravel bottoms, 

mainly offshore to depths of200 m (Poppe and Goto, I993). Specimens were collected 

only one station ( 43 m deep) from transect I in the Marmara Sea and five stations with 

depths ranges from 18m to I42 m from transects 7 and 8 in the Aegean Sea. 

Abra prismatica (Montagu, I808) (Plate 6-d) 

Remarks: This species can be found in the Mediterranean Sea but not the Black Sea. It 

prefers to live in sand or muddy sand bottoms from the infralittoral zone to 400 m deep 

(Poppe and Goto, I993). This species was found in the Marmara Sea, transect 1 at 13m 

and in the Aegean Sea at 50 m and 7I m. 

Abra alba (W. Wood, I802) (Plate 6-e) 

Remarks: This species is found in the Mediterranean Sea and in the Black Sea. It lives 

in sand, mud or muddy gravel from the infralittoral zone to a depth of 65 m (Poppe and 

Goto, I993). Specimens were collected from all three seas in five transects. The Black 

Sea has the highest density and the Marmara Sea has the lowest density. The deepest 
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station was 501 min the Aegean Sea, transect 7 and the shallowest station was 33m in 

the both in the Marmara Sea (transect 4) and in the Black Sea (transect 3). 

Family: Solecurtidae 

Azorinus chamasolen (da Costa, 1778) (Plate 6-f) 

Remarks: This species is found in the Mediterranean Sea, the Aegean Sea and the 

Marmara Sea. It lives in all types of muddy bottoms, offshore from 5 to 400 m deep 

(Poppe and Goto, 1993). Specimens were collected from the Marmara Sea on transect 1, 

at water depths of 13 m and 34 m and from the Aegean Sea on transect 7 at 112 m. 

Family: Veneridae 

Venus casina (Linnaeus, 1758) (Plate 6-g) 

Remarks: This species is found in the Mediterranean Sea but not the Black Sea. It lives 

on sand, mud and gravel bottoms with algae and shell debris, between 5 and 200 m deep 

(Poppe and Goto, 1993). This species was collected from only one station at 79 m on 

transect 3 in the Marmara Sea. 

Claussinella brongniartii (Payraudeau, 1826) (Plate 6-h) 

Remarks: This species is found in the Mediterranean Sea, including the Black Sea. It 

prefers relatively deep water: from the infralittoral zone down to the continental shelf 

(Poppe and Goto, 1993). This species was collected from the Aegean Sea at the six 

stations with depth ranges between 14 m and 112 m and from the Marmara Sea at one 

station at 39m water depth. 

Timoclea ovata (Pennant, 1777) (Plate 6-i) 
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Remarks: This species ranges from the Mediterranean Sea to the Black Sea. It lives on 

all types of bottoms between 4 and 200m deep (Poppe and Goto, 1993). Specimens were 

collected from 21 stations from the Marmara Sea and the Aegean Sea. The deepest 

station was in transect 4 (the Marmara Sea) at 109 m and the shallowest station was on 

transect 7 (the Aegean Sea) at 14m. 

Gouldia minima (Montagu, 1803) (Plate 6-j) 

Remarks: This species is found in the Mediterranean Sea, and is abundant in the Aegean 

Sea and the Marmara Sea. It lives on sand, mud and fine gravel bottoms from below the 

low tide zone to more than 200 m deep (Poppe and Goto, 1993). Specimens were 

collected from the Marmara Sea and from the Aegean Sea with water depths range 

between 17m and 60 m. 

Dosinia lupinus (Linnaeus, 1758) (Plate 6-k) 

Remarks: This species is found in the Mediterranean Sea and Black Sea. It prefers 

clean sand and fine gravel bottoms from the intertidal zone to 200 m deep (Poppe and 

Goto, 1993). Specimens were only collected from the Black Sea transect 3 at 74 m and 

79m. 

Pilar rudis (Poli, 1795) (Plate 6-1) 

Remarks: This species ranges from the Mediterranean Sea to the Black Sea. It lives 

from the intertidal zone to 80 m deep on sand and gravel bottoms (Poppe and Goto, 

1993). Specimens were collected from the Marmara Sea, transect 1 and from the Aegean 

Sea, on transect 7. The stations in the Marmara Sea were shallower (13m) than the 

stations in the Aegean Sea (20- 147m). 
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Family: Petricolidae 

Mysia undata (Pennant, 1777) (Plate 6-m) 

Remarks: This species is distributed from the Norwegian Sea into the Mediterranean 

Sea and it burrows in muddy sand, gravel, muddy shell-gravel from below the low tide 

line to 55m deep (Tebble, 1966; Poppe and Goto, 1993). Specimens were collected from 

the Aegean Sea, on transect 8, at 26 m depth. 

Family: Corbulidae 

Corbula gibba (Olivi, 1792) (Plate 6-n) 

Remarks: This species is found in the Mediterranean Sea, in the Aegean Sea, in the 

Marmara Sea and in the Bosphorus district of the Black Sea (Demir, 2003). It lives 

anchored by a byssus on silty sand and muddy-gravel bottoms from the low intertidal 

zone to 250m deep (Poppe and Goto, 1993). According to Diaz and Rosenberg (1995), 

this species is the most tolerant form of oxygen depletion and, as a filter-feeder, it can 

also tolerate large quantities of suspended matter. 

Specimens were collected from 26 stations primarily in the Marmara Sea (15 

stations) and in the Aegean Sea (1 0 stations). The deepest and lowest stations were on 

transect 1, the Marmara Sea with 312m and 13m, respectively. In the Aegean Sea depth 

ranged between 3 9 m and 14 2 m. 

Family: Cuspidariidae 

Cuspidaria rostrata (Spengler, 1793) (Plate 6-o) 

Remarks: This species is found in muddy sand and gravel from 20 m to considerable 

depth (Tebble, 1966). It is widely distributed from Atlantic to the Mediterranean Sea. 
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This species was collected from transect 4 (93 m deep) in the Marmara Sea and transect 7 

(142m and 173m deep) in the Aegean Sea. 

Cardiomya costellata (Deshayes, 1835) (Plate 6-p) 

Remarks: This species is found in the Mediterranean Sea, the Aegean Sea and the 

Marmara Sea (Demir, 2002). It lives in muddy-sand and gravel bottoms between 18 and 

200 m deep (Poppe and Goto, 1993). Specimens were found in the Marmara Sea and in 

the Aegean Sea. They were found at the shallow stations (26m and 38m) in the Aegean 

Sea; however, they were found at the deep stations (98 m, 109 m, 118 m, 143 m, and 187 

m) in the Marmara Sea. 

Class: SCAPHOPODA 

Family: Dentaliidae 

Dentalium dentalis (Linnaeus, 1758) (Plate 2-k) 

Remarks: This species is found in the Mediterranean Sea, and most commonly in the 

Aegean Sea. It prefers mud and sandy bottoms at depths between 1 and 164 m (Poppe 

and Goto, 1993). Specimens were collected from the Marmara Sea and the Aegean Sea, 

transects 1, 4, 7 and 8. Transects water depth ranged from 23m (transects 1) to 501 m 

(transect 7). 

Family: Siphonodentaliidae 

Gadulus politus (Wood, 1842) (Plate 2-1) 

Remarks: This species is found in the Aegean Sea. It prefers to live on mud bottoms. 

Specimens were collected from the Marmara Sea (transect 1) and the Aegean Sea 
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(transects 7 and 8). The sample stations in these three transects had similar water depth 

range from 28 m to 78 m. 

Entalina tetragona (Brocchi, 1814) (Plate 2-m) 

Remarks: This species is found in the Mediterranean Sea, in the Aegean Sea and in the 

Marmara Sea. It lives on mud bottoms. Specimens were collected from the Marmara 

Sea (transect 4) and the Aegean Sea (transects 7 and 8). The shallowest stations were on 

transect 8 (26m, 38m, 49 m) and the deepest stations were on transect 4 (88 m, 98 m, 

143m). 
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CHAPTERS 

INTERPRETATION 

5.1. Current and Taphonomic Faunal Assemblages in Relation to the Environment 

The present-day geographic distribution oflive molluscs in surface sediments 

depends on a number of factors; such as, their power of dispersal, their adaptability to 

environmental factors (i.e. temperature, salinity, dissolved oxygen), their mobility, the 

degree of dispersal at the larval stage, the effects of geographic isolation, and the amount 

of passive dispersal resulting from the activities of man (Purchon, 1977). 

In general, organisms are not distributed uniformly in space. Heterogeneous 

distribution occurs at all spatial scales; this concept is known as patchiness 01 aliela, 

1995). Patchiness can be described in terms of the distances that separate individuals of a 

population over a continuous space, or by assessing the occurrence of individuals at 

discrete spatial scales such as in quadrats, tidal pools, or samples 01 aliela, 1995). 

Detection and analysis of patchiness depend on sampling strategy and sampling 

equipment (Peres, 1982). The size of the sample or quadrat needs to be considered, 

because the choice of sample size can artificially create or obscure patchiness. For 

instance, Figure 5.1 displays a hypothetical distribution of a population and three 

different sizes of quadrats. The largest quadrat in the figure shows a more-or-less 

uniform number of individuals and misses the smaller-scale patchy nature of the 

distribution. Using an intermediate quadrat size reveals the aggregated (non-random) 

distribution. Small-scale quadrats show a very uniform distribution and may either miss 
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Figure 5 .1. Hypothetical distribution of a population over space. The dashed 
squares indicate the different sample sizes, discussed in the text. Adapted 
from Valiela (1995). 
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or over sample species that are very rare, depending on where the quadrats are placed 

(Valiela, 1995). 

In this thesis, dead mollusc shells were collected from six transects at 

approximately 1 0 m water-depth increments from ~ 13 m to ~50 1 m using a Shipek grab 

sampler. A Shipek grab sampler consists of a half-cylinder sampling scoop of 3000 ml 

volume, 25 em length and 10 em diameter. When the open grab touches the bottom, the 

rapid 180° rotation of an inner half cylinder collects sediments from approximately the 

upper 10 em of the seabed. The depth averaging effect on shelly fauna by the sampling 

tool is controlled by the age of the sediments recovered in the grab, which is largely 

controlled by the sedimentation rate in a region. Sedimentation rates vary widely in the 

marine environment, ranging from 1-3 mm/1000 yrs in the Arctic Ocean (e.g. Aksu and 

Mudie, 1985) to 40-60 cm/1000 yrs in modem turbidite fans (e.g. Piper et al., 1999). In 

the Black Sea, Aegean Sea and Marmara Sea shelf regions, bulk sedimentation rates are 

10-30 cm/1000 yrs (e.g. Hiscott and Aksu, 2002); therefore, the grab samples should 

contain an approximately 300-1000 year average of the shelly fauna. 

In order to correctly interpret the field data, there must be good reason to believe 

that the shells found in each sample, or quadrat, faithfully reflect the modem 

environmental conditions at the sampling stations. Three pivotal questions can be posed 

to evaluate weather shells found in the surface 1 0 em reflect current environmental 

conditions. The first question is: are the dead shells in situ or transported from 

elsewhere? Transported shells would have the same age as the enclosing sediments, but 

would give false environmental information. When transported, the protective calcium 
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carbonate and proteinaceous layer (periostracum) of mollusc shells is easily abraded. 

Alteration of the morphology of shell structure reveals itself as rounded edges or 

smoothed surfaces. Moreover, depending on the amount of dissolved C02 in bottom 

waters and water temperature, dissolution of the shell calcite or aragonite material in 

transported shells can degrade the periostracum, resulting in a chalky white appearance. 

According to Table 5.1 , most of the sampling stations are away from the coast and 

therefore away from where waves and currents are strongest. These sediments are mostly 

muds; thus, these stations are below fair-weather wave base and in a calm environment. 

The absence of large percentages of shell fragments and the good preservation 

state of the shells suggest that the large majority of the mollusc shells in the surface 

samples did not experience prolonged reworking or long distance transport. Moreover, in 

order to eliminate possible reworked shells, all fragments were discarded during sieving 

operations. Based on these procedures, whole dead mollusc shells from surface 

sediments of the Black Sea, the Marmara Sea and the Aegean Sea were assumed to have 

experienced no significant post mortem transport. 

A second, somewhat different question is whether the recovered shells might be 

in situ but reworked from older deposits, which formed when the environment was 

different. Mollusc shells collected for this thesis were found in the upper 1 0 em of 

sediment. Examination of high-resolution seismic-reflection profiles in the vicinity of the 

transects clearly shows the presence of> IOO em of Holocene deposits. There is no 

indication of pre-Holocene strata exposed at the sea floor. Therefore, little chance exists 

for reworking of molluscs from older strata in the Black Sea and the Marmara Sea 
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Table 5.1. Distribution of stations along each transects showing the percentage that 

each depth range forms of the entire transect. Approximate water depth ranges are: 

nearshore, 13-35 m; openshelf, 30-70 m; deep water, 70-500 m. 

Transect Nearshore Open Shelf Deep Water 
14, 15, 16, 17, 18, 
19, 91, 92, 93, 94, 

Station 6, 7, 8, 9, 10, 11, 95, 96, 97, 98, 99, 
1 number 1,2,3,4,5 12, 13 100, 101 

Area(%) 20% 30% 50% 
Station 59, 58, 57, 56, 55, 

2 number 54,53,52,51,50 

Area(%) 100% 
Station 81,80,79,78,77,73,72,71,70,69, 

3 number 85, 84, 83, 82 76, 75, 74 68,67,66,65 

Area(%) 20% 40% 40% 
25, 26, 27, 28, 29, 

Station 30, 31' 32, 33, 34, 
4 number 23,24 35,36 39,40,41,42 

Area(%) 10% 70% 20% 
36, 37, 38, 39, 40, 

Station 41, 42, 43, 44, 45, 
7 number 29,30,31 32,33,35 46 

Area(%) 10% 20% 70% 
Station 

8 number 56,55 54,53,52,51 

Area(%) 10% 90% 

transects. In the Aegean Sea, only the nearshore stations of transect 7 and transect 8 

consist of coarse-grained sediments supplied from the shore; fine-grained sediments 
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characterize the rest of these transects. Thus, except for the possibility of input from 

land, the chance of reworking from older underlying deposits is low. Instead, the mollusc 

shells collected from the muddy seabed are likely both in situ and as young as the 

enclosing sediments. 

A third and the fmal question concerns temporal environmental changes. 

Specifically, is the time represented by each sample smaller than the time over which 

environmental change might have occurred? If the answer is no, then some of shells 

might be in situ with the same age as enclosing sediments, but would yield environmental 

information at odds with modem conditions. Linear interpolation of radiocarbon dates in 

cores near transect routes (Figure 3.1) shows that none of the recovered material is 

demonstrably older than ~1500 years (Table 5.2). 

Table 5.2. Interpolated ages anticipated in grab samples. 

Transect No. Nearest Core Reference Age at 10 em 
depth 

1 MAR97-15B Hiscott and Aksu (2002) ~600 years 
2 MAR00-08 Aksu et al. (2002) ~1000 years 
3 MAR00-09 Aksu et al. (2002) ~480 years 
4 MAR98-09 Hiscott et al. (2002) ~1500 years 

Vertical reworking by bioturbation might have introduced some older shells, so a 

conservative estimate of the maximum range of shell age in each sample is given that 

intact shells were counted only vertebrate or decapod bioturbation would be capable of 

introducing older shells from below. Global sea level has been within 5 m of the modem 

value since ~000 yr BP (Fairbanks, 1989), so all recovered shells must have lived at 
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essentially the present water depth and therefore should have experienced near-modem 

conditions. For example, the shallowest sampling station is at 13m and would have been 

only slightly shallower at ~2000 yr BP. There have been important climatic changes over 

the last few millennia, but these would likely have had a very subdued effect in the 

marine realm. Two examples are the Medieval Warm Period (lOth to 14th centuries) and 

Little Ice Age (15th to 19th centuries), reported by several authors. As examples of the 

types of changes encountered by others, Thomdycraft et al. (2005) reported large 

palaeoflood events in northeast Spain (AD1500-1700). Abrantes et al. (2005) detected 2 

oc variability of the sea surface temperature between the Medieval Warm Period and the 

Little Ice Age from a multi-proxy study of sediments deposited by the Tagus River, 

Lisbon, over the last 2000 years. Gonzalez-Alvarez et al. (2004) reported a change to 

cold water planktonic foraminifera species at 1420 AD related to an intense upwelling 

pulse reinforced by colder atmospheric temperatures during the Little Ice Age, from a 

gravity core retrieved from the outer Galician shelf, Spain. Climate change is also 

recorded in Turkish written archives as freezing of the Bosphorus and some parts of the 

Black Sea (Erinv, 1978). 

