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ABSTRACT 

 

The hepatitis C virus genome encodes a 63 amino acid protein, p7. The exact role of 

p7 is unknown; in this study we observed that mutations in transmembrane domain-1 and 

-2 (TM1 and TM2), and the cytoplasmic loop of p7 decreased infectious virus production. 

Analysis of p7 at different stages of virus assembly revealed that p7 functions at a stage 

prior to generation of infectious particles. Confocal microscopy analyses indicated that p7 

did not affect recruitment of core protein to lipid droplets. Additionally, mutation of p7 

did not affect formation of core multi-order structures. Finally, mutations at the 

cytoplasmic loop significantly reduced intracellular E2 glycoprotein levels. Forced 

evolution analysis of p7 mutations resulted in the occurrence of a N765D mutation that 

was important for secretion of virus particles into the culture supernatants. The results of 

this study provide strong evidence that p7 functions to protect HCV glycoproteins from 

premature degradation and we suggest that p7 supports the virus assembly process. 

 

 

 

 

 

 

 



 
 

ii 
 

ACKNOWLEDGMENTS AND DEDICATION 

 

 Firstly, I would like to express my sincere gratitude to my advisor Dr. Rodney 
Russell for his patience, motivation and continuous support during these past five years. 
His guidance helped me not only in my research and writing of this thesis, but also he 
taught me how to be an independent researcher and provided me with much advice during 
my graduate school career. He helped me academically and emotionally and he gave me 
the moral support and the freedom I needed to move on. I was lucky to be part of his lab 
and he was the one who was there for me all the time. His enthusiasm and love for 
teaching is contagious, I could not have imagined having a better advisor and mentor for 
my PhD. There are no words to convey how much I am grateful to him. 

 
Besides my advisor, I would like to express my deepest appreciation to my co-advisor 

Dr. Thomas Michalak and my committee members, Drs. Michael Grant and Joseph 
Banoub, whose contribution and encouragement helped me to coordinate my project and 
write this thesis. 

 
Furthermore I would also like to acknowledge with my deepest appreciation for the 

crucial role of the members in Dr. Russell’s lab, Natasha Noel, Nicole Whittle, Kayla 
Holder, and Heidi Morris. Also, special thanks goes to those who I considered my 
teammates, Dr. Dan Jones, Nate Taylor, and Hassan Kofahi, who significantly helped me 
in my PhD with their handy pieces of advice, constructive critique and useful 
recommendation. I have been touched by the big hearts of Kayla Holder, Chelsea Ash, 
Megan Conway, and Natasha Noel have I will never forget the respect they showed me. 
Without them I couldn’t have achieved so much alone. I will always remember every 
motivating chat, and every bit of practical and emotional support by these wonderful 
people.  

 
I have to appreciate the guidance given by other supervisors in the Immunology and 

Infectious Diseases Program, including Drs. Vernon Richardson, Sheila Drover, Kensuke 
Hirasawa, Mani Larijani, Patricia Mulrooney-Cousins and George Carayanniotis, as well 
as all the technicians, students and postdoctoral fellows in the program, who gave me the 
permission to use all required equipment and the necessary materials to complete this 
work. Interaction with them in the program has improved my presentation skills thanks to 
their comment and advice. 

 
I would like also to acknowledge the advice and guidance of my friends Mussa 

Suliman, Nader Abosarah, Chris Corkum, and Mohamad Sarhan, who also have been 
essential parts of my life in Canada. I would not forget to remember my friend Chad who 
works night shifts in our department. The conversations I have had with him encouraged 
me to stay working all day in the lab. I would like to thank him for his respect and the 
time he spent with me, it would have been a lonely lab at night without him.  

 



 
 

iii 
 

I recognize that this research would not have been possible without financial support 
from Memorial University and the Canadian Institutes of Health Research. Their 
assistance will always be credited and appreciated. 

 
Last but not the least, I would like to thank my hard-working mom, dad, brothers and 

sisters who sacrificed their lives for me and provided unconditional love and care.  I love 
them so much, and I thank them for their spiritual support during my PhD studies. I 
would like to thank my wife for her love, kindness and support she has shown during the 
time she shared with me to finalize this project; she is the one to count on when times are 
rough, I am very grateful to her for giving birth to my son Ahmad that made the best 
outcome from these past five years in having a son and a PhD.   

 
Finally I would like to dedicate this work to all of you and to all people in Canada for 

giving me this opportunity. I hope my education will support me to continue my career in 
science and benefit our community’s health. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iv 
 

TABLE OF CONTENTS 

 

ABSTRACT ......................................................................................................................... i 

ACKNOWLEDGMENTS AND DEDICATION ........................................................... ii 

LIST OF FIGURES ........................................................................................................ vii 

LIST OF TABLES ............................................................................................................ ix 

LIST OF ABBREVIATIONS ........................................................................................... x 

CO-AUTHORSHIP STATEMENT ................................................................................. 1 

CHAPTER 1: INTRODUCTION ..................................................................................... 2 

1.1 HCV overview ........................................................................................................... 2 

1.2 HCV discovery and classification .............................................................................. 3 

1.3 HCV genome organization ........................................................................................ 4 

1.4 HCV virion structure and physical properties............................................................ 6 

1.5 HCV proteins ............................................................................................................. 8 

1.6 The untranslated regions of HCV ............................................................................ 13 

1.7 HCV life cycle ......................................................................................................... 14 
1.7.1 HCV entry ......................................................................................................... 14 
1.7.2 HCV fusion ....................................................................................................... 15 
1.7.3 HCV genome translation and post-translation modification............................. 17 
1.7.4 HCV genome replication .................................................................................. 18 
1.7.5 HCV assembly process and release .................................................................. 19 

1.8 HCV pathogenesis and immune-evading mechanisms ............................................ 25 
1.8.1 HCV pathogenesis ............................................................................................ 25 
1.8.2 Mechanisms of immune evasion in HCV infection .......................................... 29 

1.9 HCV therapy ............................................................................................................ 31 

1.10 The HCV protein p7 ............................................................................................... 35 
1.10.1 HCV p7 processing, topology, and localization ............................................. 35 
1.10.2 Ion channel function and potential anti-p7 compounds .................................. 39 
1.10.3 NMR analyses of p7 ........................................................................................ 45 



 
 

v 
 

1.10.4 Functional analyses of p7 ................................................................................ 47 
1.10.5 p7 interactions with other viral proteins ......................................................... 51 

1.11 Project design and hypothesis ................................................................................ 54 

1.12 Research objectives ................................................................................................ 57 

CHAPTER 2: MATERIALS AND METHODS ........................................................... 58 

2.1 Cell culture ............................................................................................................... 58 

2.2 Cloning and plasmid construction ........................................................................... 58 

2.3 In vitro transcription and RNA transfection ............................................................ 59 

2.4 Antibodies ................................................................................................................ 59 

2.5 Indirect IF ................................................................................................................. 60 

2.6 Virus titration ........................................................................................................... 60 

2.7 Titration of intracellular infectious virus ................................................................. 61 

2.8 SDS-PAGE and WB analysis .................................................................................. 61 

2.9 Confocal microscopy ............................................................................................... 61 

2.10 Iodixanol density gradient fractionation ................................................................ 62 

2.11 Bafilomycin A1 and ammonium chloride treatments ............................................ 63 

2.12 Forced evolution assay ........................................................................................... 63 

2.13 Reverse transcription, PCR amplification and sequencing of rescued mutants ..... 64 

2.14 Flow cytometric analysis of intracellular core protein........................................... 64 

CHAPTER 3: RESULTS (EFFECT OF p7 ON INFECTIOUS VIRUS 
PRODUCTION) ............................................................................................................... 67 

3.1 Generation of p7 mutations ...................................................................................... 67 

3.2 Effect of p7 mutations within TM1 and the cytoplasmic loop on infectious virus 
production using single-cycle assay ............................................................................... 67 

3.3 Effect of TM1 and the cytoplasmic loop mutations on infectious virus production 
using Huh-7.5 cells ........................................................................................................ 69 

3.4 Effect of TM2 mutations on infectious virus production using Huh-7.5 cells ........ 75 

CHAPTER 4: RESULTS (ANALYSIS OF THE ROLE OF p7 IN THE HCV LIFE 
CYCLE) ............................................................................................................................ 78 



 
 

vi 
 

4.1 Analysis of intracellular and extracellular species of virus particles ....................... 78 

4.2 Mutations in p7 TM1 and the cytoplasmic loop do not affect core sedimentation 
profiles ........................................................................................................................... 79 

4.4 p7 TM1 and the cytoplasmic loop do not affect core targeting to LD ..................... 81 

4.5 Mutation of the p7 cytoplasmic loop results in a time-dependent reduction of E2 
levels .............................................................................................................................. 88 

CHAPTER 5: RESULTS (FORCED EVOLUTION ANALYSIS OF p7 MUTANTS)
 ............................................................................................................................................ 99 

5.1 Passaging of p7 mutants led to adaptation and restoration of virus production   by 
acquisition of amino acid changes on different viral proteins ....................................... 99 

5.2 The adaptive mutation N765D is important for p7 function .................................. 100 

5.3 Additional analysis of N765D revealed a key role of p7 in efficient viral assembly 
and provided evidence against involvement in HCV entry processes. ........................ 108 

CHAPTER 6: DISCUSSION ........................................................................................ 113 

REFERENCES ............................................................................................................... 128 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vii 
 

LIST OF FIGURES 

 

Figure 1.1 HCV genome structure and its translation and processing. ................................ 5 

Figure 1.2 HCV virion structure. ......................................................................................... 7 

Figure 1.3 HCV life cycle. ................................................................................................. 16 

Figure 1.4 Suggested model of HCV assembly and release. ............................................. 21 

Figure 1.5 p7 topology and sequence analysis. .................................................................. 38 

Figure 2.1 Illustrative diagram of the different strains of JFH-1 used in this study. ......... 65 

Figure 3.1 Construction of p7 mutants. ............................................................................. 70 

Figure 3.2 Single cycle virus production assay analysis of p7 mutant viruses. ................. 72 

Figure 3.3 The p7 cytoplasmic loop and TM1 are important for virus production. .......... 74 

Figure 3.4 The p7 TM2 is important for virus production. ................................................ 77 

Figure 4.1 Extracellular particle production and comparison of intracellular vs. 
extracellular infectious virus. ............................................................................................. 82 

Figure 4.2 Iodixanol gradient analysis of p7 mutant viruses using lysis buffer with 
detergent. ............................................................................................................................ 83 

Figure 4.3 Comparison of iodixanol gradient separation of core species, for JFH1D using 
different conditions. ........................................................................................................... 84 

Figure 4.4 Iodixanol gradient analyses of p7 mutant viruses after lysis using freeze/thaw 
method. ............................................................................................................................... 85 

Figure 4.5 Analysis of core/LD association. ...................................................................... 87 

Figure 4.6 p7 mutants in the background of JFH1D-FLAG showed a similar pattern of 
virus infectivity as JFH1D virus. ........................................................................................ 89 

Figure 4.7 Effects of p7 mutation on FLAG-E2 levels in S29 and Huh-7.5 cells. ............ 90 



 
 

viii 
 

Figure 4.8 Comparison of virus production from JFH1D, JFH1S and JFH1A4S. ................ 92 

Figure 4.9 Effects of p7 mutations on E2 levels. ............................................................... 93 

Figure 4.10 Examination of HCV proteins under different lysis conditions. .................... 95 

Figure 4.11 Time course of E2, core, and GAPDH expression assessed by WB. ............. 96 

Figure 4.12 Effect of Bafilomycin A1 and NH4Cl treatment on E2 levels. ....................... 98 

Figure 5.1 A schematic representation of the method used to identify compensatory 
mutations. ......................................................................................................................... 101 

Figure 5.2 p7 mutant passaging. ...................................................................................... 103 

Figure 5.3 Effect of the N765D adaptive mutation on infectious virus production. ........ 106 

Figure 5.4 Effect of the N765D adaptive mutation on infectious virus production for all of 
the generated p7 mutants. ................................................................................................ 107 

Figure 5.5 Illustrative diagram for the constructs selected to analyze N765D adaptive 
mutation effect on extracellular HCV particles secretions. ............................................. 110 

Figure 5.6 Analysis of transfection efficiencies by WB and flow cytometry. ................. 111 

Figure 5.7 N765D increased the production of extracellular HCV particles. .................. 112 

Figure 6.1 Proposed model of p7 functions. .................................................................... 123 

 

 

 

 

 

 

 



 
 

ix 
 

LIST OF TABLES 

 

Table 1.1 HCV proteins ....................................................................................................... 9 

Table 1.2 Examples of known viroporins .......................................................................... 41 

Table 2.1 Primers used to generate p7 mutations .............................................................. 66 

Table 5.1 Sequence analysis of the rescued p7 mutants .................................................. 104 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

x 
 

LIST OF ABBREVIATIONS 

 
°C Degrees Celsius 
ΔGDD Negative control with NS5B active site removed 
µg microgram 
µL     microliter 
μm     micrometer 
aa     Amino acids 
ADRP     Adipose differentiation-related protein 
Apo-A/B    Apolipoprotein-A/B 
Bcl-xl     B-cell lymphoma-extra large protein 
BSA     Bovine serum albumin 
BVDV     Bovine Viral Diarrhea Virus  
CD81     Cluster of Differentiation 81 
cDNA     Complementary deoxyribonucleic acid 
cLD     Cytosolic lipid droplet 
CLND1    Claudin-1 
CM     Complete medium 
CO2     Carbon dioxide 
cPLA2     Cytosolic phospholipase A2 
CTLA-4     Cytotoxic T-lymphocyte antigen 4 
CypA or B    Cyclophilin A or B 
D1, D2, D3…etc.   Domain1, Domain2, Domain3….etc. 
DAAs     Direct-acting antivirals 
DAPI     4',6-diamidino-2-phenylindole 
DGAT1    Diglyceride acyltransferase 1 
dH2O     Deionized water  
DMEM    Dulbecco’s Modified Eagle Medium 
DNA     Deoxyribonucleic acid 
dsDNA    Double-stranded deoxyribonucleic acid 
dsRNA    Double-stranded ribonucleic acid 
E1     Envelope protein 1  
E2     Envelope protein 2 
EDTA     Ethylenediaminetetraacetic acid 
EGFR     Epidermal growth factor receptor 
EHM     Extra-hepatic manifestation 
eIF3     Eukaryotic translation initiation factor 3 
EM     Electron microscopy 
EMCV     Encephalomyocarditis virus 
ER     Endoplasmic reticulum 
ESCRT    Endosomal sorting complex required for transport 
FBS     Fetal bovine serum 
FDA     Food and Drug Administration 



 
 

xi 
 

G1, G2, G2…etc.   Genotype 1, Genotype 2, Genotype 3…..etc  
GAPDH    Glyceraldehyde 3-phosphate dehydrogenase 
GBV-B    GB virus B 
GFP     Green fluorescent protein 
ffu     Focus-forming units 
h     Hour/Hours 
HA-tag    Human influenza hemagglutinin-tag 
HAV     Hepatitis A Virus 
HBV     Hepatitis B Virus 
HCC     Hepatocellular carcinoma 
HCV     Hepatitis C Virus 
HIV     Human Immunodeficiency Virus 
HLA     Human leukocyte antigen 
HRS     horseradish peroxidase 
hSGK1    human serine/threonine kinase-1 
HTAs     Host-targeting agents 
Huh-7.5    Human hepatoma 7.5 
hVAP-A Human vesicle-associated membrane protein- 

associated protein A 
HVR Hypervariable region 
IF     Immunofluorescence  
IFN     Interferon 
IRES     Internal ribosome entry site 
IRF-3     Interferon regulatory factor-3 
ISGs     Interferon stimulated genes 
JFH1     Japanese fulminant hepatitis 1 
kDa     kilodalton 
KIRs     Killer inhibitory receptors 
LD     Lipid droplet 
LDL     Low density lipoprotein 
LVR     Lipoviral particle 
MAVS     Mitochondrial antiviral-signaling protein 
MHC     Major histocompatibility complex 
MICA      MHC Class I Polypeptide-Related Sequence-A 
miR-122    MicroRNA-122  
mL     Milliliter 
mg     Milligram 
MTP     Microsomal triglyceride transfer protein 
NaCl     Sodium chloride 
NF-κB     Nuclear factor-κB 
ng     Nanogram 
NH4Cl     Ammonium chloride 
NK cells    Natural Killer cells 
NMR     Nuclear magnetic resonance 
NS     Non-structural protein 



 
 

xii 
 

NTR     Nontranslated region 
OCLN     Occludin 
ORF     Open reading frame 
PAMP     Pathogen associated molecular pattern 
PBMC     Peripheral blood mononucleated cell 
PBS     Phosphate buffered saline 
PCR     Polymerase chain reaction 
PD-1      Programmed cell death-1 
PEG-IFN    Pegylated interferon 
PenStrep    Penicillin Streptomycin 
PKR     Protein kinase R 
PRK     Protein kinase C-related kinase 
PRR      Pattern recognition receptors 
RdRp     RNA-dependent, RNA-polymerase 
RIG-I     Retinoic acid-inducible gene 1 
RNA     Ribonucleic acid 
rpm     Revolutions per minute 
RT-PCR    Reverse transcription-polymerase chain reaction 
SDS-PAGE Sodium dodecyl sulfate- polyacrylamide gel 

electrophoresis 
SR-B1     Scavenger receptor B type-1 
SVR     Sustained virological response 
TAE     Tris base, acetic acid and EDTA buffer 
TGF-β     Transforming growth factor-β 
TLR-3     Toll-like receptor-3 
TM     Transmembrane 
TMD     Transmembrane domain 
TNFα     Tumor necrosis factor α 
TRIF Toll/interleukin-1 receptor -domain-containing 

adapter-inducing- interferon-β 
UTR     Untranslated region 
UV     Ultraviolet 
VLDL     Very low density lipoproteins 
VLP     Viral lipoparticles 
WB     Western blot 
WHO     World Health Organization 
  

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate


 
 

1 
 

CO-AUTHORSHIP STATEMENT 
 

All research described in this thesis was performed in the laboratory of Dr. Rod 

Russell. Chapter 1 contains a general introduction regarding HCV, followed by a more 

focused review of the literature available on HCV p7. This latter portion of this 

Introduction is now in press at Virology and I am listed as first author since I wrote 100% 

of this review, with editorial contributions from my lab colleague, Nathan Taylor, and my 

supervisor. 

Results described in Chapters 3 and 4 have been published in Virus Research with 

me as first author as I performed 90% of the experiments. A colleague in the lab, Dr. 

Daniel Jones, helped with the core sedimentation assay development and contributed to 

the writing and revision of the manuscript. All experiments were designed by me and my 

supervisor. 

The results described in Chapter 5 have been submitted for publication at Virology 

Journal. I performed 80% of the experiments described, participated in the design of the 

study and co-drafted the manuscript. Nathan Taylor participated in the design of primers 

and cloning of p7 mutants and co-drafted the manuscript. Hassan Kofahi performed the 

Flow Cytometry analysis of intracellular core staining. 

Over the course of my PhD program I also contributed to two other publications 

from our team, including a second authorship on a Journal of Virology paper from Dr. 

Jones, and a 4th authorship on a paper to be submitted to PLoS Genetics, by Heidi Morris. 



 
 

2 
 

CHAPTER 1: INTRODUCTION 

 

1.1 HCV overview 

Hepatitis C virus (HCV) is the major cause of several severe liver diseases including 

chronic hepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma; often resulting 

from complications of persistent HCV infection. These disorders can lead to liver 

transplantation to treat liver failure in infected individuals [1]. The estimated rate of HCV 

infection around the world is 2.6-3.1% representing 122-185 million symptomatically 

infected individuals [2]. Unfortunately, there is no prophylactic vaccine and the current 

combinations of pegylated interferon-α (Peg-IFNα) and ribavirin are expensive and 

associated with severe side effects [3,4]. This combination has been reported to be only 

successful for approximately 50% of individuals infected with HCV genotype-1 (G1). 

Treatment success is defined as the achievement of undetectable HCV RNA by currently 

available clinical laboratory assays for at least 6 months after treatment and termed a 

sustained virological response (SVR). Interestingly, 80% of patients infected with G2 or 

G3 and 60% of patients infected with G4 achieve such a clinically defined SVR [4,5]. In 

2011, two direct-acting antiviral compounds (DAAs) targeted to the virally encoded 

protease (NS3-4A) became available as part of a new triple therapy approach in 

combination with Peg-IFNα and ribavirin. This breakthrough led to improvement of the 

SVR rate from approximately 50% to 70% for G1-infected patients [6,7]. However, this 

new strategy was limited to certain genotypes (G1 and G2) and associated with viral 

resistance mutations, and increased drug toxicity and side effects [8]. Therefore, efforts 
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are ongoing to develop improved treatment options. A better understanding of basic HCV 

virology will doubtlessly impact the identification of novel therapeutic targets.    

1.2 HCV discovery and classification 

Early in the 1970s, an unknown etiological agent that was neither hepatitis A virus   

(HAV) nor hepatitis B virus (HBV) (non-A non-B) was considered to be the major cause 

of parental acquired and post-transfusion hepatitis [9]. In 1989, the Chiron group 

succeeded in partial-genome cloning and development of an antibody detection system 

for diagnosis of infection with this unknown virus, which was then called HCV [10,11]. 

Consequently, the full length HCV genome was characterized  and found to be a positive-

sense single-stranded RNA of approximately 9.6 kb in length [12-14]. The genome 

organization, and HCV viral precursor proteins, as well as the morphological features of 

HCV particles taken from human serum and liver tissue were shown to be congruent with 

that of flaviviruses and pestiviruses in the Flaviviridae family [15-18]. However, because 

of the low sequence homology of HCV with that of flaviviruses and pestiviruses, HCV 

was classified in a distinct genus termed hepacivirus [19]. Subsequently, the genus 

included the enigmatic GB-virus B and the newly-identified non-primate, rodent and bat 

hepatitis viruses (NPHV, RHV and BHV) [20-22]. 

