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Abstract

In this paper I will evaluate the stategic behaviour of two firms which
can activate R&D investments either to process or to product innovation.
T will consider a particular kind of process R&D activity, which I will call
Transport and Communication R&D and which aims at increasing the
net amount of the product that reaches consumers. I will limit my study
to a Cournot duopoly setting. The strategic interaction will be therefore
expressed in terms of a two-stage three strategy game, where firms first
decide whether to invest in one of the two types of R&D and then they
compete in the market by setting quantities. As a result, I will obtain both
symmetric and asymmetric equilibria, depending on the relative efficiency
of the R&D effort.
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1 Introduction

The information revolution which has recently emerged strongly affected
many fields of industrial organization and led to the revision of standard eco-
nomic theories. In the era of information technology the exploitation of commu-
nication networks like Internet may allow firms to enlarge the linkages to their
consumers. As Shapiro and Varian (1999) appreciate, “Information technology
is about information and the associated technology”. By investing in comput-
ers and more advanced logistics the firm can then manipulate informations and
reach a kind of one-to-one relation with consumers. In this way she may be able
to ship the product to those consumers really interested in it and/or she may
design the product in such a way to match consumers’ requirements. Starting
from this twofold consideration, this work aims at linking aspects of product
differentiation with the analysis of transportation technologies.

Modern theories of product differentiation have been very much influenced by
Hotelling (1929), who described product and price competition through a spatial
framework. In his model, he distributed consumers in space and considered the
different transportation costs which they have to sustain in order to reach the
closest firm. Furthermore, he also provided a precise analysis of consumers’
tastes for differentiated products. In the famous example of the cider, the
transportation cost was conceived in terms of a decrease of utility which a
consumer suffers if he is situated far from the ideal product.

Instead of sellers of an identical commodity separated geograph-
ically we might have considered two competing cider merchants side
by side, one selling a sweeter liquid than the other...The measure of
sourness now replaces distance, while instead of transportation costs
there are the degrees of disutility resulting form a consumer getting
cider more or less different from what he wants (p.454).

Hotelling’s model was fundamentally based on the concept of horizontal dif-
ferentiation. On the other hand, it is only recently that vertical differentiation
has been analysed. After the work of Lancaster (1979), it became clear that
products can be identified by two different interpretations of their position in the
space of characteristics. Two products are said to be horizontally differentiated
when they own different characteristics so that, if supplied at the same price,
they both obtain a positive market share. It is not possible to rank unambigu-
ously the products because consumers may have different tastes. On the other
hand, products are said to be wertically differentiated when they own different
amounts of the same characteristics so that, if offered at the same price, only one
product is sold. In this case each consumer recognizes that there are products
of of higher quality. Gabszewicz and Thisse (1986) introduced elements of ver-
tical differentiation within the spatial framework. A very interesting approach



was also used by Launhardt (1885), whose contribution has been recently ac-
knowledged. In fact, Launhardt proposed a simple spatial duopoly model which
considered both horizontal and vertical product differentiation. Furthermore,
he paid attention to the influence of differences in transportation costs. He
thus recognized the possibility of different form of heterogeneity among firms,
associated either to location or to transportation technology. Recently Thisse
and Dos Santos Ferreira (1996) expanded Launhardt model by allowing firms
to choose their transportation cost technologies.

Product differentiation and transport costs constitute then a fundamental
feature of the strategic interaction among firms. So far, however, the topic of
strategic investment to reduce the burden of TC has been rather neglected. This
is quite surprising given the role played by new technologies, which can make
transport costs less expensive. Firms spend substantial amounts on research
and development (R&D). Investments in R&D are generally classified into two
types, process innovation and product innovation. The activity of product inno-
vation consists in the development of technologies for producing new products
or for increasing the quality of the existing ones. As a consequence, in most of
the cases, it decreases the degree of substitutability between rival products in
oligopolies. No matter which firm engages in product innovation, there might
be a beneficial effect also on rivals that find competing products less close. Re-
cently Lambertini and Rossini (1998) analysed a noncooperative two-stage game
of duopolistic interaction, where firms are first required to set the reciprocal de-
gree of differentiation through R&D efforts aiming at product innovation, and
then compete in the market either in quantities or in prices. They have shown
that firms may end up choosing no heterogeneity as a result of a prisoner’s
dilemma, no matter whether Bertrand or Cournot competition is used. This
appears to be quite consistent with the externality brought about by product
innovation through its effect on substitutability. As the effectiveness of the
R&D expenditure increases, however, both firms decide to invest in product
innovation, thus maximizing their aggregate payoff.

As far as process innovation is concerned, it aims at decreasing the costs
of producing existing products. Literature has considered the different degree
of efficiency of process innovating R&D between the Cournot and the Bertrand
setting. An established result states that there is an excess of process-innovating
R&D under Cournot competition (Brander & Spencer, 1983), while the opposite
holds under Bertrand competition (Dixon, 1985). Delbono and Denicolo (1990),
on the other hand, study homogeneous products and show that the incentive
to introduce a cost-reducing innovation is greater for a Bertrand competitor
than for a Cournot competitor. Bester and Petrakis (1993) consider vertical
differentiated products instead and they obtain a mixed result: the incentive to
invest in process innovation is higher for the Cournot (Bertrand) competitor if
the degree of product differentiation is large (small).

In this paper, however, I will consider a particular type of process innova-
tion, which can be generally thought to affect transport and communication
costs. These costs may be interpreted in terms of the distance between the
consumer and the producer. My choice is based on different reasons: first of



all, in many circumstances, the costs associated to process innovation may be
very high and firms may be discouraged from pursuing such an activity. Firms
can thus think of investing in transport and communication technology in order
to enlarge their market by serving more consumers. Secondly, as it was intro-
duced at the very beginning, the exploitation of network technologies increases
the linkages with the potential costumers. The striking advance of information
and communication technology accelerated the growth of networking and the
economic advantages for those firms and individuals who have access to such
networks. Finally, several works (Krugman and Venables, 1990; Martin and
Rogers, 1995) emphasized the impact of different types of infrastructures on
trade patterns and industrial competition. These infrastructures can be inter-
preted in a broad sense as encompassing any facility, service or good that can
facilitate the juncture between producers and consumers. Poor infrastructures
impose high shipping costs and then a large portion of the goods can be “lost on
the way”. By investing in communication and transport specific R&D, a firm
may then increase this fraction and enlarge her market. The introduction of a
transport technology choice constitutes one of the main difference between my
approach and the standard Hotelling model, where the demand was assumed to
be fixed and the transportation costs exogenous.

I will develop therefore a model where firms may invest either in product
innovation or in transport technology innovation. Such a specification of differ-
ent ways to invest in R&D will give me the opportunity to consider a broader
scenario which can be related to the present situation, where Information Tech-
nology plays a very important role. Lambertini, Mantovani and Rossini (2001)
analyse R&D activity in transport and communication technology in a Cournot
duopoly. This paper represents an attempt to expand their results by allowing
firms to choose between two different kinds of R&D strategies.

The paper is organized as follows. The next section considers the most recent
contributions devoted to the issue of product vs. process innovation. Section 3
provides the basic setting of my model and analyses the choice among investing
in TC R&D, investing in PI R&D and not investing at all. In section 4 I will
use the reduced form of the game played by firms to find the subgame perfect
Nash equilibria. Section 5 presents a two-strategy game, with firms facing the
binary choice between investing in TC R&D or not investing. Conclusions and
final remarks are in section 6.

2 Product vs. process innovation

Even if there is a vast literature on the economic aspects of innovative ac-
tivity, the topic of product vs. process innovation has been rather neglected.
In particular, there have been only few attempts to explain what factors might
be important in directing R&D expenditure towards product or process innova-
tion. In fact, most models on innovation dealt primarily with overall innovative
activity (that is the sum of product and process innovation) or with one spe-
cific type of innovative activity (either process or product). Rainganum (1989)



and De Bondt (1997) provide comprehensive surveys on this field. Empirical
evidence indicates that firms usually have a portfolio of R&D projects, some
aiming at process innovation, some at product innovation. In many markets,
however, budget constraints may force managers to choose whether to employ
the advances in information technology to produce a new good, thus enlarging
the choice for the consumers, or to ensure a higher rate of return by exploiting
the gains deriving from a lower unit cost. This fact has been rather ignored
in industrial organization theory, while it has been recently investigated in the
business literature. Abernathy and Utterback (1978) proposed a “technologi-
cal life-cycle” model in which firms initially tend to direct most of their R&D
resources to product innovation, because the market potential is large. As the
proliferation of brand new products becomes excessive, R&D profitability fades
and firms shift from product to process innovation. The concept of product
life-cycle was recently translated into a formal model by Klepper (1996), who
highlighted the role of firm innovative capabilities and size in conditioning R&D
spending. This issue raised interesting questions also in cross-country compar-
isons. It is frequently argued that Japanese firms are more oriented toward
process innovation, while Western countries concentrate more on product inno-
vation'. Several explanations have been given to such a phenomenon. Albach
(1994) distinguishes between a process-orientation in Japan deriving from the
Samurai tradition and the result-orientation in America and Europe deriving
from Calvinistic moral values.