Some of the mollusc shells collected for this thesis probably lived during these 

climatic swings of the last millennium. However, the large water masses likely buffered 

any temperature changes, particularly at the seabed in shelf and deep-water sites (e.g. 

Be~iktepe et al., 1994). It is therefore assumed that the Little Ice Age and Medieval 

Warm Period did not affect the water masses and thus the mollusc community structure 

in a significant way in the Black Sea, the Marmara Sea and the Aegean Sea. 
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Taking the essential points from the preceding discussion leads to the following 

assumptions that will be applied in this thesis: 

I. whole, dead mollusc shells are in situ, and have not been transported from other 

environments; 

2. whole, dead mollusc shells have not been locally reworked from older deposits; 

3. each sample only contains shells which formed in an environment 

indistinguishable from the modem environment at the site of collection, because 

shells older than -2000 years are assumed not to have been reworked upwards. 

With these assumptions, the reworked shells can be treated as if the molluscs had 

died very recently, under modem conditions. The spatial distribution of shells following 

the death of an organism is expected to be as patchy as the aggregated distribution of live 

specimens if no transport or reworking (Schneider and Haedrich, I99I ). Hence, the 

segment approach to assessing spatial distribution can be applied. Each sample along a 

transect is considered to be a small-scale quadrat (Figure 5.I). Because smaller quadrats 

either suggest a very uniform distribution, or give results that depend on where the 

samples are taken for very rare species, transect segments will be used to interpret the 

thesis data. The size of the segment is set so as to group samples which developed under 

similar environmental conditions into a single segment. Similar conditions might include 

similar temperature and salinity. This approach leads to a smaller number of segments 

per transect than the number of samples. In the qualitative analysis which follows, all 

stations in the Aegean Sea are considered. In the Black Sea, only II of I6 stations are 

considered because the other five included mostly common stations. In the Marmara Sea, 
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only 5 of 38 stations are considered because the others are either characterized by an 

Aegean Sea water mass (intermediate depths) or a Black Sea water mass (0-13 m) and 

show the same mollusc faunal as these other areas. For this reduced set of stations, Table 

5.3 shows the even smaller number of distinct segments that are recognized. 

Table 5.3. Comparison of number of sample stations and segments between each sea. 

Transects 
Sample 

Quadrats 
Stations 

2, 3 (Black Sea) 11 2 
1, 4 (Marmara Sea) 5 1 
7, 8 (Aegean Sea) 23 4 

5.2. Qualitative Analysis: Assemblages and relationships between environmental 

parameters 

Assemblages were identified after considering the relationships between and 

within large quadrats from all transects. Each assemblage reflects a distinct set of 

environmental conditions. Some species are only present in one assemblage, although 

others are more cosmopolitan and can be found in more than one assemblage. These 

cosmopolitan species are not useful for interpreting environmental conditions except at 

scales large relative to transects. 

Qualitative analysis was done by using absence and presence of mollusc species 

in quadrats. Seven assemblages were identified. Abundance of species was calculated as 

a percentage contribution to each assemblage, using the following equation: 

Species A percentage = 100 x (number of shells of species A) I Total number of 

shells in each transect). 
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Percentage data are listed in Appendix A. 

Assemblage 1 

Assemblage 1 was dominated by the high occurrence of two gastropods which 

prefer sandy-mud bottoms: Calliostoma conulus and Bittium reticulatum (Figure 5.2). 

Timoclea ovata, Gouldia minima and Pi tar rudis were the dominant bivalves of this 

assemblage. Finally, a scaphopod, Gadulus politus, occured in moderate abundance. 

Eighteen very minor species are noted in Figure 5 .2. Assemblage 1 was found at water 

depths between 14 m and 50 m along Aegean Sea transect 7 where surface sediments are 

composed of silty-sand, clayey-sand and sand (57-82 % sand), where bottom water 

temperatures range between 14-15 °C, and where salinity is 40 %o (Figure 5.3). On the 

basis of its high salinity, this bottom water mass is interpreted as the Mediterranean water 

mass. Timoclea ovata can live on every type of bottom; however, Pitar rudis and 

Gouldia minima are diagnostic of sandy mud or gravelly sediments. The most abundant 

species, excluding the euryhaline species Bittium reticulatum, prefer high salinities. 

Hence, assemblage 1 is interpreted as an indicator of high salinity and a sandy-mud 

substrate. 
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Species Known Restriction Aegean Sea Marmara Sea Aegean Sea Black Sea 

Gastropoda from literautre A-1 

Calliostoma conulus A -Bittium latreillei A -Bittium reticulatum A-M-B -Turritel/a communis A-M -
Alvania cancellata A -Alvania cimex A-M-B -Lunatia pulchella A-M -Cyclope donovania A-M-B 

Bivalvia 

Nucula sulcata A-M-B 
Nucula nucleus A-M-B -
Nuculana commutata A-M 
Area tetragona A -Anadara diluvii A-M 
Mytilus gal/oprovincialis A-M-B 
Mytilaster lineolatus A-M-B 
Modiolula phaseolina A-M-B -Chlamys varia A-M -
Chlamys glabra A-M-B 
Ostrea edulis A-M-B 
Ostreola stentina A-M 

Figure 5.2. Abundance data of assemblages A-1 
through A-7. 
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Species Known Restriction Aegean Sea Marmara Sea Aegean Sea Black Sea 

Bivalvia from literature A-1 

Dreissena polymorpha B 
Loripes lucinalis A-M-B • 
Myrtea spinifera A-M • 
Thyasira jlexuosa A 
Parvicardium exiguum A-M-B • 
Parvicardium minimum A-M • 
Parvicardium rosea A • 
Spisula subtruncata A-M-B 
Abra alba A-M-B 
A bra prismatic a A-M • 
Clausinella brongniartii A-M-B • 
Timoclea ovata A-M-B -Gouldia minima A-M -Pi tar rudis A-M-B -Corbula gibba A-M • 
Cuspidaria rostrata A-M 
Cardiomya coste/lata A-M 

Scapha pod a 

Dentalium dentalis A-M 
Gadulus politus A -Entalina tetragona A-M • 

Figure 5.2 Cont'd. Abundance data of assemblages A-1 
throughA-7. 
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Figure 5.3. Schematic diagram of the distribution of the Aegean Sea assemblages. 
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Assemblage 2 

Assemblage 2 was found at shallow water depths ranging between 18m and 38m 

along Aegean Sea transect 8 with bottom temperature of 17 °C, salinity of 41 %o, and 

clayey-silt bottom sediments (Figure 5.3). Turritella communis, Nucula sulcata and the 

scaphapods Dentalium dental is and Entalina tetragona showed highest abundances 

(Figure 5.2). This assemblage is interpreted to indicate high salinity and muddy 

conditions. 

Assemblage 3 

Assemblage 3 was found on transect 1 in the Marmara Sea at water depths from 

171 m to 312m where bottom sediments consist of sandy-silty-clay. Here, a water 

temperature of 14 °C, salinity of38 %o, and dissolved oxygen concentration of - 1.5 ml/1 

represent the Mediterranean water mass (Figure 5.4). This Marmara Sea assemblage is 

characterized by high abundances of Nucula nucleus, Mytilaster lineolatus, and Corbula 

gibba (Figure 5.2). Among these species, Nucula nucleus and Corbula gibba are 

cosmopolitan species with euryhaline and eurytherm preferences. However, Mytilaster 

lineolatus and Myrtea spinifera are less tolerant to environmental fluctuations and signify 

Mediterranean environmental characteristics. Mytilaster lineolatus is only found in the 

Marmara Sea. 

Assemblage 4 

Assemblage 4 was dominated by the high occurrence of Nucula nucleus, Nucula sulcata, 

Nuculana commutata, Timoclea ovata, and Corbula gibba (Figure 5.2). It was found in 

water depths between 49 m and 142m in the Aegean Sea transects 7 and 8 
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Figure 5.4. Schematic diagram showing the distribution of the Marmara Sea assemblages. 
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where surface sediments are composed of silty-sand and sandy-silty-clay (Figure 5.3). 

Temperature and salinity are 14-16 oc and 38 %o, respectively. Dissolved oxygen 

concentration was high (5.8-8.4 ml/1). 

Assemblage 5 

Assemblage 5 is found at water depths between 173 m and 501 m in the Aegean 

Sea, along transect 7 (Figure 5.3). Temperatures and salinity are 14-16 °C and 38 %o, 

respectively. This assemblage prefers a clayey-silt substrate. Abra alba, Loripes 

lucinalis and Dentalium dentalis were abundant in these muddy bottoms (Figure 5.2). 

Assemblage 6 

Assemblage 6 was found at water depths between 22 m and 102 m in the Black 

Sea transects 2 and 3 where bottom sediments are characterized by a mixture of sandy

clay and sandy-silt (Figure 5.5). It was associated with a low temperature (7-8 °C), low 

salinity (18-19 %o) water mass, and moderate dissolved oxygen concentration (4-5 ml/1). 

The two most abundant bivalve species are Modiolula phaseolina and Spisula 

subtruncata (Figure 5.2). Both species prefer low salinity waters and best reflect the 

Black Sea conditions. They were only rarely found in the other two seas (Figure 5.2). 

Bittium reticulatum, although minor, only lives under gravel, rocks or on seaweed (i.e. 

Zostera). 

Assemblage 7 

Assemblage 7 was found in water depths between 83 m and 106 m in the Black 

Sea transects 2 and 3 (Figure 5.5). Temperature (7- 8 °C) and salinity (18-19 %o) were 
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similar to assemblage 6 but assemblage 7 was found on clayey silt bottoms (Figure 5.5). 

The absence of Bittium reticulatum in this assemblage is attributed to the fme grain size 

of the substrate. The only other difference from assemblage 6 was the far lesser 

abundance in assemblage 7 of Spisula subtruncata. 
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Figure 5.5. Schematic diagram showing the distribution of the Black Sea assemblages. 
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5.3. Quantitative Analysis: Statistical Treatment of Data 

5.3.1. Ordination of data by principal component analysis (PCA) 

Principal component analysis was used to determine associations of species that 

are distinct from one another and that account for the largest amount of the total variance 

in the data. Analysis was performed on a reduced data set, which consisted of 12 species 

and 77 stations, to diminish the effects of less-common species as recommended by 

Imbrie and Kipp (1971). Only the 12 species that represent 2:2% of the total fauna and 

which are present in at least 10 stations were considered. The abundances of the 12 

species were recalculated so as to sum to 100 % and this data was used without 

standardization (Davis, 1973). Ten principal components were extracted, accounting for 

94.2% of the total variance in the reduced data set (Table 5.4). 

Based on the Kaiser criterion (Kaiser, 1960), only those components with 

eigenvalues greater than 1 are significant and should be retained for interpretation. Seven 

principal components with eigenvalues > 1 are considered further. These principal 

Table 5.4. Eigenvalues for faunal principal component (FC) analysis. The first 

seven principal components are considered significant using the Kaiser criterion. 

FC Eigenvalues 0/o Variation Cum. o/o Variation 
1 1.87 15.60 15.60 
2 1.33 11.10 26.70 
3 1.28 10.70 37.40 
4 1.16 9.70 47.00 
5 1.11 9.20 56.30 
6 1.09 9.00 65.30 
7 1.03 8.60 73.90 
8 0.89 7.50 81.30 
9 0.84 7.00 88.30 
10 0.71 5.90 94.20 
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components explain 73.9% of the total variance (Table 5.4). Results of this analysis and 

loadings associated with each principal component are listed in Table 5.5. These 

loadings are coefficients, which indicate the relative weight of each variable in the 

component. The bigger the coefficient, the more important the corresponding variable is 

in explaining the component. High negative and positive loadings (>±0.3) of key species 

on the seven principal components identify the faunal constituents of each principal 

component. If a loading is positive, then the occurrence of that species is positively 

correlated with the principal component; if it is negative, then the reverse is true. The 

seven principal components can be considered as seven different hypothetical 

assemblages, which explain, from 1 to 7, decreasing amounts of the total variance. 

Table 5.5. Coefficients (loadings) of mollusc species on the seven significant 

components. Significant loadings are shown in bold characters. 

Species FC1 FC2 FC3 FC4 FC5 FC6 FC7 
T. communis 0.143 -0.593 0.134 0.269 0.519 -0.007 0.068 
N nucleus 0.077 0.596 0.465 0.005 0.341 0.014 -0.109 
N sulcata 0.333 -0.137 -0.373 -0.230 0.122 -0.390 -0.072 
N commutata 0.333 0.212 -0.065 -0.364 0.125 -0.402 -0.074 
M phaseolina -0.432 0.060 -0.372 0.093 0.165 0.078 0.111 
M spinifera 0.237 0.146 -0.128 0.064 -0.278 0.041 0.836 
P. exiguum -0.331 0.126 -0.349 -0.060 0.184 0.252 -0.121 
S. subtruncata -0.135 0.013 0.062 0.547 -0.477 -0.495 -0.266 
A. alba -0.414 -0.028 0.046 -0.517 -0.200 -0.144 -0.008 
T. ovata 0.285 -0.091 -0.368 -0.095 -0.214 0.236 -0.351 
C. gibba 0.342 0.054 0.071 0.029 -0.279 0.537 -0.226 
D. dentalis -0.106 -0.419 0.446 -0.387 -0.235 0.068 0.045 
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The principal component coefficients are used to calculate the principal 

component scores. Scores-are listed in Tables 5.6, 5.7, and 5.8. For each station and the 

12 species in Table 5.5, scores ofFC 1 are calculated as; 

Score= (percent abundance of Tcommunis) (0.143) +(percent abundance of N 

nucleus)(0.077) + ..... +(normalized abundance of D.dentalis) (-0.106) 

The principal component scores for FC2-FC7 are calculated in the same way, but with 

the correspondingly different coefficients (loadings) from Table 5.5. In the following 

summaries and interpretations, stations and transects with the highest scores for each 

faunal component are emphasized because they are inferred to have environmental 

conditions (e.g. salinity, substrate type) most amenable to the survival and well-being of 

the species with high positive loadings, and most detrimental to the survival and 

reproduction of species with high negative loadings. In many cases, the highest scores 

are confmed to only one or two of the Aegean Sea, the Marmara Sea, and the Black Sea, 

or to particular water masses in cases where the water column is stratified. For ease in 

recognizing higher and lower scores, calculated values were normalized across all 

stations and all seas on a scale from 0 to 100, one component at a time (Tables 5.6, 5.7, 

5.8). In order to concentrate the discussion on the most significant data, only those scores 

that are higher than 70 are considered dominant scores. Dominant scores for faunal 

components and environmental components account for 19.6% and 41.1% of all faunal 

scores and environmental scores, respectively. These dominant scores characterize 

stations which best exemplify the defining characteristics of each component. Appendix 

B shows the transect-by-transect distributions of dominant scores for each component. 
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Table 5.6. Scores for faunal components at Marmara Sea stations. Separate 

transects are alternatively shaded and unshaded. Scores are normalized between 0 

and 100, component by component. Bold scores are higher than 70. See Table 5.7 

for a key to the main environmental implications of each faunal component. 