There are at least 7 genotypes of HCV (G1-G7) that differ by approximately 30% in 

their nucleotide sequence [23]. These genotypes are further classified into subtypes (a, b, 

c, d, etc). The variations are attributed to the high mutation rate of HCVs error-prone 

RNA polymerase and diverge in worldwide distribution, transmission, and disease 

progression [24]. As another repercussion of the error-prone polymerase, HCV circulates 
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as a diverse population of closely related variants in infected individuals, referred to as a 

quasispecies [25]. 

1.3 HCV genome organization 

Since the elucidation of the full length HCV genome, it became understood that the 

positive-sense RNA genome encodes a long polyprotein precursor encoded by an open 

reading frame (ORF) of approximately 3010 amino acids (aa) with minor genotypic 

variation (3008-3037 aa) [26]. Processing of the polypeptide chain occurs in a co- and 

post-translational manner, with cleavages catalyzed by cellular and viral proteases to 

generate the mature forms of each individual protein (Figure 1.1) [27-29]. The 1st third of 

the genome encodes the viral proteins core, and envelope glycoproteins 1 and 2 (E1 and 

E2), which are the structural components of the virion [26]. Downstream of these proteins 

is the viral protein, p7, which is dispensable for RNA replication, but its role in the virion 

assembly process is becoming of further interest to the research community [30,31] and 

the subject of this thesis. The remaining two thirds of the genome encode the non-

structural proteins (NS) in the order: NS2, NS3, NS4A, NS4B, NS5A and NS5B. The 

non-structural proteins act to catalyze polypeptide cleavages, form replication complexes 

and perform crucial roles in the assembly process [26,32]. The HCV ORF is flanked by 5′ 

and 3′-untranslated regions (5′-UTR and 3′-UTR). The 5′-UTR (~341 nucleotides) is 

highly conserved due to its possession of an internal ribosomal entry site (IRES) [33] that 

mediates genome translation [34]. The 3′-UTR (~139 nucleotides) most likely functions 

during initiation of genome replication [13,35]. 
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Figure 1.1 HCV genome structure and its translation and processing. The HCV 

genome (top panel) contains an approximately 9.6 kb open reading frame (ORF) flanked 

by 5′- and 3′-untranslated regions (UTRs). Translation is initiated at the IRES sequence 

within the 5′- TR to generate a 3000 amino acids polypeptide chain comprised of 

unprocessed structural proteins core and envelope glycoproteins 1 and 2 (blue boxes; 

middle panel), as well as the non-structural proteins 2-5B (red boxes). The viral protein 

p7 is neither a structural nor non-structural protein (green box). The polypeptide 

undergoes co- and post-translational processing in the endoplasmic reticulum (ER) to 

generate the mature forms of the viral proteins (enzymatic digestion sites are indicated by 

symbols (bottom panel) as defined in the insert). 
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1.4 HCV virion structure and physical properties 

Based on the better characterized virion structural arrangement of the related 

flaviviruses, it has been suggested that HCV particles are enveloped with a host-derived 

lipid membrane bi-layer, and display surface viral glycoproteins E1 and E2 in complex 

(Figure 1.2a). Beneath the envelope resides the viral nucleocapsid that consists of an 

oligomerized version of core and encases a single copy of the viral RNA genome [36]. 

Electron microscopic visualization of HCV particles derived from patient serum and liver 

tissue showed a spherical shape particle of 50 to 70 nm in diameter [15-17]. 

The nucleocapsid is 50 nm in diameter and icosahedral in structure [16]. The buoyant 

density of HCV particles derived from patient serum is low and heterogeneous (1.04-1.13 

g/ml), which is unusual for enveloped RNA viruses [37]. Serum-derived HCV particles 

were immunoprecipitated by using antibodies to apolipoprotein-E (Apo-E) and 

apolipoprotein-B (Apo-B), interacting with Apo-A1, ApoB-48, Apo-B100, and Apo-E, 

suggesting association of circulating HCV particles with serum low density lipoproteins 

(LDL) and very low density lipoprotein (VLDL) [38-40]. These features along with 

immunoglobulin bound circulating particles might explain such unusual heterogeneous 

density distribution (see section 1.7.5). 

Conversely, cell culture-derived (HCVcc) particle densities range between 1.0 and 

1.18 g/ml and interact with Apo-E, but Apo-B interaction was varied [41-45]. The lipid 

profile of HCVcc particles revealed a similar lipid and cholesterol composition to serum-

derived particles. Despite this similarity, the apolipoprotein class in cell culture could not 

be consistently defined [42]. The discrepancies between serum and HCVcc- 
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Figure 1.2 HCV virion structure. (a) Model of hepatitis C virus particle. (b) 

Model for the lipoviral particle (VLP) in which the virion is associated with LDL or 

VLDL. 
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derived particles can be attributed to a defect in the Huh7 cell lines ability to secrete Apo-

B containing VLDL particles [46]. 

The association of HCV particles with serum lipoproteins suggests that HCV particle 

synthesis relies on cellular lipoprotein formation and HCV virions form a hybrid lipoviral 

particle (LVP) (Figure 1.2b). This hybrid formation might protect circulating particles 

from antibody neutralization or lysis in an extra-hepatic environment, as well as facilitate 

virus entry into hepatocytes [47]. However, the exact mechanism of association is still 

unclear. Further details on the correlation between HCV formation and cellular lipid 

synthesis are discussed subsequently in this thesis.  

1.5 HCV proteins 

Core protein is the building block of the viral nucleocapsid and can be divided into 

two domains: D1 and D2. D1, formed by the N-terminal two-thirds of core, is highly 

hydrophobic and contains multiple positively charged amino acids suggested to be 

important for viral RNA binding and homo-oligomerization of core [48,49]. D2 forms the 

C-terminal third of core protein and is important for association with lipid droplets (LD); 

the primary site of HCV nucleocapsid assembly. This association is required for virus 

production in cell culture [48,50]. Expression of core protein alone in transgenic mice 

leads to steatosis and development of hepatocellular carcinoma (HCC) [51,52]. It has 

been suggested that core protein upregulates fatty acid biosynthesis in Huh7 cells and 

interacts with Apo-AII. This research leads to the intriguing indication that core plays a 

major role in pathogenesis and development of liver steatosis and HCC via deposition of 

triglycerides in the liver [50] (HCV proteins with the known and putative up to date 

functions are listed in Table 1.1). 
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Table 1.1 HCV proteins 

 

Viral proteins listed with their approximate nucleotide (nt) and amino acid (aa) length 

shown in the 1st and 2nd columns, respectively. The molecular mass in kilo-Dalton (kDa) 

as observed in SDS-PAGE analysis is listed in the 3rd column, and up to date known and 

putative function are listed in the last column. 

 

 

 

 

Viral 
protein 

Approximate 
nt/aa length 

Molecular mass 
(kDa) Function 

Core 573/191 
(mature form 
is 173-179 aa) 

21 RNA binding, nucleocapsid 
formation, upregulation of lipid 
metabolism 

E1 576/192 33 Envelope formation, mediation of 
viral entry 

E2 1089/363 70 Envelope formation, mediation of 
viral entry and antibody escape 

p7 189/63 7 Ion channel, virus assembly 
NS2 651/217 21 Virus assembly 
NS3 1893/631 69 NS viral protein processing, 

inhibition of innate immunity and 
helicase activity 

NS4A 162/54 6 NS3 cofactor 
NS4B 783/261 27 Membranous web formation 
NS5A 1341/447 56-58 Genome replication and assembly 
NS5B 1773/591 68 Viral polymerase 
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Envelope glycoproteins E1 and E2 are structural components of the HCV particles 

that form non-covalent complexes and are required for virus entry via receptor binding. 

E1 and E2 contain N-terminal ectodomains and C-terminal hydrophobic membrane 

anchors [53,54]. A critical post-translation N-linked glycosylation and disulfide bond 

formation is required for heterodimer complex formation and host receptor binding 

[53,54]. 

E2 binds to the host tetraspanin receptor protein CD81 and scavenger receptor-B1 

(SR-B1) found on the surface of hepatocytes and facilitates the entry process [55,56]. 

Furthermore, E2 was shown to possess hypervariable regions termed HVR-1 and HVR2 

that continuously change in patients with HCV infection. The HVRs are significant in 

viral escape from neutralizing antibodies [57]. 

p7 is an integral membrane protein that has been shown to form ion channel activity 

and is suggested to be important for virus assembly (reviewed in [58]). p7 is the major 

protein of interest in this work, and as such will be described in details following the 

general introduction (section 1.10). 

NS2 is a transmembrane autoprotease that is composed of two domains: an N-terminal 

membrane anchor and a C-terminal cysteine protease, which cleaves itself from the 

adjacent NS3 protein after translation [28,59]. NS2 is required for HCV infectivity in vivo 

and in HCV cell culture system (HCVcc), but is dispensable for viral RNA replication 

[60,61]. It has been shown that NS2 homodimerizes and can interact with other viral 

proteins. These interactions have led to the suggestion that NS2 has a major role in the 

HCV assembly process [62-66]. 
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NS3 is composed of an N-terminal serine protease and a C-terminal RNA helicase 

[67,68]. NS4A protein functions as a cofactor to optimize NS3 protease activity and ER 

targeting. NS4A contributes to proper folding of NS3 and stabilizes the protease to 

prevent its degradation [69,70]. NS3 with its cofactor, NS3-4A, is responsible for 

polyprotein processing of the non-structural proteins either independently, or 

autocatalytically in tandem with NS2 [71]. Additionally, NS3-4A induces proteolysis of 

Mitochondrial antiviral-signaling protein (MAVS) and Toll/interleukin-1 receptor-

domain-containing adapter-inducing- interferon-β (TRIF) adaptor proteins that leads to 

inhibition of the retinoic acid inducible gene-1 (RIG-I) pathway and Toll-like receptor-3 

signaling, respectively, thereby inhibiting an innate immune response by blocking IFN 

production [72-75]. The C-terminal helicase of NS3 binds RNA with a high affinity and 

unwinds RNA helices in an ATP-dependent manner [76,77]. The role of RNA unwinding 

in the life cycle has yet to be fully elucidated. Multiple theories have been developed: (i) 

it may be important for RNA replication through unwinding of secondary structures or 

stable stem-loops at the termini of the viral RNA genome [78]; (ii) it could be important 

for HCV assembly and RNA genome transfer and packaging into the newly-formed 

nucleocapsid [32,79]. 

NS4B is an ER-associated protein composed of two amphipathic helices at the N-

terminal domain, 4 transmembrane (TM) segments at the central domain, and a 

palmitoylated C-terminal domain containing two α-helices [80]. NS4B induces ER 

membrane alteration forming a ‘membranous web’ during infection. This membrane 

manipulation suggests that NS4B is crucial for the establishment of replication complexes 

[81]. Intriguingly, NS4B has RNA binding capability and ATPase/GTPase activity, but 



 
 

12 
 

the requirement for such activities within the HCV life cycle remains controversial [82-

84]. 

NS5A is a multifunctional protein involved in HCV replication and assembly. NS5A 

is a zinc-binding metalloproteinase protein and has no TM domains. The protein can be 

divided into 3 domains. The N-terminal domain (D1) of NS5A has a conserved RNA 

binding groove and is important for membrane attachment and LD targeting [85-87]. The 

second domain (D2) is less conserved and important for viral genome replication [87]. D2 

of NS5A has been shown to inhibit interferon-induced double stranded RNA activated 

protein kinase R (PKR), and inhibit IFN-gamma production [88,89]. In other studies, the 

D2 domain of NS5A was shown to interact with the host protein cyclophilin A to support 

viral genome replication [90-92]. Cyclosporin inhibits HCV replication  by blocking the 

interaction between NS5A and cyclophilin A [90]. The C-terminal domain (D3) is also 

less conserved and required for virus production, but dispensable for RNA replication 

[93,94]. NS5A has been detected in basal and hyper-phosphorylated forms. It has been 

suggested that NS5A is required for delivery of newly synthesized RNA genomes to the 

site of nucleocapsid formation at the surface of LDs, and that phosphorylation status 

maintains the balance between RNA replication and assembly [94-96]. This notion was 

supported by the finding that mutations reducing the levels of hyper-phosphorylated form 

led to a significant enhancement in RNA replication [97,98]. In transgenic mice, NS5A 

was shown to inhibit innate and adaptive immune responses [99]. Altogether, these 

studies highlight the importance of this protein at multiple stages of viral morphogenesis 

and justify NS5A as a current target for development of antiviral therapy. The drug 

daclatavir is one typical example of NS5A inhibitors that showed rapid decline of HCV 
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RNA in both cell culture and serum of infected patients, thereby providing a promising 

future treatment for HCV infection [100].    

NS5B is the well-characterized viral RNA-dependent RNA-polymerase that mediates 

RNA genome amplification. NS5B is anchored to the ER membrane via its first 21 C-

terminal amino acids [101]. The crystal structure of the protein revealed typical finger, 

palm and thumb subdomains. The active site possesses the GDD amino acids motif where 

the finger and thumb subdomains guide the RNA to the active site through tunnel 

formation [102,103]. NS5B generates a high error-rate during replication due to its lack 

of a proofreading mechanism (reviewed in [104]). 

1.6 The untranslated regions of HCV 

The ORF of HCV is flanked by 5′- and 3′-UTRs that contain essential elements for 

HCV translation and replication. The 5′-UTR possesses the IRES sequence that initiates 

cap-independent translation of the viral genome via binding to host cell ribosomes. The 

IRES contains 4 RNA stem-loops termed I to IV of which domain IIId constitutes the 

binding site for the 40S subunit of host ribosomes [34]. The host noncoding RNA element 

termed microRNA-122 (miR-122) was shown to interact with the 5′-UTR and modulate 

HCV translation [105]. The abundance of miR-122 was directly proportional to HCV 

translation efficiency, highlighting the importance of miR-122 as a host factor target for 

HCV therapy [106]. 

The 3′-UTR of HCV initiates positive-strand synthesis and stimulates IRES-dependent 

translation of the viral genome [107,108]. It forms three different domains including a 

short variable region, a poly U/UC domain, and a highly conserved 3′-X tail [109]. The 
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poly U/UC was found to be part of the HCV-associated pathogen associated molecular 

pattern (PAMP) recognized by the innate immunity receptor RIG-I [110]. 

1.7 HCV life cycle 

1.7.1 HCV entry 

Multiple receptors have been reported to be involved in HCV entry into hepatocyte- 

derived cell lines such as Huh-7.5 (Figure 1.3). Initial low-affinity attachment is mediated 

by LDL and glycosaminoglycan (GAG) receptors found on the surface of host liver cells 

[111,112]. Because HCV circulates in the blood as LVPs, both receptors are thought to 

interact with the virion-associated ApoE. This speculation has been supported by the 

finding that antibody blocking and LDL receptor knockdown reduced HCVcc infection 

[113]. Subsequently, CD81 and SRB1 receptors mediate tight binding of HCV to infected 

cells [114,115]. CD81 directly binds to the HCV E2 protein and primes HCV E2 for low 

pH-dependent fusion [116]. Antibodies against CD81 and SRB1 were shown to inhibit 

HCV infection after attachment, substantiating the involvement of CD81 and SRB1 after 

initial binding of HCV to host cells [117-119]. The tight junction proteins OCLN and 

CLDN1 are also important for HCV entry at a post-binding step [120,121]. OLCN and 

CLDN1 do not bind directly to E2, but CLDN1 was shown to be important for virus entry 

through its interaction with CD81 [122]. Engineered mice expressing human OCLN and 

CD81 were found to be permissive to HCV infection, but the exact contribution of OCLN 

in virus entry is still under investigation [123,124]. Auxiliary receptor including 

epidermal growth factor receptor (EGFR) and ephrin receptor type A2 have been 

implicated in the stabilization of the CD81-CLDN1 interaction [125].  
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The internalization of HCV occurs through clathrin-mediated endocytosis; a process 

leading to association of the virion with endosomal vesicles inside the host cell [126]. In 

summary, HCV entry seems to be a sequential process mediated by stepwise receptor 

engagement. This cascade of receptor interactions and conformational changes leads to 

virion internalization. Considering this, HCV liver tropism is likely determined by the 

collective association of these receptors on the hepatocyte (reviewed in [32,127]).    

1.7.2 HCV fusion 

Fusion is considered one of the least understood steps in the life cycle of HCV. The 

fusion process in related viruses, such as tick borne encephalitis virus, is well known and 

the fusion peptide within the E protein has been identified [128]. In pestiviruses, the 

fusion peptide resides in the E1 protein [129,130]. Therefore, some have proposed that 

HCV may possess an analogous mechanism of fusion. The viral envelope fusion with the 

endosomal membrane requires low pH-endosomes to induce viral genome release into the 

cytoplasm [131,132]. Multiple reports have suggested that a class-II fusion protein resides 

within the HCV E1 protein [133,134]. Others have argued that the fusion activity resides 

in E2 protein [135]. Therefore, the mechanisms of fusion and uncoating of internalized 

HCV particles remain unsolved and need to be fully characterized.  
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Figure 1.3 HCV life cycle. HCV entry is mediated by a sequential binding to multiple 

receptors that leads to internalization of the virus by clathrin-mediated endocytosis (1). 

Then, pH dependent fusion and release of the HCV genome take place after dissociation 

of the HCV-associated clathrin coated vesicles (2). Subsequently, the IRES mediates 

ORF translation and formation of a polyprotein precursor that is then processed to 

generate individual mature forms of the viral proteins (3). Viral RNA replication occurs 

within a modified ER membrane termed the membranous web (4). Then, viral assembly 

takes place at ER-associated LDs (5) and mature virus is released from the infected cell 

through a cellular secretory pathway (6). 
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1.7.3 HCV genome translation and post-translation modification 

Once the HCV genome is freed from the capsid within the cytoplasm of infected cells, 

viral translation initiation takes place at the ER surface by formation of the translation 

complex in a multistep process including: (i) formation of a binary complex between the 

HCV IRES and the 40S ribosomal subunit; (ii) assembly of a 48S complex at the AUG 

initiation codon with the eukaryotic translation initiation factor 3 (eIF3), GTP and Met- 

tRNAmet, and (iii) hydrolysis of the GTP and joining of the 60S subunit forming the 

IRES-80S complex [109]. 

Translation of the HCV ORF yields a polyprotein precursor that is co- and post-

translationally processed to liberate the mature form of each individual viral protein 

(Figure 1.1 and Figure 1.3). The mature structural proteins are further processed by host-

encoded signal protease cleavage [27,136,137]. Additional processing at the C-terminal 

end of core protein is needed to generate the mature form of this protein and is mediated 

by host signal peptide peptidase cleavage [138]. The cleavage efficiency at the E2-p7 and 

p7-NS2 junctions is poor, suggesting the existence of functional precursor sequences 

[137,139].  

The NS2 protein autocatalytically cleaves itself at the junction between NS2 and NS3 

by the activity of its cysteine protease domain [140]. The second virally-encoded protease 

NS3, along with its co-factor NS4A, cleaves the remaining non-structural proteins 

[141,142]. The NS3-4A serine protease cleaves at the NS3-NS4A site in a cis-acting 

manner, whereas the cleavages at the downstream sites are carried out in a trans-acting 

manner [143-145]. More importantly, the cysteine residues at the cleavage sites are 

conserved in all trans-cleavage sites, as mutations therein impaired cleavage and 
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processing of NS proteins [146]. In summation, HCV precursor protein processing by 

host and viral encoded proteases yields 10 different HCV proteins in the following order 

NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B-COOH. 

1.7.4 HCV genome replication 

The aim of viral genome replication is to amplify genetic material to be packaged in 

the newly formed virions during the morphogenesis cycle. All positive-strand RNA 

viruses perform RNA replication in a distinctive altered membrane structure that can be 

derived from ER, Golgi, mitochondria or lysosome (reviewed in [147]). The altered 

membrane structure formed in HCV-infected cells was found in the ER and was named 

the membranous web, which is most likely induced by the viral protein NS4B [81,148]. 

The membranous web forms distinct factories composed of viral proteins, altered cellular 

proteins and replicating RNA that altogether form the replication complex [148]. 

The RNA-dependent RNA polymerase enzyme (NS5B) uses the positive strand as a 

template to synthesize a negative strand intermediate. Subsequently, the enzyme uses the 

negative strand as a template to synthesize positive strands [102]. NS3 possesses a 

helicase domain that could be important for unwinding secondary RNA structure or 

displacement of RNA-binding proteins in support of genome replication [149]. 

Additionally, NS5A D1 and D2 were shown to be essential for RNA replication [87,150]. 

However, the exact contributions of NS3 and NS5A to RNA replication still need to be 

conclusively identified. It remains unclear how NS5B activity is regulated during RNA 

replication, but multiple hypotheses have been proposed including: (i) NS5A binds NS5B 

to modulate its activity [102]; (ii) the flexible beta-hairpin loop at the thumb domain was 

shown to regulate the RNA binding and initiation of RNA synthesis [151], and (iii) the 
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regulation of NS5B activity can be mediated by multiple host intracellular factors, such as 

sphingomyelin, cyclophilin A and B (CyPA and CyPB), and the NS5A binding partner, 

protein kinase C-related kinase 2 (PRK2), and human vesicle-associated membrane 

protein-associated protein A (hVAP-A) [152-156]. However, the exact mechanism of 

regulation and the contributions of the above-mentioned host factors in HCV infection are 

still not clear. 

1.7.5 HCV assembly process and release 

After viral protein maturation and RNA replication, an organized assembly process 

brings together nascent virion components. The following section describes a putative 

stepwise process of virus assembly that is also shown in Figure 1.4. 

1.7.5.1 Trafficking of core to LD 

The viral assembly process is assumed to begin with accumulation of core protein at 

the surface of cellular organelles termed lipid droplets (LD) (Figure 1.4) [157].   

Cholesterol esters and neutral lipids are stored in the cytosolic LD (cLD) that are 

surrounded by a phospholipid monolayer derived from the outer leaflet of the ER [158]. 