In this paper I will limit my analysis to a single market where only two
firms operate. The aim is to study the causes that drive firms’ strategies in
deciding which kind of R&D to undertake. A useful reference can be found in
Rosenkranz (1996), which considers a two-stage Cournot duopoly model with
horizontal differentiation. Product innovation is then considered as a reduction
of product substitutability. In the first stage firms simultaneously choose the
product characteristic and the unit cost, while in the second stage they choose
outputs. Demand is characterized by preference for product variety. The main
result consists in the fact that firms tend to allocate more resources in product
innovation when: (i) consumers’ willingness to pay increases, if the R&D effi-
ciencies of the two kinds of innovation are similar; (ii) market size increases. In
both circumstances, in fact, firms can reach a higher profit by differentiating
the products than by reducing the costs. As the number of potential consumers
increases, and/or when these consumers are more willing to spend for brand new
products, firms prefer to enlarge the variety of the goods offered in the market,
thus dampening price competition. Furthermore, in her study Rosenkranz also
investigates the effects of R&D coordination on the optimal proportion of inno-
vative activities. It is shown that the creation of cooperative agreements drives
firms’ investment to product innovation. The increase in efficiency due to the
elimination of wasteful duplication effects is larger then the negative impact on
firms’ investment incentive. In my analysis I will follow the same specification

I'Mansfield (1988), in a comparative study, argues that Japanese firms have traditionally
engaged more in process innovation than American firms.



of product innovation as a reduction of product substitutability, but I will use
a less conventional type of process innovation. I will in fact consider an invest-
ment in transport and communications, as I explained in the previous section.
Moreover, Rosenkranz allows each firm to invest in both types of innovation
simultaneously, while in my approach the choice between process or product
innovation will be mutually exclusive.

In the field of horizontal product differentiation, another interesting work is
due to Eswaran and Gallini (1996), who examine the role of patent policy in
redirecting the mix of product and process innovation towards a more efficient
technological change. Firms will in fact engage in these innovations to different
degrees, depending on the incentives offered by the market in terms of patent
protection. In their model R&D is undertaken by two firms, in sequence. The
pioneer patronizes a new market with a product innovation, using a new or an
old process, while the entrant develops a variant of its rival’s innovation. In
absence of patent policy, it can be shown that there is an excessive investment
in product innovation, relative to the social optimum. The reason lies in the
fact that product innovation relaxes competition because it ensures the presence
of relatively high prices in a market where goods are more differentiated. The
government can rectify this distortion toward product innovation by granting
wider patent breadths on process innovation.

Other contributions present weaker links to my work, mainly because they
consider the decision whether to direct R&D expenditure toward product or
process innovation in a vertically differentiated market?. Process innovation is
still defined as a reduction in the firm’s production costs, but vertical product
innovation is conceived as an improvement in the quality of a firm’s product. In
a recent article, Bonanno and Haworth (1998) provide an interesting duopoly
model which explains the R&D choice according to the type of competitive
regime where firms operate (Cournot vs. Bertrand). There are two firms in
the market, an innovator and a competitor and they have to decide whether to
pursue product or process innovation. The cost is supposed to be the same for
both types of innovation and the investment opportunity is therefore profitable
if the expected increase in profits deriving from the adoption of the chosen
innovation is greater then the cost. Two cases are considered, according to the
kind of innovator. When the innovator is a high quality firm, three solutions
can arise: (i) both the Cournot and the Bertrand competitor invest in process
innovation; or (ii) both invest in product innovation; or (iii) they make different
choices, the Cournot competitor opts for process innovation while the Bertrand
competitor will favor product innovation. A Bertrand competitor is then more
prone to choose product innovation than the Cournot competitor, which favors
process innovation. The opposite holds when the innovator is a low quality
firm and the Bertrand competitor is therefore more willing to adopt process
innovation. Battagion and Tedeschi (1998) consider a Bertrand duopoly and
study the effects of the different types of innovation on the degree of vertical

2The basic reference for models of vertical differentiation is given by Mussa and Rosen
(1978).



differentiation. The main result is that a symmetric adoption of a process
innovation increases vertical differentiation, while the opposite holds in case of
a symmetric adoption of product innovation. However, both contributions do
not explicitly take into account the possibility of strategic interaction between
firms. The former confines its analysis to the decision of each firm separately,
while the latter is limited to symmetric cases where firms undertake the same
type of R&D investment.

A very interesting attempt to model the strategic interaction among firms
deciding simultaneously which type of innovation to adopt is given by Filippini
and Martini (2000). They consider a three-stage duopoly model where firms
sell a differentiated good. In the first stage firms decide whether to invest in
process or in product innovation, in the second stage they select the quality
and in the last stage they play a Bertrand game in the market. Three subgame
perfect Nash equilibria may arise, two symmetric, where firms select the same
type of innovation, and one asymmetric, where the high quality firm chooses
a product innovation, while the low quality firm chooses a process innovation.
The determinant of such equilibria is what they call an impact index, defined
as the ratio between the cost saving effect due to process innovation and the
quality effect due to product innovation. The smaller the value of the index
(i.e the greater is the quality effect), the more likely is that both firms adopt
a product innovation and viceversa. The asymmetric equilibrium deserves a
further explanation. The high quality firm has more incentives to sell higher
quality goods and then it is the first to adopt a product innovation. This
justifies the presence of an interval of the impact index where firms choose
asymmetrically. The above equilibria have also different impacts on the degree
of vertical differentiation, which increases only if firms adopt different types of
innovation. As a consequence, the intensity of competition is not relaxed by the
symmetric investment of each type of innovation but through the creation of an
efficiency gap.

Finally, Lambertini and Orsini (2000) analyse the incentive to introduce pro-
cess and product innovation in a vertical differentiated monopoly. By evaluating
the social planning against the monopoly optimum, the authors show that the
social incentive towards both kinds of innovation is always larger than the mo-
nopolists’ private incentives. This result has some relevant implications on the
assessment of the social inefficiency of monopoly in a way that has been over-
looked so far, given that the existing literature has performed such an evaluation
for a given technology.

3 The setting

I analyse a duopoly where two firms, ¢ and j, compete non-cooperatively
in a two-stage framework in a Cournot setting. In the first stage they may
decide to invest either in transport and communication (TC) or in product
innovation (PI) R&D. Product innovation is conceived in an horizontal sense as
a reduction of product substitutability. The second stage is the market stage



and firms set quantities. I then use backward induction to solve the game and
get subgame perfection. In other words, firms may priorly commit themselves
to an investment in R&D and then they compete in the market by choosing
the profit-maximizing quantity. The basic feature is that at the very beginning
both firms have to choose between undertaking R&D or not. In the former case,
they have also to decide whether devoting the R&D expenditure to process or
to product innovation. In my model, they can thus either invest in PI or in TC.
I assume in fact that, given to budget constraints, they can undertake only one
type of R&D investment, with capital expenditure represented by k£ > 0 in both
cases.

In order to build my model, I adopt a modified version of the linear duopoly
model used by Dixit (1979), Singh and Vives (1984) and many others. Without
loss of generality, I assume unitary reservation price and constant marginal costs
equal to c¢. Demand functions are then given by:

pi=1—t;q—7tjq; (1)

pi=1—tjq —vtiq (2)

where ¢; (g;) is the quantity produced by firm ¢ (j), while ¢; (t;)€ |0,1]
indicates the fraction of the product shipped by firm ¢ (j) which arrives at des-
tination. Given that I consider two symmetric single-product firms, the analysis
can be simplified by assuming that ¢; = ¢; = ¢. The presence of transport costs
constitutes the main departure from standard duopoly models. I will come back
later to this point. Finally, the parameter v € [0, 1] represents product substi-
tutability as perceived by consumers. The degree of product differentiation
decreases with the parameter v: as v — 1, products become perfect substitutes,
while as v — 0 firms effectively become monopolists and product differentiation
is at highest.

Let me briefly explain the basic consequences associated to the two kinds of
innovations considered. On the one hand, as I mentioned above, by investing
in TC a firm can improve her efficiency in reaching the consumers. Transport
and communication costs are assumed to be of the ‘iceberg’ form invented by
Samuelson (1954) and widely used in trade theory (Helpman and Krugman,
1985; Krugman, 1990). Different methods have been suggested to formalize
such costs. In many international trade models they are included in the cost
function; in Brander and Krugman (1983), for example, domestic marginal cost
is a constant ¢, while the marginal cost of export is ¢/t, t € [0,1]. I think
that such an approach would be appropriate if I considered a pure process-
innovating R&D investment. But in my model I will treat a particular kind
of process innovation, which influences the quantity effectively shipped. As a
consequence, when a quantity ¢; (¢;) is produced, only a fraction ¢ € ]0, 1] of



the product reaches the consumer®. This is the way in which I formalized the
transport costs in the above demand functions. For the sake of simplicity, I
assume that an investment in TC R&D of a fixed amount & enables the firm to
deliver the entire product to her customers, thus no portion is lost in the way
(t =1). In the case where the firm does not invest in TC, she will deliver only
a portion ¢ € ]0,1[ of the product. I might think of (1 —t) as the “waste” of
product during the freight process. The initial ¢ is then exogenously given and
it can be conceived in terms of the state of public facilities and infrastructures,
which is common for both firms. Nonetheless, through a private investment in
TC, each firm can improve her ability in reaching the consumers.