SCORES 
Station Depth (m) FC1 FC2 FC3 FC4 FC5 FC6 FC7 

1-1 13.89 57.63 68.46 57.62 79.08 33.02 60.25 18.89 
2-1 17.86 19.40 66.28 21.29 46.37 85.99 83.51 21.66 
3-1 23.81 54.80 16.38 62.70 59.16 85.27 77.29 36.10 
4-1 28.77 66.10 46.98 33.01 50.38 51.54 73.15 30.11 
5-1 34.73 73.82 43.37 52.93 50.38 26.84 100.00 22.89 
6-1 39.69 72.51 50.65 44.53 49.05 28.98 96.62 20.89 
7-1 44.65 58.95 10.00 52.54 61.76 100.00 55.60 37.33 
8-1 48.61 87.38 34.90 43.95 33.97 74.35 39.75 25.35 
9-1 54.57 63.65 10.88 51.95 68.51 83.37 67.65 32.87 
10-1 59.53 58.95 0.00 52.54 61.76 100.00 55.60 37.33 
11-1 64.49 70.62 27.21 51.17 63.36 58.67 85.84 26.27 
12-1 69.45 47.27 7.32 76.37 37.60 57.72 60.68 37.63 
13-1 74.41 56.31 70.00 64.06 62.02 90.74 56.45 32.41 
15-1 84.32 53.86 100.00 75.39 52.29 81.47 57.29 27.34 
17-1 103.17 53.86 100.00 75.39 52.29 81.47 57.29 27.34 
19-1 121.02 53.86 100.00 75.39 52.29 81.47 57.29 27.34 
93-1 146.80 76.27 61.23 49.41 46.95 32.07 86.47 31.18 
94-1 171.59 71.19 65.30 58.59 51.53 35.15 93.66 24.42 
95-1 187.45 78.15 65.36 52.15 43.89 38.72 78.01 29.34 
96-1 225.12 35.41 14.63 100.00 3.24 15.44 65.75 37.94 
97-1 247.91 68.74 74.20 55.86 54.58 43.23 81.40 37.02 
99-1 312.32 57.82 47.62 75.00 33.78 29.45 84.14 26.73 
100-1 293.50 72.88 69.61 58.20 54.01 38.96 96.41 19.20 
101-1 255.84 53.86 100.00 75.39 52.29 81.47 57.29 27.34 
23-4 18.85 67.23 56.16 18.75 44.85 43.94 75.48 34.41 
24-4 23.81 77.40 54.78 19.14 36.26 38.72 45.24 48.23 
25-4 28.77 70.81 55.21 45.90 53.63 37.06 79.07 42.55 
26-4 33.73 72.88 64.70 37.50 51.53 33.97 80.76 35.18 
27-4 39.69 47.65 64.83 28.13 38.17 40.38 86.47 16.90 
28-4 43.65 67.80 70.97 32.23 45.04 42.04 60.89 25.65 
29-4 49.61 70.81 50.97 46.88 62.41 50.59 80.76 41.01 
30-4 55.56 78.72 60.40 35.35 32.25 40.38 59.41 29.19 
31-4 60.52 77.97 60.97 20.51 47.90 65.08 33.62 53.76 
32-4 64.49 71.75 55.09 29.49 58.40 18.05 60.68 100.00 
39-4 98.21 71.75 62.52 29.49 58.40 18.05 60.68 100.00 
40-4 109.12 84.18 62.73 23.05 38.36 30.64 45.24 69.28 
41-4 118.04 76.08 74.25 46.29 12.60 65.80 15.86 37.17 
42-4 143.83 62.71 75.52 52.34 55.34 49.88 58.99 63.59 
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Table 5.7. Scores for faunal components at Black Sea stations. Separate transects are 

alternatively shaded and unshaded. Scores are normalized between 0 and 100, 

component by component. Bold scores are higher than 70. 

SCORES 
Station Depth(m) FC1 FC2 FC3 FC4 FC5 FC6 FC7 

59-2 83.33 0.00 54.02 6.06 28.24 68.41 80.55 22.73 
58-2 89.28 14.69 54.31 14.65 53.05 66.03 63.85 37.63 
56-2 98.21 13.18 53.96 12.50 51.72 67.70 66.81 35.95 
55-2 104.16 15.63 70.88 15.23 54.39 66.03 62.79 38.56 
54-2 106.14 12.81 79.19 14.06 49.24 65.80 65.33 35.79 
84-3 22.82 36.72 64.70 48.05 100.00 0.00 8.03 14.44 
83-3 25.80 36.72 56.37 48.05 100.00 0.00 8.03 14.44 
82-3 33.73 31.83 61.55 47.85 83.40 4.51 13.32 17.51 
81-3 36.71 36.72 34.20 48.05 100.00 0.00 8.03 14.44 
74-3 74.41 7.91 40.48 12.70 40.46 62.95 69.13 28.57 
73-3 79.36 9.42 33.50 25.20 31.30 48.93 56.87 29.49 
70-3 92.26 31.64 62.15 33.20 49.43 39.91 63.43 29.95 
69-3 97.22 16.20 62.15 17.38 53.44 63.90 60.47 39.32 
67-3 106.14 15.25 59.76 12.31 59.54 65.32 64.48 34.10 
66-3 111.10 15.25 64.18 22.27 45.23 58.91 58.14 37.79 
65-3 112.09 16.01 61.08 17.19 53.44 64.13 60.89 39.17 

Key to interpret environmental preference of each faunal component 

Faunal Component 1: High salinity water masses and sandy sediments. 

Faunal Component 2: Poorly oxygenated waters. 

Faunal Component 3: Sediments with low total organic carbon and water 

temperature <14 °C. 

Faunal Component 4: Low salinity water masses. 

Faunal Component 5: High salinity water masses. 

Faunal Component 6: Mixed water masses. 

Faunal Component 7: Poorly oxygenated deep-water masses. 
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Table 5.8. Scores for faunal component at Aegean Sea stations. Separate transects are 

alternatively shaded and unshaded. Scores are normalized between 0 and 100, component 

by component. Bold scores are higher than 70. See Table 5.7 for a key to the main 

environmental implications of each faunal component. 

SCORES 
Station Depth(m) FC1 FC2 FC3 FC4 FC5 FC6 FC7 

29-7 14.11 51.41 20.54 27.73 59.54 81.47 71.25 25.65 
30-7 20.16 33.52 65.65 38.48 55.92 79.57 64.48 32.10 
31-7 29.23 83.43 43.57 1.56 41.79 19.00 91.97 0.00 
32-7 39.31 79.28 42.46 17.77 49.05 27.55 88.16 17.51 
33-7 50.40 53.86 0.00 75.39 52.29 81.47 57.29 27.34 
35-7 71.57 81.73 45.44 16.80 42.18 44.66 67.02 13.52 
36-7 78.62 93.41 52.70 9.77 23.28 57.72 30.44 15.98 
37-7 86.69 95.48 59.77 21.68 18.32 69.36 16.28 21.51 
38-7 97.78 87.38 44.89 4.49 28.44 39.67 53.49 11.06 
39-7 112.91 73.45 67.17 61.52 28.05 71.73 38.48 26.11 
40-7 142.15 71.75 59.67 56.06 22.14 69.60 32.98 24.12 
41-7 173.42 52.73 67.52 65.63 34.16 72.68 43.55 27.34 
42-7 201.66 7.35 47.52 47.27 0.00 27.32 40.17 32.72 
43-7 246.05 21.47 31.08 73.63 1.53 21.38 52.85 35.33 
44-7 298.53 30.70 63.76 61.33 26.15 54.39 48.63 29.95 
45-7 353.04 18.64 34.37 68.36 1.15 22.57 50.32 34.72 
46-7 501.49 11.49 42.82 54.69 0.38 25.65 43.76 33.49 
56-8 18.14 64.97 10.68 42.97 58.40 89.07 46.51 35.02 
55-8 26.21 66.48 13.73 40.63 60.12 88.60 44.82 39.48 
54-8 38.30 59.32 11.27 53.52 54.77 81.00 52.43 36.41 
53-8 49.39 70.25 54.54 23.44 38.93 50.83 63.85 18.28 
52-8 59.47 82.11 39.26 20.51 37.98 58.91 49.68 22.27 
51-8 66.53 100.00 41.19 0.00 16.79 73.40 0.00 26.58 
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Faunal component 1 is characterized by positive loadings for Nucula sulcata, 

Nuculana commutata, and Corbula gibba and negative loadings for Modiolula 

phaseolina, Abra alba, and Parvicardium exiguum. M phaseolina and P. exiguum 

generally prefer low salinity ( <30 %o) waters and sandy sediments. A. alba is a common 

species lives under a variety of conditions. C. gibba, N sulcata and N commutata all 

live in muddy environments and prefer high salinity waters. Clearly, faunal component 1 

is defmed by above average proportions of Mediterranean species and below average 

proportions of Black Sea species. This is most easily appreciated by inspection of the 

above equation. A normalized abundance will be positive if larger than the global mean, 

and negative if less than the mean. A species with a negative coefficient (loading) will 

only contribute to a higher score if its normalized abundance is also negative, because the 

product of two negative numbers is positive. Faunal component 1 is interpreted as an 

indicator of highly saline waters and sandy bottoms. Scores for this component are 

highest in the Aegean Sea, moderate in the Marmara Sea, and lowest in the Black Sea 

(Tables 5.6, 5.7, 5.8). Station 51 in transect 8 (Aegean Sea) was the best representative 

ofthis component, having a salinity of39.13 %o and a substrate with 19.00% sand. In 

contrast, station 59 in transect 2 (Black Sea) had a salinity of 18.96 %o and 2.23 %sand. 

All other stations with low scores are located in the Black Sea. 

The positive loading of Nucula nucleus and negative loadings of Turritella 

communis and Dentalium dentalis characterize faunal component 2. N nucleus is found 

in the Aegean Sea and the Marmara Sea; it is a common species that is distributed widely 

in normal marine environments. In addition, N nucleus can tolerate very low dissolved 
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oxygen concentrations. T communis and D. dentalis are mostly common in highly

oxygenated marine environments; however, in this thesis research, they were never found 

in the shallow shelf depth in the Black Sea, which is a highly-oxygenated brackish 

environment. Taking all these preferences together, faunal component 2 can be 

interpreted to indicate poorly oxygenated marine water masses. High scores in the 

Marmara Sea and moderate scores at only two stations in the Black Sea highlight the 

geographic control on the strength of this component (Table 5.6, 5.7, 5.8). The most 

typical stations for this component are stations 15, 17, 19, and 101 in the Marmara Sea, 

all having very low dissolved oxygen (1.18-1. 76 ml/1). This component is not 

representative of the Aegean Sea water mass where dissolved oxygen concentrations are 

very high ( 4-9 ml/1). 

Faunal component 3 is characterized by the high positive loadings of Nucula 

nucleus and Dentalium dentalis and high negative loadings of Nucula sulcata, Modiolula 

phaseolina, Parvicardium exiguum and Timoclea ovata. N nucleus and D. dentalis are 

found in sediments with low total organic carbon content, and where water temperature is 

higher than 14 °C. N sulcata, T. ovata, P. exiguum and M phaseolina are found in 

sapropels, beneath water colder than 14 °C. Therefore, this component is interpreted as 

an indicator of sediments with low ( <1.5 %) total organic carbon and bottom waters 

warmer than 14 °C. Tables 5.6, 5.7 and 5.8 show that faunal component 3 has high 

scores only in the Marmara Sea and at two stations of the Aegean Sea (i.e, stations 43 and 

33). The station most typical of this component is station 96 in the Marmara Sea. This 

component is not representative of the Black Sea water mass and sediments because of 
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the high total organic carbon percentage and cold bottom water in that area. Station 51 in 

the Aegean Sea has no relationship with faunal component 3 because none of the highly 

loaded mollusc species are found at that station (Table 5.8). 

Faunal component 4 has a high positive loading with only Spisula subtruncata, 

and high negative loadings for Nuculana commutata, A bra alba, and Dentalium dentalis. 

These latter species prefer mostly high salinity (>30 o/oo) waters; however, A. alba can 

tolerate low salinity waters. S. subtruncata prefers low salinity. Faunal component 4 is 

therefore attributed to the presence of a low salinity water mass. High scores in the Black 

Sea and moderate scores at only one shallow station (13 m) in the Marmara Sea highlight 

the geographic control on the strength of this component (Table 5.6, 5.7, 5.8). This 

component has low scores at stations in the Aegean Sea because of its high salinity water 

mass. Because of the pycnocline in the Marmara Sea, the water has Aegean Sea 

characteristics so scores are also low (Figures 3.5, 3.14). 

Faunal component 5 shows high positive loadings for Turritella communis and 

Nucula nucleus and a high negative loading for Spisula subtruncata. N nucleus and T 

communis prefer high salinity waters; however, S. subtruncata prefers low salinity waters 

such as in the Black Sea. In this thesis research, S. subtruncata was not found outside the 

Black Sea. Based on these opposed preferences, faunal component 5 is interpreted as an 

indicator of highly saline waters. Geographically, this component had its highest scores 

in the Aegean Sea and in the Marmara Sea and its lowest scores in the Black Sea (Table 

5.6, 5.7, 5.8). If faunal component 5 represents highly saline water masses, why do some 

stations have low scores in the Aegean Sea and in the Marmara Sea? If the abundance of 
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one species is particularly low at one station, that will affect the score for this particular 

station because station-by-station scores are calculated by using abundance of species at 

each station. T. communis and N. nucleus do not always show high percentages along the 

Maramara Sea and the Aegean Sea transects (Appendix A). This might be result from 

patchy distribution of individuals. In addition, faunal component 5 corresponds to only 

9.20 % of the cumulative variance. Considering the irregular abundance data and the 

small contribution to total variance, a few high salinity stations with low scores are 

acceptable. 

A high positive loading for Corbula gibba and high negative loadings for Nucula 

sulcata, Nuculana commutata, and Spisula subtruncata characterize faunal component 6. 

C. gibba was associated with moderately to highly saline environments and S. 

subtruncata prefers low salinity waters. N. sulcata and N. commutata both prefer high 

salinity waters even though they show an inverse relationship with C. gibba in this faunal 

component. Thus, this component is interpreted to result from the mixing of two water 

masses. Component scores also show that this component is represented highly in the 

Marmara Sea, moderate in the Aegean Sea, and low in the Black Sea (Tables 5.6, 5.7, 

5.8). This is believed to reflect the fact that the Marmara Sea is transitional between the 

Aegean Sea and the Black Sea, having a mixture of the Aegean Sea and the Black Sea 

water mass characteristics at the thermocline-halocline-pycnocline. Therefore, scores of 

faunal component 6 are high between water depth of~ 17 and --40 m (thermocline

halocline-pycnocline) in the Marmara Sea transects 1 and 4 (Table 5.6). 
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Faunal component 7 has only a single high positive loading with Myrtea spinifera 

and a single high negative loading with Timoclea ovata. M spinifera prefers high 

salinity, mostly poorly oxygenated (<2 ml/1) and deep (>60 m) waters. T ovata prefers 

high salinity and high oxygen contents. Hence, this component is identified with sites 

deeper than 60 m, having low dissolved oxygen in the bottom water. Based on station

by-station scores, this component is strongest in the poorly oxygenated waters of transect 

4, Marmara Sea (Table 5.6); and has very low scores in the well oxygenated waters of the 

Black Sea and the Aegean Sea (Table 5.7, 5.8). The reason for not fmding high faunal 

scores in all poorly oxygenated deep-water stations in the Marmara Sea is the low 

abundance of Myrtea spinifera in these stations. 

5.3.2. Comparison with environmental data 

Based on inferences made to explain the faunal components, water salinity is the 

most important variable explaining the distribution of molluscs between the Marmara 

Sea, the Black Sea and the Aegean Sea. Dissolved oxygen in the bottom water and water 

depth has secondary importance; sediment type and total organic content in the sediment 

are of less importance. 

In order to more fully interpret the species data in relation to environmental data, 

such as salinity (%o ), temperature COC), depth (m), dissolved oxygen (ml/1), and 

proportion of sand (% ), another principal component analysis was run using the 

oceanographic data. Three principal components, explaining 73.8% of the cumulative 

variance, have eigenvalues >I (Table 5.9). Results of this analysis and loadings for each 

151 



Table 5.9. Eigenvalues of the environmental Principal Component Analysis. The 

first three environmental components (EC) are considered significant using the 

Kaiser criterion. 