The aim of core trafficking to cLD is not clear but it has been hypothesized that this 

process sequesters the core protein until it’s needed for virus assembly and that the 

surface of cLD can subsequently serve as a platform for nucleocapsid assembly [47].  The 

D2 domain of the core protein has implicated importance in accumulation of core around 

LD because mutations in D2 inhibit this process and significantly abrogate virus 

production [48]. Furthermore, core protein dislocates a surface LD resident protein called 

adipose differentiation-related protein (ADRP) and leads to LD redistribution toward the 

nucleus in a microtubule- and dynein-dependent manner. 
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This redistribution was suggested to enhance encounters between the core and the 

replication complex during assembly [159]. Trafficking of core to LD also requires a 

mitogen-activated protein kinase called cytosolic phospholipase A2 enzyme (cPLA2) and 

diglyceride acyltransferase 1(DGAT1). Inhibition of the activity of cPLA2 or DGAT1 

inhibits virus production [160,161]. 

 

1.7.5.2 Nucleocapsid formation and genome encapsidation 

After accumulation of core around LD, core protein oligomerizes and binds viral RNA 

through its basically-charged domain D1 to form the nucleocapsid structure [49]. It is still 

unclear how the newly formed nucleocapsid packages the RNA genome. One possibility 

is that the delivery of viral RNA to the site of nucleocapsid formation and packaging is 

occurring via NS5A [47]. Consistent with this, NS5A was found to accumulate around 

LD through its N-terminal amphipathic helix and bind RNA through its zinc-binding 

domain [85,162]. Another potential explanation is that NS5A is acting only to deliver the 

viral RNA genome to the site of assembly and that the NS3-4A helicase activity binds 

RNA and serves to package it during nucleocapsid formation [32]. This notion was 

supported by the findings that the NS2 or NS2-p7 complex binds NS3 and this interaction 

mediates colocalization of these proteins to a site in close proximity to cLD [65,66]. 

Adding weight to this statement, it was found that mutations in the NS3 helicase domain 

enhancing RNA replication cause defects in virus assembly, highlighting a role of NS3 in 

the assembly process as a possible mediator of RNA packaging [32,163]. 
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Figure 1.4 Suggested model of HCV assembly and release. HCV is thought to 

initiate assembly in close association with LD. NS5A acts to deliver HCV RNA genomes 

to the site of assembly. Nucleocapsid RNA packaging is suggested to be accomplished by 

the viral protein NS3-4A complex. Consequently, the assembled capsid then buds into the 

lumen of the ER where glycoproteins E1/E2 reside. The orchestrating viral protein NS2 

serves to bring non-structural and structural proteins together to the site of assembly in 

collaboration with p7. The newly formed virion is secreted through the secretory pathway 

passing the Golgi network and the formed virion associated with VLDL particles is 

secreted out of the cell as viral lipoparticle (VLP). 
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1.7.5.3 Nucleocapsid envelopment 

A late step in the assembly process is the membrane envelopment of the newly-

formed nucleocapsid. Multiple studies have indicated that this step is tightly linked to the 

VLDL pathway [37,44,164-166]. VLDL formation starts with ApoB-100 synthesis 

through insertion of phospholipids and triglycerides from the cLD to the luminal side of 

ER membrane through the activity of the microsomal triglyceride transfer protein (MTP). 

This will lead to formation of a spherical like structure, termed the luminal LD (LLD), 

which then incorporates more triglyceride and Apo-E molecules to form mature VLDL. 

The mature VLDL’s then move to a distal compartment in the secretory pathway and are 

released from the cell (reviewed in [167]).  HCV formation is highly linked to this 

pathway due to the following observations: (i) fractionation of HCVcc-infected cells 

showed that HCV particles were found in detergent-resistant lipid fractions and were rich 

in similar VLDL lipid compositions [164,165]; (ii) HCV particles in infected patients 

were found to circulate as LVPs that are rich in triglycerides, and immuno-capture studies 

suggest that they contain Apo-B, Apo-E, and Apo-C along with the viral proteins core, E1 

and E2 [37,44,45,166,168]; (iii) chemical inhibition of VLDL pathway components, such 

as MTP, cPLA2 and DGAT1, as well as genetic silencing of Apo-E and Apo-B, 

significantly inhibits virus production [44,160,161,169], and (iv) most significantly, HCV 

particles in live cell imaging were found to colocalize with Apo-B in close proximity to 

LD and traffic with Apo-E to the cell periphery [170]. Taken in whole, the preceding 

evidence demonstrates the close association of HCV morphogenesis with lipid 

metabolism and suggests the assembly process likely hijacks the VLDL synthesis 

pathway.   
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The question remains: how are the envelope glycoproteins targeted to the assembly 

site and incorporated into the newly formed virion? E1 and E2 proteins form non-

covalent heterodimers that are retained in the ER lumen [171]. It was shown that NS2 

alone or the p7-NS2 complex modulates colocalization of the E1-E2 complex and NS3-

4A to LD by direct or indirect interactions [65,172,173]. Interestingly, a study 

investigating core protein trafficking in live virus-producing cells found that during the 

peak of virus assembly, core formed LD-independent puncta adjacent to the putative sites 

of assembly that traffic along microtubules [174]. Importantly, core was recruited from 

LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was 

essential for this recruitment process [174]. Therefore, NS2-p7 might be orchestrating this 

step by interacting with NS3-4A in one manner to bring newly formed capsids to the site 

of assembly and with the E1-E2 complex in another way to facilitate the envelopment 

step (this model was suggested in [32]). 

1.7.5.4 Virus budding and release 

The virion forms by budding from the ER and egresses from the cell through the 

secretory pathway and is presumably released in a VLDL-dependent manner [175]. E1 

and E2 contain high mannose and complex N-linked glycans; these types of modifications 

are indicative of passage through the Golgi [176]. Supporting this idea, envelope proteins 

rearrange the disulphide bonds necessary to prime HCV particles for low pH-mediated 

fusion, similar to pestivirus egress through the Golgi [131,176,177]. The trafficking of 

HCV particles pre-envelope maturation is thought to be within intracellular vesicles. At 

this stage, the viral protein p7 ion channel activity was shown to protect nascent virions 

from low pH-mediated inactivation [178]. Contributing to this idea, a RNAi study 
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implicated SAR1A (a GTPase protein involved in membrane trafficking and found 

in COPII vesicles) in the production of extracellular HCV, suggesting HCV particles 

transport from the ER to the Golgi with COPII secretory vesicles [170]. Subsequently, 

virions are passaged from Golgi to the plasma membrane also through the secretory 

pathway as inhibition of the PI4KB (resident Golgi lipid kinase that is important in 

trafficking from the Golgi to the plasma membrane) significantly reduced the average 

velocity of motile labelled core puncta using live cell imaging [170]. Moreover, 

movements of the cytoplasmic labelled core puncta were dependent on NS2 function 

[170]. This evidence suggests a model of HCV trafficking that is highly dependent on the 

cellular secretory pathway and leads to acquisition of additional pH-resistance 

modifications in the viral envelope. Characterization of the envelopment process remains 

elusive, but the roles of p7 and NS2 have become increasingly conspicuous. 

Finally mature virions exit infected cells through the secretory pathway. The 

endosomal sorting complex required for transport (ESCRT) pathway is involved in 

membranous compartment fission that curves away from the intracellular cytosol [179]. 

This pathway is utilized by multiple enveloped viruses [179-182].  However, other studies 

showed that HCV particles are transported to the cell membrane through recycling 

endosomes that fuse with the plasma membrane to release virions into the extracellular 

milieu [170,183]. This could indicate that the ESCRT pathway is required for virus 

particle budding from the ER or virus trafficking into an intermediate secretory 

compartment. Endosome contributions may facilitate HCV particle movement to a cell 

junction protein domain and facilitate cell-to-cell spread [32,170,183]. Notably, the tight 

junction protein claudin 1 has been reported to be required for HCV cell-to-cell 

http://en.wikipedia.org/wiki/GTPase
http://en.wikipedia.org/wiki/COPII
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transmission [184]. More analysis is needed to identify HCV release pathways and the 

possibility that HCV might spread through both extra-cellular release and cell-cell spread 

must be considered.  

1.8 HCV pathogenesis and immune-evading mechanisms 

1.8.1 HCV pathogenesis 

HCV-infected patients mainly acquire HCV infection by blood contact and, rarely, 

through sexual transmission. Thus, the main high risk groups are intravenous drug users, 

health care workers, and blood transfusion recipients before 1992 [185]. Within 

approximately 21 days after infection HCV RNA becomes detectable in serum [186,187]. 

Anti-HCV antibody detection normally occurs 32-46 days after viremia [188]. A small 

minority of patients spontaneously clear the virus to an undetectable level by the currently 

available clinical assays, while the majority (54-86%) develop chronic hepatitis [189]. 

Jaundice is the specific clinical sign of acute infection, but some patients develop 

nonspecific signs, which can include fatigue, nausea, mild fever, abdominal pain and loss 

of appetite [190]. The majority of patients remain asymptomatic during the acute phase of 

infection and, unfortunately, they do not become aware of the disease until much later in 

life [190]. 

It is still unclear why some patients eradicate the infection during the acute phase of 

the disease, but several factors have been postulated which include: (i) gender and age, as 

it was shown that women resolve acute hepatitis C  two times more often than men and 

acquiring infection at a younger age might facilitate viral clearance [190,191]. However, 

the underlying mechanisms are not clear and controversial findings have been published 

[192,193]; (ii)  a strong HCV-specific CD8+ T cell response is correlated with the control 
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of viremia during the acute phase of infection [194]; (iii) also, natural killer (NK) cells 

from HCV-infected patients, but not from healthy controls, overexpress inhibitory 

receptors and produce cytokines that attenuate the adaptive immune response, such as 

transforming growth factor-β (TGF-β) and interlukin-10 (IL-10) [195]. Genetic factors 

appear to contribute to NK cell activity. Allelic variation impacts expression of killer 

inhibitory receptors (KIRs) on NK cells and HLA expression on target cells, both of 

which play key roles in NK cell activation [196]. Furthermore, a high rate of self-limiting 

disease is associated with the presence of clinical symptoms during the acute phase of the 

disease and suggested that a stronger immune response arises in symptomatic patients 

[197], and (iv) certain single nucleotide polymorphisms (SNPs) in the IL28B gene that 

encodes interferon-lambda-3 were found to greatly contribute to both spontaneous 

clearance of HCV infection and response to interferon-based therapy [198,199]. 

However, the mechanism of IL28B SNPs in viral clearance and treatment response is still 

not clear. 

The chronic phase of the disease can be defined as a persistent infection in which 

HCV RNA remains detectable for longer than six months after transmission [200]. 

Chronic hepatitis C is accompanied by liver damage and may result in liver fibrosis, 

cirrhosis, and HCC [201]. It was assumed that liver injury during the chronic stage is 

immune-mediated due to the fact that T cell infiltration in the liver temporally correlates 

with the onset of liver injury [201]. However, rapid disease progression in 

immunodeficient patients or with therapeutic immunosuppression infers that additional 

factors are involved in liver injury [202]. In the HCVcc system, it was found that HCV 

replication induced cell death-related genes and caused apoptosis [203]. This notion was 
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supported by a study performed in chimeric mice with humanized liver and lacking an 

adaptive immune system (SCID/Alb-uPA), which also found that apoptosis was induced 

by HCV infection [204]. The observed apoptosis in SCID/Alb-uPA HCV-infected mice 

was mediated by a combination of induction of ER and oxidative stress and 

downregulation of the anti-apoptotic proteins nuclear factor-κB (NF-κB) and B-cell 

lymphoma-extra large (Bcl-xl) [204]. Analysis of liver tissue from patients with chronic 

viral hepatitis demonstrated upregulation of human serine/threonine kinase-1 (hSGK1) 

and signaling mediators of transforming growth factor-β (Smad), both of which are 

apoptosis markers and associated with TGF-β signaling [205,206]. Taken together, these 

findings suggested that HCV infection not only induces liver cell apoptosis, but also can 

induce fibrosis by activating TGF-β signaling, which lead to collagen deposition [207]. 

As disease progresses, fibrous bridges form between adjacent portal areas, which can 

lead to cirrhosis in around 15-56% of the patients with chronic HCV infection [208,209]. 

Activated liver stellate cells produce excessive amounts of extracellular matrix including 

collagen and are the main contributors in the development of cirrhosis [210].  HCC 

develops at a higher rate in cirrhotic HCV-infected individuals, but still can be detected in 

non-cirrhotic patients with advanced fibrosis [211]. The mechanism of HCC is poorly 

understood, but dysregulation of cell proliferation by HCV replication is probably 

essential for the immortalization of infected hepatocytes. It also was suggested that 

hepatocyte regeneration in an oncogenic environment containing mutagens, such as 

oxidants, which are present as a consequence of cell injury, fibrosis and immunological 

attack, can  result in the emergence of HCC [212]. The HCV core protein was shown to 

transform cells into a malignant phenotype through cooperation with transforming protein 



 
 

28 
 

p21 (H-ras) [213]. It has also been reported that other HCV proteins, such as NS3, NS4B 

and NS5A, have oncogenic potential, but the mechanism of involvement in cellular 

transformation and in vivo relevance remains to be defined [214-216]. Risk factors can 

also increase the incidence of HCC development, including co-infection with hepatitis B 

virus (HBV) or Epstein-bar virus (EBV) [217-219]. Genetic background is also another 

risk factor as a SNP in MHC class I polypeptide-related sequence-A (MICA) was 

strongly associated with the onset of HCC in HCV-infected patients [220]. All of the 

above, as well as other risk factors have been proposed, but the evidence is less clear and 

there is a lack of representative data. 

Chronic HCV infection may also cause extra-hepatic manifestations (EHM) with 40-

74% of infected individuals shown to develop at least one EHM [221,222]. Mixed 

cryoglobulinemia (MC) is the most commonly associated disorder with HCV infection at 

a rate of 19-55% [223]. Other EHMs were also reported, including lymphoma, 

glomerulonephritis, vasculitis,  insulin resistance and type 2 diabetes, and autoimmune 

disorders, such as thyroiditis, depression, anemia and impaired renal function [223-225]. 

One interesting observation is that HCV can also infect cells of the immune system [226-

228]. HCV RNA positive and negative strands, as well as viral proteins have been 

visualized in isolated peripheral blood mononuclear cells (PBMC) from chronically 

infected patients [226,228]. Multiple reports have described reactivation of HCV 

infection after SVR in immunological disorders such as HIV or 

hypogammaglobulinaemia [229,230]. In addition, immunosuppressive drug receipt has 

also been shown to associate with recurrent HCV infection despite an apparent SVR 

[231,232]. This idea is also supported by the above-mentioned association of HCV with 



 
 

29 
 

MC and non-Hodgkins lymphoma. HCV variants isolated from immune cells were 

different from those in serum or liver in infected individuals and from the JFH-1 strain 

obtained from HCVcc [233-236]. These differences where mapped to the 5′-UTR and 

promote HCV replication in immune cells but not in liver cells [237]. As a whole, these 

observations suggest that HCV infection of immune cells could be responsible for 

reactivation of HCV after SVR and HCV may undergo a latency-like stage during the 

course of infection or treatment period in what’s called occult HCV infection (OCI) 

[238]. However, the exact mechanism and role of OCI in disease progression and 

reactivation is still not clear and requires more investigation. Such findings are most 

important to understand mechanisms of HCV reactivation after apparently successful 

treatment.              

1.8.2 Mechanisms of immune evasion in HCV infection  

HCV has evolved several mechanisms to establish a persistent infection. The first line 

of defense that HCV evades is the innate immune response (reviewed in [239]). The viral 

protein NS3-4A was shown to cleave mitochondrial antiviral signaling protein (MAVS) 

both in cell culture systems and in infected patient hepatocytes [240]. MAVS is a part of a 

pattern recognition receptor (PRR) pathway that is important for sensing viral RNA and 

mounting an immune response [241]. RIG-I senses the pathogen associated molecular 

pattern (PAMP) in the HCV genome and activates a signaling pathway through MAVS 

leading to production of downstream effector molecules, such as interferon regulatory 

factor 3 (IRF-3), NF-κB and a variety of pro-inflammatory cytokines required for innate 

antiviral immunity and IFN production [241]. NS3-4A was also shown to degrade TRIF 

and inhibit RNA sensing through the RNA sensing PRR termed toll like receptor 3 (TLR-
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3) [75]. TLR-3 and its signaling through the adaptor protein TRIF activates IRF-3 and 

NF-κB for the production of IFN and inflammatory cytokines needed for proper immune 

system function, such as upregulation of the cytotoxic T cell response [242]. The viral 

proteins NS5A and E2 were shown to inactivate protein kinase R (PKR), an example of a 

non-traditional PRR that senses viral dsRNA [243-245]. NS5A and E2 can inhibit the 

kinase-dependent activity of PKR and lead to phosphorylation of eukaryotic initiation 

factor 2 alpha to suppress host mRNA translation, but not HCV translation [243-245]. 

NS5A and E2 suppress PKR kinase-independent activity as well, acting to inhibit 

induction of specific IFN-stimulated genes (ISGs) and IFN-β by signaling through MAVS 

before RIG-I activation [88,243-245]. However, HCV inhibition of PKR kinase-

dependent activity could limit host factors important for HCV replication. Therefore, it 

was suggested that NS5A and E2 PKR kinase-dependent inactivation functions at a 

specific time during infection to support availability of required host factors for HCV 

replication after NS3-4A-mediated inhibition of MAVS [239]. The core protein of HCV 

also contributes to the inhibition of innate immune responses by antagonizing IFN 

signaling through blockage of the Jak-STAT signaling pathway [239,246,247]. 

HCV can also evade components of the adaptive immune system directly. The high 

rate of HCV replication combined with the polymerase lack of proofreading helps the 

virus to escape the antibody response [248,249]. HCV escape mutations also inhibit 

CD4+ and CD8+ T cell responses by affecting  epitope processing, MHC binding, and 

recognition by both CD8+ and CD4+ T cells [248,250-252]. Fascinatingly, HCV-specific 

T cells isolated from blood and liver biopsies of infected patients express the inhibitory 

receptor programmed cell death-1 (PD-1), which inhibits effector functions and 
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accelerates apoptosis upon engagement with its ligand expressed on infected hepatocytes 

[253,254]. The effector function of HCV-specific T cells isolated from infected patients’ 

blood can be rescued by in vitro exposure to PD-1 blocking antibody and after blocking 

of cytotoxic T-lymphocyte antigen 4 (CTLA-4) and PD-1 for T cells isolated from liver 

biopsies [254,255]. Studies on HCV-specific CD4+ and CD8+ T cells found them to be 

impaired in their effector functions, such as cytotoxicity and production of effector 

mediators IL-2, TNF-α and IFN-γ [256-259]. The mutation rates and amino acid changes 

in HCV was found to be affected by immune responses, with the highest level of selective 

pressure peaking during the acute phase of the disease and decreasing gradually as the 

infection continues [248,251,260].  Therefore, T cell accumulation with a sequential loss 

of function could be a result of altered peptide ligands that downregulate T cell responses 

and fail to effectively prime new T cells during the course of infection leading to 

persistence of the pathogen [252,261]. 

1.9 HCV therapy 

Until recently, the standard treatment for HCV infection consisted of Peg-IFN-α and 

ribavirin [262]. Peg-IFN-α is a general antiviral agent supporting the immunological 

response, whereas ribavirin activity is not well defined [263]. Multiple mechanisms have 

been reported for the activity of ribavirin that include: induction of IFN-stimulated genes 

(ISGs); enhancement of the Th1 immune response; inhibition of HCV NS5B polymerase 

activity; and GTP depletion by inhibiting inosine monophosphate dehydrogenase [263]. 

This treatment combination led to a SVR of about 50% for patients infected with G1 and 

G4, and about 80% for G2- and G3-infected patients [5,264]. Sadly, this treatment 

combination is associated with severe side effects, including fatigue, flu-like symptoms, 
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mild anxiety, skin rash, nausea, diarrhea, autoimmune diseases, hemolytic anemia, 

depression, and other neuropsychiatric side effects [265,266]. True selection of viral 

resistance to Peg-IFN-α and ribavirin treatment has not been observed. 

Since 2011, standard HCV therapy against infection with G1 has been updated to 

include Peg-IFN-α, ribavirin and one of two DAA compounds targeting the NS3-4A 

protease in a triple therapy approach [6,7]. The 1st generation NS3-4A protease inhibitor 

telaprevir and boceprevir increase the SVR rate from 50% to 70% but are unfortunately 

associated with viral resistance and severe side effects [6,7]. A number of other 1st 

generation protease inhibitors, such as simeprevir, vaniprevir, asunaprevir and faldaprevir 

are in clinical development and showed more antiviral activity with milder side effects 

[8,267]. These 1st generation protease inhibitors, dependent on class, show overlapping 

resistance profiles and a limited genotype coverage [8]. The 2nd generation protease 

inhibitors MK-5172 and neceprevir showed higher antiviral activity and a broader 

genotype coverage with favorable resistance profiles. Both are currently under 

development [268]. 

Other DAA compounds targeting viral proteins other than NS3-4A were also 

developed. The nucleoside inhibitor sofosbuvir targets the NS5B polymerase active site 

and showed 90% SVR as determined by clinical HCV RNA detection assays and 

satisfactory safety profiles [269,270]. The nucleoside inhibitors have pangenotypic 

coverage and a high barrier to resistance due to their mechanism of action [267]. NS5A 

also emerged as a DAA target with the antiviral compound daclatasvir showing the most 

promise [271]. Daclatasvir showed broad genotypic activity, reduced HCV infectivity 

with sub-micromolar concentrations in cell-based assays, and rapidly reduced circulating 
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HCV in clinical trials [271-273]. This compound has a low barrier to resistance [272]. 

The idea of using daclatasvir in combination with other DAA classes such as sofosbuvir 

has been tested with promising results and is likely going to be used in combination 

approaches with other DAAs in the hope that an IFN-free all-oral combination may 

eventually become the standard of care [274]. 

One of the strategies used to develop HCV treatment is through targeting cellular 

proteins involved in HCV propagation inside an infected cell; such compounds are termed 

host-targeting agents (HTAs) [275]. For example, the small molecule ITX 5061, which 

inhibits HDL uptake by the liver through the SR-B1 receptor, was shown to inhibit HCV 

entry and is currently in phase 2 clinical trials [276]. Mutations in E2 HVR-1 can confer 

resistance to ITX 5061 [277]. Cyclophilin A (CypA) is an intracellular factor found to 

bind NS5A and important for HCV replication [153]. Alisporivir is a CypA inhibitor that 

demonstrates potent antiviral activity and enhances IFN-based treatment, but is associated 

with acute pancreatitis among trial participants and is now on clinical hold [278-280]. 