On the other hand, in the case of investment in PI, a firm can decrease
the degree of substitutability between her own product and the rival’s one.
Starting from a situation of homogeneity (v = 1), I assume that the level of
the susbstitution parameter v decreases from one to a lower level v, €]0,1] if
only one firm invests in product innovation and from one to v, < vy, 79 €]0, 1],
if both firms invest. This reflects the externality brought about by product
innovation. In other words, products become more differentiated in the case of
both firms investing in PI than in the case where only one firm does that.

Given the framework above, I therefore consider different cases according to
the investment choice of firms. This will cover all the possible combinations of
the Cournot market stage. Demand functions will be obtained from 1 and 2 by
taking into account the kind of R&D undertaken by firms.

3.1 None invests in R&D (case A)

In this case products are homogeneous (y = 1) and transport costs affect
both firms’ shipping ability. Demand functions are given by:

pi = (1 —tq; — tq;) (3)

p; = (1—tg; —tq). (4)

Profit functions are then:

T = (1 —tq; —tq;) tqs — cqs

T = (1 —tq; —tg;) tq; — cq;.

3 Another way to model the iceberg technology is that when g; is shipped, only a fraction
q;/t arrives at destination, with ¢ > 1.



It can be noticed that this is a symmetric case which simplifies the calcu-
lations. From market stage first order conditions (FOCs)* I get the following
equilibrium quantities:

(t—o)
3tz
Non-negativity constraints on quantities imply that ¢ = ¢; > 0if ¢ > c. By
substituting the values of ¢; = ¢ into the profit functions, I get the equilibrium
total profits:

4 =4j =

(c—t)°
A =ni —oZ (5)

where the superscript A indicates the case under consideration.

3.2 Only one firm invests in TC (cases B and D)

Suppose that firm j invests in TC while firm 7 does not invest at all (case
B). Hence, in this case, there is only one firm that undertakes R&D investments.
More precisely, firm j decides to allocate resources to the transport and com-
munication innovative activity with the aim of shipping the entire product to
her consumers. On the contrary, firm ¢ does not undertake any type of R&D
investment.
Demand functions can then be written as:

pi = (1 —tq; —q;) (6)

p; = (1—q; —tq). (7)

Profit functions are then:
= (1 —tq; — q5) tq; — cqi

m;=(1—q; —tg;)q; —cq; — k.

1First Order Conditions are:

omi _ 9mi

= b
9g; 9g;
Second order conditions are always satisfied, as it can be easily checked in this and subsequent
cases.

=0.

10



By applying the same procedure as before, I calculate the equilibrium quan-
tities:

L c(t=2)+t
. CH+t—2ct
4G = —%
3t
Non-negativity constraints on quantities imply that ¢f > 0 if ¢ > < _fc and
¢; > 0if ¢t > 5% . By comparing the two threshold values it can be easily

shown that 12_4;:@ > 555 and therefore the binding constraint is ¢ > 12ch' Finally,

equilibrium total profits are given by:

2
g (ct —2c+1t)
ap (o 2ett) ®)

2 (1—26)% + 2t (1 — 2t) + ¢2
el )gtg( IR 9)

In case D, firm j invests in TC while firm i does not invest at all. It can

easily recognized that case D is the reverse of case B. By reversing the payoffs

..D_ _B D _ B3
Lget: m;” = n; and 77 =77,

3.3 Only one firm invests in PI (cases C and G)

Suppose that firm j invests in R&D to decrease the degree of substitutabil-
ity, while firm ¢ does not invest at all (case C). Demand functions are then:

pi=(1—tg —ty,qy) (10)

pi=1—tqg —ty,4) (11)

Total profits are:

- - .. .
°In this case ¢ and q;—‘ as well as the consequent non-negativity constraints are the reverse
of the ones in case B, as it can be easily checked.

11



=01 —tq —ty,q;) tg; —cq

T =1—tg—ty1q)tq —cqg—k
Equilibrium quantities are:

. t—c

kN =

Non-negativity constraints on quantities imply that ¢f = ¢; > 0if ¢ > c.
Equilibrium total profits are:

(c—t)°
S Eenr e )
¢ = ﬂ —k (13)

Toe+m)’ e

As it can be noticed, in this case profits are larger for the firm which does
not invest in product innovation, because she exploits the positive externali-
ties brought about by the investment of the other firm without bearing any
additional cost.

In case G, firm ¢ invests in PI while firm j does not invest at all. By simply

reversing the payoffs with respect to Case C, I obtain 7§ = 7¢ and 7TJG = 7¢'s,

g J

3.4 Both firms invest in TC (case E)

This is the symmetric case where both firms undertake TC R&D. Transport
costs are completely eliminated by both firms and the demand functions are then
given by:

pi=1—q —q) (14)

pi=1-q—a). (15)

6In this case q; and g} are the reverses of the ones in case C. Furthermore, non-negativity
constraints on quantities imply that g = q;.‘ > 0ift > ¢, as in case C.

12



Total profits are:

mi=01—q—q) ¢ —cq—Fk

mi=01-¢q;—q) g —cqg— k.

Equilibrium quantities are given by:

l1—c¢c
3

* *

q; =4; =

which are non-negative for ¢ < 1. Equilibrium profits are then:

B _ E_ﬂ,k. (16)

3.5 One firm invests in TC and the other in PI (cases F
and H)

Suppose firm ¢ invests in TC while firm j invests in PI (case F). In this
asymmetric case firm ¢ eliminates her transport costs, while firm j introduces
product differentiation. Demand functions are given by:

pi=1—q—tvy q) (17)

pi=0—tq —v &) (18)

Profit functions are then:
mi=(1-¢—-tng) g—cai—k

i =1~tq —v1q4) tg; —cq; — k.

13



By applying the same procedure as before, I calculate the equilibrium quan-
tities

«  2ct—=2t+v,t—cy

1

q, =
Z (vF—4) ¢
= 2t —2c — vyt +cv,t
’ (vi-4) ¢
It can be easily proved that ¢f > 0 in the admissable region of param-
eters’ and qg; > 0 for ¢t > # As a consequence, the constraint is
1 1
2c
t Z H—+m-

Finally, I find the equilibrium total profits:

o (20t—2t+%t—cvl)2

o= 3 —k (19)

(v2—-4)

2
2t —2c— vyt +c. t

wf:( N S (20)

(-4 &
In case H, firm 7 invests in PI while firm j invests in TC. By simply inverting

the roles with respect to Case F, 1 get 7 = 7rf and Wf =78,

3.6 Both firms invest in PI (case I)

This is the symmetric case where both firms invest in product innovation.
Notice that, due to an externality effect, the degree of substitutability is v, < v,
i.e. products are more differentiated than in the case where only one firm invests
in PL.

Demand functions are thus:

pi=(1—tg—tysq5) (21)

pi=1—tqg —tvq) (22)

TThis has been proved for different values of t € (0, 1] by using plots in three dimensions.
The vertical axis measured the value of g;, while the horizontal axes reported the values of
the parameters ¢ € (0,1] and ; € (0,1). Simulation analysis covers a sufficiently large range
of parameters to generalize the results.

8 Equilibrium quantities and consequent non-negativity constraints are the reverses of the
ones in case F.

14



Total profits are:
mi=1—tq —tvq5) tq; —cq —k

mi=1—-1tq —tvs¢)tq; —cq —k
Equilibrium quantities are given by:

N t—c

kA Cru

which are non-negative for ¢t > ¢. The equilibrium total profits
are then given by:

m=rl=—"k (23)

4 The solution of the 3-strategy game

In the previous section I determined the equilibrium profits resulting from
the different combinations of the R&D strategies undertaken by the two firms.
The reduced form of two stage 3-strategy game is represented in normal form in
matrix 1 below. Before comparing the profit levels to find the Nash-equilibrium
of the game, I will consider the feasibility conditions deriving from non-negativity
constraints on quantities. The aim is to reach a unique threshold value which en-
sures the sustainability of the game under consideration. Equilibrium quantities
are non-negative for ¢ < 1 (case E), t > ¢ (cases A, C, G and 1)?, ¢ > 12—+cc (cases

Band D) and ¢t > # (cases F and H). Simple computations allow me to
1 1

demonstrate that, in the admissable region of parameters > 22 > ¢,

2¢
’ 277l+0’)’l 1+c
As a consequence, the binding threshold value becomes t > t = 2—w2—icv’
1 1
which is obviously subject to the condition ¢ < 1.

9This condition may be interpreted as the non-negativity of the marginal revenues for the
product shipped.
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Let me now analyse the game represented below:

firm j
0 TC PI
y: p— B B T T
frm i 0 T = T T T | T T
TC 7riU 7r§) Wf’ = 7r‘7'-” 7rf 7rf
G ¢ H H Y ——
PI 5 L s T T, = T

Matrix 1 - the reduced form of the 3-strategy game

In what follows, I will simplify the calculations by fixing the values of the
parameter . I will in fact assume that an investment level & in Product Inno-
vation brings about a product differentiation equal to 1/4 over 1. As a conse-
quence, when only one firm invests in PI, v, = 3/4, while it becomes v, = 1/2
when both firms invest in PI. The threshold value becomes then = 5/4_3%.
Furthermore, given to the complexity of the calculations involved, I will resort
to graphical simulation in order to compare the profits within the admissable
region of the parameters considered!?.