EC Eigenvalues 0/o Variation Cum. 0/o Variation 
1 1.86 31.00 31.00 
2 1.47 24.40 55.40 
3 1.11 18.40 73.80 
4 0.67 11.10 84.90 
5 0.57 9.50 94.40 

component are listed in Table 5.10. The most positive (>0.3) and the most negative(< 

-0.3) loadings associated with each component show the relationships of the components 

to the physical oceanographic variables. The meaning of each component can be 

interpreted using these relationships. 

Table 5.10. Coefficients (loadings) for the six environmental variables on the 

three environmental principal components. Significant loadings are shown in 

bold type. 

Variables EC1 EC2 EC3 
Depth (m) 0.108 -0.712 -0.214 
Temperature ("C) 0.527 0.247 0.320 
Salinity (o/oo) 0.609 -0.063 0.207 
Oxygen (mill) 0.172 0.089 -0.835 
Sand(%) 0.238 0.562 -0.317 
Total organic carbon (%) -0.503 0.325 0.105 
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To assist interpretation, scores were calculated for each station using the 

environmental component coefficients (loadings) and the normalized values of the 

environmental variables. Scores are listed in Table 5.11, 5.12 and 5.13. As before, 

scores are normalized between 0 and 100, component by component. This facilitates the 

recognition of stations with particularly high scores. As for the faunal scores, 

environmental scores higher than 70 are considered to be dominant. Scores are 

normalized between 0 and 1 00, component by component. This facilitates the 

recognition of stations with particularly high scores. As for the faunal scores, 

environmental scores higher than 70 are considered to be dominant. 

Environmental component 1 is characterized by high (>0.3) positive loadings on 

temperature and salinity, and a high (<-0.3) negative loading on total organic carbon(%) 

(Table 5.1 0). This component can be interpreted as a high-salinity and warm-water 

component in association with sediments having low total organic carbon. 

Environmental component 1 had high scores at almost all stations in the Aegean Sea, 

moderate scores in the Marmara Sea, and low scores in the Black Sea (Tables 5.11, 5.12, 

5.13). In the Aegean Sea, this component represented salinity of38-41 %o, temperature 

of14--18 OC and <1.8% total organic carbon in sediments. Only at station 29 in the 

Aegean Sea transect 7 did environmental component 1 show a very low score because of 

high (4.40 %) total organic carbon content (Table 5.13). The typical station for this 

component is station 33 in transect 7 with salinity of 40.49 %o, temperature of 14.33 OC, 

and sediments having total organic carbon percentage of0.47% (Table 5.13). The 

moderate scores characteristic of the Marmara Sea are found at stations with temperature 
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Table 5.11. Environmental scores for stations in the Black Sea. Separate transects 

are alternatively shaded or unshaded. Scores are normalized between 0 and 100, 

component by component across all seas. Bold scores are higher than 70. 

SCORES 
Station Depth Temp. Salinity Oxy2en Sand TOC ECI EC2 EC3 

59-2 83.33 7.74 18.96 4.14 2.23 2.59 2.26 50.95 45.23 
58-2 89.28 7.77 19.02 2.53 4.10 2.66 0.00 50.51 58.19 
56-2 98.21 7.88 19.35 2.59 2.34 1.80 10.19 44.07 55.75 
55-2 104.16 7.99 19.68 1.65 21.84 2.18 9.81 52.86 57.95 
54-2 106.14 8.01 19.74 1.11 8.43 1.87 10.00 45.24 66.50 
84-3 22.82 20.60 19.05 3.91 39.03 0.51 72.64 75.55 63.08 
83-3 25.80 17.61 20.62 4.23 13.95 2.99 33.02 75.70 70.42 
82-3 33.73 11.43 21.05 5.51 33.65 4.62 1.89 85.07 41.32 
81-3 36.71 9.10 18.03 5.08 15.99 2.55 8.87 63.69 37.41 
74-3 74.41 8.01 18.68 5.55 34.83 1.59 22.45 60.32 19.07 
73-3 79.36 9.15 18.66 4.60 19.88 1.12 26.98 51.98 33.74 
70-3 92.26 8.78 19.07 4.32 7.97 1.66 17.74 48.32 40.83 
69-3 97.22 10.49 22.54 3.89 6.14 2.31 20.00 51.98 53.30 
67-3 106.14 10.31 24.47 3.74 7.58 1.25 34.53 45.10 51.35 
66-3 111.10 11.78 27.81 3.55 19.85 1.22 46.79 50.37 53.79 
65-3 112.09 8.06 19.63 3.93 16.80 1.56 19.06 47.73 38.14 

Key to the meaning of each Environmental Component 

Environmental component 1: High salinity and warm water mass with low 

total organic carbon. 

Environmental component 2: Shallow water and sandy sediments. 

Environmental component 3: Shallow water depth, warm and poorly 

oxygenated water mass. 
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Table 5.12. Environmental scores for stations in the Marmara Sea. Separate transects 

are alternatively shaded or unshaded. Scores are normalized between 0 and 100, 

component by component across all seas. Bold scores are higher than 70. See Table 

5.11 for a key to the meaning of each environmental component. 

SCORES 
Station Depth Temp. Salinity Oxygen Sand TOC EC1 EC2 EC3 

1-1 13.89 25.82 22.84 3.96 20.37 1.31 81.89 79.36 88.02 
2-1 17.86 21.02 24.90 4.67 35.40 1.81 68.30 82.14 66.99 
3-1 23.81 15.22 37.95 2.88 10.36 1.48 64.72 60.62 84.11 
4-1 28.77 15.65 38.05 2.72 38.08 1.32 73.77 70.43 75.55 
5-1 34.73 16.11 38.49 3.49 23.31 1.09 76.60 63.54 74.82 
6-1 39.69 16.38 38.71 3.76 30.35 1.32 77.17 67.50 71.15 
7-1 44.65 16.49 38.83 3.87 5.55 1.39 71.89 57.69 79.46 
8-1 48.61 16.68 38.93 4.09 11.56 1.36 74.53 59.74 75.80 
9-1 54.57 16.30 38.89 3.31 5.12 1.38 70.76 55.78 83.37 
10-1 59.53 16.25 38.97 3.94 4.87 1.35 72.08 55.20 77.75 
11-1 64.49 15.65 38.85 2.46 6.49 1.31 68.87 53.59 87.78 
12-1 69.45 15.37 38.79 2.32 2.40 1.47 65.09 51.98 89.98 
13-1 74.41 15.00 38.71 1.84 2.17 1.25 65.66 49.34 92.18 
15-1 84.32 14.88 38.68 1.76 1.97 1.19 66.04 47.58 91.93 
17-1 103.17 14.89 38.68 1.75 2.41 1.15 66.98 45.39 90.71 
19-1 121.02 14.82 38.67 1.70 0.76 1.26 65.47 43.19 90.95 
93-1 146.80 14.62 38.65 1.66 7.56 1.14 68.11 41.87 86.31 
94-1 171.59 14.47 38.66 1.39 26.56 0.83 75.28 44.51 78.73 
95-1 187.45 14.46 38.66 1.29 28.93 1.14 72.64 45.24 78.73 
96-1 225.12 14.45 38.66 1.23 4.58 1.39 65.28 32.65 86.80 
97-1 247.91 14.44 38.67 1.20 3.04 1.36 65.85 29.28 86.31 
99-1 312.32 14.41 38.67 1.42 42.09 0.79 82.08 33.97 64.30 
100-1 293.50 14.42 38.66 1.62 30.47 0.62 81.51 30.75 67.48 
101-1 255.84 14.44 38.66 1.18 35.25 0.50 82.45 36.16 71.39 
23-4 18.85 14.21 26.49 4.92 12.68 2.91 32.08 71.30 60.39 
24-4 23.81 13.09 33.05 4.32 26.42 2.82 41.32 73.21 61.37 
25-4 28.77 14.10 37.33 0.68 11.14 1.76 54.34 59.44 100.00 
26-4 33.73 14.51 37.80 0.72 37.26 1.28 67.55 66.91 89.49 
27-4 39.69 14.87 38.23 1.10 34.38 1.34 68.68 66.03 88.51 
28-4 43.65 14.89 38.26 0.88 53.43 1.19 74.34 72.04 82.64 
29-4 49.61 14.97 38.38 0.91 39.49 4.40 36.04 83.90 97.07 
30-4 55.56 14.99 38.45 0.86 26.50 1.48 66.04 61.79 93.40 
31-4 60.52 15.01 38.47 0.81 16.34 1.85 60.00 59.30 98.29 
32-4 64.49 15.01 38.49 0.83 8.84 1.21 65.66 52.42 98.78 
39-4 98.21 14.77 38.64 0.64 13.94 0.54 74.15 46.27 94.13 
40-4 109.12 14.76 38.64 0.65 35.34 1.20 71.51 57.10 87.53 
41-4 118.04 14.74 38.64 0.65 25.67 1.17 70.00 52.12 90.22 
42-4 143.83 14.68 38.65 0.64 29.27 1.01 73.02 49.49 87.04 
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Table 5.13. Environmental scores for stations in the Aegean Sea. Separate transects are 

alternatively shaded or unshaded. Scores re normalized between 0 and 100, component 

by component across all seas. Bold scores are higher than 70. See Table 5.11 for a key 

to the meaning of each environmental component. 

SCORES 
Station Depth Temp. Salinity Oxygen Sand TOC EC1 EC2 EC3 

29-7 14.11 15.58 40.13 3.48 65.17 4.40 48.68 100.00 70.17 

30-7 20.16 14.44 40.77 3.82 57.26 1.48 77.55 78.62 58.68 

31-7 29.23 14.29 40.60 4.27 77.66 1.85 77.93 87.70 47.43 

32-7 39.31 14.27 40.72 7.32 82.35 1.21 90.57 86.53 16.87 

33-7 50.40 14.33 40.49 9.25 75.37 0.47 100.00 79.50 0.00 

35-7 71.57 14.56 38.78 7.18 64.07 0.05 98.11 69.55 19.07 

36-7 78.62 14.55 38.81 6.65 71.39 0.32 96.23 72.91 21.27 

37-7 86.69 14.48 38.79 7.05 30.00 0.65 84.15 57.69 33.50 

38-7 97.78 14.67 38.88 6.91 16.67 0.74 81.13 51.83 39.85 

39-7 112.91 14.81 38.95 6.63 51.91 0.54 91.32 62.81 28.12 

40-7 142.15 14.66 38.97 7.26 11.58 0.87 80.19 45.53 36.43 

41-7 173.42 14.38 38.92 7.54 5.15 0.98 77.55 39.97 34.23 

42-7 201.66 14.26 38.92 7.17 2.34 1.05 76.04 35.58 36.68 

43-7 246.05 14.07 38.92 7.23 0.61 1.11 75.47 29.87 33.99 

44-7 298.53 13.83 38.91 7.33 0.89 1.06 76.60 23.43 29.10 

45-7 353.04 13.79 38.92 7.21 0.45 1.17 76.23 17.42 27.38 

46-7 501.49 13.66 38.97 7.19 0.46 1.15 79.43 0.00 18.58 

56-8 18.14 18.40 41.74 4.44 8.00 0.87 88.68 61.05 80.44 

55-8 26.21 17.88 40.98 4.67 7.00 0.54 89.81 57.39 75.55 

54-8 38.30 17.06 41.58 4.76 11.00 0.54 89.43 56.66 70.91 

53-8 49.39 16.87 39.14 8.42 59.00 1.11 94.34 79.36 20.78 

52-8 59.47 16.60 39.14 8.40 47.00 1.41 87.74 74.96 24.94 

51-8 66.53 16.46 39.13 5.80 19.00 1.81 73.40 63.84 58.19 
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of ~16 ·c, salinity of -38 %o, and sediments with total organic carbon percentage of 

~1.30% (Table 5.12). 

Environmental component 2 has a high positive loading for sand (% ), a moderate 

positive loading for total organic carbon (% ), and a very high negative loading for water 

depth (Table 5.10). This is a sandy shallow-water component with highest scores found 

in shallow waters(< 75 m) and sandy bottom sediments (Tables 5.11, 5.12, 5.13). A 

typical station for this component is station 29 in transect 7 with water depth of 14 m and 

65.1 7 % sand. In contrast, station 46 in transect 7 had the lowest score because this 

station is the deepest station (501 m) and it had a very low percentage (0.46 %) of sand. 

The moderate loading on total organic carbon gives this variable less influence on 

individual scores. Thus, high component scores can be found at stations with low total 

organic carbon, for example station 84 in transect 3, and stations 33 and 36 in transect 7 

(Tables 5.11, 5.13). 

Environmental component 3 has a significant positive loading for temperature 

(°C), a negative loading for depth (m), and a very high negative loading for dissolved 

oxygen concentration (ml/l) (Table 5.10). This component signifies warm, shallower 

conditions with very low ( < 2 ml/1) dissolved oxygen concentrations. Highest scores 

were found mostly in the Marmara Sea (Tables 5.11, 5.12, 5.13). A typical station for 

this component is at 28m in station 25, transect 4, with very low dissolved oxygen 

concentration (0.68 ml/1). The lowest score was in the Aegean Sea, station 33, with very 

high dissolved oxygen concentration of9.25 ml/l. Temperature seems to have little 

influence on the distribution of the higher scores; for example, in the Marmara Sea the 
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highest scores are found at stations with water temperature between 14 °C and 15 °C. 

The reason might be the over-riding influence of the high negative loading of dissolved 

oxygen on environmental component 3. 

In an attempt to clarify the relationship between environmental components and 

physical oceanographic data along each transect, cross-plots were made of environmental 

scores and variables, transect by transect. Significant correlations between scores and 

variables from regression analysis were selected using the 5 % criteria for significance. 

These significant correlations are thrown graphically in Appendix C, and consistent with 

the interpretations given above. For instance, environmental score 1 showed a highly 

correlated reverse relationship with total organic carbon in transects 1, 4, 7 and 8 with 

correlation coefficients R2 = 0.62, 0.84, 0.90, and 0.83, respectively. Moreover, transect 

7 exhibited the reverse relationship between depth and environmental component 2, 

which reveals highest scores of environmental component 2, with correlation coefficient 

(R2
= 0.87). As an example for environmental component 3, dissolved oxygen and sand 

percentage showed very high negative correlation with this component in transect 8 (R2
= 

0.98 and R2=0.96). 
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CHAPTER6 

DISCUSSION 

6.1. Assemblages and correlations with environmental data 

The study of faunal assemblages is important for marine geological studies 

because these assemblages can contain the naturally archived record of habitats and 

changing ecosystems. In this thesis, the faunal assemblages collected from the surface 

sediments are considered younger than ~2000 years and are assumed to have lived 

beneath the present-day water masses. The data presented in this thesis show that seven 

different qualitative mollusc assemblages reflect seven different sets of environmental 

parameters. Because a particular assemblage has specific environmental preferences, its 

presence in any given sample should help distinguish a particular water mass. For 

instance, assemblage 6 is dominated by Spisula subtruncata, which prefers a low

temperature (7- 8 °C), low-salinity (18- 19 %o) water mass and sediments formed of a 

mixture of sandy-clay and sandy-silt. Similarly, the presence of species of assemblage 3 

in any sample would suggest a paleoenvironment defmed by high salinity (38 %o) shelf 

depths and sandy-silty-clay bottom sediments. To quantify such relationships, however, 

an appropriate statistical method must be employed, such as principal component 

analysis. 
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6.2. Regional distribution of faunal and environmental components, and procedures 

for predicting one from the other 

Principal component analyses showed that seven different faunal and three 

different environmental components explain 73.9% and 73.8% of the variance in the 

faunal and environmental data, respectively. Cross-plots of scores for the major faunal 

and environmental components revealed clear empirical relationships between data from 

the three oceanographically different seas. 

The aim of this section is to discuss clear correspondences between faunal and 

environmental components where they are both dominant (i.e. scaled score 2: 70). In 

cases where these criteria are satisfied, the data are said to have a high positive 

covariance (e.g. shaded area in Figure 6.1 ). The primary objective is to establish criteria 

to predict the environmental setting for the fauna in at a station or along a transect (or 

vice versa). If such clear relationships exist, then shells collected from marine cores, 

where the fauna but not environment is known, might be used to reconstruct past 

environments. 