Another promising host factor target required for HCV replication is the liver-specific 

miR-122 [281]. MicroRNAs are small RNA sequences required to reduce the level of 

host translated proteins through interaction with messenger RNA (mRNA), thus 

regulating host gene expression [282]. In the case of HCV infection, miR-122 interacts 

with the HCV genome at the 5′-end and enhances HCV replication [281]. This interaction 

was also suggested to protect uncapped HCV RNA from degradation by cellular 

exonucleases and shield the 5′-end of the genome from recognition by PRRs [283,284]. A 

small complementary sequence antagonizing miR-122 (antagomir or miravirsen) 
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significantly inhibits HCV viral load after subcutaneous injection of miravirsen in the 

chimpanzee model and infected humans, and is now in clinical development [285,286]. 

In addition to DAAs and HTAs, HCV vaccine development is also under way, where 

such achievement will be of outstanding value towards HCV eradication. HCV 

neutralization antibodies against E2 protein derived from hyper-immunized rabbits were 

shown to prevent HCV infection of chimpanzees [287]. However, antibody-based 

vaccines fail due to HCV mutations and cell-to-cell transmission where virions are hidden 

from neutralizing antibody contact [184,287]. It remains possible that a cloned pool of 

antibodies can be used as post-exposure prophylaxis treatment [288]. DNA vectors 

encoding E1, E2, core, NS3 or NS3-NS5B were also investigated in infected chimpanzees 

as a strategy to elicit strong T cell responses and develop a protective HCV vaccine [289-

292]. However, the observed protection in these vaccination strategies was short in 

duration and could not prevent HCV infection after rechallenge. 

Treatment of HCV improved after the approval of the first two DAAs. A collaborative 

effort of basic understanding of the HCV life cycle, industrial drug development and 

clinical investigations provide hope for identifying novel therapeutic agents that can lead 

to HCV eradication. 
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1.10 The HCV protein p7 

The review of the HCV p7 protein below has been published in Virology as an Invited 
Review. 

1.10.1 HCV p7 processing, topology, and localization 

The p7 protein was identified through expression of a series of C-terminally truncated 

HCV polyproteins fused to a human c-myc epitope tag. This analysis located p7 between 

the envelope glycoprotein E2 and the NS2 protein (Figure 1.1) [137]. Homologous 

proteins have been identified in the Pestivirus genus, e.g., bovine viral diarrhea virus 

(BVDV), classical swine fever virus, and border disease virus, all containing such a 

characteristic protein between E2 and NS2 [293]. However, Flaviviruses such as yellow 

fever virus, dengue virus, and West Nile virus do not encode a protein homologous to p7 

[294]. 

Upon HCV genome translation, p7 processing is mediated by host-encoded proteases 

(Figure 1.1) [19,295], but scission at the E2-p7 and p7-NS2 junctions is delayed, resulting 

in the presence of precursor E2-p7-NS2 polyproteins. The cleavage at the E2-p7 junction 

is incomplete and performed by a unique mammalian signal peptidase leading to the 

presence of E2 and p7 mature forms, as well as some E2-p7 species [137,139,171]. Partial 

cleavage was attributed to a structural determinant located N-terminal to the signal 

peptides. This is supported by the finding that fusion of reporter proteins N-terminal to 

the signal peptides improves cleavage efficiency [296]. The function of E2-p7 or p7-NS2 

precursors is yet unidentified, but hypotheses have been developed: (i) the precursor itself 

plays a role in the HCV life cycle; (ii) the precursor could be important for regulating the 

kinetics and/or levels of final product expression to prevent premature virus assembly 
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[296,297] (such a case was illustrated in the coordinated cleavage of C-preM in the 

Murray Valley encephalitis virus  [298]); (iii) the E2-p7 precursor might be important for 

pulling p7 into the physical composition of the virion by retaining a pool in the ER as the 

E2-p7 form [299]. However, it’s likely that cleavage of E2-p7 precursors play a 

regulatory role because complete separation of E2 and p7 by insertion of an 

encephalomyocarditis virus (EMCV) IRES between these two proteins moderately 

reduced the level of virus production in the HCVcc system. This suggests the E2-p7 

precursor serves no functional purpose on its own, but that a temporal dependence on E2-

p7 processing is critical for virus production [297,300]. In trans-complementation studies, 

it was found that whether p7 alone or p7 in the context of cleavage intermediates were 

sufficient for restoration of virus production depended on the extent of the original p7 

deletion and the degree of indirect effects such deletions had on polyprotein processing. 

[301]. In summary, it is clear that the p7-including processing intermediates in some way 

impact virus production, but whether these intermediates have specific functions within 

the viral life cycle requires further investigation. 

The p7 protein is a polytopic membrane protein that crosses the ER membrane twice, 

forming trans-membrane domain 1 (TM1) and trans-membrane domain 2 (TM2) 

connected by a short segment (Figure 1.5), with its N- and C-termini oriented toward the 

cytosol [137]. The subcellular localization of p7 was identified by fusion of p7 to CD4 or 

Myc. These fusions in HepG2 cells identified a large fraction of p7 in an early 

compartment of the secretory pathway suggesting the presence of a retention signal 

maintaining localization of p7 in the ER [302]. Conversely, intracellular staining of green 

fluorescent protein (GFP) or Flag-tagged p7 in 293T cells showed that p7 partially co-
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localized with mitochondria and adjacent membrane structures [303]. Interestingly, 

staining of native and tagged p7 demonstrated that untagged p7 was exclusively detected 

on the ER, while N-terminally tagged p7 was detected on ER or mitochondrial adjacent 

membranes. This work is indicative of complex trafficking of p7 that could be regulated 

by the cleavage from its upstream signal peptide and targeting signals present within the 

protein sequence. Transmission of calcium ion fluxes from ER cisternae to mitochondria 

has been shown to be a pivotal process in the regulation of apoptotic signaling. Therefore,  

The authors suggested that p7 association with ER and mitochondrial membranes may 

interfere with such signals, rendering the cell insensitive to proapoptotic stimuli from 

immune cells or the effects of other viral gene products [299,304]. Immunofluorescence 

(IF) and electron microscopy (EM) in the context of a full-length, RNA replication-

competent HCV genome derived from the JFH-1 sequence, showed that GFP-p7 or p7 

fused to human influenza hemagglutinin-tag (HA-tag) 4 amino acids downstream of the 

potential E2-p7 cleavage site were localized only at the ER in Huh7 cells. However, it is 

important to note that these tags likely disrupted virus production [305]. Consequently, 

recent studies have double-HA-tagged p7 at the N-terminus in the chimeric virus Jc1, 

creating a viable virus. This replicating virus showed significant colocalization of p7 with 

ER markers and a lesser extent of association with mitochondrial or LD markers. p7 

showed a reticular staining pattern that mainly co-localized with HCV E2 and partially 

with NS2, NS3, and NS5A [306]. Hypothetically, p7 localization with multiple organelles 

may be indicative of this protein’s dual role in HCV assembly and trafficking of nascent 

virions through multiple cellular pathways. 
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Figure 1.5 p7 topology and sequence analysis. (A) Representative diagram of p7 

topology within the ER showing the TM1 and TM2 connected by a cytoplasmic loop. 

Both N- and C-termini are oriented toward the ER lumen. (B) Examples of commonly 

used isolates with genotype/subtype sequence variability and domain locations shown. 

TM1 (aa13-32) and TM2 (aa38-57) are indicated by dark gray boxes. The two conserved 

basic residues in the cytoplasmic loop are shown in red. 
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The relatively small size of p7 and its membrane integration topology have made 

analysis of localization and function laborious and sometimes inconclusive. It is possible 

that the accessibility of antibodies or the duration of infection chosen in the above-

mentioned literature inaccurately identified localization of p7 in multiple cellular 

compartments. Therefore, more sensitive proteomic analysis for p7 tracking and 

localization on multiple separated cellular organelles at various times during HCV 

infection in cell culture is needed in order to gain more reliable insights into the role(s) of 

p7 in the HCV life cycle. 

1.10.2 Ion channel function and potential anti-p7 compounds  

The p7 proteins of BVDV and HCV were originally proposed to oligomerize and form 

ion channels by Harada et al. [307] and Carrere-Kremer et al. [302], respectively. 

Oligimerization was observed when it was shown that p7 formed a hexamer in artificial 

membranes and functioned as a calcium ion channel in so called black lipid membranes. 

The ion channel activity of p7 in this assay could be abrogated by the drug amantadine 

[308]. The ion channel activity of a cross-linked p7 led to inclusion of this protein in the 

viroporin family, which consists of small hydrophobic proteins with the ability to 

permeabilize membranes for ion and small molecule movement (examples are listed in 

Table 1.2 and reviewed in [309-313]). An important example is the viral protein M2 of 

influenza virus, which forms proton ion channels and is activated in acidic environments. 

M2 triggers viral uncoating during entry within acidic endosomes and protects the HA 

glycoprotein from premature maturation in the trans-golgi network during egress, 

indicating that a multitude of functions can be performed by virally encoded ion channels. 

The channel activity of M2 is blocked by amantadine and rimantadine, suggesting the two 
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could be used to treat influenza infection (reviewed in [314,315]). p7 conductance across 

artificial lipid membranes was confirmed when pentamer formation was shown to be 

necessary for accommodation of ion transport. This study also reported a concentration-

dependent inhibition of p7 channel activity after treatment with long-alkyl-chain 

iminosugar derivatives, such as N-nonyl deoxygalactonojirimycin (NN-DGJ), N-nonyl 

deoxynojirimycin (NN-DNJ) and N-7-oxanonyl-6-deoxy-DGJ [316]. These compounds 

were tested because of their potent anti-viral activity against BVDV [317]. 

In cell-based assays, Griffin et al. demonstrated that expression of p7 in mammalian 

cells can substitute for influenza virus M2 channel activity to maintain infectivity of 

influenza, and that this activity also could be blocked by the antiviral drug amantadine. In 

addition, it also was shown that mutation of the two basic residues within the p7 

cytoplasmic loop abrogated ion channel activity, highlighting the importance of this loop 

for p7 function [303]. A subsequent study confirmed the ion channel function of p7 in 

planar lipid bilayer membranes and showed that p7 channels were permeable to 

potassium and sodium ions, with limited permeability to calcium ions [318]. Later, 

fluorescence-based liposome assays were developed to more conveniently assay for p7 

channel activity and therapeutic targets within p7. Employment of such assays using p7 

from genotype 1b showed a dose-dependent release of fluorescent indicator when mixed 

with liposomes. The release activity was blocked by the drugs amantadine, rimantadine 

and several related compounds [319]. Taken together, these similarities with M2 protein 

function and inhibition provide strong evidence that p7 is also a viroporin. 
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Table 1.2 Examples of known viroporins 

 

Ion channel names and their respective virus and family names are shown (1st and 

2nd columns). The known or expected functions are listed (3rd column). The number of 

monomers needed to form the channel upon oligomerization and the classification (class) 

are shown (4th column). Potential inhibitors (5th column). Abbreviations: HA: 

hemagglutinin, HIV-1: Human immunodeficiency virus type 1, Vpu: viral protein U, 

CoV: coronavirus. (Table information is gathered from references [309-313]). 

 

 

Viroporin 
 name

 Virus family  Main function Oligomerized 
 state/Class  

 Inhibitors

Influenza A 
 M2

 Orthomyxoviridae 1.  Viral genome uncoating.
2. Assembly of functional    

 HA conformation. 

 Tetramer/Class IA Amantadine and 
 Rimantadine

 HIV-1 Vpu  Retroviridae 1. Facilitate budding of newly   
 formed virion.

2. Enhance degradation of 
 CD4. 

 Pentamer/Class IA Hexamethylene 
amiloride, 

 BIT225

Picornavirus 
 P2B

 Picornaviridae Modulate virus release and 
host cell apoptosis 

 (suggested)

Dimer or tetramer/ 
 Class IIB

DIDS (classic 
anion exchanger 
inhibitor) tested 

only in 
 Enterovirus

 CoV-E  Coronaviridae 1. Induce assembly by 
enhancing membrane 

 scission.
2.  Induce virion release.

Dimer, tetramer, or 
 pentamer /Class1A

Hexamethylene 
 amiloride
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Investigation of sequence determinants in p7 critical for ion channel activity or drug 

sensitivity led to a number of insightful outcomes concerning the role of the putative 

channels. One report showed that the leucine-rich motif at the C-terminal end of TM2 

partially contributed to drug sensitivity. Mutation of the two basic residues within the 

cytoplasmic loop (K33/R35 in G1b) was found to affect channel activity and caused 

disruption of the ion channel insertion into membranes. The histidine at residue 17 in 

TM1 also showed significant effects on ion channel function [320]. H17 is part of a 

HXXX(Y/W)-like motif that is also found in influenza M2 and is integral for ion channel 

opening [321]. H17 was shown to be in a critical position in the ion pore, demonstrating 

its key role in ion channel conductance [322]. Additionally, the L20F mutation and F25A 

polymorphism in HCV p7 were found to confer adamantane and iminosugar resistance, 

respectively [323]. These findings highlight the importance of mutational analyses of the 

p7 sequence and the associated ion channel activity, with major implications on drug 

binding and potential identification of novel inhibitors. 

p7 channel activity had never been tested in a cell culture-based assay recapitulating 

the entire HCV life cycle because such a system (HCVcc) was not established until 2005 

[324-326]. In contrast with earlier studies, discrepancy was observed when the HCVcc 

system was employed to characterize the potential antiviral effects of amantadine and 

iminosugar derivatives (NN-DGJ, NN-DNJ and NB-DNJ). It was found that amantadine 

did not affect virus release, infectivity or ion channel activity of JFH-1 (G2a) or chimeric 

HCV genomes (H77 (G1a), Con1 (G1b), and J6 (G2a)). In contrast, the iminosugar 

derivatives reduced virus titers in a dose-dependent manner in the context of multiple 

genotypes, primarily at virus assembly or release steps [327]. The iminosugar derivatives 
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NN-DGJ, NN-DNJ and NB-DNJ have been shown also to target cellular α-glucosidase I 

and II, and their inhibition leads to misfolding of various host [328] and viral 

glycoproteins, such as BVDV E2 [329] and gp120 of HIV [330]. With this in mind, the 

above-mentioned effect of iminosugar derivatives on virus production could be attributed 

to alteration in HCV envelope proteins, as shown previously [327], or to a manipulation 

of a host cellular glycoprotein crucial for virus propagation in cell culture. Similar 

discrepancy was also observed in a related protein called p13-c of GBV-B, whereby 

amantadine inhibited the function of p13-c ion channel activity but failed to inhibit 

replication and secretion of GBV-B from virally-infected marmoset hepatocytes [331]. 

The development of the HCVcc system introduced greater opportunities for p7 

characterization. Griffin et al. extensively differentiated the genotype- and subtype-

dependent sensitivity of p7 to multiple inhibitors using both HCVcc and artificial 

membrane assays. It was found that p7 from the JFH-1 isolate was not blocked by 

amantadine in HCVcc or liposome-based assays, whereas amantadine successfully 

inhibited G3a in both systems. Amantadine inhibits J4 (G1b), while rimantadine was able 

to inhibit both JFH-1 and J4 channel activity and virus production. In addition, the 

iminosugar derivatives NN-DGJ and NN-DNJ reduced infectious virus production for 

genotype 2a and 1b in a dose-dependent manner, with no observed effect on viral protein 

synthesis, processing, HCV RNA replication or cellular cytotoxicity [332]. Until now, 

differing results have been obtained with various inhibitors in the context of different 

genotypes. These contrasting results suggest that p7 inhibitors may need to be developed 

in a genotype-specific manner. 



 
 

44 
 

Interestingly, p7 ion channel activity was identified in native cell membrane vesicles 

and infected Huh-7.5 cells by measuring H+ proton conductance and fluorescent detection 

of lysosomal pH indicators. Similarly, expression of p7 in HEK-293FT cells equilibrated 

H+ conductance. HCV infection increased lysosomal pH in infected cells, but defective 

ion channel mutants yielded no such increase. Furthermore, amantadine, rimantadine and 

hexamethylene amiloride block H+ conductance through native vesicular membranes 

[178]. In a very recent article, Atkins et al. provided new evidence suggesting that p7 

directly influences the stability of secreted, acid-labile HCV particles via an as yet undefined 

mechanism [333]. This strongly advocates the importance of ion channel activity during 

virus propagation. 

A small compound termed BIT225 was shown to inhibit HIV production at a late 

stage in the viral life cycle by blocking Vpu ion channel activity and impeding virus 

release from monocyte-derived macrophages [334]. BIT225 was also shown to bind p7 

using a computational model of a p7 monomer, along with amantadine, rimantadine and 

NN-DNJ [335]. BIT225 was shown to inhibit p7 ion channel activity in lipid membranes 

and demonstrated antiviral activity in a BVDV infection assay [336]. 

A small number of clinical trials that included potential p7 inhibitors have been 

performed to date. Combination therapy of amantadine and IFN-α exhibited an 

insignificant correlation between amino acid variation within p7 and response to 

treatment in G1a/b-infected individuals. However, a L20F mutation was observed more 

often in non-responder patients infected with G1b receiving this combination therapy, 

which gives weight to the theory that amantadine targets p7 [337]. Subsequently, an 

increase in early anti-virological response was observed in G1a/b patients treated with 
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IFN-α, ribavirin and amantadine, yet sustained virological response rates remained the 

same as in the arm receiving standard of care [338]. Such early inhibition was observed 

previously when a combination of amantadine, ribavirin and IFN-α was shown to reduce 

plasma viral RNA levels in patients in a phase 1 trial [339]. These data suggest that 

amantadine could be useful in the case of new infections or to promote viral decay before 

the establishment of chronic infection. 

It is still premature to include an ion channel inhibitor with IFN-α and ribavirin. The 

discrepancies observed among the inhibition studies performed to date could be attributed 

to system inconsistencies, e.g., artificial membrane, liposome assay or HCVcc, and/or use 

of dissimilar p7 genotypes studied in native form versus tagged versions of the protein. 

Clinical trial data is still confined to response rates and lack of some aspects of drug 

delivery analysis is plausibly accountable for the minimal therapeutic outcomes. 

Completion of extensive mutational analyses on p7 could further our structural and 

functional understanding of the ion channel and identify specific regions within p7 that 

could represent novel therapeutic targets. Subsequent or concomitant analyses of patient 

genomes from clinical trials could provide penetrative information concerning resistance 

and susceptibility in the p7 region.   

1.10.3 NMR analyses of p7 

Nuclear magnetic resonance (NMR) structural analysis performed on p7 from G1b 

showed that the N-terminal portion formed an α-helix (aa 1-14) and TM1 (aa 15-18) and 

TM2 (aa 19-32) formed α-helixes connected by a short loop (aa 33-39) [340]. However, 

the structural features and the helix lengths observed through NMR conflicted with the 

molecular model of p7 [302,320,341,342]. The monomeric NMR structure of p7 unveiled 
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a dynamic nature, and the structure identified predicted a multifunctional protein rather 

than one strictly acting as an ion channel [343]. Also, monomeric NMR structural 

analysis performed on Flag-p7 from G1b identified a relevant allosteric cavity compatible 

with drug binding. These findings highlight the importance of p7 as a potential target for 

the development of HCV inhibitors [344]. 

NMR data obtained on oligomerized p7 indicated that the protein forms a hexameric 

channel complex in the presence of detergent, and EM analysis identified a flower-like 

shape with six distinctive petals with the p7 helices oriented toward the lumen of the ER. 

The identified structure also showed an accessible area facing the interior of the ER that 

could provide an interaction face with other viral or host proteins [345]. Additionally, the 

G1b p7 sequence can assemble sequentially to form an oligomerized structure of four to 

seven subunits with the most putatively functional oligomer being the hexamer in which 

the cylindrical structure accommodates the flower-like shape. The sequential formation of 

the channel was suggested to regulate the function of p7, whereby p7 would be retained in 

an inactive state that allows p7 to bind to other viral proteins early in the assembly 

process. Subsequently, pore formation could take place to accommodate channel activity 

required at a later stage in the life cycle [346]. A more recent NMR structural 

identification of the p7 ion channel showed that the G5a sequence forms an unusual 

hexameric complex with a funnel-like shape. This study also suggested that amantadine 

and rimantadine bind to six equivalent hydrophobic pockets between the pore-forming 

and peripheral helices, defining a possible mechanism of inhibitory action [347]. 

The diversity of structural predictions for p7 based on NMR analyses may be 

attributed to a number of variables, such as the different genotypic p7 amino acid 
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sequences, the purification method used, or the solvent and environmental conditions 

used in the preparation of the protein for NMR structural analyses. However, structural 

agreement in NMR studies will prove to be important for identification of structural 

features of monomeric and oligomeric p7 structures, as well as drug binding determinants 

within p7. 

1.10.4 Functional analyses of p7 

In 2003, deletion or mutations at the two conserved positively charged residues in the 

cytoplasmic loop of p7 within infectious clones of G1a failed to cause viremia after 

intrahepatic transfection in the chimpanzee model. Furthermore, substitution of G1a p7 

with p7 from an infectious G2a clone was also not viable. These results clearly 

demonstrated the importance of p7 for the virus life cycle in vivo, as well as the restrictive 

genotypic context of p7 function [348]. Given the accumulating evidence suggesting that 

p7 forms an ion channel and acts as a viroporin, it is conceivable that such an activity 

might be required for the virus to facilitate entry, assembly or release in a manner similar 

to that of other viroporins [308,316,318]. 

After the development of the HCVcc system, mutagenesis studies on various viral 

proteins for functional analysis became possible [324-326]. Early mutational analyses 

demonstrated the importance of p7 for virus production [300,349]. Steinmann et al. 

showed that p7 is involved at a late stage of the replication cycle, since mutants in p7 

reduced both total infectivity and the ratio of intracellular to released infectious particles. 

Successively, p7 was shown to be less likely involved in the viral entry process due to the 

maintenance of specific infectivity observed in released virions from genomes mutated in 

p7 [349]. A subsequent study illustrated that p7 mutant genomes generated lower levels 
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of intracellular virus, released core protein and infectious particles in the culture 

supernatant, suggesting involvement of p7 at an early stage of the viral morphogenesis 

cycle [300]. 