In a Cournot duopoly game where firms face different kinds of R&D invest-
ments, a variety of Nash equilibria arises, depending on the relative efficiency of
the R&D expenditure. Given that I fixed the substitutability parameter =y, such
an efficiency can me measured by combining the initial value of the percentage
of product shipped (measured by ) with the cost of the R&D investment (mea-
sured by the level of k). T will limit my analysis to the study of Nash equilibria
in pure strategies. The following proposition summarizes the main results:

Proposition 1 (i) For relatively small values of t, the game has a NE in
dominant strategies where both firms invest in TC if the cost k is low. For very
low levels of k, furthermore, such an equilibrium turns out to be also Pareto
efficient. As k slightly increases, the game shows a Prisoner’s Dilemma, because
the aggregate payoff would be maximized by both firms not investing at all. For
intermediate values of k, the game becomes a Chicken Game and there are two
asymmetric equilibria off the principal diagonal in which only one firm invests in
TC. Finally, for high values of k, the game shows a NE in dominant strategies
where both firms decide not to invest at all in RED.

(i) For intermediate values of t, the game presents again a NE where both
firms invest in TC if the cost k is low. However, such an equilibrium is al-
ways not Pareto efficient and the game shows then a Prisoner’s Dilemma. As
t slightly increases, given a low k, there are two NE along the principal diago-
nal. Both firms either invest in TC or in PI, thus giving rise to a Coordination

10Calculations and simulations will be computed by using the program Mathematica
(Wolfram, 1991).
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Game. When k increases, there is a Chicken game where only one firm alterna-
tively invests in PI. Moreover, there exists a very small interval with three Nash
equilibria, two asymmetric, (PI, 0) and (0, PI), and one symmetric, where
both firms invest in TC. Finally, for high values of k there is an equilibrium
in dominant strategies where firms do not invest in RED. Such equilibrium is
Pareto-efficient only for very high levels of k, otherwise firms would maximize
their aggregate profit by investing in PI.

(#ii) For relatively high values of t, there is a NE in dominant strategies
where both firms invest in PI for low levels of k. Such an equilibrium is Pareto-
efficient from the firms’ standpoint. As k rises, there is again a Chicken game
where only one firm alternatively undertakes PI. Finally, for high values of k,
the game shows a NE in dominant strategies where both firms decide not to
invest at all in RED. Such a NE turns out to be Pareto-efficient only for very
high values of k, otherwise it generates a Prisoner’s Dilemma, given that the
aggregate payoff of firms would be still maximized by investing in PIL.

4.1 Formal Proof

The formal proof is divided in 3 parts: in the first part I will compare the
profits appearing in the principal diagonal; in the second part I will consider
firms’ best responses given the choice of the rival, while in the third part I
will look for the Nash equilibria of the game. As I will show, depending on the
relation between the initial value of the percentage of product shipped (measured
by t) and the cost of investment (measured by the level of k), a variety of Nash
equilibria will arise. I will in fact find equilibria in which both firms invest
in TC, both invest in PI, both decide not to invest at all or where only one
undertakes either TC or PI and the other does not invest. Let me now proceed
with the comparison of the profits of Matrix 1.

4.1.1 The principal diagonal

In this preliminary step I will compare the profits accruing to firms when
they undertake the same strategy. This part will turn out to be particularly
useful in the ex-post evaluation of the strategic behaviour taken by firms. In
particular, I will be able to compare the symmetric choices that are excluded as
equilibria of the noncooperative game.

The main results appearing in this first part are:

o< wEif ko <k, (24)
g < T if k< ks, (25)
ij>7ri{j if f<t<t1and7rfj< nyj if t1<t<l. (26)

17



Where 7r 7TA 7r;4j, ml = 7TE 7TE] and ! 7TI =l ; to simplify
the notation. Furthermore it can be easﬂy proved that the sarne threshold value

of t can be used to discriminate between k1 and ko. As a consequence:

k1> ko iff<t<t1andk1<k:2ift1<t<1 (27)

The calculations and the precise values of the threshold levels of k£ and t are
reported in Appendix 1.A. As it can be easily noticed, the comparison between
i L and either 7/7; or 7/ ; is not very difficult. It is in fact sufficient to find the
threshold level of k Wthh discriminates between the profits considered. For low
values of &k both firms would gain an higher profit if they invest in one of the
two types of R&D, while for higher values of k they prefer not to invest at all.
As for the symmetric profits associated to different types of R&D investments
(ﬂfj vs. 7'('1-[, ;); the level of k is useless in the comparison between the two
payoffs. I assumed in fact that both the investment in TC and the one in PI
require the same amount of resources. I have then to resort to the analysis of the
effectiveness of such investments and this can be done by looking at the value of
the initial ¢. For low values of ¢ (¢t < t1), firms would prefer to invest in TC, thus
gaining from a large increase in the percentage which arrives at destination. For
any fixed level k, the lower the initial ¢, the more efficient the TC R&D is, given
that I assumed that such investment enables the firm to eliminate the freight
costs, thus delivering the entire product (¢ = 1). On the contrary, when ¢ is
high (¢ > t1), they would gain an higher profit by allocating resources to P1. By
spending k on TC they would in fact only increase ¢ by a smaller percentage than
before and this is the reason why they prefer to differentiate their products, thus
relaxing the competition on the market. As for the role played by the marginal
cost ¢, numerical simulations show that both the value of % and the value of
t1 increase when c increase. In particular, When this happens, the feasibility
interval shrinks and the value above which 7r ;> 7r ; becomes very high.

In this and in the following cases the comparlson among the payoffs of the
matrix requires then a careful analysis of the relation between the values of ¢
and k. By combining the two intervals of ¢ with different levels of k, in fact, I

can rank the symmetric payoffs appearing along the principal diagonal:

0<k:<k:2:>7r >7T}z j]
if t<t<ty k2<k<k1:>7r ﬁ ﬂ (28)
k2<k1<k:>7r > T

and

0<k<k = 7l > X ﬁ
ifti <t<1g ki1 <k<ky= m; >7Tf EZ . (29)
k1 <ky<k—= 7riy
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The symmetric case where both firms invest in TC yields the highest profit
when TC R&D productivity is very high, i.e. when a low initial value of t (¢ < t1)
is associated with a low level of k£ (k < kq). For higher levels of ¢ (¢ > ¢;) and
low values of k (k < ko), profits are at the highest for the symmetric case where
both firms invest in PI instead. Finally, in both intervals of ¢, when the R&D
cost is relatively high the largest symmetric profit is the one in which no firm
invests in R&D.

4.1.2 The best responses of the firms

Let me now consider firms’ best responses, given the choice of the rival. In
what follows I will analyse the best responses of firm 4 given the strategy chosen
by firm j. I will consider three cases, depending on the bahaviour of firm j
which can decide to invest in TC, to invest in PI or not to invest at all. The
symmetric structure of the game ensures that the same results will hold for firm
j, given the action taken by firm .

e Profits for i (j) when j (i) does not invest at all:

in this case firm ¢ (j) faces three alternatives, given the rival’s choice of not
investing at all. T then compare 7, 7P and 7§ (or 7r34, wf and 7TJC if I consider

firm j’s choice when the rival does not invest):

7'(';4(71'}4) < 7TZ-D (Wf) if k<ks, (30)
7'('24(71'3-4) < ¥ (7'(']0) if k< ky, (31)

W?(Wf)> 7TZG(7T]C)Zf f<t<t2and7r?(7rf)<7ria(7rjc)if ta <t <1 (32)

Furthermore, similarly to what I found before,

ks >ky if t<t<tyand k3 <ksif ta<t<l1 (33)

By simple computations it is also possible to demonstrate that, in the ad-
missable region of parameters:

t1 < ta. (34)

In Appendix 1.B it is possible to find all the exact calculations. As before, I
need to combine different threshold levels of £ with the discriminating value of
t appearing in this part, hence ¢5. I then get two subintervals, in which:
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0<k<ky= 7P >nf >zl (78 > 7¢ > nf)
if T<t<to] ha<k<hks= 7P >xi>7f (7B > 7> xf) (35

ky <ky<k= mi>7P> 7 (7r3-4>7r§3>7rjc)

and

0<k<ks= 78> aP>ad (7§ > xf > n)
if tao<t<1q ks<k<ky= 7¥ > 7> 7P (7§ > x> 7F) . (36)
ks <ky<bk—= 7r;4>7TZ-G> P (7r3»4> 7TJC>7T;3)

As a consequence, for low values of ¢ ( ¢ < t2) and small and intermediate
levels of k (k < ks), firm ¢ (j), given the choice of the rival not to invest at
all, decides to invest in TC, while she prefers to invest in PI for higher values
of t (t > t2) and not excessive levels of k (k < k4). In other words, she will
invest in TC when the R&D expenditure k is very efficient, leading to a strong
increase in the percentage shipped from a low ¢ to 1. On the contrary, she will
opt for PI when the starting value of t is higher and then the amount spent
in TC R&D would only increase ¢ itself by a negligible percentage. In both
intervals, furthermore, firms prefer not to invest when the efficiency of the R&D
productivity fades, i.e. for high levels of & ( k > k3 in the first subinterval and
k > k4 in the second one).