To begin, the faunal and environmental scores from the two separate principal 

component analyses were cross-plotted. All of these plots are presented in Appendix D, 

and those which provide the ability to predict the environment from the fauna are 

discussed more fully here. 

The score plot for faunal component 1 (FC 1) versus environmental component 1 

(EC 1) effectively separates the Marmara Sea and the Aegean Sea stations from the Black 

Sea stations (Figure 6.1 ). The Aegean Sea stations show the highest scores and the Black 
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Figure 6.1. Score plot for faunal component 1 versus environmental component 1. 
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Figure 6.2. Score plot for faunal component 1 versus environmental component 3. 
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Sea stations show the lowest scores. The high salinity of the Aegean Sea and low salinity 

of the Black Sea drive EC 1 and have a clear correlation with FC 1. The score plot for 

FC 1 versus EC 2 does not show good separation between the three seas because EC 2 

(see Appendix D) is mostly related to sediment types. Instead, the high scores of 

environmental and faunal components reflect sandy shallow stations with high salinities 

(shaded area in the plot). The score plot for FC 1 versus EC 3 does not reveal a good 

separation between data from the Black Sea and the Aegean Sea, but the Marmara Sea is 

well separated (Figure 6.2). The data points in the shaded area are mostly from the high 

salinity, warm and poorly oxygenated Marmara Sea stations (Figure 6.2). 

The score plot for faunal component 2 (FC 2) versus environmental component 1 

(EC 1) clearly separates the Aegean Sea and the Marmara Sea stations from the Black 

Sea stations (Figure 6.3). The shaded area in this cross-plot corresponds to high salinity, 

poorly oxygenated conditions, and sediments with low total organic carbon. Stations are 

the Marmara Sea stations and the Black Sea stations scatter separately to them. Black 

Sea stations scatter separately because they possess moderately oxygenated water masses 

and high total organic carbon in the sediments. The scatter plot of FC 2 versus EC 2 does 

not show any significant clustering. The scatter plot of FC 2 versus EC 3 shows a subset 

of the samples from the poorly oxygenated shallow Marmara Sea in the shaded area 

(Figure 6.4). In contrast, samples from the well-oxygenated Aegean Sea have low faunal 

and environmental scores in this plot. 

The score plot for faunal component 3 (FC 3) versus environmental component 1 

(EC 1) separates the Black Sea stations with low scores from the Aegean Sea and the 
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Marmara Sea stations (Figure 6.5). The shaded area in the lower left of the plot 

corresponds to Black Sea sediments with high total organic content. The rest of the plot 

in Figure 6.5 does not show any distinct separation. The scatter plot of FC 3 and EC 2 

does not any specific clusters. The reason for this might be that environmental 

component 2 only reflects sediment type not water mass difference. The scatter plot of 

FC 3 versus EC 3 does not show a good separation of data from the different seas. 

The cross plots for faunal component 4 (FC 4) versus environmental components 

1 to 3 also do not show clear relationships between faunal and environmental components 

(Appendix D). A potential reason is the low percentage (9.70 %) of the variance that is 

explained by faunal component 4. It might, indeed, be expected that the more minor 

principal components (those accounting for less variance) would be less likely to provide 

good separation between clusters of data. Only the cross plot for FC 4 versus EC 2 

clearly distinguishes the low-salinity, shallow and sandy Black Sea stations from the 

high-salinity, deeper-water Aegean Sea stations (shaded areas in Figure 6.6). 

The cross plots of faunal components 5 to 7 versus environmental components 1 

to 3 do not reveal any evident correspondences between faunal and environmental 

components (Appendix D). This is again attributed to the low amount of the population 

variance accounted for by these faunal components. 

According to Figures 6.1-6.6 very few of the faunal and environmental score 

cross-plots separate various datasets. Cross-plots ofFC 1/EC 1, FC 2/EC 1, and FC 3/EC 

1 nicely separate the Black Sea from the Marmara Sea and the Aegean Sea. Because EC 

1 is a highly saline, warm water mass with low total organic carbon sediment 
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the Black Sea samples can easily be separated. In order to be able to see the difference 

between the Marmara Sea and the Aegean Sea, another cross-plot needs to be checked. 

For example, the FC 1/EC 3 cross-plot can be used. In this plot EC 3, which is a shallow 

water depth, warm and poorly oxygenated water mass indicator that helps to distinguish 

the Marmara Sea stations from the Aegean Sea stations. 

6.3. A practical application of the quantitative results 

The assemblages (faunal components) identified by PCA have potential value as 

predictive tools for the evaluation of past paleoceanographic parameters in core samples, 

or in other samples with unknown environmental affinities. In this section, a procedure 

will be set out for application of the quantitative results to interpretation of faunal 

assemblages in cores. In order to be able to reliably use these faunal components to 

interpret core data, however, some possible complications, such as time averaging, and 

physical and bioturbational reworking must be taken into account. Each of the possible 

complicating factors will be briefly discussed. 

Time averaging is the stratigraphic mixing of non-contemporaneous individuals in 

single samples. This is a function of sedimentation rate, the rate of sediment reworking 

by bioturbational and physical processes, and the burrowing depths of infaunal molluscs 

(Powell et al., 1989). It is important to understand sources of variation in taphonomic 

rates and processes over time and their influence on the vertical distribution of species in 

cores, because time averaging also increases the chance of preservation of a species by 

input from many generations. Although the preservation potential of an individual 
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specimen is low, the chance of preservation of any species through time averaging is 

high. As a result, most preservable species found in the living community are ultimately 

preserved in the geological record. In other words, at least some individuals are present 

in the death assemblage. In addition, the death assemblage in a core potentially contains 

many species which might not be found in surface-sediment samples due to rarity of the 

organism. The counterpoint to these arguments, however, is that core samples are 

necessarily small, and rare genera might not be captured in the limited amount of material 

available for study. 

Allochthonous shells are shells which have undergone lateral transport between 

habitats. Although most shells are moved from the actual site of death, most post

mortem transport is within the habitat rather than over long distances (Powell et al., 

1989). Reworked (parautochthonous) shells are shells which have been relocated by 

bioturbation or predation. Bioturbation is an important process during burial but 

bioturbational reworking rates are usually slow relative to most taphonomic processes 

(Powell et al., 1989). There is often an inverse relationship between bioturbation and 

preservation, so that preservation is generally better in less bioturbated sediments. In a 

core sample, the effect of bioturbation can most easily be evaluated where there is 

lithologic contrast. Bioturbation might be less evident in the rest of the core. 

Each specific environment is represented by different physical, chemical, and 

biological processes; these processes leave a unique and predictable signature on a faunal 

assemblage forming under these conditions (Powell et al., 1989). For mollusc 

assemblages from present-day sediments, the shells were treated as if the molluscs had 
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died very recently, under modem conditions, and these assemblages were used to 

characterize environmental parameters. Minor reworking was assumed to not affect these 

results. In a core study, if the effects of time-averaging, transportation within the habitat, 

and bioturbation are minimal, then it is believed to be valid to use the mollusc 

assemblages as paleoenvironmental indicators for the succession of past environments 

that existed during accumulation of the cored sediment. 

In order to check the validity of using principal components as a tool to 

reconstruct the history of Marmara Sea Gateway from mollusc assemblages, a core 

(MAR 02--45P) from the Black Sea was chosen and its mollusc assemblages were used to 

calculate scores for the same faunal principal components which had been developed 

using the modem seabed samples. In effect, the ancient core samples were treated as 

"unknowns" to see if they could be correctly classified and interpreted in the context of 

modem faunal communities and modem environmental parameters. As will be seen, the 

different species assemblage found in parts of the core, as compared to the surface grab 

samples, restricts the application of this test. Nevertheless, the procedure itself is 

advocated here as an approach to the evaluation of past environments using the 

quantitative surface data gathered for this thesis. 

6.4. The Black Sea core, MAR 02-45P 

MAR 02--45P is a 850 em piston core which was raised from the mid-shelf setting 

(69 m) in the southwestern Black Sea (Figure 3.1, 6.7). The location is 41 °41.17' N 

latitude and 28°19.08' E longitude. MAR 02--45P can be divided into four units and 
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Figure 6.7. Description of core MAR 02-45 (R. Hiscott, pers. comm. 2005). The 
subdivision of Unit 2 is based on the frequency of shelly interbeds. 
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subunits (Hiscott et al., 2005; pers. comm.). Unit 1 is a burrowed, colour-mottled silty 

mud. Unit 2 is a burrowed, colour-mottled silty mud with shell beds and high total 

sulphur content. It can be divided into an upper subunit 2A with common shell beds and 

a lower subunit 2B with thin sand beds only. Unit 3 is a colour-banded and mottled silty 

mud with common silt to fine sand laminae (Figure 6. 7). Several uncalibrated 14C dates 

obtained from mollusc shells constrain the ages of Units 1, 2A, 2B and 3 to ----0-2400 

yrBP, ~2400-6500 yrBP, ~6500--8400 yrBP, and ~8400--9350 yrBP, respectively (Table 

6.1). 

Mollusc shells are present throughout the core, and 12 species were identified in 

the same way as the modem molluscs were identified in chapter 4. Only five of these 

species are also present in significant numbers in the surface samples (Table 5.5). This 

fact alone limits the effectiveness of using the surface assemblages to interpret the core 

assemblages. Ideally, the core and the surface samples would contain the same 

complement of organisms, so that each core assemblage would have a counterpart in the 

modem environments of the gateway. 
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Table 6.1. Radiocarbon ages for core MAR 02-45P reported as uncalibrated 

conventional 14C dates in yrBP (half-life of 5568 years; errors represents 68.3% 

confidence limits). 

Depth Dated material 14C date 
33 em Spisula subtruncata 730±40 
158 em Mytilus edulis 2400±60 
220cm Mytilus edulis 5190±50 
302cm Mytilus galloprovincia/is 5900±60 
406cm Anadara spp. 7560±60 
495 em Truncatella subcy/indrica 8380±70 
569cm Anadara spp. 8570±70 
639cm Anadara spp. 8620±70 
754cm Dreissena polymorpha 8840±70 
810cm Mytilus edulis 9370±70 
822cm Dreissena polymorpha 9340±70 
835 em Cyc/ope donovani 9070±70 

Abundances of species were calculated as a percentage for each unit and subunit 

of the core, using the following equation, modified for the various species encountered: 

Species A percentage= 100 x (number of shells of species A in a unit) I Total 

number of shells in that unit) 

Percentage data are listed in Table 6.2. 

In the surface transects, quadrats were defined to include geographically adjacent 

samples confined to the same water mass, and with similar sediment textures. Jn·core 

MAR 02-45P, the conceptual equivalent of a surface quadrat is taken to be a relatively 

homogeneous facies that presumably formed under a distinct set of hydrodynamic 
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conditions. Such facies have stratigraphic thickness, so formed over a significant interval 

of time. Walther's law (Middleton, 1973) describes how facies belts shift through time to 

produce a stratigraphic record. Hence, a facies in a core can be thought of as the record 

of deposition beneath spatially separated sites passing sequentially over the core site as, 

for example, the shoreline and isobaths shift landward during a transgression. Viewed in 

this way, it is logical to associate seabed quadrats of a single age (e.g. the present) with 

facies of finite thickness in a core. The simplest facies subdivision of core MAR 02-45P 

is at the level of lithologic Units 1 to 3. 

Table 6.2. The percentage distribution of mollusc species within each unit. The most 

abundant key species are shown in bold characters. 

Unit 1 Unit2A Unit2B Unit3 In rabs 
ittium reticulatum 30.56 1.68 0.00 0.00 

.pisula subtruncata 27.78 1.67 0.00 0.00 + 
canthocardi paucicostata 12.22 0.00 1.10 0.00 
bra alba 8.33 0.00 0.00 0.00 + 

Turritella communis 3.70 0.00 0.00 0.00 + 
ytilus galloprovincialis 9.26 50.58 3.46 0.00 
odiolula phaseolina 0.00 5.35 0.00 0.00 + 
etusa truncata 0.00 4.78 0.00 0.00 

Truncatella subcylindrica 4.44 23.73 38.00 16.27 
arvicardium exiguum 0.00 6.65 52.31 53.34 + 
reissena polymorpha 3.70 0.00 5.13 24.14 

0.00 5.56 0.00 6.25 
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Inspection of Table 6.2 shows that each unit and subunit in core MAR 02-45P 

had different fauna. Mostly Mediterranean immigrant molluscs, such as Bittium 

reticulatum, Spisula subtruncata, Acanthocardia paucicostata, A bra alba, Mytilus 

galloprovincialis, Turritella communis, Truncatella subcylindrica and Dreissena 

polymorpha characterize Unit 1. The high frequency occurrence of Spisula subtruncata 

and Bittium reticulatum suggests that Unit 1 formed under conditions similar to the 

present-day Black Sea oceanography, because on the transects Spisula subtruncata is 

only found in the Black Sea grab samples. 

Unit 2A is characterized by Mytilus galloprovincialis, Modiolula phaseolina, 

Truncatella subcylindrica, Retusa truncata, Parvicardium exiguum and Rissoa spp. 

Among these species, Mytilus galloprovincialis and Truncatella subcylindrica have the 

highest abundance. These two species have euryhaline and eurytherm preference; thus, 

they are not good environmental indicators. However, the occurrence of Modiolula 

phaseolina suggests that Unit 2A formed in a low salinity ( ~ 18 %o) environment such as 

that of the present-day Black Sea. 

Unit 2B is characterized by the highest abundances of Truncatella subcylindrica, 

and Parvicardium exiguum. These are Mediterranean species which live today in the 

Black Sea and have a wide range of salinity preference. Low abundances of 

Acanthocardia paucicostata, Mytilus galloprovincialis and Dreissena polymorpha are 

also characteristic of Unit 2B. Although it is very minor in abundance, the occurrence of 

bivalve Dreissena polymorpha, which is an endemic species of the Pontic-Caspian Basin, 

indicates a brackish (<15 %o) water mass during the accumulation of Unit 2B. 
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Unit 3 is characterized by high abundances of Truncatella subcylindrica, 

Parvicardium exiguum, Dreissena polymorpha and Rissoa spp. As noted for Unit 2B, the 

species Truncatella subcylindrica, Parvicardium exiguum and, in addition, Rissoa spp. 

are Mediterranean species that live in the Black Sea. However the occurrence of the 

Pontic-Caspian species Dreissena polymorpha indicates brackish to fresh water 

conditions. 

The Unit 2B and Unit 3 molluscan assemblages were not encountered in any of 

the surface grab samples, where the brackish water bivalve Dreissena polymorpha was 

never found. Mytilus galloprovincialis, Retusa truncata, Truncatella subcylindrica and 

Rissoa spp. were also not encountered in surface samples. 

The four units and subunits can be readily distinguished based on fauna alone in 

down-core plots of the abundances of the key species for Units 1, 2A, 2B, and 3 (Figure 

6.8). 

Core MAR 02-45P includes a nearly continuous succession dating from -10000 

yrBP, and thus provides a unique opportunity to test the validity of using the principal 

components determined from the surface samples to deduce past environments in a core. 

Only five mollusc species were found both in the core and in surface samples: Spisula 

subtruncata, Modiolula phaseolina, Turritella communis, Abra alba, and Parvicardium 

exiguum. The surface grabs lack 2 of 3 key species for Unit 1; 2 of 2 key species for 

Subunit 2A; 1 of2 key species for Subunit 2B, and 1 of2 key species for Unit 3 {Table 

6.2, bold entries). 

174 



Abundance (%) 

Ao 0 25 50 75 100 BO 25 50 75 100 co 25 50 75 100 n o 25 50 75100 

20 
40 
60 • • 
80 Unit 1 

100 • • 
120 
140 ___ ... ______ 

--------- ---------160 

~ • • 180 
200 .(. 220 / ( 240 

Unit 2A 260 ,.--._ __ s ___ s 280 

~ u 300 '-" • 
...c:: 320 ...... 
0.. 340 --------- ---------(!) 