Currently, a number of convincing pieces of evidence exist suggesting that p7 is not 

involved in the entry steps of the viral life cycle: (i) HCV pseudoparticles (HCVpp) 

produced from 293T cells lack p7 but remain infectious to hepatocyte-derived cell lines 

[350]; The pseudoparticle system (HCVpp) exploited retrovirus biology to create 

retroviral particles with HCV glycoproteins expressed on the surface. 293T cells were 

used for generation of particles expressing E1 and E2, these particles could then be used 

to infect permissive hepatocytes and entry could be measured through the use of a 

luciferase or GFP reporter genes in the recombinant construct [350,351] (ii) cis-

expression of p7 during HCVpp production did not increase infectivity [352]; (iii) HCV 

virions are acid-resistant, suggesting that ion channel activity during entry is not needed 

[131]; (iv) p7 from the related virus BVDV was not found to be a component of the virion 

structure [293], and (v) more importantly, using an infectious construct containing a 

double HA-tagged p7, it was found that p7 was not contained within the virion, even in 

concentrated, affinity-purified or Flag-tagged preparations of virus [306]. All things 

considered, a viroporin-like activity of p7 might be required at a step downstream of virus 

entry that resembles the influenza A M2 activity during viral egress and HIV-1 Vpu (see 

Table 1.2). 

Regarding steps subsequent to viral entry, current evidence indicates that p7 has no 

role in RNA replication. Firstly, replicons lacking p7 replicate efficiently in Huh-7 cells 

[353,354], secondly BVDV containing mutations in p7 was able to replicate in cell 
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culture, but failed to produce infectious particles [307], and lastly mutations or deletions 

within p7 generated in the context of HCVcc replicate RNA efficiently with impaired 

infectious virus production [300,349]. 

Since the establishment of the HCVcc system, HCV assembly has been under intense 

investigation. One intriguing aspect of the assembly mechanism is the accumulation of 

core protein around a cellular organelle termed the LD, which is proposed to function as a 

platform for virus assembly [96]. However, others have suggested that core does not 

accumulate on LD in the context of an efficiently-assembling virus, suggesting that 

core/LD accumulation is an indication of an assembly defect [355]. It is worth mentioning 

that an NS2-mutated, assembly-deficient HCV strain could be rescued by compensatory 

mutations in p7 that restored virus production and colocalization of NS2, E2 and NS3 to a 

site in close proximity to LDs [65]. Likewise, another report visualized that p7 can 

manipulate the intracellular distribution of NS2 and disrupt its binding pattern with other 

viral proteins [172]. This assumption was confirmed recently by showing that NS2 

distribution is affected by the presence of p7 and its N-terminal signal peptide [356]. 

Presenting a different perspective, the efficiency of core accumulation on LDs due to p7 

mutations was quantified and it was found that mutations in the p7 cytoplasmic loop 

affected the unloading of core protein from LDs, resulting in a retention of core around 

LDs [30]. The preceding observations could indicate that p7 is important for 

colocalization of NS2 with LDs, a process that is crucial for NS2 function. Interestingly, 

p7 has been also shown important for unloading of newly-formed capsids toward further 

assembly, maturation and envelopment [30,357]. 
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Subsequent to core protein recruitment to LDs, core oligomerizes to form capsid 

structures. This presumably facilitates the formation of multi-order forms during the 

morphogenesis cycle that would include monomeric core, partial oligomers, fully 

oligomerized capsids and virions associated with triglycerides and β-lipoproteins, all of 

which would show different densities upon intracellular lysate fractionation [41,358,359]. 

A study has shown that mutated p7 at the cytoplasmic loop did not prevent the assembly 

of core-containing intracellular particles after iodixanol equilibrium gradient 

sedimentation [360].  Compellingly, another report performed core quantitation on the 

fractions obtained after sucrose-based rate zonal fractionation and observed an increased 

proportion of incompletely assembled capsids. Further analyses on these fractions 

indicated that p7 mutations or deletions in the cytoplasmic loop led to accumulation of 

non-enveloped capsids in transfected cells [30]. These data reflect the necessity of p7 

downstream of capsid formation. 

The postulate that p7 can function as an ion channel gained momentum when it was 

shown that HCV infection equilibrates intracellular acidic vesicles. This loss of acidity 

was not observed with HCV genomes harboring p7 ion channel defective mutations 

(KR33/35AA in the J4 sequence or RR33/35AA in JFH-1). It was found that intracellular 

HCV virions were acid-sensitive, whereas extracellular virions were acid-stable. In 

confirmation of this finding, the acidification inhibitor Bafilomycin A1 was able to rescue 

virus production of ion channel defective mutants in Huh-7.5 cells [178]. Furthermore, 

HCV replication-defective viruses containing mutations in TM1 of p7 or the cytoplasmic 

loop showed a restoration of infectivity by in trans expression of the M2 proton channel 

of influenza A, indicative of an ion channel requirement for HCV propagation in cell 
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culture [360]. Interestingly, proteinase K digestion of p7 mutant viruses showed 

significant reductions in core protein, indicative of nucleocapsids lacking envelopes, 

which demonstrated that p7 affects virus production at a step prior to envelopment [30]. 

p7 ion channel activity could be an important step to protect the immature virion from an 

acidic environment during the late stage of assembly, particularly at the envelopment 

step. 

In summation, therefore, it seems that p7 function may be two-fold: protection of 

virion-associated E2 from acid-induced degradation that is mediated by the ion channel 

activity; in the second role, p7 is required for proper targeting of viral glycoproteins 

through a concerted effort with NS2. A third potential function, which has received little 

attention to date, is that p7 may play a role in an interaction with a cellular factor. In this 

regard, p7 has been suggested to modulate cell death signaling and may be targeted by 

cellular kinases [361,362]. It would be interesting to know if p7 interacts with cellular 

proteins in order to promote virus production. 

1.10.5 p7 interactions with other viral proteins     

The binding pattern of p7 with other viral proteins is continually being revealed 

through genetic-based investigations and protein-protein interaction analyses. The first 

clue concerning the necessity for p7 to interact with other proteins came through 

intrahepatic RNA injection of chimpanzees with a chimeric virus generated by replacing 

the p7 sequence from G1a with that of G2a. The resulting chimera was not viable after 

injection, illustrating p7’s genotype-specific interactions [348]. The JFH-1 infectious 

clone was used in multiple studies to generate infectious chimeras by replacing the core-

NS2 (or in some cases core to part of NS2) fragment of the JFH-1 sequence (G2a) with 
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that of other genotypes. In this case it was observed that chimeric viruses were only 

viable when there was genotypic homology between p7 and the substituted structural 

genes. This characteristic of chimera construction suggested there is an important 

interplay between p7 and one or more structural proteins [23,60,363]. To successfully 

create a viable chimeric construct, H77 (G1a) was fused to JFH-1 (2a) at a site within 

NS2 and passaged to allow accumulation of adaptive/compensatory mutations. The 

resulting chimera acquired mutations within p7, NS2, E1 and NS3. The combination of 

p7 and NS2 mutations increased specific infectivity, suggesting an interaction between p7 

and NS2. This interaction was proposed to anchor p7 to NS2 within the membrane, 

thereby enhancing the ability of p7 to protect the nascent virion from premature 

inactivation [363]. Furthermore, compensatory mutations in p7 (F776L/S) significantly 

enhanced the fitness of defective core mutants in the context of a J6/JFH-1 chimera, 

providing genetic evidence for an interaction between p7 and core [364]. Taken together, 

it remains unlikely that a protein the size of p7 interacts with multiple viral proteins. That 

being said, it is possible that p7 interacts with a single viral protein in order to stabilize 

other downstream interactions and promote viral propagation. 

Biochemical and proteomic assays have also been used to identify p7 binding 

partners. One report that utilized tagged NS2 showed efficient pull-down with p7, E2, 

NS3 and to a lesser extent, NS5A [65]. Other work has shown NS2 can be co-

immunoprecipitated with E1 as well [172]. Importantly, mutagenesis studies have 

demonstrated that p7 affects NS2 colocalization with E2 and NS3 around LDs, and p7 

basic loop mutations significantly reduced NS2 interactions with E1, E2 and NS3 

[65,172]. It is noteworthy that mutations in the two basic residues of the cytoplasmic loop 
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of p7 caused considerable alteration of the intracellular distribution of NS2 and E2 [172].  

However, it is difficult to conclude whether these results indicate a direct interaction with 

the loop, or if the removal of the charged residues changed the topology of p7 to 

indirectly affect the localization of other proteins. Recently, NS2 was confirmed to 

interact with p7 and E2 as mutations in p7 changed subcellular localization of NS2 and 

reduced viral assembly [357]. p7 interaction with NS2 was shown to be independent of p7 

ion channel activity and NS2 localization was affected primarily by p7 and its signal 

peptide at the N-terminus, suggesting an alternative function of p7 during the assembly 

process [356]. More recently, a co-immunoprecipitation study using a replication-

competent virus containing a double HA-tagged p7 confirmed the specific interaction 

between p7 and NS2, which was proposed to be critical for virus production in cell 

culture [306]. Despite the discrepancies observed for NS2 as a p7 binding partner we can 

conclude that NS2 maintains the organization of the viral assembly process and that p7 is 

a mandatory interaction partner. It is also plausible that p7 binds NS2 in a manner that 

regulates its function in virus assembly. 

The size and topology of p7 has made it poorly immunogenic for antibody production. 

Consequently, the determination of p7 binding partners by standard methods is 

problematic and difficult to interpret. The topology of p7 in membrane structures and data 

generated from purified or tagged proteins might not reflect the actual picture. 

Considering p7 exists as multiple forms: unprocessed E2-p7, p7-NS2, monomeric p7 or 

oligomers, reproducibility of data becomes further complicated. Accordingly, more 

accurate experimental approaches need to be investigated or identified to better define the 

protein-protein interaction activities of p7, both viral and potentially cellular. 
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1.11 Project design and hypothesis 

The only functional study of p7 in vivo indicated that p7 is essential for successful 

intrahepatic infection in the chimpanzee model and illustrated its critical role in the viral 

life cycle [348]. Studies employing full-length HCVcc chimeras have indicated that p7 is 

also important in virus production and acts at a late stage during viral assembly and/or 

release [300,349,363]. It has also been shown that p7 interacts with NS2 and that this 

interaction is required for efficient viral assembly and release [65,172,306,355,357]. In 

addition, p7 was shown to impact cellular organelle pH and reduce the number of highly 

acidic vesicles more rapidly than ion channel defective p7 mutant sequences [178]. 

Recently, another group has shown that p7 is important for formation of completely 

assembled capsids and enveloped virions, as p7-defective HCV genomes showed 

different sedimentation profiles on density gradients and generated proteinase K sensitive 

virions; a possible indication of envelope deficiency [30].   However, it is still unknown 

at which step p7 acts during the HCV life cycle. The impact of p7 regulation of 

intracellular vesicles and interaction with NS2 on virus production remain important 

questions. The aim of this study was to further elucidate the role of p7 in the HCV life 

cycle. We hypothesized that p7 is involved in the HCV assembly process at a late stage 

after nucleocapsid formation. 

The first part of this project was to test the effect of p7 in infectious virus production 

using the HCVcc system.  A number of studies have already performed mutational 

analyses on p7 and reported the importance of this protein for infectious virus production 

both in vivo and in vitro using the chimpanzee model and HCVcc system, respectively  

[300,348,349,363]. However, these reports focused mostly on the two basic residues 
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within the cytoplasmic loop since it was shown to be important for in vitro ion channel 

activity and intracellular vesicle pH modulation. In our study, and for the first time, we 

have created a panel of triple alanine mutations covering most of TM1, the cytoplasmic 

loop and TM2 of p7 in order to pinpoint which domains and amino acids are important in 

p7 function. We believe that a more comprehensive mutational analysis might provide 

additional clues into p7 function. 

The adapted strain of JFH-1, termed JFH1D, was used for the majority of the 

experiments outlined in this work. The reason behind using the JFH1D strain in this report 

was because it replicates with high efficiency compared to wild-type JFH-1 [365]. Due to 

the high replication rate of JFH1D it would be less expected to acquire adaptive mutation 

during passage that could potentially confound the effect of our mutation of interest. 

However, to prevent even JFH1D from acquiring such confounding mutations, 

experiments addressing virus production and assembly were confirmed in S29 cells, 

which represent a single-cycle virus production assay. S29 cells are a sub-clone of Huh7 

that express significantly lower levels of CD81 (an HCV entry receptor), and therefore, 

permit RNA replication and virus production, but do not support entry. Using this system 

provides the ability to analyze infectious virus production without the confounding effect 

of multiple rounds of infection cycles, during which mutant reversion could happen [365]. 

The second part of this project was to investigate at which step of the viral life cycle 

p7 plays its role. There still exists a debate on the precise role of p7 in the HCV life cycle. 

However, multiple studies have shown that p7 acts at a late stage during viral assembly 

and/or release [300,349]. The observed interaction of p7 with the viral protein NS2 has 

been suggested to be required for efficient viral assembly and/or release 
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[65,172,355,357]. p7 was shown to reduce the number of intracellular acidic vesicles 

more than defective p7 mutants at the two basic residues of the cytoplasmic loop, 

emphasizing the importance of p7 role in protecting HCV particles from acidic 

inactivation [178]. Similarly, transfection of HCV genomes defective at the cytoplasmic 

loop of p7 was shown to generate proteinase-K sensitive virions, a possible indication of 

envelope deficiency [30]. In spite of this, the exact role of p7 is still unclear. How the 

previously identified interaction pattern of p7 with other viral proteins and the viroporin 

activity contributes to the whole HCV life cycle still remains to be elucidated. The aim of 

this part was to identify at which step of the virus life cycle p7 affects virus production. 

Detailed functional characterization of the effects of generated mutations at multiple 

stages of the HCV life cycle were performed, including polyprotein processing, core/LD 

association, core protein oligomerization and virus release. 

The last part of this study was aimed at performing forced evolution studies in which 

the mutants with defects in virus production were cultured for a prolonged period of time 

so that they would have the opportunity to acquire compensatory mutations that would 

correct for the effects of the originally-engineered mutations. Such compensatory 

mutations are key to providing clues as to which domains of other proteins might form 

critical interactions with p7. Forced evolution studies on HIV provided important 

information in respect to assembly and viral genome incorporation [366-368]. When this 

approach was performed in full-length and chimeric HCV genomes, it led to the 

generation of multiple adaptive strains of HCV that are currently used instead of the low 

replicating wild-type JFH-1 strain [365,369]. This strategy was also performed on 

genomes containing mutations in viral proteins other than p7 and provided information 
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regarding the interaction patterns of such proteins [359,363]. This is the first study to 

utilise this approach on HCV genomes harboring p7 mutations. The subsequent analysis 

we performed on one of the compensatory mutations we identified provides strong clues 

regarding p7 function. 

 

 

1.12 Research objectives 

i. To determine the effect of HCV p7 on production of infectious virus (chapter 

3). 

ii. To identify the most important domains/amino acids residues of p7 for virus 

propagation in cell culture (chapter 3 and 4). 

iii. To investigate at which step of the virus life cycle p7 plays its role (chapter 4). 

iv. To determine potential viral proteins that bind to p7 using the forced evolution 

analysis (chapter 5). 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Cell culture 

Transfections and infections were performed in Huh-7.5 cells (generous gift from 

C.M. Rice, Rockefeller University/Apath Inc. LLC, USA [353]) and S29 cells (subclone 

of Huh-7 cells representing a single-cycle virus production assay [365], generous gift 

from S. Emerson, NIH, USA). Both cell lines were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM, Invitrogen/Life Technology) supplemented with 10% fetal calf 

serum and 1% penicillin/streptomycin, referred to as complete medium (CM). All cells 

were grown at 37ºC in 5% CO2. 

2.2 Cloning and plasmid construction 

Plasmids were constructed mainly in the backbone of JFH1D, which was itself derived 

from a cell culture-adapted JFH-1 strain (genotype 2a genome previously described, see 

section 2.11). Other adapted strains of JFH-1 backgrounds were also used and illustrated 

in Figure 2.1.  PCR mutagenesis was employed to introduce the desired mutations with 

primers that included the BsiWI and NotI restriction sites within the JFH1D backbone 

(primers listed in Table 2.1). The JFH1D plasmid and PCR products were digested with 

BsiW1 and Not1 (New England Biolabs) and fragments gel-purified then ligated using the 

Rapid DNA Ligation Kit (Roche). The ∆GDD negative control was created using the 

QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) and specific 

primers that omitted the GDD motif of NS5B. The same strategy was also employed to 

create other plasmid backgrounds including: (i) the JFH1A4S backbone was created by 

using a primer encoding the E1 A4 epitope in the backbone of JFH1S, which includes 
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only the NS2 adaptive mutation, and (ii) the JFH1D-FLAG background that was created by 

transferring the gene segment between BsiWI and AleI restriction sites from a FLAG-

modified JFH-AM2 that was a gift from T. Wang (University of Pittsburgh, USA) [370].  

Selected p7 mutations were then recreated by substituting the BsiWI and AleI digested 

fragment from the original p7 mutant plasmids into JFH1A4S and JFH1D-FLAG. All plasmid 

sequences were verified by enzymatic digestion and double-stranded DNA sequencing. 

2.3 In vitro transcription and RNA transfection 

Mutant and control plasmids were linearized by XbaI digestion for 2 h at 37ºC and 1 

μg of each linearized plasmid was used for in vitro RNA transcription using the T7 

Megascript kit (Ambion). RNA integrity was verified by gel electrophoresis. RNA 

transcripts were transfected using DMRIE-C reagent (Invitrogen/Life Technology) into 

1x106 Huh-7.5 or S29 cells plated in 10 cm cell culture dishes 24 h prior to transfection. 

We preferred to use DMRIE-C over electroporation because it provides comparable 

transfection efficiencies, but more importantly, it shows no cytotoxicity effects and 

transfection can be done easily in case of adherent cells such as those used in this project 

(Huh7.5 and S29).   

2.4 Antibodies  

The following antibodies were used in this study: mouse anti-HCV core monoclonal 

antibody (mAb) (B2; Anogen) was used for both indirect IF at a dilution of 1:200 and 

Western blot (WB) analysis at a dilution of 1:1000; mouse anti-NS3 mAb at a dilution of 

1:5000 (C65371M; Meridian Life Science); mouse mAb A4 (anti-E1; a kind gift from 

Harry Greenberg, Stanford university, USA); mouse anti-NS2 (6H6, a kind gift from 

Charles M. Rice, Rockefeller university, USA) both used for WB analysis at dilutions of 
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1:2000; mouse anti-E2 (AP33; generous gift from Genentech) used at a dilution of 

1:1000; mouse anti-GAPDH mAb at a dilution of 1:10000 (Abcam); sheep anti-NS5A 

antiserum (a kind gift from Mark Harris, University of Leeds, UK) used for WB analysis 

at dilutions of 1:10000. HCV core in gradient analyses was detected using mouse anti-

core mAb (MA1-080; Pierce Research) at a dilution of 1:1000, and mouse anti-ADRP 

(Progen Biotechnik) was used at a dilution of 1:1000. Alexa Flour® 488 anti-mouse 

secondary antibody (Invitrogen/Life Technology) was used for indirect IF at a dilution of 

1:1000. Goat anti-mouse and donkey anti-sheep horseradish peroxidase (HRP)-labelled 

secondary antibodies (Santa Cruz Biotechnology) were used for WB analysis at a dilution 

of 1:1000.  

2.5 Indirect IF  

Cells were grown on 8-well chamber slides (Thermo Scientific), fixed in 100% 

acetone for 2 min, washed with phosphate buffer saline (PBS) pH 7.4 and incubated with 

primary antibody for 20 min. Then, slides were washed 3 times with PBS and incubated 

with the secondary antibody for an additional 20 min and washed 3 times with PBS. 

Slides were then mounted with Vectashield Hard Set mounting medium containing DAPI 

(Vector Laboratories). 

2.6 Virus titration  

Virus titres were determined by endpoint dilution assay for focus-forming units (ffu) 

as described previously [325]. Briefly, 8-well chamber slides were seeded with 4x105 

Huh-7.5 cells per well 24 h prior to infection. At 72 h post-transfection, cell supernatants 

were clarified through Millex-HV 45 μm filters (Millipore) before being serially diluted 

10-fold with complete DMEM. 100 μl of each dilution was inoculated for 4 h before 
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being removed and replaced with complete DMEM. At 72 h post-infection cells were 

fixed with acetone and core protein was visualized by indirect IF. Virus titres were 

expressed as the number of ffu per ml of supernatant, where a focus was defined by a 

cluster of 3 or more infected cells. 

2.7 Titration of intracellular infectious virus 

At 72 h post-transfection, cells were trypsinized, pelleted by centrifugation at 400 x g 

and re-suspended in 1 ml of CM. The re-suspended cells were then lysed by 4 cycles of 

freeze/thaw (3 min freeze/ 3 min thaw) in a dry ice/methanol bath and pelleted by 

centrifugation at 1500 x g. Virus titres were determined as described above. 

2.8 SDS-PAGE and WB analysis 

At indicated time-points post-transfection, cells were trypsinized, pelleted by 

centrifugation at 400 x g and re-suspended in 300 μl of passive lysis buffer (Promega). 

Cellular debris was pelleted by centrifugation after 30 min incubation on ice. A fraction 

of the cell lysates was then loaded in a 1:1 ratio with 2X loading dye for SDS-PAGE. To 

visualize extracellular core protein, at 72 h post-transfection 12 ml of transfection 

supernatant (pooled from 2x10 cm dishes) was passed through a 0.45 μm filter and 

subjected to ultracentrifugation at 80,000 x g for 4 h at 4ºC using a Sorvall TH-614 rotor. 

Pellets were re-suspended in 20 μl of 2 X loading dye and the full amount was subjected 

to SDS-PAGE and WB. All WBs performed in this study were exposed and analyzed 

using the luminescent image analyzer (Image Quant LAS 4000, GE Santé Bio-Sciences).      