As far as the parameter c is concerned, when its value increases it is necessary
a t higher and higher to make firms willing to invest in PI instead of TC. In
other words, for high values of the marginal cost firms are likely to invest in TC
and this is due to the fact that such an investment can be conceived as a form
of process innovation.

e Profits for 7 (j) when j (¢) invests in TC:

in this second case I have to compare 72, 7€ and 7 (or 7TjD , ﬂf and ﬂf ):

%

W?(?T]»D)< o (Wf) if k<ks, (37)
7T'ZB(7T]-D)< Wf{(ﬂf) if k< kg, (38)
Wf(ﬂf)> Wﬁ(wf) if t<t<ts andwf(wf)< Wf{(wf) if t3 <t<1. (39)

By comparing the threshold values of k one gets:

ks > kg if t<t<tzand ks <kgif t3<t<l1 (40)
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For future reference, by simple computations it is also possible to demon-
strate that, in the admissable region of parameters:

ty < ts. (41)

Detailed calculations are reported in Appendix 1.B. By combining the thresh-
old values of k£ and t, I have:

0<k<kse= nf>nfl >xf (7F > nl' > =P)
if T<t<tsq ke <k<ks=—= 7wf>nP>z (7 >7P>7l) (42)
ky<ks<k= wP>7F>gH (W?>7Tf>7rf)

and

0<k<hks= nf >nf >xf (xk > xlf > xP)

if ts<t<lq ks<k<ke=—= 7wl >aP>af (7f > 7P > 7F) . (43)

B H E (D F E
ks <ke <k=— w7 >m >m; (ﬂ'j > > 7rj)
I obtain then similar results as compared to the previous case. An interesting
difference is that the interval in which firm 7 (j) prefers to invest in TC instead

of PI increases. In fact, the threshold level which discriminates between ¥
(ﬂf) and TH (ﬂf) is given by t3 > t3. Suppose that firm j invests in TC; firm

i chooses more often than before to adopt the same strategy, thus increasing
the competition in the market. If firm 7 had decided to invest in PI, in fact, the
effects would have been beneficial also for the rival, which could have shipped to
the market an higher amount of an horizontally differentiated product (which
can be sold at a higher price than before).

e Profits for ¢ (j) when j (i) invests in PIL:
c

in this third case I will compare 7¢', 7f" and 7! (or 7er, ﬂf and 7'(']]4 ):

7T-C(7r§;) < 7f (Wf) if k<ky, (44)

K

¢ (Wf) <

I

%

(n]) if k<ks, (45)

J

Fahy > ol (xh)if t<t<tiandnf (xlh) < wf (xl)if ta<t <1, (46)

%

™

kr > ks if t<t<tyand ky <kgif ta<t<l. (47)

It is also easy to show that, in the admissable region of parameters:

ty < ty4 < t3. (48)
As usual, by combining the threshold values of k& and ¢, I get!!:

LI More precise calculations are reported in Appendix 1.B.
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0<k<ks= nf'>nl>nx¢ (ﬂf>7r§>7rj-G)
if T<t<tyq ks <k<ky= nf>7¢ >z (7l > 7§ > xl) (49)
ks <kr <k= n¢>xf >z (7§ > ] > xl)

i

and
0<k<kr= n]>nf>n¢ (] >l > 7§)
if ta<t<1q kr<k<ky= = >a{>x] (vl>x¢> =) . (50)

kr < ks < k= 7ric> 7rlF> W{ (ﬂf>7rf> 7'(']])

In this case firm 7 (j), given the choice of the rival to adopt PI, decides to
invest in TC for low values of ¢ ( ¢t < t4) and relatively low levels of k (k < k7),
while it chooses PI for higher values of t ( ¢t > t4) and k < kg. As k raises
(k > k7 in the first subinterval and k > kg in the second one) both firms decide
not to invest. In practise I got similar results as compared to the previous
cases. However, given that ¢y < t4 < t3, the interval in which firm ¢ (j) prefers
to invests in TC instead of PI increases as compared to the first case, where
firm j (i) did not invest, but decreases as compared to the previous case, where
firm j (i) invested in TC. This is very interesting because it shows that a firm
finds more profitable to invest in PI when the rival does the same than in the
case where the rival undertakes TC R&D. When the rival invests in PI, in fact,
firm ¢ (j) is more prone to invest in PI as well, leading in this way to a higher
degree of product differentiation which is beneficial for both firms.

4.1.3 The Nash equilibria of the game

In the previous part I focused on firms’ best responses and I found that they
depend on the combination between the level of k£ and the value of the parameter
t. By combining 34, 41, 48 and knowing that £ < ¢ < 1, it is immediate to have
the following result:

t<ty<ta<ty<tz<l (51)

In order to determine the subgame perfect Nash equilibria of the game rep-
resented in Matrix 1, I have to compare all the threshold levels of k discovered
in the analysis of firms’ best responses. To simplify the analysis I will proceed
by considering separately the intervals of ¢ as they appear in 51. In each inter-
val I will then evaluate only the values of k£ which are necessary to discriminate
among the best responses and I will find the Nash equilibria. I will also compare
the resulting equilibria with the Pareto-efficient solutions.

e Let me start by considering a value of ¢ such that < ¢t < ;. In this case
firm ¢ (j) best response is:
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- invest in TC for k < k3, do not invest at all otherwise, when the rival
does not invest in R&D (see 35);

- invest in TC for k < k5, do not invest at all otherwise, when the rival
invests in TC (see 42);

- invest in TC for k < k7, do not invest at all otherwise, when the rival
invests in PI (see 49).

Furthermore, along the principal diagonal the highest profit is given by
(TC,TC) for k < k1 and by (0,0) otherwise (see 28).

By comparing the threshold values of k, it can be proved that, in the ad-
missable region of parameters:

ki < ]{?5 < k?g (52)
and
kr < ks. (53)

Furthermore, in the interval considered, it is always true that k; < k5. All
these results are verified in Appendix 1.C. The following rank holds then in
t<t<t:

k1 < ks < k7 < ks (54)

As a consequence, different cases have to be analysed, depending on the level
of k:

0<k<ks = oneNE, (TC,TC)
t<t<ti{ ks <k<ks= twoNE, (TC,0) and (0,TC) . (55)
ks <k = one NE, (0,0)

As it can be noticed, for low values of k (k < k;), the game shows a NE in
dominant strategies, where both firms invest in TC. However, when k; < k < k5
the game is a Prisoner’s Dilemma, because firms would gain an higher profit
by deciding not to invest at all'?. It is interesting to notice that only for very
low values of k (k < k1) the simultaneous choice of both firms to invest in TC
leads to the highest profit. In this case, in fact, the R&D expenditure turns out
to be very efficient, because it is sufficient a small investment to increase the
percentage of the product shipped from a very low ¢ (t < t1) to 1. The benefits
of such a strategy are then larger then the drawbacks associated to a stronger
competition in the market.

Moreover, when the cost k increases (ks < k < k3) the game allows for two
asymmetric NE, where only one firm invests in TC, while the other prefer not to

12The NE (T'C,TC) is then Pareto dominated by (0, 0).
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invest. The situation presents then a Chicken Game and it can be demonstrated
that such a situation holds even if the option to invest in PI is eliminated from
the analysis. I will investigate in more details this case in the next section.
For the moment it is interesting to notice that, for intermediate levels of k,
the commitment taken by one firm to invest in TC leads to a situation where
the rival prefers not to invest in R&D. A priori, however, it is not possible to
determine which firm will invest in R&D (and then which equilibrium will be
reached)!3.

Finally, as the cost k increases further (k > k3), the game shows a unique NE
in dominant strategies where the aggregate payoff of the firms is maximized by
not investing in R&D and this solution yields the Pareto efficiency from firms’
standpoint.

e Let me now take ¢ such that t; <t < tg. Firm ¢ (j) best response is:

- invest in TC for k < k3, do not invest at all otherwise, when the rival
does not invest in R&D (see 35);

- invest in TC for k < ks, do not invest at all otherwise, when the rival
invests in TC (see 42);

- invest in TC for k < k7, do not invest at all otherwise, when the rival
invests in PI (see 49).

Furthermore, along the principal diagonal the highest profit is given by
(PI, PI) for k < kg and by (0,0) otherwise (see 29). This constitutes the
only difference as compared to the previous case.

The comparison of the threshold values of k is not so immediate as before. In
Appendix 1.C it is demonstrated that the interval t; <t < to can be separated
into three subintervals:

tq <t<t5,where ks < ko < k7 < k3
ts <t <tg, where ks < ky < ko < k3 (56)
tg <t <tg, where ks < k7 < k3 < ko

Without entering into details'#, it is important to notice that:

0<k<ks;= oneNE, (TC, TC)
t1 <t<ta{ ks <k<ks= twoNE, (TC, 0) and (0, TC) . (57)
ks <k = one NE, (0, 0)

Hence I get results very similar to those obtained in the previous interval.
The only difference, as I introduced before, is due to the fact that in the prin-
cipal diagonal the highest profit is given by (PI, PI) for k < ko and by (0,0)

13 Considerations of goodwill, reputations and so on can be used as refinement to select
between the two possible Nash equilibria.