Q 360 { ~ 380 
400 
420 
440 • Unit 2B 
460 • __ -:5 ___ 480 
500 • 
520 -+--------- ---·------ --.------· 
540 • : 
560 

~ 
• 

580 • 

~ 600 

~ 620 
640 • 660 
680 Unit 3 
"mD 
720 
740 
760 

~ 780 
800 
820 • 

Figure 6.8. Sample-by-sample downcore plots of the sum of the percent abundances of 
the key species for each unit (bold taxa in Table 6.2) in core MAR 02-45P. Although 
small numbers are present outside the unit where the particular species are abundant 
(Table 6.2), there is a sharp difference in abundance with depth. "A" indicates three 
key species; "B" indicates two key species; "C" indicates two key species; "D" indicates 
three key species. 
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The first step in testing the principal component method was to recalculate the 

five mollusc species listed above to 100% (Table 6.3). This is effectively the same as 

performing the recalculation on the same 12 species used for determining the scores for 

surface samples, because seven of these surface species = 0 % in the core. Then, these 

recalculated data were standardized by subtracting the mean percentage for the surface 

samples and then dividing the result by the standard deviation for surface samples. This 

effectively scaled the standardized core data in a manner identical to the way that 

individual surface samples had been treated. Next, faunal scores were calculated for each 

of the four units/subunits using the standardized abundances (now dimensionless) and the 

principal component coefficients from the surface mollusc data (i.e. Table 5.5. values). 

This procedure effectively treats the core data for the four units/subunits as if they are 

"unknown" surface samples. The aim is to attempt to correctly classify the core samples 

in the context of what has been learned about surface assemblages. The aim here is not to 

come to definitive conclusions about the origin of the facies in core MAR02-45P, but 

rather to demonstrate a method which can later be applied to a number of cores in the 

gateway area, or which can be modified as the quantity of modem grab samples from a 

wider range of, in particular, brackish-water settings is augmented. 
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Table 6.3. Percentages of core species also found in the surface samples. 

Species Unit 1 Unit 2a Unit 2b Unit 3 

Spisula subtruncata 4.76 33.33 0.00 0.00 

Modiolula phaseolina 0.00 33.33 0.00 0.00 

Turritella communis 23.81 0.00 0.00 0.00 

~bra alba 71.43 0.00 0.00 0.00 

Parvicardium exiguum 0.00 33.33 100.00 100.00 

Finally, the scores for the core units were scaled using the minimum and 

maximum scores, which themselves had been assigned values ofO and 100. This was 

done by applying the same spreadsheet equations to the scores for the core units/subunits 

that had been used to scale all of the scores for the surface samples. After completion of 

all these steps, the faunal data for a core unit would have a score of 50 (on a scale of 0-

100 for surface samples) if it had the same raw mollusc percentages as a surface sample 

with a score of 50. Normalized scores are listed in Table 6.4. The highest scores for 

each unit/subunit identify the modem faunal components which are most strongly 

represented in the data. The environmental implications of those dominant components 

can then be used to assess the likely paleoenvironments. 

In order to be able to make some arguments about the faunal affinities of each 

unit/subunit in core MAR 02-45P, histograms were first plotted for surface faunal 

component scores (Figure 6.9). Normalized faunal scores for each core unit were then 

superimposed in these histograms to discover the closest correspondence between the 

ancient units/subunits and the modem faunal assemblages. 
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Table 6.4. Normalized faunal scores for mollusc species in each core unit. Bold 

values are considered as the more significant scores. 

Units Score 1 Score 2 Score 3 Score 4 Score 5 Score 6 Score 7 

Unit 1 22.90 36.64 51.07 22.00 43.51 41.69 28.50 

Unit2A 18.69 55.73 15.58 66.41 43.44 49.96 20.85 

Unit 2B 14.41 60.75 -0.39 42.61 66.20 84.67 18.37 

rtJnit 3 14.41 60.75 -0.39 42.61 66.20 84.67 18.37 

Histograms for faunal component 1 (supported by Table 6.4) show that all units in 

core MAR 02-45P have low scores for this component. Normalized scores decrease 

from the top of the core downward. All units/subunits resemble the Black Sea FC 1 

scores (i.e. they are very low). 

Principal component 2 signifies a poorly oxygenated water mass; Marmara Sea 

has the highest scores and the Aegean Sea has the lowest scores for this component. In 

core MAR 02-45P, this component increases with increasing depth. Unit 1 appears to 

have formed under an oxygenated water mass similar to the Aegean Sea, whereas the 

environmental setting of Units 2A, 2B and 3 more closely resembles the Marmara Sea 

with its poorly oxygenated water mass. 

Unit 1 shows moderate scores for faunal component 3 (low TOC and cold water 

(<14 °C) component). Units 2A, 2B and 3 show scores lower than 20, typical of modem 

Black Sea scores. Hiscott et al. (2005) reported TOC values are as follows: Unit 1 ~ 1 % 

TOC, Unit 2A ~2% TOC, Unit 2B 1-2% TOC and Unit 3 less than 1% TOC. Thus, 

except for Unit 2A all units should have had high scores for faunal component 3 if TOC 
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were the primary control. On the other hand, temperature also controls this component. 

The low scores can also be explained by high temperature or poor match between the 

species in the core and the species in the grab samples. 

Principal component 4 is a low-salinity water mass component and has its 

highest scores in the Black Sea grab samples and moderate scores for surface samples 

from the Aegean Sea and the Marmara Sea. The scores for the MAR 02-45P 

units/subunits are between 20 and 70 so do not resemble scores for a specific sea. 

Histograms for principal component 5, a high-salinity water mass indicator, show 

high scores for the Aegean Sea and the Marmara Sea and low scores for the Black Sea. 

Unit/subunit scores are uniformly moderate for this component, and are thus not 

particularly diagnostic. 

Principal component 6 reflects mixing of high- and low-salinity water masses; 

thus, the Marmara Sea has some high scores. Overall except for a few low values in the 

Black Sea, all three seas have similar scores at about 50-60. Core Units 1 and 2A have 

low scores, suggesting no correlation with this component. Units 2B and 3 show high 

scores resembling those in the modem Marmara Sea. 

Faunal component 7 only shows a few higher scores in the Marmara Sea, and is 

otherwise quite low in all seas. Hence, it is a poor discriminator. None of the 

units/subunits in core MAR 02-45P have high scores. 

In summary, the faunal component scores for the four units/subunits in core MAR 

02-45P, when compared to the histograms derived from surface samples, provide little 

basis for making strong interpretations about the changing paleoenvironment. The most 

181 



that can be said is that Unit 1 (based on FC 1 scores) likely accumulated under conditions 

like those in the modem Black Sea. Unit 3 also shows some faunal similarities with the 

Black Sea (based on FC 3 scores), but is unlike typical samples from any modem sea 

when FC 6 is considered. 

The ability to assign an environmental interpretation to each core unit is 

dramatically weakened for the following four reasons: 

1. Only five species that were used in the principal component analysis on surface 

samples are present in the core MAR 02-45P; 

2. Among the seven key species that are abundant in the core units/subunits, only 

two are present in the surface samples (Table 6.2); 

3. The other three species which are common to the core and the surface study are 

very low in abundance in the core units/subunits; 

4. Moreover, there was a sample size difference between the core samples and the 

grab samples i.e. core width is 67 mm however grab sampler width is 25 em. 

In hindsight, these results suggest that core MAR 02-45P was a poor candidate to 

test the efficiency of applying the results of the principal component analysis on the 

modem fauna to ancient mollusc communities. This is because the mollusc assemblage 

in this core is too different from the assemblage in the surface samples. In particular, the 

species in Units 2B and 3 are outside the boundary parameters of the grab-sample 

transects because their mollusc assemblages are even different from the present-day 

Black Sea faunal assemblages where they were studied for this thesis. 
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In order to increase the number of overlapping species between the surface and 

core samples, one approach might be to designate proxy species (in the core) for surface 

species that contribute to the calculation of faunal scores. For example, Bittium 

reticulatum, Acantocardia paucicostata and Mytilus galloprovincialis are not present in 

the surface samples so do not contribute to the calculation of principal-component scores. 

These species have euryhaline and eurytherm preferences similar to Turritella communis 

and Modiolula phaseolina. Instead of taking the abundance of the gastropod Bittium 

reticulatum to be zero, the percentage of gastropod Bittium reticulatum might be 

substituted, and multiplied by the coefficient for Turritella communis when calculating 

the scores for FC1 to FC 7. Similarly, Mytilus galloprovincialis might be paired with 

Modiolula phaseolina because of their similar environmental preferences. However, this 

approach might not work well, even if the paired species prefer similar oceanographic 

conditions, because they might have different substrate preferences. Ideally, the better 

solution would be to broaden the spectrum of modem environments and mollusc 

assemblages, in order to develop a more powerful set of faunal components which have 

greater species overlap with the assemblages in the core(s). 

In order to take the suggestion in the preceding paragraph one step further, the 

scores for FC 1 were recalculated with the two proposed proxy substitutions (Bittium 

reticulatum for Turritella communis; Mytilus galloprovincialis for Nucula nucleus). The 

scores for Units 1, 2A, 2B and 3 are then 54.30, 49.87, 14.41 and 14.41, respectively. 

This approach increased the scores for Units 1 and 2A and can be changed the 
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interpretation of Units 1 and 2A as more saline waters and sandy sediments but still 

resembling the Black Sea waters. 

Because of too small an overlap between the species in the core and the species in 

surface samples, the application of the results of the principal component analyses to the 

interpretation of the past environments was not a success. In order to overcome this data 

deficiency and to be able to more profitably apply results from the principal component 

analysis, different sampling strategies and sampling densities will be required in future 

work. This is true for both surface samples and core samples. For surface sample 

collection, longer depth transects should be sampled at 5 m depth increments from ~ 1 0 m 

water depth to the shelf edge, and then at 10 m depth increments from the shelf edge to 

significantly greater depths in the Marmara Sea, the Black Sea and the Aegean Sea. 

More importantly, transects must be completed in extreme marginal environments like 

the low-salinity estuaries at the mouths of major rivers entering the Black Sea, and in the 

Sea of Azov. It is in these settings that various species of Dreissena live today. Cores 

should be collected from many different subbasins in the Black Sea or in the Marmara 

Sea to be able to see different ecological settings. Moreover, in order to do quantitative 

environment estimates, a more traditional approach of developing a transfer function 

should be undertaken. With a new and more comprehensive set of data, a transfer 

function could be derived using factor analysis and multiple regression analysis (Kipp, 

1976). 
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CHAPTER7 

CONCLUSION 

The main objective of this thesis was to determine the ecological characteristics 

of mollusc assemblages in the Black Sea, the Marmara Sea and the Aegean Sea surface 

sediments and their relations with present day physical oceanographic parameters such as 

temperature, salinity, dissolved oxygen. The following salient conclusions summarize 

the findings in this thesis: 

1. Summer CTD measurements along transects 1 and 4 in the Marmara Sea 

revealed the presence of two water masses separated by a mixing zone. The upper 1 0 m 

of the water column is characterized by the low (21-24 o/oo) salinity and seasonally high 

(24-27 OC) temperature, representing the Black Sea outflow into the Marmara Sea. The 

mixing zone (thermocline-halocline-pycnocline layer) occupies between ~10m and ~30 

m and is identified by a temperature decrease and a salinity increase with depth. The 

deeper water mass occupies depths below ~30m and is characterized by high (37--41 %o) 

salinity and low (15-18 OC) temperature: it represents the Aegean Sea intrusion into the 

Marmara Sea. Dissolved oxygen concentration values are generally low in the upper 

water mass, high in the mixing zone and low in the bottom water mass, depending on 

seasonally high secondary production, high primary production and oxidation of sinking 

particulate organic matter from the surface water mass, respectively. Grain-size analyses 

showed that in the Marmara Sea, there is a general trend towards finer sediment from the 

shore into the deeper water. The TOC data showed that the organic content of the surface 

sediments are generally higher (1.20-1.80 %) in shallower depths than in those found in 
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from deep water sediments (>100m) where TOC values range between 0.60% and 0.80 

%. The isotopic data showed that the 813C of the TOC is predominantly marine in origin. 

2. Summer CTD measurements along transects 2 and 3 reveal the presence of 

three water masses and a mixing zone. The surface water mass occupies the upper ~ 1 0 m 

of the water column, and is identified by seasonally high (25-27 ·c) temperatures and 

low (17-18 %o) salinity values. The mixing zone delineated by the combination of the 

thermocline-halocline-pycnocline occupies depths between~ 10m and ~20 m, and shows 

~ 2 %o increase in salinity and ~ 1 0 • C decrease in temperature. Below this layer 

extending down to ~40 m deep, a water mass with salinity of20--23 %o and temperatures 

of 10--12 ·cis distinguished: this water mass represents the penetration of Mediterranean 

waters into the Black Sea. The lowest water mass is characterized by low temperature 

(7-8 ·c) and salinity (18- 20 %o ). Dissolved oxygen concentrations are generally high 

(6--8 ml/1), reflecting the excess nutrient input from the large rivers such as, Danube, 

Don, Dnieper, Dniester. Grain size analyses show that surface sediments generally 

consist of a mixture of clayey-silt, silty-clay and sandy-clay. Total organic carbon 

content of the surface sediments ranges between 0.51% and 4.62% with ~55-60% TOC 

being of marine origin. 

3. Summer CTD measurements along transects 7 and 8 reveal the presence of 

two water masses and a mixing zone in the Aegean Sea. The surface water mass 

occupies at upper 10 m of the water column and is identified by seasonally high 

temperature (23- 25 ·c) and relatively low salinity (32-35 %o), representing the Black Sea 

water outflow into the Aegean Sea. A ~10 ·c decrease in temperature and ~7 o/oo increase 

186 



in salinity with increasing water depth characterize the mixing zone. The lower water 

mass is identified by relatively cold (14-16 ·c) and high salinity (39-40 %o) conditions. 

The dissolved oxygen profiles are generally high ( 4-8 rnVl) because of wind mixing and 

wave activity. Grain size analyses show that surface sediments consist of sand in depths 

<90 m and muddy sediments found farther offshore. Total organic carbon content in the 

surface sediments is generally between 0.05 and containing 1.85 % organic carbon of 

marmeongm. 

4. Three classes of Mollusca (Gastropoda, Bivalvia, Scaphopoda) and 77 species 

were identified in the grab samples. The absence and presence data in quadrats 

delineated seven different mollusc assemblages, with each assemblage representing a 

distinct set of environment. Assemblage 1 (A 1) is dominated by Calliostoma conulus, 

Bittium reticulatum, Timoclea ovata, Gouldia minima, Pitar rudis and Gadulus politus 

and it is interpreted as an indicator of high salinity and a sandy-mud substrate. 

Assemblage 2 (A 2) is dominated by Turritella communis, Nucula sulcata, Dentalium 

dentalis and Entalina tetragona and is interpreted as an indicator of high salinity and 

muddy conditions. The high abundances of Nucula nucleus, Mytilaster lineolatus, and 

Corbula gibba characterize Assemblage 3 (A 3) and it represents Mediterranean 

environmental characteristics in the Marmara Sea. The occurrence of Nucula nucleus, 

Nucula sulcata, Nuculana commutata, Timoclea ovata, and Corbula gibba characterized 

the Assemblage 4 (A 4) and it is representative of high (5.8-8.4 ml/1) dissolved oxygen 

concentrations in the Aegean Sea. Assemblage 5 (A 5) is dominated by Abra alba, 

Loripes lucinalis and Dentalium dentalis and it represents a clayey-silt substrate. 
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Assemblage 6 (A 6) is dominated by Modiolula phaseolina, Spisula subtruncata and 

Bittium reticulatum and it is interpreted as an indicator of low temperature (7-8 °C) and 

low salinity (18- 19 %o) water masses of the Black Sea. 