2.9 Confocal microscopy 

At 72 h post-transfection, cells were seeded onto 8-well chamber slides and 48 h later 

washed with PBS and fixed with 4% paraformaldehyde for 20 min, then washed and 
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permeabilized with 0.1 % Triton X-100 for 15 min. Following this, cells were washed and 

incubated with anti-core Ab at a 1:200 dilution in 5% BSA/PBS. Next, cells were washed 

3 times and incubated with anti-mouse labelled with Alexa Fluor® 488. To visualize LD 

the HCS LipidTOX Deep Red neutral lipid stain (Invitrogen/Life Technology) was added 

to Vectashield Hard Set mounting medium containing DAPI (Vector Laboratories) at a 

1:200 dilution then added to the slides and examined by laser scanning confocal 

microscopy. 

2.10 Iodixanol density gradient fractionation 

Two 10 cm plates per construct were transfected as described above and cells were 

trypsinized 72 h post-transfection, pelleted by centrifugation and re-suspended in 0.5 ml 

of lysis buffer (50 mM Tris (pH 7.5), 140 mM NaCl, 5 mM EDTA and 0.5% Triton-

X100) and incubated for 30 min on ice then cleared by centrifugation. The clarified 0.5 

ml were loaded over 4.5 ml of pre-formed 10-50% iodixanol gradients (prepared using 

OptiPrep Density Gradient Medium (Sigma) and Hank`s balanced salt solution 

(Invitrogen/Life Technology). Samples were then ultracentrifuged at 100,000 x g for 16 h 

at 4ºC using a Beckman SW55Ti rotor. Next, ten fractions (0.5 ml/fraction) for each 

construct were collected from the top of each tube. 50 µl from each fraction was retained 

before the protein precipitation process for measurement of density of each fraction using 

a refractometer (Fisher Scientific). Proteins were extracted from the remainder of each 

fraction by methanol precipitation at -20ºC for 40 min, and then pelleted by 

centrifugation. The resultant pellets were re-suspended in 50 μl of 2 X loading buffer, 

boiled and then probed for core protein by WB analysis. 
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The same exact procedure was also performed by re-suspending the pellet from two 

plates for each mutant and control with 0.5 ml CM and subjecting them to multiple cycles 

of freeze/thaw instead of using the above mentioned lysis buffer to compare core 

sedimentation profiles using two different lysis methods (freeze/thaw vs. chemical lysis 

with detergent). 

2.11 Bafilomycin A1 and ammonium chloride treatments 

4 pM Bafilomycin A1 (dissolved in DMSO) and 12 mM NH4Cl were prepared and 

used to treat Huh-7.5 or S29 cells that had received mutant or control RNA 48 h 

previously. These concentrations were chosen after testing a range of 1–50 pM 

(Bafilomycin A1) and 6–50 mM (ammonium chloride (NH4Cl)). Supernatants from 

harvested cells were used for titer determination or WB as outlined previously. 

2.12 Forced evolution assay 

For each control and mutant, cells were washed and trypsinized 72 h post-transfection 

and re-suspended in 10 ml CM. 2 ml of suspension were then combined with 7 ml CM. 

200 µl of suspension combined with 200 µl CM for each mutant and control were seeded 

on 8-well chamber slides and incubated for 48 h at 37°C to assess viral spread as an initial 

indication of virus adaptation. The same procedure was repeated for up to 10 rounds or 

until a significant increase was observed in core staining on the chamber slide after each 

round. Cells were also monitored daily for any visual cell death and in such a case, the 

passaging was terminated. A fraction of clarified supernatants from each mutant was 

saved from each round and used to confirm virus adaptation using the infection titration 

assay. 
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2.13 Reverse transcription, PCR amplification and sequencing of rescued mutants 

To identify compensatory mutations that had arisen during passage of the mutant(s), 

supernatant from the passage of interest plate was first used for 2 rounds of infection to 

increase the rescued virus population. RNA was extracted from supernatants using 

TRIzolLS (Invitrogen). Reverse transcription was performed to generate cDNA from the 

adaptive mutants. Multiple PCR reactions using primers designed to cover the whole 

HCV genome were then performed, as previously described [365,371]. Sequencing of the 

PCR products was performed at the Centre for Applied Genomics at the Hospital for Sick 

Children (Toronto, Canada). 

2.14 Flow cytometric analysis of intracellular core protein 

S29 cells transfected with the mutants or controls were collected after trypsinization 

and washed 4 times with PBS. Cells pellets were then prepared for staining using FIX & 

PERM® Cell Fixation and Permeabilization Kits (Invirogen) following manufacturer’s 

instruction. After being washed with PBS, cells were incubated with antibody to HCV 

core (1:400 dilution) for 30 min followed by 3 washes and incubation with FITC-labeled 

secondary antibody at a 1:1000 dilution for 30 min, then washed 3 times. Pellets were 

resuspended in 500 μl PBS and analyzed by flow cytometry. 
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Figure 2.1 Illustrative diagram of the different strains of JFH-1 used in this 

study. The adaptive mutations indicated by the stars are as follow: the E2 adaptive 

mutation is N417S and the NS2 adaptive mutation is Q1012R. FLAG and A4 epitope 

locations are also indicated. The strain names are shown on the right side of the panel. 
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Table 2.1 Primers used to generate p7 mutations 

List of the primers used to generate p7 mutations. Bold letters represent the changes 

introduced on the indicated backgrounds to introduce the desired mutations. Where the 

reverse primer is not provided means the reverse complement sequence of the forward 

primer was used as reverse primer. 

*Same primers were used to accommodate N765D in the backgrounds of p7 mutations 

from p7(3) to p7(13) using their respective background created previously. 
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CHAPTER 3: RESULTS (EFFECT OF p7 ON INFECTIOUS VIRUS 

PRODUCTION) 

 

Results in this chapter along with those in chapter 4 have been published in Virus 

Research, 2013; 176(1-2):199-210. 

3.1 Generation of p7 mutations 

Previous reports have identified adaptive and compensatory mutations within p7 that 

enhanced virus production [363,365,372-374]. The cytoplasmic loop region contains 

highly conserved basic residues, K33 and R35, known to impact infectivity in 

chimpanzees, as well as in vitro ion channel activity and virus production in cell culture 

[300,303,348,349]. Based on these findings we hypothesized that a comprehensive 

mutational analysis of TM1 and the cytoplasmic loop might provide additional insight 

into the function of this protein. Accordingly, seven alanine triplet mutations (termed 

p7(1) to p7(7)) were generated to cover the TM1, TM2 and cytoplasmic loop of p7 

(Figure 3.1). These mutations were constructed in the background of a full-length, cell 

culture-adapted strain of HCV JFH-1 termed JFH1D, which contains adaptive mutations 

in E2 (N417S) and NS2 (Q1012R) that function cooperatively to increase infectious virus 

production [365]. 

3.2 Effect of p7 mutations within TM1 and the cytoplasmic loop on infectious virus 

production using single-cycle assay 

To test the effects of the generated mutations on infectious virus production, we used 

a single-cycle virus production assay. Here, the mutant RNA genomes were transfected 

into S29 cells, which express very low levels of CD81, the major receptor for HCV entry 
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[365]. These cells permit RNA replication and virus particle production, yet do not 

support virus entry, allowing a comparison between mutants and their ability to generate 

infectious progeny without the confounding effects associated with multiple infectious 

cycles. Core, NS3 and NS5A WB analyses performed on transfected S29 cell lysates at 

72 h post-transfection showed similar band intensities among the mutants when compared 

with JFH1D. This indicated that transfection efficiencies were comparable and protein 

expression/processing was not affected by the mutations generated in p7 (Figure 3.2A). 

These comparable protein levels also exclude possible effects on RNA replication or 

genome instability that may have been caused by the generated mutations. The negative 

control (∆GDD) contained a deletion within the active site of the HCV NS5B polymerase 

and, therefore, produced no core, NS3 or NS5A proteins. 

At 72 h post-transfection, S29 cells were trypsinized and re-plated in 8-well chamber 

slides. Two days later, indirect IF analysis confirmed that all mutant genomes and the 

JFH1D control possessed relatively similar HCV core staining patterns, with 

approximately 25% of cells being positive for core protein (Figure 3.2B). Cells 

transfected with ∆GDD displayed no core-positive cells. 

Next, to quantify the effects of the generated mutations on virus production, we 

measured the levels of infectious virus present in the supernatants of transfected cells 

(Figure 3.2C). Mutations p7(1) (located at the N-terminal end of TM1) and p7(4) (located 

near the C-terminal end), as well as mutations p7(6) and p7(7) (within the cytoplasmic 

loop) reduced infectious virus production to levels lower than the detection limit of the 

assay. In contrast, p7(2) and p7(3), located in the central region of TM1, decreased virus 

production by ~2 logs. The mutation near the carboxy-terminal end of TM1 (p7(5)) 
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showed little effect on virus production, which was likely due to the conservative amino 

acid changes comprising this mutation (VAA-AVV). Taken together, these data indicated 

that TM1 and the cytoplasmic loop of p7 are important for production of infectious virus, 

and that the amino acids located within the central region of TM1 are seemingly less 

critical for p7 function. 

3.3 Effect of TM1 and the cytoplasmic loop mutations on infectious virus production 

using Huh-7.5 cells 

To verify the single cycle assay findings, we repeated the above experiments in Huh-

7.5 cells and found that the levels of core, NS3 and NS5A proteins on WBs were 

apparently different among the mutant viruses (Figure 3.3A). Core IF staining patterns 

were also different from that observed in S29 cells (Figure 3.3B), demonstrating that 

mutations p7(1), p7(4), p7(6) and p7(7) substantially affected virus spread. Mutant virus 

p7(5) exhibited similar core staining to that of JFH1D with >90% of the cells positive for 

core. The ∆GDD control displayed no core signal. Virus production at 72 h post-

transfection of Huh-7.5 (Figure 3.3C) was higher than that from S29 cells (Figure 3.3C), 

but overall patterns between mutants were similar (minor differences between cell lines 

for p7(1) and p7(6) were disregarded since they fell under the assay cut-off). The 

observed differences on protein levels, core staining patterns and virus titers correlated 

with the effects of virus spread and are, therefore, due to the amplification and 

accumulation of virus that occurs in the permissive Huh-7.5 cells, which is in agreement 

with previous findings [359]. These results indicated that the generated mutant genomes 

are indeed defective in infectious virus production. 
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Figure 3.1 Construction of p7 mutants. 13 alanine triplet mutants were constructed 

in the background of JFH1D, which exhibits enhanced infectious virus production 

compared to JFH-1 due to the presence of adaptive mutations in E2 (N417S) and NS2 

(Q1012R), (indicated by *). The p7 TM1, TM2 and the cytoplasmic loop with the amino 

acid compositions are shown, with mutated residues, and affected polyprotein amino 

acids numbers are shown in the table. Valine was introduced at positions where the 

original amino acid was alanine. The lower diagram indicates the locations of the p7 

mutants on the membrane topology of p7. 
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Figure 3.2 Single cycle virus production assay analysis of p7 mutant viruses. (A) 

S29 cells transfected with the p7 mutants or controls (JFH1D and ∆GDD) were lysed and 

probed with antibodies recognizing core, NS3, NS5A and GAPDH by WB analysis. (B) 

S29 cells were transfected with equivalent amounts of transcribed RNA representing p7 

mutants and controls (JFH1D and ∆GDD). At 72 h post-transfection, cells were seeded 

onto 8-well chamber slides and two days later washed, fixed and stained for core (green) 

and DAPI (blue). Scale bars represent 50 µm. (C) Culture supernatants were filtered and 

serially diluted to infect naïve Huh-7.5 cells. At three days post-infection, virus titers 

were determined by limiting dilution focus-forming assay. Focus-forming assays were 

performed in triplicate and error bars represent standard error of the mean. The bold line 

represents the cut off of the assay, which was 10 ffu/ml. Results represent three 

independent transfection/infection experiments. 
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Figure 3.3 The p7 cytoplasmic loop and TM1 are important for virus production. 

(A) Huh-7.5 cells transfected with the p7 mutant panel and controls were lysed and 

probed with antibodies recognizing core, NS3, NS5A and GAPDH by WB. Results are 

representative of three independent experiments. (B) Huh-7.5 cells were transfected with 

equivalent amounts of transcribed RNA representing p7 mutants and controls (JFH1D and 

∆GDD). At 72 h post-transfection cells were seeded onto 8-well chamber slides and two 

days later washed, fixed and stained for core (green) and DAPI (blue). Scale bars 

represent 50 µm. (C) Culture supernatants were filtered and virus titers determined in 

Huh-7.5 cells. Titrations were performed in triplicate and error bars represent standard 

error of the mean. 

 



 
 

75 
 

3.4 Effect of TM2 mutations on infectious virus production using Huh-7.5 cells 

In this study a set of triple alanine changes covering TM2 was also constructed, 

attempting to expand our knowledge on the functionally essential portions of the p7 

protein. Huh-7.5 cells were transfected with the generated constructs and controls. 72 h 

later cells were trypsinized and subjected to WB analysis for core (Figure 3.4A). Levels 

of the core protein were different among mutants. The negative control ΔGDD produced 

no detectable level of core, as expected. The core protein levels correlated with the effects 

on virus spread (Figure 3.4B) after an IF staining of core protein on the constructs and 

control done at 72h post-transfection. Therefore, these results indicated that the generated 

mutants did not affect genome stability or polyprotein processing.  

Consequently, to quantify the effects of the generated mutations on infectious virus 

production, clarified supernatants from each mutation and control at 72 h post-

transfection were used to infect naïve Huh-7.5 cells followed by a ffu assay (Figure 

3.4C). We found that TM2 of p7 is also important for virus production in cell culture with 

a maximum effect appearing with p7(9 to 13) causing a decrease in titres to below 

detectable levels. While mutation p7(8), located at the C-terminus of TM2, showed a 

lesser defect on virus production than the rest of TM2 mutations, it maintained a 

significant reduction of approximately 2 log less than the control JFH1D. Taken together, 

these results suggest that all domains of p7 are critical for infectious virus production. We 

did not examine the expression of other viral proteins or confirm infectious virus 

production using the single-cycle assay for the TM2 mutations because these mutations 

were only to be further used in forced evolution assays (see chapter 5). 
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Figure 3.4 The p7 TM2 is important for virus production. (A) Huh-7.5 cells 

transfected with the p7 mutants (8-13) and controls were lysed and probed with 

antibodies recognizing core and GAPDH by WB. Results are representative of two 

independent experiments. (B) Huh-7.5 cells were transfected with equivalent amounts of 

transcribed RNA representing p7 mutants and controls (JFH1D and ∆GDD). At 72 h post-

transfection cells were seeded onto 8-well chamber slides and two days later washed, 

fixed and stained for core (green) and DAPI (blue), and visualized under 20 X 

magnification. (C) Culture supernatants were filtered and virus titers determined in Huh-

7.5 cells. Titrations were performed in triplicate and error bars represent standard error of 

the mean. 
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CHAPTER 4: RESULTS (ANALYSIS OF THE ROLE OF p7 IN THE HCV LIFE 
CYCLE) 

Results in this chapter along with those in chapter 3 have been published in Virus 

Research, 2013; 176(1-2):199-210. Only the mutations at TM1 and the cytoplasmic loop 

were analyzed in this section. 

4.1 Analysis of intracellular and extracellular species of virus particles 

The reduction of extracellular infectious virus exhibited by some of the p7 mutants 

could result from two possibilities: (i) p7 mutants exhibit wild-type levels of released 

virus particles, but these have reduced infectivity, or (ii) an overall reduction in the 

production of particles. To determine which of these possibilities occurred, supernatants 

from Huh-7.5 cells transfected with the mutants and controls were collected, clarified, 

layered over a 20% sucrose cushion and subjected to ultracentrifugation. Huh-7.5 cells 

were used in this case to maximize yields of virus. WB analysis was then performed on 

the pelleted material (Figure 4.1A). Core protein was detectable only for genomes that 

produced high levels of infectious particles (JFH1D and p7(5)), demonstrating that the 

mutations introduced into p7 decreased the production of core-containing particles, as 

opposed to reducing the infectivity of  secreted virions. The mutations p7(2) and p7(3) 

were shown to produce low levels of infectious virus, but particles could not be detected 

in the supernatant as this assay was not sensitive enough to detect such small amounts of 

virus production. 

From the results outlined above, we next investigated whether the p7 mutants that 

produced little or no extracellular infectivity were also compromised for intracellular 

infectivity. Accordingly, S29 cells transfected with p7 mutants and controls were 
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subjected to multiple freeze/thaw cycles to obtain intracellular infectious virus at 72 h 

post-transfection. In parallel, filtered supernatants were collected and viruses from both 

sources were used to inoculate naïve Huh-7.5 cells to measure infectious titers (Figure 

4.1B). All mutants with reduced extracellular titers also displayed similar reductions in 

the levels of intracellular infectious virus. Taken together, these results demonstrate that 

the mutations made within p7 resulted in an absence of core-containing HCV particles 

outside the cell, most likely resulting from their compromised ability to generate 

infectious particles in the intracellular environment. 

4.2 Mutations in p7 TM1 and the cytoplasmic loop do not affect core sedimentation 

profiles 

The above data indicated that the selected p7 mutations within TM1 and the 

cytoplasmic loop render HCV unable to produce intracellular infectious virions. 

However, it was unclear whether these mutants were assembling intracellular particles 

that were non-infectious, or were incapable of building the nucleocapsid structure.  

Typically, density gradient fractionation of transfected cell lysates has revealed that 

intracellular HCV core exists at various densities, presumably representing sequential 

stages of capsid assembly. These species are thought to include monomeric core 

associated with LD, and oligomerized core representing both newly forming 

nucleocapsids and virions associated with triglycerides and β-lipoprotein (VLDL and 

LDL) complexes [41,358,359,375]. Therefore, we sought to determine whether any of our 

p7 mutants displayed altered patterns of core distribution following centrifugation 

through density gradients. To do this, two mutations within TM1 (p7(2) and p7(4)) and 

one mutation within the cytoplasmic loop (p7(7)) were selected for gradient analysis 
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because they spanned the TM1 and cytoplasmic loop region of p7. Also, these mutants 

displayed a spectrum of effects on virus production; (p7(2)) showed a moderate 

reduction, whereas p7(4) and p7(7) produced no detectable infectious virus. These mutant 

RNA genomes were transfected into Huh-7.5 cells, and 72 h later, intracellular lysates 

were harvested using TNE buffer containing 0.5% Triton X-100. This mild detergent was 

chosen to preserve core-core oligomers within the lysate while disrupting core-membrane 

complexes that may otherwise be sufficiently dense to traverse into the gradient and be 

misinterpreted as multi-ordered structures. Lysates were then loaded over 10-50% 

iodixanol gradients and subjected to ultracentrifugation. Ten gradient fractions were 

collected from top (fraction 1) to bottom (fraction 10) and analysed by WB for core 

(Figure 4.2). In all constructs tested, varying core protein levels were observed in 

fractions 1-3, likely representing monomeric core species (densities ranging from 1.019 to 

1.090 g/cm3). The strongest core bands, which we propose represent naked viral 

nucleocapsids, typically appeared in fractions 6 and 7 with a density range of 1.145-1.169 

g/cm3. It is unlikely that these core structures were enveloped/complexed with 

membranes, since no infectivity was associated with these or any fractions. While slight 

variations were regularly observed in these assays, we did not observe any consistently 

noticeable differences between JFH1D and any of the p7 mutants tested with respect to 

core patterns on WB, except that JFH1D showed higher core band intensities in the blots 

due to its ability to spread and produce more infectious virus. However, using a lysis 

buffer containing a detergent capable of breaking core-core interactions (TNE + 0.5% 

SDS) resulted in a loss of core from fractions 6 and 7, with most of the protein now being 

found in the top fractions of the gradient (Figure 4.2). It should be noted that a 
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comparison of lysis methods (freeze-thaw vs. TNE+0.5% TX-100) on cells harbouring 

JFH1D revealed differences in core banding patterns, indicating that these distinct lysis 

methods influence the migration of liberated core through iodixanol gradients (Figure 

4.3). Similarly, spinning harvested intracellular particles through a sucrose cushion prior 

to their ultracentrifugation through an iodixanol gradient made little difference (with the 

exception of filtering out core in fractions 1-3) to those results obtained without a cushion 

(Figure 4.3). In comparison, we also observed no differences between p7 mutants and 

JFH1D in core and viral RNA sedimentation profile when lysates were prepared by 

freeze-thaw (Figure 4.4). Of further note is that RNA quantitation for core-containing 

gradient fractions was irrelevant, since gradients run on a negative control (ΔGDD) also 

gave a peak of RNA in these fractions (Figure 4.4). This final result suggests that 

gradient-derived RNA patterns obtained from intracellular lysates are complicated by the 

existence of input RNA delivered during the transfection process. Overall, the data 

obtained from density gradient experiments suggest that the p7 mutants tested here were 

competent for nucleocapsid assembly. 