MDifferences among the three subintervals are negligible and I prefer not to burden the
analysis with too many subcases.
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otherwise. In the interval 0 < k < ks, as a consequence, the NE in dominant
strategies (TC, TC) never yields the highest profit and the game shows a Pris-
oner’s Dilemma. Again, as k increases (ks < k < k3), there is a Chicken Game
with two asymmetric NE. For higher levels of & (k > ks3), finally, there is a
NE in dominant strategies where firms do not invest at all. The NE (0,0) is
always Pareto optimal in the interval ¢; < t < tg, (where k3 > ko , and then
k > ks implies that k& > k) and in tg < t < tg, for k > ks > ks. However, in
te <t < t2, when k3 < k < kg the NE (0, 0) is Pareto dominated by (PI, PI)
and this constitutes another Prisoner’s Dilemma.

e Let me consider the interval to < t < t4. Firm ¢ (j)’ best response is:

- invest in PI for k < k4, do not invest at all otherwise, when the rival
does not invest in R&D (see 36);

- invest in TC for k < k5, do not invest at all otherwise, when the rival
invests in TC (see 42);

- invest in TC for k < k7, do not invest at all otherwise, when the rival
invests in PI (see 49).

Moreover, along the principal diagonal the highest profit is given by (PI, PI)
for k < ke and by (0,0) otherwise (see 29).

The comparison of the threshold values of k leads to the determination of
two subintervals (see Appendix 1.C):

t2<t<t7,where ks < ky < kg < ko

ty <t <tyg, where k; < ks < ky < ko (58)

In this case it is necessary to examine both subintervals, because they lead
to different Nash equilibria:

0<k<ks= oneNE, (TC, TC)
ks < k < kr = no NE
kr < k < kg two NE, (PI, 0) and (0, PI) ~’
ks <k = one NE, (0, 0)

ty <t <ty (59)

0<k<k; = oneNE, (TC, TC)
kr < k < ks = three NE, (TC, TC), (PI, 0) and (0, PI)
ks < k < ky two NE, (PL, 0) and (0, PI) :
ks < k = one NE, (0, 0)

ty <t <ty

(60)

In the two subintervals it is worth to notice what happens for intermediate
values of k: the first subinterval (for ks < k < k7) shows no NE, while the
second one (for k; < k < k) is characterized by the presence of three NE . As
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before, for low levels of k '° the game is a Prisoner’s Dilemma, because (TC,
TC) is Pareto dominated by (PI, PI). Notice that in this case (7'C, TC) is not
an equilibrium in dominant strategies; the best reply for firm ¢ (j), when the
rival does not invest, consists in an investment in PI. For higher values of k!¢,
furthermore, there are two asymmetric NE in which only one firm invests in
PI while the other does not invest. Hence I get another Chicken Game, even
if it is different from the one found in the previous interval. Here, in fact, the
firm which undertakes R&D devotes resources to PI instead of TC and she ends
up obtaining always a lower profit of the rival, as it can be easily checked by
comparing 12 with 13. In fact, the firm which finances a product-differentiating
R&D project creates positive externalities for the rival, which may decide not to
invest at all, thus gaining from the degree of product differentiation introduced
in the market, without bearing any additional cost. The R&D activity is in fact
quite expensive in the interval of k considered and the presence of one firm in
the market which adopts yet a product innovation is sufficient to discourage the
other from pursuing any kind of R&D project.

Finally, for very high values of k (k > k4), neither firm ¢ nor firm j invests in
R&D and the resulting NE in dominant strategies (0,0) turns out to be Pareto
dominant only for &k > ko > k4, while it generates a Prisoner’s Dilemma for
ks < k < ko'7. This result holds in both the subintervals considered.

e Let me now pass to the interval t4 < t < t3. Firm ¢ (j) best response is:

- invest in PI for k < k4, do not invest at all otherwise, when the rival
does not invest in R&D (see 36);

- invest in TC for k < ks, do not invest at all otherwise, when the rival
invests in TC (see 42);

- invest in PI for k < kg, do not invest at all otherwise, when the rival
invests in PI (see 50).

Again, along the principal diagonal the highest profit is given by (PI, PI)
for k < ko and by (0,0) otherwise (see 29).

The comparison of the threshold levels of k leads to the determination of
two subintervals (see Appendix 1.C for details):

ty <t<tg, where kg < ks < kg < ko (61)
t8<t<t3,where ks < kg < kg < ko
As before, I have to examine both subintervals separately, because they lead

to different Nash equilibria:

150 < k < ks for the first subinterval and 0 < k < k7 for the second one.
16k, < k < kg4 in the first subinterval, ks < k < k4 in the second one.
ITTn the interval kg < k < kg, in fact, the NE (0,0) is Pareto dominated by (PI,PI).
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0< k< kg => two NE, (TC, TC) and (PI, PI)
ks < k < ks = three NE, (TC, TC), (PI, 0) and (0, PI)

fa<t<ts ks < k < kg = two NE, (PL 0) and (0, PI) ’
k4 < k= one NE, (0, 0)
(62)
0 < k < ks = two NE, (TC, TC) and (PI, PI)
ety ks < k < ks — one NE, (PL, PI) )

ks < k < ky = two NE, (PI, 0) and (0, PI)
ks < k= one NE, (0, 0)

The distinguishing characteristic of these two subintervals is the appearance
of Nash equilibria in which both firms invest in PI and this happens for low
values of k (k < kg). For all k < kg in the first subinterval and k < k5 in the
second one, there is a Coordination Game with two NE, (TC, TC) and (PI,
PI), along the principal diagonal'®. It is important to notice that (TC, TC) is
Pareto dominated by (PI, PI). There is indeed a region in the second subinterval
(ks < k < kg) in which (PI, PI) is the only Nash equilibrium. This confirms
one of the intuition of the model: the higher the value of ¢, the more willing are
firms to invest in PI, as shown before. For higher values of k'Y, furthermore,
the situation is in practise the same as before; there are two asymmetric NE,
where only one firm invests in PI and the other does not invest, thus giving rise
to a Chicken Game. Finally, for very high values of k (k > k), the game shows
a NE in dominant strategies where firms do not invest at all. The resulting NE
(0,0) is Pareto-efficient from the firms’ standpoint for k& > ks > k4, while it
generates a Prisoner’s Dilemma for ky < k < ko.

e Finally, I consider the interval t3 < t < 1. Firm 4 (j)’ best response is:

- invest in PI for k < k4, do not invest at all otherwise, when the rival
does not invest in R&D (see 36);

- invest in PI for k < kg, do not invest at all otherwise, when the rival
invests in TC (see 43);

- invest in PI for k < kg, do not invest at all otherwise, when the rival
invests in PI (see 50).

As before, the highest profit in the principal diagonal is given by (PI, PI)
for k < kg and by (0,0) otherwise (see 29).

In Appendix 1.C it is shown that the following rank of the R&D expenditure
levels k holds for t3 <t < 1:

18 An example of a Coordination Game is given by Matrix 2.1.f in the previuos section.
Yks < k < kg in the first subinterval and kg < k < kg in the second one.
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ke < kg < kg4 < ko (64)

Depending on the value taken by k it is possible to find different Nash
equilibria:

0 < k<ks= oneNE, (PI, PI)
ty<t<1{ ks <k <ks=>twoNE, (PL, 0) and (0, PI) .  (65)
ks <k = one NE, (0,0)

For high values of ¢, then, there is a wider interval ( k& < kg) as compared
to before in which both firms maximize the aggregate profit by investing in PI,
thus giving rise to an equilibrium in dominant strategies (PI, PI) which is also
Pareto-efficient. The other results are in practise the same as in the previous
interval: for kg < k < k4 the game presents two asymmetric equilibria off the
principal diagonal where only one firm invests in PI. Moreover, there is a Nash
equilibrium in dominant strategies (0, 0) for k > k4 which is Pareto-efficient for
k > ko > k4, while it generates a Prisoner’s Dilemma for ky < k < kg. This
last case simply confirms what I suggested before: as the value of ¢ rises, firms
would prefer to invest in PI only for reasonable costs associated to such R&D
project, otherwise they would reach an higher profit by not investing at all.

4.2 Comments and remarks

In the previous parts I analysed matrix 1 of payoffs in order to determine the
subgame perfect Nash equilibria. In the formal proof, I first considered the best
responses of the firms, given the strategy chosen by the rival, and I then found
the Nash equilibria of the game. The presence of many parameters required
some simplifications: I assumed in fact that an investment in TC increased ¢ up
to 1 and I fixed the value of y. Nonetheless, I was able to discover interesting
results, due to the relationship between k, the cost of doing R&D and ¢, the
initial percentage of product which reaches the consumers. By partitioning the
admissable sets of ¢ in several intervals and by considering different levels of k,
I derived the results appearing in Proposition 1.