5. Principal component analysis was used to determine mollusc faunal 

assemblages and their relationship with the environmental variables. Seven hypothetical 

faunal assemblages were extracted. Faunal component 1 is interpreted as an indicator of 

high salinity waters and sandy bottoms and scores because this component are highest in 

the Aegean Sea, moderate in the Marmara Sea, and lowest in the Black Sea. Faunal 

component 2 is interpreted to indicate poorly oxygenated marine water masses and high 

scores occur in the Marmara Sea, whereas moderate scores occur only in two stations in 

the Black Sea. Faunal component 3 is interpreted as an indicator of sediments with low 

(<1.5 %) total organic carbon and warmer bottom waters temperatures and high scores 

occur only in the Marmara Sea and at two stations of the Aegean Sea. Faunal component 

4 is interpreted as an indicator of low salinity water mass and high scores occur in the 

Black Sea, whereas moderate scores are characteristic of the Marmara Sea. Faunal 

component 5 is interpreted as an indicator of high salinity waters and this component has 

its highest scores in the Aegean Sea and in the Marmara Sea and lowest scores in the 

Black Sea. Faunal component 6 is interpreted as an indicator of the mixing of two high 

salinity and low salinity water masses. Component scores also show that this component 

is represented abundantly in the Marmara Sea, moderate in the Aegean Sea, and low in 

the Black Sea Faunal component 7 represents low dissolved oxygen waters and has very 
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low scores in the well-oxygenated waters of the Black Sea and the Aegean Sea, whereas 

high scores characterized the Marmara Sea. 

6. Three hypothetical environmental variables were extracted from the principal 

component analysis. Environmental component 1 indicates a high-salinity and warm

water component in association with sediments having low total organic carbon, 

explaining 31 % of the total variation. High scores for this component occur in the 

Aegean Sea, moderate scores occur in the Marmara Sea, and low scores occur in the 

Black Sea. Environmental component 2 is a sandy shallow-water component, explaining 

24.40 % of the total variation. High scores occur in shallow waters of all transects. 

Environmental component 3 signifies warm, shallower conditions with very low ( < 2 

ml/1) dissolved oxygen concentrations and highest scores are found mostly in the 

Marmara Sea. This component explains 18.40 % of the total variation. 

7. The cross plots of the faunal and environmental component scores reveal clear 

relationship between the three oceanographically different seas. The most effective 

separation is found in the FC 1 versus EC 1 cross-plot. In this plot, the Black Sea is 

clearly separated from the Marmara Sea and the Aegean Sea. The separation from the 

Marmara Sea to the Aegean Sea is found in the cross-plots of FC 1 versus EC 3 and FC 4 

versus EC 3. 

8. In order to check the validity of using mollusc assemblages as a tool to 

reconstruct the paleoenvironment, core MAR 02-45P was raised from the Black Sea. It 

was divided into 4 units and subunits and each unit/subunit was considered as quadrats in 

the surface samples. Unit 1 is dominated by Bittium reticulatum, Spisula subtruncata, 
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Acanthocardia paucicostata, A bra alba, Mytilus galloprovincialis, Turritella communis, 

Truncatella subcylindrica and Dreissena polymorpha. The highest occurrence of Spisula 

subtruncata and Bittium reticulatum suggested that Unit 1 formed under conditions 

similar to the present-day Black Sea environment. Unit 2A is characterized by Mytilus 

galloprovincialis, Modiolula phaseolina, Truncatella subcylindrica, Retusa truncata, 

Parvicardium exiguum and Rissoa spp. The occurrence of Modiolula phaseolina 

suggests that Unit 2A formed in a low salinity (~18 %o) environment such as that of the 

present-day Black Sea. Unit 2B is dominated by Truncatella subcylindrica, 

Parvicardium exiguum, Acanthocardia paucicostata, Mytilus galloprovincialis and 

Dreissena polymorpha. The occurrence of bivalve Dreissena polymorpha, which is an 

endemic species of the Pontic-Caspian basin, indicates a brackish ( <15 o/oo) water mass 

during the accumulation of Unit 2B. Unit 3 is characterized by Truncatella 

subcylindrica, Parvicardium exiguum, Dreissena polymorpha and Rissoa spp. The 

occurrence of the Pontic-Caspian species Dreissena polymorpha indicates brackish to 

fresh water conditions. 

9. In order to test the validity of using the principal components determined from 

the surface samples to deduce past environments in a core, same mollusc species found 

both in the surface samples and core units/subunits were used to calculate faunal scores 

for each unit/subunit. Normalized faunal scores for each core unit/subunit were then 

superimposed in these histograms to discover the closest correspondence between the 

ancient units/subunits and the modem faunal assemblages. All units/subunits resemble 

the Black Sea FC 1 scores. According to FC 2 scores, Unit 1 appears to have formed 
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under an oxygenated water mass similar to the Aegean Sea, whereas the environmental 

setting of Units 2A, 2B and 3 more closely resembles the Marmara Sea with its poorly 

oxygenated water mass. FC 3 scores showed that Units 2A, 2B and 3 had high TOC and 

warm water environment. MAR 02-45 scores did not resemble any surface FC 4 and FC 

5 scores. For FC 6, Units 1 and 2A have low scores, suggesting no correlation with this 

component. Units 2B and 3 showed high scores resembling those in the modem 

Marmara Sea. FC 7 was also a poor discriminator, none of the units/subunits in core 

MAR 02-45P have high scores. 

10. The faunal component scores for the four units/subunits in core MAR 02-

45P, when compared to the histograms derived from surface samples, provided little basis 

for making strong interpretations about the changing paleoenvironment. Because only 

five species that were used in the principal component analysis on surface samples were 

present in the core MAR 02-45P. Among the seven key species that were abundant in 

the core units/subunits, only two were present in the surface samples. The other three 

species which were common to the core and the surface study were very low in 

abundance in the core units/subunits. These results suggested that core MAR 02-45P 

was a poor candidate to test the efficiency of applying the results of the principal 

component analysis on the modem fauna to ancient mollusc communities. 

11. Too small overlap between the species in the core and the species in surface 

samples, the application of the results of the principal component analyses to the 

interpretation of the past environments was not a success. In order to overcome this data 

deficiency and to be able to more profitably apply results from the principal component 
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analysis, different sampling strategies and sampling densities for both surface and core 

samples will be required in future work. 
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APPENDIX A. CTD and mollusc species data in each of the sampling stations. 

Key for the Appendix A: 

Variables 

AI A2 A3 

Bl B2 B3 



.~ ~ 
~ ~ ·~~ ~' 

v ~~ ..... ~ ~·~ ·~§ ~ 
= ~ -:: ~ ~ s~s ~ ~~~ ~ ~ ~~ \: 

u --~ ~~~ ~~ ~~ ~~~~~~ ~·l.S ~·~ ~.~~~ ~"'E~ ~~ ·~ ~ ·- ~~~ ~- ~~~ ~ ~ -:: ~~~~ ~ ~o,o ~~~;: ~ ~~\!~ ~:: ~ ~~..~ . ~:: ~ = :1'!..,~ ~ - .... ~ .. "'"' .. ~~~~ s; ~ ~~~ ~ ~~ 

" s 

AI 

e~tc.~~ "'~~=~ ~ s .!!~,!!~~.~ ~~ ~ ·;~ ~ ~.~ • 
w t ~ ~ ) • ~ ~ t t i - ~ ~ ~ = . l ~ .... ~ ~ ~ 4 g ~ § ~ ~ ~ 

g i ~ c ~ ~ i t ~ g ~ ~ ~ a j ~ ~ ~ ~ I i J I i i i ~ ~ ~ ~ ~ i 1 
~ Q ~ ~ Q Q ~ ~ u ~ ~ ~ G G ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ G ~ ~ ~ ~ ~ ~ 
[.[ 13.!9 25.82 2~.84 14.00 3.96 20.]7 37.48 4~.15 1.31 -26.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2-l 17.!6 21.02 24.90 17.21 4.67 35.40 14.26 40.34 1.81 -24.]3 0.00 4.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 2.00 0.00 
3-l 2J.il 15.22 37.95 2i.JI 2.88 IO.J6 45.]4 44.]0 1.48 -24.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 000 
~-1 2!.77 15.65 38.05 28.19 2.72 38.08 17.53 44.39 132 -24.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 
5-1 34. 7J 16. II 3849 28.56 H9 2J.J I 29.05 47.64 1.09 -1W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
6-1 39.69 16.38 38.71 2!.69 3.76 30.J5 23.0! 46.57 1.32 -24.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 
7-l 44.65 16A9 3i.il 2i.li 3.!7 i.ii 48.04 46.41 l.l9 ·23.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
8-l 48.61 16.6! 3!.93 28.!3 4.09 ll.i6 38.00 50.44 136 ·23.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
9-l 54.57 16JO 38.89 2!.92 3.J I 5.12 44.56 50.]2 l.l8 ·23.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
10-l 59.53 16.25 3!.97 29.01 3.94 U7 39.22 55.92 I.JS ·2lA9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Il-l 64.49 15.65 38.85 29.09 2.46 6.49 37.i0 56.01 I.JI ·23.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
12-l 69.45 15.]7 38.79 29.12 2.32 2.40 40.21 57.)9 1.47 ·21.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
[J.[ 74.41 15.00 38.71 29.17 1.84 2.17 42.07 55.76 1.25 ·23.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
15·1 !4.]2 14.ii 38.6! 29.22 1.76 1.97 42.07 55.95 1.19 ·23.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
17-l IOl.ll 14.89 38.68 29.JO 1.75 2.41 3!.72 58.!7 1.15 ·23.JO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
19·1 121.02 14.82 38.67 29.]8 1.70 0.76 41.65 57.59 1.26 ·23.]3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
91-l l2J.OO 14.!8 38.69 29.39 1.76 0.75 57.31 41.93 1.27 -23.]8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
92-l 138.!7 14.64 38.65 29.49 1.66 0.72 60.17 39.11 IJ4 ·21.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
93-l 146.80 14.62 38.65 29.53 1.66 7.56 52.66 39.7! 1.14 ·21.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
94-l 171.59 14.47 38.66 29.68 1.39 26.56 43.34 30.10 0.83 ·23.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
95-l 187.45 14.46 38.66 29.76 1.29 28.93 41.55 29.52 1.14 ·23.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
96-l 225.12 14.45 38.66 29.93 1.23 4.58 53.44 41.98 1.39 ·23.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
97-l 247.91 14.44 38.67 30.03 1.20 3.04 59.02 37.94 l.l6 ·2l.3l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
98-l 347.98 14.40 38.67 30.48 1.23 9.04 54.28 36.6! 0.74 ·24.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
99-l 312.32 14.41 38.67 30.32 1.42 42.09 37.76 20.14 0.79 ·2353 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
100.[ 293.50 14.42 38.66 30.24 1.62 30.47 42.32 27.21 0.62 ·2359 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
lOl-l 255.84 14.44 38.66 30.06 l.l8 35.25 41.06 23.69 050 ·23.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.GO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
59-2 83.33 7.74 18.96 15.13 4.14 2.23 66.34 31.42 2.59 ·23.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
58-2 89.28 7.77 19.02 15.21 2.53 4.10 66.60 29.30 2.66 ·23.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 '0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
56-2 9!.21 7.88 19.35 15.49 2.59 2.34 67.94 29.72 1.80 -24.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5
5-2 104.16 7.99 19.68 15.77 1.65 21.84 6051 17.65 2.18 ·24.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

54
·2 106.14 8.01 19.74 15.81 I.! I 8.43 66.77 24.80 1.87 ·25.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 8

"-3 22.82 20.60 19.05 12.60 3.91 39.03 12.19 48.78 0.51 ·25.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 83
•
3 

25.80 17.61 20.62 15.65 4.23 13.95 37.45 4!.59 2.99 ·25.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 82
•
3 

33.73 1!.43 21.05 16.86 5.51 33.65 20.24 46.10 4.62 -65.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 81
•
3 

36.71 9.!0 18,0] 14.03 5.08 15.99 38.66 45.35 2.55 ·25.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 74
•
3 74

.41 8.0[ 18.68 14.84 5.55 34.83 17.75 47.42 !59 ·2l.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 73
"
3 79

.l6 9.15 18.66 14.57 4.60 19.88 31.85 48.27 1.!2 -24.87 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 5.00 
~:-~ 92

·
2
6 8.78 19.07 14.!7 4.32 7.97 46.06 45.97 1.66 -24.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

• 
97

·
2
2 !0.49 22.54 17.53 3.!9 6.14 49.46 44.40 2.31 ·23.63 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

:
7
•
3 106

·
14 

!OJ! 24.47 19.20 3.74 7.58 54.84 37.58 1.25 ·24.66 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

6~3 lll.lO 11.78 27.81 21.56 3.55 19.85 40.48 39.67 1.22 -24.22 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 3 
[[
2
·
09 

8.06 19.63 15.76 3.93 16.80 39.68 43.53 1.56 -24.25 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 
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~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 ~ ~ ~ ~ ~ ~ .~ ~ ~ ~ ~ ~ ~ ' ~ ~ .~ 
! ~ ~ o ; ~ 4 ! ~ ~ t ~ 4 ~ ~ ... ~ ~ ~ ... ~ ~ ~ ~ ~ 1 1 ~ 1 ~ i i ~ l 
~~.:i~ ~~~ ~. ~ ... ~s-. ~ ~"!~:.~~!~~·~~~ 
~~a~ ~ a~.:: ·~~~~ .s~~ ~~~-~~~~~~~~~~ 

§ ~ ~ .!! .!! ~ ~ ~ ~ ~ ~ s " ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ 5 " ~ ~ ~ ~ ~ ~ .~ ~ 
·: ~ ~ :: ~ :: .. ~ ~ .:: ~ " ~ ~ ~ .s ~ ~ ~ ~ ' ~ ~ .~ ~ ~ ~ ~ ... ~ ~ ~ ~ ~ ~ :: ~ \1 IJ ~ 'W ~ ':; ~ .~ 0 .. ,;;; .. 1., :: ~ ~ ~ ~ ~ ~ ~ ~ IJ ... .. ~ ~ ~ :: t: 