4.4 p7 TM1 and the cytoplasmic loop do not affect core targeting to LD 

We next wished to determine whether p7 might influence the recruitment of core 

protein to LD, the proposed platform for virion formation [96]. Accordingly, Huh-7.5 

cells were transfected with the mutant genomes and stained for core protein and LD. As 

shown in Figure 4.5, no differences in core/LD association were observed between the 

JFH1D control and any of the p7 mutants studied in this chapter. These data conclusively 

demonstrate that neither p7 TM1 nor the cytoplasmic loop affect the targeting of core 

protein to LD. 
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Figure 4.1 Extracellular particle production and comparison of intracellular vs. 

extracellular infectious virus. (A) Huh-7.5 cells were transfected with equivalent 

amounts of transcribed RNA representing p7 mutants and controls (JFH1D and ∆GDD) 

for 72 h. 12 ml of supernatants (pooled from 2x10 cm dishes) representing p7 mutants 

and controls were loaded over 2 ml of 20% sucrose, ultracentrifuged and the pellet probed 

by WB for core protein. Results are representative of two independent 

transfection/infection experiments. (B) S29 cells were transfected as above and 72 h post-

transfection extracellular (solid bars) and intracellular (open bars) infectious virus 

production were measured by focus-forming assay in triplicate, and means plus standard 

errors are plotted. Results are representative of two independent transfection/infection 

experiments.  
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Figure 4.2 Iodixanol gradient analysis of p7 mutant viruses using lysis buffer 

with detergent. Huh-7.5 cells were transfected with RNA representing selected p7 

mutant viruses including TM1 mutants p7(2) and p7(4) as well as the cytoplasmic loop 

mutant p7(7), and JFH1D was used as a control. At 72 h post-transfection intracellular 

lysates were harvested, loaded over preformed 10-50% iodixanol gradients and subjected 

to ultracentrifugation. Ten fractions from each tube were collected from top (fraction 1) to 

bottom (fraction 10). Density measurements (g/cm3) on each fraction were measured 

using a refractometer (top panel), and WB analyses for core and ADRP (LD marker) were 

performed (middle and bottom panels). Results are representative of three independent 

transfection/infection experiments. 
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Figure 4.3 Comparison of iodixanol gradient separation of core species, for 

JFH1D using different conditions. Huh-7.5 cells were transfected with RNA encoding 

JFH1D. At 72 h post-transfection intracellular lysates were prepared by multiple 

freeze/thaw cycles (top panel), treated with TNE buffer containing 0.1% TX-100 (middle 

panel) or lysed with TNE containing TX-100 and sedimented through a 20% sucrose 

cushion (bottom panel). The resultant lysates were loaded over preformed 10–50% 

iodixanol gradients and subjected to ultracentrifugation. Ten fractions from each tube 

were collected from top (fraction 1) to bottom (fraction 10) and WB analyses for core 

were performed. Results are representative of three independent transfection experiments. 
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Figure 4.4 Iodixanol gradient analyses of p7 mutant viruses after lysis using 

freeze/thaw method. (A) Huh-7.5 cells were transfected with RNAs of the indicated p7 

mutants and controls. At 72 h post-transfection intracellular lysates were obtained by 

multiple freeze and thaw cycles and loaded over preformed 10-50% iodixanol gradients. 

Ten fractions from each tube were collected from top (fraction 1) to bottom (fraction 10) 

and Real-Time RT-PCR (dashed line), virus titre (solid line), and WB analyses for core 

and ADRP were performed. (B) Density measurements (g/cm3) on each fraction were 

measured using a refractometer. Results are representative of three independent 

transfection/infection experiments. 
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Figure 4.5 Analysis of core/LD association. Huh-7.5 cells were transfected with 

equivalent amounts of transcribed RNA representing p7 mutants and controls (JFH1D and 

∆GDD). At 72 h post-transfection, cells were seeded onto 8-well chamber slides and two 

days later washed and stained as described above. Cells were visualized by confocal 

microscopy under oil immersion. Scale bars represent 10 µm. Enlarged areas from the 

merged image are shown on the right. Blue represents DAPI-stained nuclei, green 

fluorescence represents HCV core protein, and red represents LD staining. Results are 

representative of three independent experiments. 
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4.5 Mutation of the p7 cytoplasmic loop results in a time-dependent reduction of E2 

levels  

It has previously been shown that p7 can regulate pH in intracellular compartments 

[178], presumably to protect the virus from acid-induced degradation during egress. 

However, p7 may have an additional, separate function that involves an interaction with 

NS2, and this interaction may be important for localization of p7 with other viral proteins, 

including core and E2, at the site of assembly [65,172,306,355,357]. Therefore, it became 

essential to test some of our p7 mutants for an effect on viral glycoproteins E1 and E2. To 

do this, we recreated the panel of p7 mutations in a version of JFH1D that contained a 

substituted FLAG tag sequence within E2, termed JFH1D-FLAG. The use of the FLAG tag 

was necessary because the N417S adaptive mutation in E2 contained within the JFH1D 

backbone is located within the epitope recognized by most antibodies that recognize JFH-

1 E2. To rule out the possibility that the FLAG sequence would cause confounding 

effects on virus production, we measured the amount of infectious virus produced from 

the FLAG-containing p7 mutant RNAs and observed a slight, but relatively insignificant, 

reduction in virus titre compared to that of without FLAG (Figure 4.6). Importantly 

however, the same pattern of effects on infectious virus production was observed for 

these mutants compared to their counterparts that lack the FLAG sequence. Upon 

transfection of S29 cells with these p7 mutants, WB analysis indicated that all mutants 

displayed similar levels of core protein (Figure 4.7A). However, this was not the case for 

E2, where some variation in E2 levels was observed among mutants, with the greatest 

reduction being apparent in p7(7) (cytoplasmic loop mutant containing the two conserved 

basic residues). These results were confirmed in Huh-7.5 cells (Figure 4.7B). 
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Figure 4.6 p7 mutants in the background of JFH1D-FLAG showed a similar 

pattern of virus infectivity as JFH1D virus. Huh-7.5 cells were transfected with 

equivalent amounts of RNA representing p7 mutants and controls (JFH1D, JFH1D-FLAG 

and ∆GDD). At 72 h post-transfection culture supernatants were clarified and virus titres 

determined. Assays were performed in triplicate and error bars represent standard error of 

the mean. Results are representative of two independent transfection/infection 

experiments. 
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Figure 4.7 Effects of p7 mutation on FLAG-E2 levels in S29 and Huh-7.5 cells. 

S29 (A) and Huh-7.5 (B) cells were transfected with p7 mutants generated in the 

background of JFH1D-FLAG along with controls (JFH1D-FLAG and ∆GDD). At 72 h post-

transfection intracellular lysates were obtained and probed with antibodies against E2, 

core, and GAPDH by WB analysis. 
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To rule out the possibility that this effect on E2 was related to the presence of the 

FLAG sequence, we first created a new construct termed JFH1S that is the same as 

JFH1D, except that it lacks the N417S adaptive mutation in E2. This construct had to be 

used to allow detection of native E2 by antibodies that bind JFH-1 E2. In turn, JFH1S was 

then further modified by substituting a short sequence of E1 for the analogous sequence 

from HCV strain H77, to produce JFH1A4S. This strategy, reported elsewhere [66], 

renders E1 detectable by the E1 antibody A4. The modifications required to produce both 

these constructs did reduce virus production by approximately 15-fold (JFH1S) and 70-

fold (JFH1A4S) compared to JFH1D (Figure 4.8). However, the level of virus production 

remained sufficient for analysis.  

To examine effects on both E1 and E2, we first introduced selected p7 mutations (1, 3, 

4, 6 and 7) into the background of JFH1A4S. WB analysis indicated that all mutants 

displayed insignificant variations in core, NS2 and E1 protein levels (Figure 4.9). 

However, this was not the case for p7(7) (the loop mutant containing the two conserved 

basic residues), where a substantial reduction in E2 was apparent. These results were 

confirmed in S29 cells (Figure 4.9).  To analyze the reduction in E2 more quantitatively, 

the WB band intensities for E2 were measured by densitometry relative to that of core 

expressed from each mutant. Additionally, NS2 levels were measured in this manner 

(Figure 4.9). This analysis conclusively demonstrated that E2 levels expressed from p7(7) 

were notably lower compared to JFH1A4S and the other p7 mutants, whereas NS2 levels 

remained unchanged. These results suggest that modification of the dibasic residues 

within the p7 cytoplasmic loop leads to a reduction of E2 glycoprotein levels. 
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Figure 4.8 Comparison of virus production from JFH1D, JFH1S and JFH1A4S. 

Huh-7.5 cells were transfected with the indicated constructs. 72 h later, culture 

supernatants were filtered and virus titers determined. Titrations were performed in 

triplicate and error bars represent standard error of the mean. 
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Figure 4.9 Effects of p7 mutations on E2 levels. (A) Huh-7.5 and S29 cells were 

transfected with the indicated p7 mutants generated in the background of JFH1A4S along 

with appropriate controls (JFH1A4S and ∆GDD). At 72 h post-transfection, intracellular 

lysates were obtained and probed with antibodies against E1, E2, NS2, core, and GAPDH 

by WB. (B) Band intensity measurements for core and E2 where each mutant’s band 

intensity was calculated relative to JFH1A4S. 
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Previous reports have demonstrated that alteration of the p7 cytoplasmic loop can 

result in the detection of E2-p7-NS2 precursors by WB analysis [349]. While we did not 

observe this effect in Figure 4.7 or 4.9, E2 and NS2 blots were repeated using SDS-based 

Laemmli buffer in addition to our usual CHAPS-based buffer (Figure 4.10). Here, we also 

saw no evidence of precursors on either the E2 or NS2 protein blots. Therefore, we 

presume that the observed phenotype for p7(7) resulted from direct effects on the protein 

itself rather than a processing defect. To further investigate the observed reduction of E2 

in the p7(7) mutant, we carried out a time course analysis of E2 levels at 24, 48, and 72 h 

post-transfection in S29 cells. Since S29 cells are non-permissive for HCV entry, they 

represent a relatively synchronized state of viral protein production upon transfection, 

which is ideally suited for this experiment. Here, the JFH1S strain of virus was used since 

it produces higher viral titers than JFH1A4S and detection of E1 protein was not required 

for this experiment. p7(1) was also included as an additional control since, like p7(7), it 

produces no infectious virus, yet generates near wild-type levels of E2. Lysates were 

prepared from each time-point and E2, core, and GAPDH levels were probed by WB 

(Figure 4.11). It was observed that at 24 h post-transfection the mutants and controls 

produced barely detectable levels of both E2 and core. By contrast, at the 48 h time-point, 

only p7(1) and the JFH1SA4S control displayed comparable levels of core and E2, with a 

slightly reduced amount of E2 in the case of p7(7). However, E2 levels expressed from 

p7(7) were noticeably reduced by 72 h compared to what they were at 48 h, as well as 

being diminished compared to the other constructs tested. 
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Figure 4.10 Examination of HCV 

proteins under different lysis conditions. 

S29 were transfected with RNA encoding 

JFH1S, ΔGDD or p7(7). 72 h later, cells were 

lysed and probed with antibodies 

recognizing core, NS2, E2 and GAPDH by 

WB. Results are representative of three 

independent experiments. 
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Figure 4.11 Time course of E2, core, and GAPDH expression assessed by WB. 

Prepared lysates at 24, 48, and 72 h post-transfection of S29 cells for the mutants p7(1) 

and p7(7) generated in the background of JFH1S were collected and probed for the 

indicated viral proteins. Results are representative of two independent experiments. 
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In a previous report it was shown that expression of p7 or HCV infection prevents 

intracellular vesicle acidification, but this was not the case for the loop mutation [178]. 

This group also found that p7-induced loss of vesicle acidification contributes to 

infectious virus production as the p7 loop mutant genome transfection was partially 

rescued for infectious virus production after treating the cells with the acidification 

inhibitor bafilomycin A1.   We interpreted this to mean that the observed reduction in E2 

levels in the case of p7(7) was due to the loss of the ability of p7 to mediate the proper pH 

environment during the assembly process, resulting in E2 degradation. Therefore, we 

attempted to rescue both infectious virus production and E2 levels from p7(7) by treating 

transfected cells with (i) Bafilomycin A1, to inhibit vesicular acidification as performed 

previously [178], and (ii) ammonium chloride , a lysosomal inhibitor (Figure 4.12). 

However, we observed no restoration of virus production or E2 to levels seen with JFH1S. 

Taken together, these results indicated that the mutations present in p7(7) appear to result 

in lower levels of E2, which cannot be restored through the inhibition of lysosome or 

vesicular acidification (see discussion for further details).  
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Figure 4.12 Effect of Bafilomycin A1 and NH4Cl treatment on E2 levels. (A) Huh-

7.5 cells were transfected with equivalent amounts of RNA representing p7(7) or control 

constructs (JFH1D and ∆GDD). At 48 h post-transfection, media were removed and 

replaced with media containing (i) 4 pM Bafilomycin A1, (ii) 12 mM NH4Cl or (iii) 

DMSO only. 24 h later, culture supernatants were filtered and virus titers determined. 

Note that serial dilution was performed in media containing the treatment agents. 

Titrations were performed in triplicate and error bars represent standard error of the mean. 

(B) S29 cells treated as above (here, JFH1S was used as a positive control instead of 

JFH1D in order to permit detection of E2) were lysed and probed for core, E2 and 

GAPDH by WB. Results are representative of three independent experiments. 



 
 

99 
 

CHAPTER 5: RESULTS (FORCED EVOLUTION ANALYSIS OF p7 MUTANTS) 

 

Results in this chapter have been submitted for publication while Virology Journal. 

5.1 Passaging of p7 mutants led to adaptation and restoration of virus production   

by acquisition of amino acid changes on different viral proteins 

To further investigate the observed effect on infectious virus production of the p7 

mutants generated, we passaged transfected cells with the generated p7 mutations 1-13 

for multiple rounds in order to allow virus production-defective mutants to gain one or 

more compensatory mutations, which would provide genetic evidence for a possible p7 

protein binding partner, or shed light on the amino acids playing the greatest role in p7 

function. This strategy is illustrated in Figure 5.1 and has been employed by other groups 

[359,365]. Firstly, the viral spread on Huh-7.5 cells transfected with RNA of the 

respective mutants after each round lasting for 72 h was monitored. Upon confirmation of 

viral adaptation through indirect IF and observation of increased viral spread, passaging 

was terminated see Figure 5.1. 

Mutation p7(1) showed a significant increase in viral spread at day 12 (R4) post-

transfection. Efficient viral spread for the mutants p7(2) and p7(3) was observed at day 15 

(R5) post-transfection. Mutant p7(6) completely regained efficient viral spread  at day 30 

(R10) post-transfection. Mutants p7(8) and p7(10) displayed efficient viral spread at day 

18 (R6) and day 21 (R7) post-transfection, respectively. The mutations p7(4), p7(7), 

p7(9), p7(11), p7(12) and p7(13) were unable to restore virus production and passaging 

was terminated at the end of round 10 (Figure 5.2). 
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The mutants that showed a significant increase in virus spread were selected for 

determination of the consensus sequence of the polyprotein to identify the changes 

responsible for restoring viral kinetics. To do this, RNAs isolated from respective mutants 

were amplified by RT-PCR and sequenced, as described in Materials and Methods. The 

mutations we found are listed in Table 5.1. 

5.2 The adaptive mutation N765D is important for p7 function 

One of the compensatory mutations we found was the N765D that significantly 

restored viral spread of p7(1) mutations. Aspartic acid was acquired at position 765 where 

the original amino acid in JFH1D or JFH-1 is asparagine; the alanine residues changed 

downstream remained unmodified throughout the passaging, indicating the importance of 

this amino acid for p7 function. The N765D mutation was reported before as an adaptive 

mutation that increases virus production by itself or combined with other mutations in E2 

and NS2 [365]. In another report, N765D was found to restore virus production after a 

defect caused by exchange of the NS2 helix in the second TMD (trans membrane domain) 

of JFH-1 by that of the Con1 strain [65]. Therefore, we decided to further investigate the 

role of the N765D mutation in infectious virus production. Subsequent analyses of other 

mutations identified will be conducted by a future student.     
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Figure 5.1 A schematic representation of the method used to identify 

compensatory mutations. Huh-7.5 cells were transfected with RNAs encoding p7 

mutant viruses. Cells were passaged each round for 72 h, and supernatants from the day 

of passage were saved to determine infectious titers. For R1 to R10, the cells themselves 

were passaged, and checked for viral spread by core IF as a 1st indicator of adaptation. 

Once improved virus spread was observed, supernatants were passaged for P1 and P2 to 

enrich for rescued virus. For P1, naive Huh-7.5 cells were infected using supernatants 

from the last round in which significant virus spread was observed. Seventy-two hours 

later, supernatants were removed and used to infect naive cells for a second passage (P2). 

RNA was harvested from P2 supernatants 72 h post-infection and used for sequencing. 

(Figure modified from [359]) 
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Figure 5.2 p7 mutant passaging. IF core staining of p7 mutant passaging where each 

round lasted 72 h. Trypsinized cells after each round were resuspended in CM, seeded in 

8-well chamber slides, and incubated for further 48 h. Slides were then stained for core 

(green) and nuclei (blue). Slides were examined using a fluorescent microscope at 20 X 

magnification. 
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  Table 5.1 Sequence analysis of the rescued p7 mutants 

 

RNAs were extracted from the virus stocks generated after long-term passage of the 

indicated p7 mutants (1st column), followed by cDNA synthesis, and full genome 

amplification and sequencing was performed. The resultant changes including nucleotides 

(nt), amino acids (aa) and locations are shown in the 2nd, 3rd, and 4th columns, 

respectively. The time at which each virus mutant showed a significant change in virus 

spread is indicated by round number and days post-transfection in the last column. 



 
 

105 
 

Firstly, we reintroduced N765D in the background of its cognate plasmid (p7(1)) or in 

the background of JFH1D to confirm if this adaptive mutation is responsible for the 

observed rescue of viral spread after passaging. We found that N765D significantly 

increased virus production and was the responsible mutation in the rescue of the triple 

alanine mutant at the p7(1) position (Figure 5.3). There were additional mutations found 

in the p7(1) rescued virus, but we did not further analyse these because it was clear that 

N765D was responsible for the restoration, and the silent nature of the remaining 

substitutions omitted them from analysis. 

Next, we asked whether N765D was also sufficient for the other p7 mutations but 

could not be acquired through passaging because the virus might have been too weak to 

sustain itself in culture long enough to pick up rescue mutations. Accordingly, we 

recreated all p7 mutations (1 to 13) in the background of the maximal adapted strain of 

JFH-1 termed JFH1T, which has the two adaptive mutations previously described in 

JFH1D as well as the N765D. 72 h post-transfection of this panel of virus mutants, 

supernatants were collected and used to infect naïve Huh-7.5 cells in order to determine 

the effects on virus titer. We observed that N765D also restored virus production when 

introduced in the background of p7(3) and p7(8) genomes, but had no effect on the rest of 

the p7 mutations (Figure 5.4). This mutation was unfavorable for p7(2) and to a lesser 

extent for p7(5) as it reduced infectious virus production to undetectable levels compared 

with p7(2) and by one log compared with p7(5) in the background of JGH1D. These 

results indicated that N765D on p7 TM1 was able to restore alanine triplet changes at 

positions 765-767 (p7(1)), 771-773 (p7(3)) and 788-790 (p7(8)). 
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Figure 5.3 Effect of the N765D adaptive mutation on infectious virus production. 

Huh-7.5 cells were transfected with the indicated constructs. 72 h later, culture 

supernatants were filtered and virus titers determined. Titrations were performed in 

triplicate and error bars represent standard error of the mean. 
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Figure 5.4 Effect of the N765D adaptive mutation on infectious virus production 

for all of the generated p7 mutants. Huh-7.5 cells were transfected with the indicated 

constructs. 72 h later, culture supernatants were filtered and virus titers determined. 

Titrations were performed in triplicate and error bars represent standard error of the mean. 
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5.3 Additional analysis of N765D revealed a key role of p7 in efficient viral assembly 

and provided evidence against involvement in HCV entry processes. 

 In a previous report N765D by itself increased infectious virus production 2 logs 

more than that of wild-type JFH-1, and when combined with the E2 and NS2 adaptive 

mutations, it increased virus production to 3 to 4 logs higher than wild-type [365]. 

Therefore, we took advantage of the ability of the N765D mutation to enhance virus 

production when combined with other adaptive mutations in order to further analyse the 

role of p7. Our hypothesis was that whatever p7 is doing, it can do it better in the 

presence of the N765D mutation. To test this hypothesis, we tested the effects of the 

presence and absence of N765D on the accumulation of virus particles in culture 

supernatants at 72 h post-transfection. In this case, we selected JFH1T (containing E2, p7 

and NS2 adaptive mutations), JFH1D (containing only E2 and NS2 adaptive mutations), 

JFH1N765D (containing only the p7 N765D adaptive mutation) and wild type JFH-1 

(Figure 5.5). We compared the levels of virus particles produced by these constructs in 

the culture supernatant after particle sedimentation through 20% sucrose cushion. Here, 

we also took advantage of the single-cycle virus production assay to allow for a 

comparison between mutants in a system that does not include virus entry steps. 

However, for results in this experiment to be valid, we needed to be sure that we had 

similar transfection efficiencies among constructs used. Therefore, we evaluated 

intracellular core protein expression by WB and flow cytometry analysis to ensure that all 

constructs used were comparable in transfection efficiencies (Figure 5.6). 

Virus titration assays were then performed on all transfections and we confirmed that 

all constructs were competent for infectious virus production. As expected, we observed 
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1-2 log differences in virus production with JFH1T > JFH1D > JFH1N765D > wild type 

JFH-1. Culture supernatants were then also loaded at the top of a 20% sucrose cushion, 

which allows only assembled particles to pass through after short duration, but high 

velocity ultracentrifugation. WB analysis for core protein performed on pelleted virus 

demonstrated that extracellular HCV accumulation in JFH1T was more than that of JFH1D 

(Figure 5.7), and the only difference between these two constructs is the presence of the 

p7 adaptive mutation, N765D. Similarly, JFH1N765D accumulated more HCV particles 

than wild type JFH-1 with the difference between them also being the presence of the p7 

N765D mutation. Taken together these results indicated that the N765D mutation in p7 

enhanced the production of virus particles from transfected cells in an entry-null system. 

The interpretation of these findings, with some extrapolation, could be that if N765D 

enhances the function of p7, and that effect was observed in the increased production of 

virus in an entry-null system, then p7 likely is involved in the later stages of virus 

production, and not in the virus entry process.  