It is worth to notice that the game allows for both symmetric and asymmet-
ric equilibria. Let me start by considering the symmetric equilibria when both
firms invest in the same type of R&D. The aim is to give some intuitions behind
the results. As for the case where both firms invest in TC, the initial ¢ is low
and an investment in TC turns out to be very efficient. However, the investment
in TC tends to increase the competition within the market, because firms can
deliver a higher quantity of the product to the same consumers, thus lowering
the price. This consideration could be useful in explaining why the region in
which such an equilibrium is Pareto-dominant is limited to the case of a very
efficient R&D expenditure, i.e when a very low k is sufficient to increase the
quantity shipped from a very small percentage t to 1. In all the other circum-
stances, with the exception of very high levels of k, firms would yield a higher
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aggregate profit by investing in PI. This can be easily explained by the fact that
product innovation tends to weaken the competition within the market, by mak-
ing products less close. If firms could coordinate their activity, therefore, they
would prefer a simultaneous commitment to PI R&D. This is quite consistent
with the analysis of cooperative agreements made by Rosenkranz (1996), which
confirms the tendency for firms to shift the innovative activity toward product
innovation in presence of R&D coordination. Almost surprisingly, however, in
my analysis the intervals where firms simultaneously decide to invest in PI is
limited to the case of very high values of ¢ associated to low values of k. Two
explanations can be given to justify this result: first, the presence of strong
positive externalities associated to product innovation may dampen the incen-
tive of investing in such an activity, given that it creates benefits also for the
rival. The second explanation is related to the simplifications introduced in my
analysis. In fact, I assumed that an investment in T'C increases the percentage
shipped from ¢ € ]0,1] to 1, while an investment of the same amount k in PI
‘only’ brings a differentiation equal to 1/4?". Numerical simulations show that
the region where (PI, PI) is a unique Nash equilibrium increases with product
differentiation, i.e. it increases with a drop of the parameter v2!.

The last symmetric NE consists in both firms not undertaking any kind of
R&D activity. This occurs for levels of k particularly high, both for low and
for high values of ¢. It is still interesting to notice that such an equilibrium,
for k£ not excessive, is still Pareto dominated by the case in which both firms
invest in PI, while it becomes the best solution from firms’ standpoint when
R&D expenditure becomes too expensive.

Let me now examine the asymmetric equilibria which appear in the matrix.
As shown before, for intermediate levels of k the game shows a Chicken Game
and there exist two asymmetric equilibria in which only one firm invests either in
TC (for low values of ¢ ) or in PI (for higher values of t). The cases where one firm
alternatively invests in PI can be easily understood by considering the positive
externality arriving also to the firm which does not undertake R&D. This firm,
in other words, gains from the product differentiation brought about by the
other firm and it does not invest in PI, being such an activity quite expensive
in the intervals of k£ considered. A bit more difficult is the explanation of the
asymmetric cases in which only one firm invests in TC and the other does not
invest at all. In the next section I will study in detail such equilibria in a game
where the possibility of investing in PI is not available. As1 will demonstrate, for
intermediate values of the parameter k the game still show the same asymmetric
equilibria. The reason why one firm may decide not to invest in TC, when the
other does it, relies then on strategic considerations.

As it can be noticed, furthermore, there are no asymmetric equilibria in the
game where firms undertake different forms of R&D strategies. In fact, in all the

20Remember that I assumed that when only one firm invests in PI the parameter measuring
the product differentiation goes from 1 to 3/4, while when both invest in PI it goes from 1 to
1/2.

2Hn fact T analysed the same matrix but T used y; = 2/3 and 5 = 1/3, i.e. the impact of
the PI activity is equal to 1/3.
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intervals of ¢ considered, a firm would never yield an higher profit by investing in
PI when the rival does TC. An investment in PI would in fact give a very strong
advantage to a rival which adopts TC. The firm doing TC, in fact, would deliver
to the market an higher amount of a product which has become differentiated
and which could then be sold at an higher price. The only exception takes
place for very high values of ¢ (t3 < t < 1); the firm is willing to invest in PI
when the rival invests in TC (see 43). However, this does not give rise to a Nash
equilibrium, because every firm has an incentive to invest in PI, given the choice
of the other to invest in PI (see 50). Filippini and Martini (2000), as I reported
in Section 2, found asymmetric equilibria where firms adopt different innovative
activities. However, they considered a vertically differentiated duopoly with a
high quality firm and a low quality firm and this played a fundamental role in
explaining the different incentives towards the two forms of R&D.

Finally, I would like to spend some words on the role played by the marginal
cost ¢. Numerical simulations show that all threshold values of ¢ increase as
c rises. In this case the feasibility interval shrinks, thus reducing the values
for which I can analyse matrix 1. Moreover, it is necessary to take numerical
values of ¢ higher and higher to switch from one interval to the other. As
¢ increases, then, a firm can yield an higher profit by investing in transport
and communication rather than by investing in product innovation. This is
consistent with the nature of the TC innovative activity, which can be considered
as a form of process innovation activity.

5 A particular case

In the previous section I analysed a matrix which summarized a three-
strategy game in two stages. Different subgame perfect Nash equilibria have
been discovered, depending on the relation between the parameters t, & and
c. A very interesting case revealed the presence of asymmetric Nash equilibria
where only one firm invested in TC, while the other preferred not to invest at
all. This occurred for intermediate levels of &k associated with low values of t. In
this section I will investigate the nature of such equilibria by considering what
would happen if firms faced only a binary choice between undertaking TC R&D
or doing nothing. The reduced form of two stage 2-strategy game is represented
in normal form in matrix 2 below. The basic framework is the same as before,
with ¢ € ]0,1[, a =1, ¢ < 1, and so on.

firm j
0 TC
firmi |0 =7t [P 7P
D D F_— I
TC | ;| =T

Matrix 2 - the reduced form of the 2-strategy game
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From the reduced form of the game I obtain the following result:

Proposition 2 In a Cournot duopoly game, firms decide to invest in transport
and communication technology according to the cost of the RED investment
required. Depending on the level of k, therefore, it is possible to find different
subgame perfect Nash equilibria in pure strategies.

When the cost of RED k is low, the game shows a NE in dominant strategies
where both firms invest in TC. For very low levels of k such an equilibrium is
also Pareto efficient, while as k increases the game shows a Prisoner’s Dilemma,
because the aggregate payoff of firms would be mazximized by not investing at all.

For intermediate values of k, the game becomes a Chicken Game and there
exist two asymmetric equilibria in which only one firm invests in TC.

Finally, for high values of k, the game shows a NE in dominant strategies
where both firms do not invest in TC. Such an equilibrium turns out to be Pareto-
efficient from the firms’ standpoint.

Proof. I prove the above preposition by comparing the equilibrium profits
appearing in Matrix 2. Before proceeding with such a comparison, it is impor-
tant to notice that I have to take into account a different binding threshold value
of t to ensure the sustainability of the game. Remember that ¢ < 1 (case E) ,
¢ <t (case A) and t > 12+cc (cases B and D). It is easy to prove that % > c.
As a consequence, the threshold value becomes t > f = which is weaker
than the one found for Matrix 1.

Comparing equilibrium profits along the principal diagonal, from 24 T get
W;L}j < ij if k < k;. Furthermore, from 30 and 37, 7r;4(7r34) < 7P (W]B) ifk <
ks and 78 (ﬂ'jD )< wF (wf ) if k < ks. I have then to compare the threshold
values of k appearing in this context. However, from 52 I have that, in the
acceptable region of parameters, k1 < ks < k3 . It is easy to demonstrate that
such a result holds in this case too.

Depending on the value taken by k??, it is possible to find three different

types of Nash equilibria:

2c
1+¢?

0<k<ks= oneNE, (TC, TC)
ks < k < k3 = two NE, (TC, 0) and (0, TC) . (66)
ks <k = one NE, (0,0)

In the first interval considered, in fact, for firm ¢ 7' < 7P and 78 < 7%,

while for firm j 7r3-4 < 7B and 7TjD < ﬂf . As a consequence, both firms invest

in TC, but they maximize their aggregate profit only if 0 < k < ki, being
wfj < ij. On the other hand, for k; < k < k5, the game becomes a Prisoner’s
Dilemma, given that ﬂfj > ij. For ks < k < ks, I obtain that 7rg4 < 7P
(7 < wB) but 7B > 7F (7P > 7¥) and then the game shows two asymmetric

22 All the values of k are reported in Appendix 1.
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equilibria. Finally, for k > ks, 7' > 7P (7 > 7F) and 7P > 7F (xP > nF),
thus leading to an equilibrium in dominant strategies where firms do not invest
in TC R&D. This equilibrium is Pareto-efficient, because it is also satisfied
k> k.

It can be easily checked that the sequence of payoffs presented is invariant
as the value of the parameter ¢ varies within the admissable range. ®

This second model confirms then what I found in the previuos section. There
is a region of k (ks < k < k3) where the game allows for two asymmetric NE,
where only one firm invests in TC, while the other decides not to invest. Remind
that by investing in TC R&D a firm can expand her market by serving more
consumers. But for certain levels of k£ the market sustains only the presence of
one firm undertaking TC R&D. The commitment taken by one firm to invest in
TC is then sufficient to deter the rival from pursuing the same R&D strategy. It
is interesting to notice that such a commitment turns out to be credible because
of the R&D expenditure k which it requires. Suppose that firm 7 invests in TC.
Given such a choice, firm j would reach an higher profit by not investing in TC.
If firm j invested in TC as well, in fact, the quantity arriving on the market
would be so large to drop the price down to an unprofitable level.