~o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 6 6 ~ o c ~ ~ ~ ~ ~ ~ G G G ~ 
1-1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ~00 ~00 ~00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ~00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1·1 1.00 6.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.1)0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3·1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4-1 0.00 0.00 6.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 
5·1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
6·1 0.00 0.00 ).00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 1.00 0.00 0.00 
7·1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
8·1 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
9·1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
10·1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11·1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
12·1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
13-1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
15·1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
17·1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
19·1 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
93·1 0.00 0.00 7.00 0.00 3.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 0.00 0.00 0.00 0.00 
94-1 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
95-1 0.00 0.00 7.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 J.OO 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
97-1 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
98-1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
99-1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
100·1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
101·1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
59·2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
58·2 0.00 u.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o:oo 0.00 0.00 0.00 0.00 0.00 0.00 
56-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
55-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~u~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
81·3 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
74-3 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 J.OO 0.00 70.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
73-3 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 J.OO 0.00 30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
m~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~u~~~~~~~~~~~~~~~~~~ 
w~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
66-3 2.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
65-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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1·1 0.00 0.00 
2·1 6.00 0.00 
3-1 0.00 0.00 
4-1 3.00 0.00 
S.l 0.00 2.00 
6-1 1.00 0.00 
7-1 0.00 0.00 
8·1 0.00 0.00 
9·1 0.00 0.00 
10.1 0.00 0.00 
11·1 0.00 0.00 
12·1 0.00 0.00 
IJ.l 0.00 0.00 
IS.\ 0.00 0.00 
17·1 0.00 0.00 
19·1 0.00 0.00 
91·1 0.00 0.00 
92-1 0.00 0.00 
93-\ 1.00 0.00 
94-1 0.00 0.00 
95-1 0.00 0.00 
96-J 0.00 0.00 
97·1 0.00 0.00 
98-1 0.00 0.00 
99·1 0.00 0.00 
100. 0.00 0.00 
101· 0.00 0.00 
59-: 4.00 0.00 
ss.; 1.00 0.00 
56-: 10.00 0.00 
55-; l.OO 0.00 
54-: 6.00 0.00 
84-: 0.00 0.00 
8}.; 0.00 0.00 
82-: 0.00 0.00 
81:: 0.00 0.00 
74-; 80.00 0.00 
7}.; 30.00 0.00 
70.: 0.00 0.00 
69-: 0.00 0.00 
67-: 4.00 0.00 
66-: 1.00 0.00 
65-: 1.00 0.00 
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~~~~ .~ ~ ~~!~ ~ ~~ ~ .§~ e .~s~~~ ~ ~~.Q~~~ ~.Q~3~ ... ~ 
~ ~ ~ ·~ ~ ~ ~ ~ e u ~ ~ ~ E ~ ·~ ~ t ~ ~ • ~ ~ 
• ~ ~ ~--.Q~~ ·E ~ ~a~-~ .. ~ ~ ~ f .a ~ 
3 3~ ~ ~ ~ ~~.5 "'·5~·~~ ~ ~~~ ~ .. ~~ 
~~:: :: .s.s ~ ~ ~ ~ ~~~~.s ~~.()~~~~~ 
~~~~~~~~~~~o~~~~~aao~~~ 
0.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 I 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.00 0.00 0.00 0.00 0.00 l.OO 0.00 0.00 1.00 2.00 0.00 
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 18.00 0.00 0.00 J.OO 1.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 6.00 0.00 0.00 0.00 0.00 21.00 0.00 0.00 l.OO 1.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~ 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~ 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~u~~~~~ 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.00 0.00 0.00 1.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.00 0.00 1.00 1.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 
0.00 0.00 0.00 0.00 ' 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 •. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 l.OO 0.00 0.00 0.00. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~ 

I 

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00/ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 8.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 --0.00 0.00 l.OO 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~ 
0.00 0.00 10.00 0.00 0.00 0.00 0.00 0.00 lO.OO 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 10.00 0.00 0.00 0.00 0.00 0.00 l9.00 0.00 l.OO 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
lOO lOO IM lOO lOO lOO lOO lOO 100 lOO lOO l OO lOO lOO lOO lOO lOO 100 lOO lOO om l OO lOO 
~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~ ~~~~~~~~~ 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ll.OO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~ ~~~~~~~~~~~ 
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c ! ~ E ~ ~ ~ ~ ;,. ~ ~ .s § ~ ~ ~ .. ~ ~ ; ~ ~ ... ~ ~ ~ ~ ~ ~ ~ 
c .c c. - 0 ~ ~ ._, "-" vu ~ ~ .. ~ ~ :: :: ~ ~ C! .. ~ ~ 8 ~ , .. 
-= - c (/) ~ .. ..., " u ~ ... .Q Q "' ~ .~ ·~ ~ ~ ~ ' .. ... ~ .~ 

~ ~ ~ ~ ~ ~ ~ ~ e ~;~a~~~~~~~~~~~~~~ 6~ 
13-~ 18.85 1-1.21 26.49 19.66 4.9~ 12.68 64.19 ~~.54 2.91 ·23.99 0.00 1.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
24-4 23.81 13.09 33.05 25.10 4.31 2642 56.06 11.52 ~.82 ·24.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
25-4 28.11 14.10 31.J3 28.10 0.68 11.14 61.52 21.34 1.16 ·24.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
26-~ JJ.13 14.ll 37.80 28.40 0.72 37.26 43.44 19.31 128 ·24.38 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
27-1 39.69 14.81 38.23 28.67 1.10 34.38 43.74 21.81 IJ4 -24.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
28·4 43.65 14.89 38.26 n.JI 0.88 53.43 29.81 16.17 1.19 -24.30 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
29·4 49.61 14.91 38.38 28.81 0.91 39.49 42.58 17.93 4.40 -95.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30-4 55.)6 14.99 38.45 28.89 0.86 16.l0 54. 16 19.34 1.48 ·18.1\ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
31·4 60.l2 15.01 38.47 28.92 0.81 16.34 58.37 25.29 1.85 ·19.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
32·4 64.49 15.01 38.49 28.95 0.83 8.84 63.81 27.35 1.21 ·20.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
33-~ 69.45 14.97 38.56 29.04 0.66 4.81 66.11 29.02 0.47 ·21.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
37·4 88.29 14.86 38.62 29.19 0.72 4.21 64.56 31.24 0.65 ·21.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
38·4 93.25 14.84 38.62 29.22 0.66 7.63 61.58 30.79 0.74 -21.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
39-4 98.21 14.77 38.64 29.27 0.64 13.94 58.09 27.91 O.l4 -21.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
40-4 109.12 14.76 38.64 29J2 0.65 35.34 45.l0 19.16 1.20 ·23.86 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
41·4 118.04 14.74 38.64 29.J7 0.65 25.67 51.10 23.23 1.17 ·2l.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
42-4 143.83 14.68 38.65 29.50 0.64 29.27 47.66 23.06 1.01 ·24.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
29-7 14.11 15.l8 40.13 29.80 3.48 65.17 19.90 14.93 4.40 ·95.45 0.00 27.00 J.OO 7.00 0.00 16.00 3.00 6.00 6.00 5.00 0.00 2.00 1.00 0.00 0.00 000 1.00 l.OO 
30-7 20.16 14.44 40.77 30.56 J.82 57.26 18.32 24.42 1.48 ·18.11 0.00 4.00 0.00 0.00 1.00 4.00 0.00 1.00 0.00 1.00 0.00 1.00 5.00 0.00 0.00 0.00 0.00 0.00 
31-7 29.23 14.29 40.60 30.46 4.27 77.66 12.76 9.57 1.85 ·19.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
32-7 39JI 14.27 40.72 30.55 7.32 82.35 8.82 8.82 1.21 -20.63 0.00 2.00 0.00 0.00 0.00 3.00 0.00 1.00 0.00 0.00 0.00 4.00 0.00 1.00 0.00 0.00 0.00 0.00 
33-7 50.40 14.33 40.49 30.36 9.25 75.37 15.39 9.24 0.47 ·21.24 2.00 0.00 0.00 0.00 0.00 J.OO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
35-7 71.57 14.l6 38.78 28.99 w 64.07 17.96 17.96 0.05 ·21.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
36-7 78.62 14.55 38.81 29.02 6.65 71.39 17.88 10.73 0.32 -22.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
37-7 86.69 14.48 38.79 29.02 7.05 30.00 42.00 28.00 0.65 ·21.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
38-7 97.78 14.67 38.88 29.05 6.91 16.67 48.78 34.l5 0.74 ·21.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 '0.00 0.00 0.00 0.00 0.00 
39-7 112.91 14.81 38.95 29.07 6.63 51.91 28.86 19.24 0.54 ·21.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40-7 142.15 14.66 38.97 29.12 7.26 11.58 51.45 36.98 0.87 -22.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
41·7 17J.42 14.38 38.92 29.14 7.l4 5.15 56.14 38.71 0.98 -22.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
42-7 201.66 14.26 38.92 29.17 7.17 2.34 53.71 4J.95 1.05 ·22.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
43-7 246.05 14.07 38.92 29.21 7.23 0.61 56.07 43.32 1.11 ·22.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
44-7 298.53 13.83 38.91 29.26 7.3] 0.89 54.83 44.29 1.06 -22.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
45-7 3ll.04 13.79 38.92 29.28 7.21 0.45 56.89 42.67 1.17 -22.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
46-7 501.49 13.66 38.97 29.35 7.19 0.46 55.99 43.55 1.15 ·22.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
56-8 18.14 18.40 41.74 30.34 4.44 8.00 76.00 16.00 0.87 -23.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 60.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
55-8 26.21 17.88 40.98 29.89 4.67 7.00 72.00 21.00 0.54 ·23.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 50.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
54-8 38.30 17.06 41.58 30.56 4.76 11.00 66.00 23.00 0.54 ·2l.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 35.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 
53-8 49.39 16.87 39.14 28.73 8.42 59.00 27.00 14.00 1.11 -24.67 0.00 0.00 0.00 0.00 0.00 1.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 7.00 0.00 
52-8 59.47 16.60 39.14 28.79 8.40 47.00 34.00 19.00 1.41 -24.89 0.00 0.00 1.00 0.00 0.00 0.00 0.00 50.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 2.00 1.00 0.00 
51-8 66.53 16.46 39.13 28.82 5.80 19.00 50.00 31.00 1.81 ·24.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

~ 
~ s 
·~ ~ ~-· ~ -= ~ ~ 

~ ·~ ' ~ ~ 
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~ ~ .§ ~ ~ 
~ ~ ~ ~ ~ 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
1.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
1.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
5.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 1.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 1.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
1.00 0.00 0.00 0.00 0.00 
0.00 0.00 1.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 
J.OO 0.00 0.00 0.00 0.00 
2.00 0.00 0.00 0.00 2.00 
0.00 0.00 0.00 0.00 1.00 
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;~ ~e t ~ ~ ~~€~~ ~~~~·~ §@~.:: ~ ~ ~ ·~~·~~ 
~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ & ~ ~ ~ ~ ( ~ e e ~ ~ o ~ ~ ~ ~ 
23-~ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 
27·4 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
28-4 0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
29·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
30·4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
31·4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 
32·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
39-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
40-4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
29-7 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 2.00 0.00 0.00 0.00 l.OO 0.00 0.00 
30-7 0.00 0.00 3.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 l.OO 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
31·7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
32·7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
33-7 0.00 0.00 1.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
35-7 0.00 0.00 1.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
36-7 0.00 0.00 1.00 l.OO 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 
37·7 0.00 0.00 1.00 2.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
38· 7 0.00 0.00 0.00 l.OO 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
39-7 0.00 0.00 4.00 0.00 2.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 7.00 0.00 14.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
41·7 0.00 0.00 8.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~ 
m~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
44·7 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
56-8 0.00 0.00 2.00 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
55-8 0.00 0.00 2.00 1!.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 l.OO 
54-8 0.00 0.00 2.00 4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
53·8 0.00 0.00 ll.OO 2l.OO 14.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 12.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 1!.00 
52·8 0.00 0.00 9.00 JO.OO 22.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 8.00 0.00 0.00 0.00 0.00 0.00 l.OO 1!.00 
~~~~9~~~~~~~~~~~~~~~ ~~~~~~~~ 
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0.00 0.00 
0.00 0.00 
1.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 2.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
1.00 0.00 
1.00 0.00 

~ 

~ 
>, 
~ 

.~ 

~ 
~ ::: 
~ ~ 

~ ~ ~ .~ 
N ~ . .,. • ~ 

~ ~ ~ ~ 
~ ~ ~ g 
~ ~ ~ .:: 
~ ~ ~ !: 

~ ~ ~ ~ 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0 00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
2.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 1.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 1.00 
0.00 !.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 
0.00 0.00 0.00 !.00 
0.00 0.00 0.00 2.00 
0.00 0.00 0.00 1.00 
0.00 0.00 0.00 0.00 
0.00 !.00 0.00 !.00 
0.00 0.00 0.00 0.00 
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23·4 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 
24-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 
25·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 J.OO 0.00 0.00 0.00 0.00 0.00 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 
28·4 1.00 2.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 
29·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 
30·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 
31-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
32·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
33-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
37-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
38·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
39-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 
40·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
41·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 
42·4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 100 
29· 7 2.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 l.OO 2.00 18.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
30· 7 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
31·7 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 8.00 0.00 0.00 2.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
32· 7 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 2.00 0.00 2.00 0.00 0.00 0.00 J.OO 0.00 
33· 7 0.00 2.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 2.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 1.00 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 
36-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 100 0.00 
37· 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
38· 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 8.00 0.00 0.00 1.00 0.00 100 0.00 0.00 0.00 0.00 1.00 
39-7 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 12.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 
40· 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 ).00 1.00 0.00 1.00 J.OO 0.00 0.00 0.00 0.00 
41-7 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 2.oo o.oo o.oo o.oo ;-o:oo o.oo o.oo o.oo o.oo o.oo 2.oo o.oo o:oo o.oo o.oo 

/ 

42·7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
43-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
44· 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00, /0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
45-7 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo J.oo~.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 2.oo o.oo o.oo 
46-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ).00'1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
56-8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 1.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 
55-8 0.00 1.00 0.00 0.00 0.00 0.00 0.00 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 2.00 
54-8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 8.00 5.00 20.00 
53-8 19.00 1.00 16.00 0.00 0.00 0.00 0.00 6.00 14.00 0.00 9.00 0.00 0.00 2.00 100.00 1.00 0.00 0.00 0.00 22.00 0.00 2.00 J.OO 0.00 40.00 
~~~~~~~~~~~~~~~·~~~~u~~~~~ 
51-8 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 100 0.00 0.00 0.00 0.00 0.00 



_-\.PPENDIX B. Transect-bv-transect distributions of dominant orincioal comoonent 

:cores. 
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APPENDIX D. Cross-plots of environmental components versus faunal components. 



Appendix D. Cross-plots of faunal scores 1 to 7 versus environmental scores 1 to 3. 
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Plate 1: a-Emarginula rosea (M-33 m), b-Calliostoma conulus (A-20 m), c-Gibbula 
leucophaea (A-14m), d-Tricolia tenuis (A-14m), e-Cerithium rupestre (A-20m), 
f-Bittium latreillei (A-49 m), g-Bittium reticulatum (B-79 m), h-Turritella communis 
(M-23 m), i-Rissoa auriscalpum (A-14m), j-Rissoa splendida (A-20m), k-Rissoa 
lineolata (A-28 m), 1-Alvania cancellata (A-20 m). 
A: Aegean Sea; B: Black Sea; M: Marmara Sea 



Plate 2: a- Alvania cimex (BS-111 m), b-Tornus subcarinatus (AS-39m), c- Truncatella 
subcylindrica (BS-74 m), d-Aporrhais pespelacani (AS-60 m), e-Calyptrea chinensis 
(MS-39 m), f- Lunatia pulchella (AS-18m), g- Payraudeautia intricata, h- Trophon 
muricatus (BS-1 06 m), i- Cyclope donovania (MS-17 m), j- Mangelia attenuata (MS-17 m), 
k- Dentalium dentalis (MS-28 m), 1- Gadulus politus (AS-78 m), m- Entalina tetragona 
(AS-88 m). A: The Aegean Sea; B: The Black Sea; M: The Marmara Sea. 



Plate 3: a- Nucula nucleus (A-18m), b- Nucula sulcata (M-23 m), c- Nuculana 
commutata (M-43 m), d- Area noae (A-20m), e- Anadara diluvii (A-59 m), f- Bathyarca 
philippiana (A-112m), g- Scapharca inaequivalvis (M-146 m), h- Striarca lactea 
(A-20m) i- Glycymeris insubrica (A-14m), j- Mytilus galloprovincialis (B-36 m). 
A: The Aegean Sea; B: The Black Sea; M: The Marmara Sea. 



Plate 4: a-Modiolula phaseolina (B-74 m), b-Pteria hirunda (M-146 m), 
c-Pseudamussium clavatum (M-74 m), d-Palliolum incomparabile (M-146 m), 
e-Chlamys varia (A-97 m), f-Chlamys glabra (A-112m), g-Limatula subauriculata, 
h-Ostrea edulis (M-103 m). 
A: Aegean Sea; B: Black Sea; M: Marmara Sea 



Plate 5: a- stentina (M-90 m), b- Dreissena polymorpha (B-79 m), c- Loripes 
lucinalis (A-14m), d- Lucinella divaricata (A-60 m), e- Myrtea spinifera (A-18m), 
f- Thyasirajlexuosa (M-54 m), g- Cardites antiquata (A-20m), h- Glans trapezia (A-20m), 
i- Glans aculeata (M-112 m), j- Gonilia calliglypta (A-70 m), k- Acanthocardia 
paucicostata (B-92 m), 1- Parvicardium exiguum (A-14 m), m- Laevicardium crassum 
(A-39m), n- Spisula subtruncata (B-33 m), o-Solen marginatus (M-13 m). 



Plate 6: a- Tel/ina balaustina (A-14 m), b- Tel/ina donacina (M-13 m), c- Abra nitida 
(A-18m), d-Abra prismatica (M-13 m), e- Abra alba (B-33 m), f- Azorinus chamasolen 
(M-34 m), g- Venus casina (M-79 m), h- Clausinella brongniartii (M-39 m),i- Timoc/ea 
ovata (M-109 m),j- Gouldia minima (A-17m), k- Dosinia lupinus (B-74 m), 1- Pitar rudis 
(A-20m), m- Mysia undata (A-26 m), n- Corbula gibba (A-39m), o-Cuspidaria rostrata 
(M-93 m), p- Cardiomya coste/lata (M-98 m). 