       

 

 

 

 

 



 
 

110 
 

 

 

Figure 5.5 Illustrative diagram for the constructs selected to analyze N765D 

adaptive mutation effect on extracellular HCV particles secretions. Constructs names 

are shown at the right. The adaptive mutations E2 (N417S), p7 (N765D), and NS2 

(Q1012R) are indicated by an asterisk on their respective genes. 
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Figure 5.6 Analysis of transfection efficiencies by WB and flow cytometry. S29 

cells were transfected with each construct indicated and 27 h later cells were pelleted, 

lysed and probed for intracellular core and GAPDH (A). Band intensity measurements for 

each sample from two independent transfection experiments were performed (B). Cell 

lysates were also stained for core protein and analyzed for percentages of core protein 

contents by flow cytometry (C). 
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Figure 5.7 N765D increased the production of extracellular HCV particles. (A) 72 

h post-transfection S29 cell supernatants were clarified and used for infection titer 

measurements by ffu assay (B) or loaded over preformed 20% sucrose cushions, 

ultracentrifuged and the pellet probed for core protein by WB. Repeats of 4 independent 

experiments are shown. 
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CHAPTER 6: DISCUSSION 

 

The functionality of the p7 protein is one of the more poorly understood aspects of the 

HCV life cycle. p7 is important for both successful HCV infection in chimpanzees as well 

as virus production in cell culture, yet is seemingly dispensable for virus entry and RNA 

replication [300,301,306,321,348,349]. Multiple studies indicate that p7 forms ion 

channels in artificial membranes, leading to its inclusion in the viroporin protein family 

[308,316,318]. Notably, amino acids required for the ion channel activity of p7 were also 

shown to be important for pH modulation of intracellular vesicles in cell culture, and this 

activity was important for maintaining infectious virus production [178]. In this study, for 

the 1st time, we performed an extensive mutational analysis to determine at which stage of 

the viral life cycle p7 acts. Alanine triplet mutations spanning most of TM1, the 

cytoplasmic loop, and TM2 were generated and tested for their ability to produce virus, 

and subsequently, some of these mutations were tested at different stages of the viral life 

cycle. The data indicated that regions of TM1, the cytoplasmic loop and TM2 of p7 are 

important for virus production. p7 was not involved in virus release as reductions in both 

intra- and extracellular infectious virus were observed. Furthermore, mutating TM1 and 

the cytoplasmic loop of p7 did not alter core localization to LD, and capsid assembly was 

seemingly unaffected. Most importantly, we observed that alanine substitution of the two 

basic residues within the cytoplasmic loop of p7 caused a reduction in the amount of E2 

present in transfected cells. Furthermore, we performed forced evolution analysis of p7 

mutants by passaging of virus production incompetent mutants and provided more 

information on the most important amino acid composition of the p7 protein. We found 
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that the amino acid at position 765 is uniquely important for p7 function. Further analysis 

of the N765D substitution highlighted the importance of p7 in the HCV assembly process. 

The 1st mutants analyzed in this study covered the TM1 domain of p7 were found to 

be critical for virus production, but to a lesser extent of the amino acids situated in the 

central region of TM1. This observation suggests that the positioning of the N- and C-

termini of TM1 might be critical for anchoring the membrane-spanning region into the 

ER, and that mutation of this sequence may disrupt this positioning, thereby inhibiting 

virus production. Mutation of amino acids located near the N-terminal end of TM1 

(p7(1)) caused complete abrogation of virus production. This result is in agreement with a 

study showing that the H17 residue (H767 in the polyprotein of JFH-1) within TM1 is 

important for virus production and is part of a HXXXW-like motif found in the influenza 

virus M2 protein, which is the main functional element of the M2 channels [321]. 

However, a separate study generated a single alanine substitution at residue N17 (N767 in 

the polyprotein of J6) in the context of the J6/JFH-1 chimeric virus and found an 

insignificant effect on virus production [300]. These discrepancies might be explained by 

the chimeric nature of the viral backbone used in the latter study, or may result from the 

triple alanine mutation studied here more effectively disrupting the M2-like motif. 

Interestingly, it has been previously reported that an adaptive mutation in this region 

(N15D; N765D in the JFH-1 polyprotein) enhanced virus production by 10-fold itself, 

further demonstrating the importance of these residues and suggesting that a putative 

interaction with other viral proteins is mediated by residues contained within the region 

mutated in p7(1) [365]. Mutations p7(2) and p7(3) lie within the central region of TM1 

and reduced virus production to approximately 50% of the levels observed with JFH1D. 
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The alanines substituted in this region replace uncharged hydrophobic amino acids 

(GLLYFA) and we propose, therefore, that these substitutions likely alter the optimal 

structure of this segment, but not sufficiently enough to terminate virion production. 

Others have also found this region to have a minimal effect on virus production [300]. 

The p7(4) mutation completely abrogated virus production, indicating the importance of 

one or more amino acids in this region. Interestingly, others identified a compensatory 

mutation (F26L; also mutated in our p7(4) construct) that rescued a mutation in the core 

protein [364], indicating that p7 and core may work together through a direct interaction 

that has yet to be demonstrated. Thus, the targeted p7(4) residues might disrupt such an 

interaction. These results highlight that the integrity of both the N- and C-terminal regions 

of TM1 are important for the generation of infectious virus. It should also be noted that, 

as is usually the case for alanine-scanning mutagenic analyses, some of the constructed 

mutations were more conservative than others. For example, it was unsurprising that 

p7(5) (mutation from VAA to AAV) exhibited no reduction in virus production, most 

likely since the overall folding of p7 was largely unaltered due to the conservative 

changes being introduced. This would not be the case for some of the other mutants 

discussed later where more drastic mutations were made, including p7(6) (mutation from 

WHI to AAA) and p7(7) (mutation from RGR to AAA). In the case of these latter 

mutants, we cannot exclude that virus production is abrogated due to p7 structural 

deformities resulting from the non-conservative amino acid changes. 

The data herein also showed that the two basic residues of the cytoplasmic loop of p7, 

R33 and R35, were important for infectious virus production. The importance of the 

cytoplasmic loop in virus production was shown previously in multiple studies employing 
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the HCVcc system, and in vivo after intrahepatic injection of chimpanzees [300,348,349]. 

Most of these studies concentrated on the two basic residues (R33 and R35), since it was 

previously shown that these residues were important for p7 ion channel activity in 

artificial membrane assays [308,316]. In this study we performed a comprehensive, side-

by-side comparison of viruses containing mutations covering most of the loop sequence. 

We observed that the p7(7) mutant, which included the dibasic residues discussed above, 

and mutation p7(6), which is situated at the junction of the cytoplasmic loop, both 

terminated virus production. Moreover, a previous study created a W30F mutation, within 

the region that was also mutated in our p7(6), and found to be an important residue for p7 

function and virus production [349]. Therefore, we have confirmed the importance of the 

cytoplasmic loop structure in virus production. 

Similarly, we also showed that TM2 of p7 is important for virus production in cell 

culture. In agreement with a previous report showing that a mutation in p7 TM2 (Y42F) 

(included in p7(9) in our study) reduced infectious virus production and release [349]. On 

the other hand, St. Gelais et al. showed that amino acid residues that might affect ion 

channel activity or drug resistance in p7, including the mutations G39A (J4 sequence) 

(included in p7(8)) and P49A (included in p7(9)), cause a specific ion channel formation 

defect. This group also indicated that Pro 49 may serve to regulate efficient 

oligomerization of p7 channel complexes. Furthermore, in the same report, a L(50-55)A 

mutation (included in p7(12) and p7(13)) did not affect ion channel oligomerization but 

showed differential sensitivity to the ion channel blockers amantadine and rimantadine, 

highlighting the importance of this region of p7 in ion channel structure and drug 

sensitivity [320]. So, our study was the first comprehensive study showing the importance 
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of TM2 in infectious virus production. It was noticeable that TM2 mutations showed 

more drastic effects on virus production compared to TM1 mutations. One possible 

explanation for these differences are that TM2 may be more important for p7 structure 

and function. This also could be explained by the nature of amino acid changes that we 

introduced, i.e., the alanine changes had less impact on TM1 membrane integration but 

disrupted TM2 insertion through the ER membrane.     

In order to identify at which stage of the viral life cycle p7 play its role, we tested only 

the mutations at TM1 and the cytoplasmic loop at multiple steps of the virus life cycle. 

During the early stages of virus assembly, core protein traffics to the surface of LDs, 

which are proposed to serve as a platform for virion formation [96]. Thus, we have tested 

our mutation at this stage and conclusively demonstrated that none of the p7 mutants 

tested affected core protein accumulation around LD. One recent study proposed that the 

core/LD association results from inefficient virus assembly and that efficiently 

assembling virus strain Jc1 did not accumulate significant levels of core/LD association. 

[355]. However, this was not the case in our study as the efficiently-assembling JFH1D, as 

well as all virus production-defective mutants, showed equivalent core/LD association. 

Another report employed the less efficient LD core accumulating strain Jc1. They found 

that mutations in the p7 cytoplasmic loop affected the unloading of core protein from 

LDs, resulting in a retention of core around LDs after quantitation of core on isolated 

cellular LDs by flotation through a discontinuous density gradient [30]. It was also found 

through partial and full gene swaps that compatibilities between p7 and the first NS2 

trans-membrane domains were required to induce core-ER localization [355]. 

Correspondingly, other studies visualized that p7 can manipulate the intracellular 
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distribution of NS2 and disrupt its binding pattern with other viral proteins [172]. 

Moreover, a study tracking core protein in live cells found that the movements of 

cytoplasmic labelled-core puncta were dependent on NS2 function [170]. Ultimately, a 

p7-NS2 interaction with the NS3-4A complex was shown to be important for viral protein 

colocalization patterns and was suggested to perform the unloading process of core 

protein from LD into sites of virus assembly [174]. To sum up, p7 could be an important 

secondary factor for unloading of core protein from LD toward further assembly 

processes where NS2 protein is the major player, but it requires assistance through a p7 

interaction. 

The molecular details of HCV assembly are currently under intense investigation and 

are a matter of much debate. Following the recruitment of core to LDs, HCV capsid 

presumably begins to assemble through oligomerization of core, forming virus particles 

associated with a copy of the viral genome. This step presumably involves the production 

of multiple structures including oligomerized core representing both newly-forming 

nucleocapsids, and end-stage nucleocapsids associated with triglycerides and β-

lipoprotein (VLDL and LDL). Evidence for this model is supported by the observed 

pattern of core distribution within density gradient analyses [41,358,359,375]. In order to 

determine whether p7 plays a direct role in nucleocapsid assembly, we performed 

iodixanol gradient analyses on a select panel of p7 mutant viruses from cells that were 

lysed with a detergent-containing buffer. Based on the data shown, we can conclude with 

reasonable confidence that p7 does not affect core assembly because we were able to 

detect dense species of core protein in fractions 6-8 of the gradient. Our findings are in 

agreement with another group who performed similar gradient fractionation experiments 
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[376]. However, one study performed quantitation of core protein in the prepared 

fractions and found an increase in the proportion of incompletely assembled capsids 

indicating defective and delayed formation of intracellular core structures [30]. In fact, in 

this report it is not clear whether the accumulation of unassembled core containing 

fractions were due to impaired p7 effects on nucleocapsid assembly or if it is an effect 

due to impaired virus production in general, as p7 mutant genomes and controls showed 

comparable core concentrations in the fractions that were suggested to contain assembled 

core species. Also, the density measurements observed in the gradient fraction that 

contained the infectious particles were significantly higher (1.35 g/ml) than what is 

reported in the literature, with HCVcc particle densities ranging between 1.0 to 1.18 g/ml 

[41-45]. However, different protocols were employed, i.e., sucrose-based rate zonal 

centrifugation, whereas we used iodixanol equilibrium gradients. It would be interesting 

to determine whether we can identify nucleocapsid assembly defects in our mutants by 

rate zonal centrifugation.  In the end, the available data to date indicate that p7 is likely 

not involved in formation of multi-order structures of core during nucleocapsid assembly.  

Finally, Wozniak et al. found that p7 modulates intracellular proton conductance and 

increases lysosomal pH from 4.5 to 6.0 during HCV infection in cell culture [178]. This 

report also demonstrated that the acidification inhibitor Bafilomycin A1 and expression of 

influenza virus M2 protein restored virus production from a HCV genome mutated at the 

basic residues of the p7 cytoplasmic loop. Presumably, such a function would be 

important in protecting newly-formed virions from premature degradation at a late stage 

in virion production, specifically the envelope glycoproteins. We now show that a 

mutation within the loop that includes the same two basic residues also affected E2 
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protein expression and/or stability. Bafilomycin A1 and ammonium chloride did not 

restore virus production in our case. The Bafilomycin A1 rescue demonstrated in the 

previous report was partial and the mutation generated was a double alanine change of the 

two p7 basic residues. In addition, the replication foci were noticeably smaller in cells 

inoculated with the rescued mutant virus and the treatments were unable to rescue the 

delta p7 genome [178]. Therefore, in our case we suggested that the triple alanine changes 

at p7(7)  possibly caused a complete abrogation of p7 ion channel activity to an extent 

that could not be rescued by the above mentioned treatments. However, it is still unclear 

why this effect on E2 was only observed in the context of the cytoplasmic loop mutation 

(p7 (7)). One theory is that p7 plays a dual role in the late viral assembly process; on one 

hand p7 could mediate proper targeting of viral glycoproteins to the assembly site in 

collaboration with NS2, and we suggested that in case of the mutations p7(1-6) envelope 

protein is still retained in a protective environment that did not move to a site of further 

assembly due to the disruption of p7-NS2 interaction. On the other hand, p7 then could 

protect immature glycoproteins from degradation where envelope protein starts to be 

exposed to an unfavorable environment through an ion channel-like activity during late 

assembly or release. This theory is supported by a study showing that pseudoreversion in 

p7 within TM1 of p7 (N15D) combined with a mutation at NS2 (G25R) restored virus 

infectivity and colocalization of NS2 around LDs along with E2 and NS3 [65]. These 

effects were not a consequence of p7 ion channel function [356]. Also, Ma et al. showed 

that p7 deletion and mutations within the cytoplasmic loop affected the intracellular 

distribution of NS2 and E2 [172]. Similarly, Staplford et al. found that NS2 interaction 

with other viral proteins was dependent on p7 coexpression [66]. Furthermore, Vieyres et 
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al. recently constructed a functional HCV genome with a HA-tagged p7 and found that p7 

interacted with NS2 and colocalized with E2 on the ER membrane [306]. Therefore, it 

seems that p7 function may play two roles in HCV life cycle where it is required for NS2 

function in coordinating viral protein trafficking during the assembly process, while in the 

second role, it protects virion glycoprotein E2 from immature degradation through an ion 

channel-like activity disrupted by the p7(7) mutation studied herein. It is worth 

mentioning here that the HCV envelope proteins acquire high mannose and complex N-

linked glycans through post-translational modification, which usually occurs in the Golgi 

apparatus [176]. Also, envelope proteins rearrange the disulphide bonds necessary to 

prime HCV particles for low-pH mediated fusion, similar to pestivirus egress through the 

Golgi [131,176,177]. The trafficking of HCV particles and pre-envelope maturation is 

thought to happen within intracellular vesicles. At this stage, the viral protein p7 ion 

channel activity might be required to protect viral envelope proteins during passaging 

through Golgi. 

After passaging of p7 mutants by forced evolution assays, we found that one of the 

previously-identified adaptive mutations (N765D) amazingly also emerged as a 

compensatory mutation for some of our loss-of-function mutants and was able to restore 

alanine triplet changes on positions 765-767 (p7(1)), 771-773 (p7(3)) and 788-790 

(p7(8)). This indicates the importance of this residue in p7 structure and function. The 

N765D mutation was reported before as an adaptive mutation that increases virus 

production by itself or in combination with other adaptive mutations in E2 and NS2 

[365]. In another report, N765D was found to restore virus production after a defect 

caused by exchange of a NS2 helix in the second TMD (trans membrane domain) of JFH-
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1 by that of the Con1 strain [65]. Therefore, it seems this mutation is not only critical for 

p7 structure but also important for interaction engagements with other viral proteins such 

as NS2. We believe that the N-terminal end of p7 interacts with the second 

transmembrane domain of NS2.  The further analysis we performed on the adaptive 

mutation N765D indicated its importance for efficient accumulation of HCV particles in 

the culture supernatants. This indicates that p7 might act at the assembly stage and/or 

release but less likely at the entry process as these data were obtained in the entry-null 

S29 cell single-cycle assay. This finding is supported by multiple reports showing that 

HCV pseudo-particle entry occurs independent of p7 [350,351] and, later by indirect 

evidence, showing that the specific infectivity of p7 mutants was not reduced compared to 

wild-type virus [349]. Also, another study created an infectious construct containing a 

double HA-tagged p7 and found that p7 was not contained within the virion, which it 

would presumably be if it were required for entry, even in concentrated, affinity-purified 

or Flag-tagged preparations of virus [306]. Unexpectedly, introducing N765D in the 

background of HCV genome containing the mutation p(2) was not favorable and led to 

complete reduction of infectious virus, which could indicate that the functionality of 

certain amino acids may be influenced by its adjacent residues. However, it would be of 

significant interest to determine whether p7 structural features and ion channel activity 

are preserved in the presence of the alanine substitutions that were rescued by the N765D 

mutation, which would provide indirect evidence for the potential ion channel function. 
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Figure 6.1 Proposed model of p7 functions. Illustrative diagram of p7 function 

integrated into the HCV assembly process. The newly synthesized genome is delivered by 

NS4A to the site of nucleocapsid formation and NS3-4A supports genome packaging. 

Concurrently, the E1-E2 complex with ER-derived membrane makes up the viral 

envelope. The p7-NS2 complex orchestrates the recruitment of viral proteins to the site of 

assembly. Also, p7 forms an ion channel that mediate proper pH of virion-containing 

vesicles in order to protect immature virions until complete envelope glycoprotein 

maturation has taken place in the Golgi. 
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Conclusion:   

p7 is required for in vivo infectivity, and important for infectious virus production in 

cell culture. For unknown reasons, the cleavage of p7 from adjacent viral proteins is 

delayed, leading to the presence of precursor polypeptides (E2-p7, p7-NS2 or E2-p7-

NS2) proposed to have regulatory roles in virus production. Recent structural and 

topological studies have confirmed that p7 mainly localizes to the ER and contains two 

trans-membrane domains connected by a short cytoplasmic loop. By oligomerizing in the 

membrane, p7 is believed to form an ion channel that facilitates proton permeabilization 

in order to equilibrate intracellular vesicle pH to promote infectious virus production. The 

ion-channel activity can be inhibited by several compounds, with BIT225 and iminosugar 

derivatives showing the most promising results. Moreover, p7 interacts with NS2 and 

supports a late step in viral assembly and envelopment. The interaction pattern of p7 with 

other viral and host factors, and its exact contribution to infectious virus production 

remains poorly defined. 

In our study we confirmed, in a comprehensive mutational study that p7 is an 

important factor in virus production, specifically at a late stage in viral assembly, and it 

might be that p7 is a dual function protein. In one aspect, p7, presumably in its 

monomeric form, assists NS2 in gathering newly-formed capsids at LDs and glycoprotein 

complexes on the ER lumen for proper envelopment. Whereas, in its oligomeric state, p7 

protects glycoproteins from immature degradation during trafficking and release through 

an ion channel-like activity. A proposed model of p7 function in the HCV assembly 

process is shown in the Figure 6.1. 
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Future directions: 

To continue this work, we are interested to further analyze the generated p7 

mutations’ effects on various stages of the HCV life cycle, particularly at the assembly 

and release steps. Initially, we would like to test the p7 mutants’ sedimentation profiles by 

rate zonal centrifugation using sucrose gradients to be able to confirm whether p7 is 

involved in the formation of multi-order structures, such as HCV nucleocapsids. By doing 

this, we will have a clear image on the best way to perform gradient fractionations on 

HCV core protein. 

We are also interested in creating single alanine mutation exchanges of the two basic 

residues of the cytoplasmic loop and determine whether bafilomycin A1, NH4Cl, or p7 

expression in trans can rescue virus production. We also plan to perform time course 

analyses for E2 levels with pulse-chase assays. Doing such experiments will give us an 

idea if neutralization of intracellular vesicles contributes to infectious virus production 

and support our notion that p7 mediates E2 protection from premature degradation during 

HCV morphogenesis. 

  It’s very important to study the interaction pattern of p7 with other viral proteins. 

However, the small size of p7 and its membrane topology makes it a poorly immunogenic 

protein and, therefore, it is difficult to generate a reliable antibody against it. The idea of 

adding tag sequences to such a small protein might interfere with the actual binding 

pattern or the membrane topology of p7. It is possible that peptide antibody against p7 

could be generated using the carrier protein Keyhole limpet hemocyanin (KLH). Using 

this approach, synthetic peptides of only the accessible parts of p7 (the N- and C-termini 

and the cytoplasmic loop) would be the best choices to be conjugated with KLH. In 
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addition, studying the effect of p7 mutations on different viral protein localization and 

distribution by IF, particularly NS2 and E2 proteins, would be the best choice to gain 

more insight into the effect of p7 on other viral proteins, and would shed more light on 

the specific role of p7.  

Other adaptive mutations were also found to rescue viral spread in Huh-7.5 cells 

(mutations p7(2), p7(3), p7(6), p7(8), p7(10)) (see Table 5.1). Analysis of the identified 

mutations in the manner we used for the N765D will also provide important information 

on the most important residues of the p7 sequence and how certain viral proteins might 

have contributed to the rescue of the p7 defects. The N765D mutation was able to rescue 

alanine triplet changes at positions 765-767 (p7(1)), 771-773 (p7(3)) and 788-790 (p7(8)). 

We think it would be important to test whether these triple alanine mutants harboring 

N765D also preserve ion channel activity in artificial membrane assays. In this way, we 

could confirm the existence of the putative ion channel activity of p7. 

Looking a little deeper, it was reported that ion channel proteins of the non-enveloped 

viruses (togaviruses and lentiviruses) and the enveloped viruses (coronaviruses) mediate 

changes of host membrane potentials and promote viral budding at the plasma membrane 

or at an intracellular vesicle membrane in a process called depolarization-dependent 

exocytosis [310]. Coronaviruses are enveloped viruses with positive sense RNA genomes 

that also encode a viroporin, termed E protein. This viroporin was shown to mediate 

membrane rearrangements and formation of electron dense membrane structures derived 

from ER-Golgi intermediate compartments (ERGIC) and was suggested to play a role in 

scission of particles at the ERGIC [313]. It has never been considered whether p7 might 

mediate E protein-like activity. It would be exciting to test whether expression of p7 
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mediates the same membrane effects and modification of membrane potential. It would 

also be interesting to determine whether trafficking and release of HCV particles relies on 

ESCRT or COPII pathways or if p7 protein mediates this process. 

We firmly believe that p7 represents an attractive target for novel HCV treatment 

due to its small size and its importance for HCV infection. A better understanding of its 

function is of the utmost importance for development of a comprehensive therapeutic 

regimen. 
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