6 Conclusions

The Information Revolution which has recently taken place deserves a par-
ticular attention, especially for the effects that it can have on industrial competi-
tion. The discussion has been focused more than in the past on firms’ strategic
decisions in the allocation of R&D resources among different projects. It is
commonly observed that firms conduct R&D either along process innovation
or along product innovation. Notwithstanding the relevance of this argument,
however, the issue of product innovation vs. process innovation has been sur-
prisingly neglected in the literature and only recently some contributions have
been addressed to this topic. This work constitutes then an attempt to analyse
the factors which direct R&D expenditure toward product innovation or toward
process innovation. In my analysis, I employed a particular kind of process in-
novation, i.e. an investment in transport and communications technologies. I
considered in fact a Cournot duopoly setting where firms simultaneously select
whether to invest in product innovation or in transport and communication.

The two forms of R&D under consideration have different effects on firm’s
profits and I tried to analyse the strategic behaviour animating firms’ compe-
tition in the market. I therefore used a two-stage three strategy game, where
firms first decide among three options (invest in PI, invest in TC or not invest
at all) and then they compete on the market by setting quantities. The analysis
revealed the presence of various subgame perfection Nash equilibria, depend-
ing on the relative efficiency of the R&D effort. Such an efficiency has been
measured by combining the values taken by the parameter ¢, which indicates
the initial percentage of the product which arrives at destination, with different
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levels of k, the cost of doing R&D. As a result, I obtained both symmetric and
asymmetric equilibria. Starting from the symmetric ones, both firms invest in
TC when such a strategy is very effective, i.e when a relatively low expenditure
k leads to a massive increase in the fraction which arrives at destination. As the
initial ¢ increases, on the other hand, firms prefer to undertake PI, introducing
in this way a certain degree of product differentiation. When the cost k becomes
prohibitive, firms decide not to invest. As for the asymmetric equilibria, only
one firm either invests in TC (for low values of ¢ ) or in PI (for higher values of
t), and this occurs for intermediate values of k. In section 5 I also analysed a
two strategy game and this gave me the opportunity to understand the nature of
the TC investment, which is something more than a kind of process innovation.

It is important to remind that the results obtained in my model are strongly
influenced by the assumptions introduced. In fact, two simplifications were
very useful but their impact on the results has to be taken into account. Firstly,
I assumed that an investment of a fixed k£ in TC is sufficient to completely
eliminate the waste of product during the freight phase, thus leading to ¢t = 1.
A first extension of my analysis should consider an increase in the percentage
t as a function of the R&D expenditure. Secondly, I fixed the values of the
parameter v measuring the product differentiation. In this case too, it should
be interesting to model such a parameter as a function of the R&D expenditure.

Furthermore, this kind of analysis can be also applied to the study of oligopolis-
tic markets with trade and R&D investments. For example, it would be interest-
ing to expand my model by considering the role of R&D investment in transport
and communication vis ¢ vis product innovation in a duopoly with trade.

Even if the extensions suggested above would definitely add more insight into
my analysis, I think that the results appearing in this paper are very interesting,
especially because they constitute an attempt to analyse a topic which has not
been widely explored.

7 Appendix 1

In Appendix 1 I will demonstrate the validity of many results appearing in
section 4. In particular, I will divide my analysis in three parts, corresponding
to the three subsections 4.1.1, 4.1.2 and 4.1.3. Calculations and simulations
will be computed by using the program Mathematica (Wolfram, 1991). A very
useful command is the plot in three dimensions of the difference between the
profits considered. The numerical value of the difference considered appears in
the vertical axis, while in the horizontal axes are reported the values of ¢ € (0,1)
and t € (0,1). This device will turn out to be particularly useful in evaluating
profits in cases where both firms invest in R&D and the parameter k& does not
have discriminatory power.

33



7.1 Appendix 1.A

Let me start with the specification of the results appearing in section 4.1.1.
It can be easily verified that:

. c(t—1)(c—2t+ct
ij< ij if K<k = ( );tQ )
and
4 .
ij< Wi,j if k<ke= 00 ) &2 00980.

t

A little more difficult is the comparison between 7rEj and 7! _j» given that
I cannot use the parameter k for discriminatory purposes. I will then use the
parameter ¢ to measure the effectiveness of the two different R&D investments,
thus ranking the above profits. To begin with, by solving the difference ij —
WZIJ- = 0 w.r.t the parameter ¢, I find that ij > 7r{7j for t1, <t < t1; and

ﬂfj < 7'('1-ij for t < ty, and for ¢t > ty;, where:

%c[GO(c—l)—??]'t 2%0[60(1—0)—72]
25¢2 —50c 11 ° 7 7252 _50c 11

1%

tla

However, I have to take into account the feasibility restraint ¢ > = 5/4_‘%%

and simple algebra allows me to show that t{, < < t1;. As a consequence
given that I am interested only in the region where f < t < 1, 7¥ G > ! ; for

t<t<tyandnl i< i J for t1p < t < 1, thus verifying the results of formula
26, where I use t1 = t1; to simplify the notation. The same threshold value of ¢
allows for the comparison between k; and ko (see 27), which are the values of k

which discriminate between 7rA and 7r ; and between 7rA and 7! ; respectively.

7.2 Appendix 1.B
e Profits for i (j) when j (i) does not invest at all:

By simple calculations I get:

4e (t—1) (e —1)
9t ’

mi(m) <wP () if k <ks=

0037 2 0.074c
t

724(79‘)<7TiG( O if k<ky=
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As for the comparison between 7P (7%) with 7 (x%), by solving the dif-

ference 7 — 7§ = 0 (7 — 7§ = 0) w.r.t the parameter ¢, I get that 7 >
7rZ-G (Wf > 7rj0) for to, <t < top and viceversa for t < ty, and for t > top,

where:

3¢[12¢ — 14 —13.86 (¢ —1)]
12¢2 — 12¢ — 11 ’

2c[12c — 14+ 13.86 (c — 1)]
12¢2 — 12¢ — 11

1%

~

top =

t2a

However, by considering the restraint ¢ > ¢ = 5/4_5%, it is easy to find

that o, < t < top. As a consequence, by focusing on the area in which £ < ¢t < 1
and given that t; < to (see 34), the results of 32 hold and I can simplify the
notation by to = top. As before, the same threshold value of ¢ allows for the
comparison between ks and ky.

e Profits for i (j) when j (i) invests in TC:

as for 7B (ﬂ'jD) vs. mF (Wf) and 75 (ﬂ'JD) vs. 7l (Wf), it is easy to find
that:
) de(1—-1)(t—c
7TZ-B(7I'JD) < 7F (Wf) if k<ks= %,
0.1+0.2t
P (rP) <l (xl) if k<kg=0.02 (1 + %) —0.06¢ (1 +¢) — (j—Q)CQ.

As for the comparison between 7% (Wf) with ¥ (Wf ), by solving the dif-
P -7l =0 (7 — 7} = 0) w.r.t the parameter ¢, one obtains that
Tf > 7T'ZHJ (ﬂf > Wf) for t3, < t < tg, and viceversa for t < t3, and for
t > t3p, where:

ference

£¢[—11520 — 6912¢ 4 10560 (c — 1)]
1729¢2 — 10370c — 575 ’

£¢[-11520 — 6912¢ — 10560 (¢ — 1)]
1729¢2 — 10370c — 575

1%

t3a

1%

t3p

Taking into account the feasibility condition ¢ >t = it is easy to

2¢c
@ 5/4+ 3/4c’
find that t3, <t < t3p. It is then proved the result of 39, where I use t3 = tg.
The same threshold value of t allows for the comparison between k5 and kg.

e Profits for ¢ (j) when j (i) invests in PIL:

by comparing 7§ (7$) vs. «f (zl) and 7§ (n§) vs. 7] (7]) I get:
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7 (n§) <wf (wi)if k<kr=042c (T) +0.34¢” — WCQ

0.056
— —¢C.

2
(.G Lo Iy - o~ ¢
m (m5) < mj (m5) if k:<k:g—0.027<1+t—2> "

As for 7f (w8} vs. w{(n}), by adopting the same method as before I obtain
that Wf > 7r{ (7er > 7rJI- ) for t4, < t < t4, while the opposite holds for t < t4,
and t > t4, where:

1c[192¢ — 362 + 352 (¢ — 1)
256¢2 — 320c — 21 ’

1c[192¢ — 362 — 352 (c — 1)
256¢2 — 320c — 21

1%

t4a

1%

tap

Taking into account the feasibility condition ¢ >t = ﬁ, it is easy to

find that t4, <t < t4 and this proves formula 46, in which t4 = t4. The same
threshold value of ¢ allows to compare kr vs. ks, as it appears in 47.

7.3 Appendix 1.C

In this appendix I will prove the main result appearing in section 4.1.3 by
following the same order in which the intervals of ¢ are divided. To simplify the
notations I will not report all the exact values of the parameters considered,
which are nonetheless available in Mathematica files.

e t<t <ty

in this interval I have to compare k1, k3, ks and k7. It is easy to show that
k3 > ky, k3 > ks and kg > ky for ¢ € (0,1) and t € (0,1). Moreover, ks > ky for
t >ty = z?fc but such a result can be extended to the all interval of validity,
given that 7 > t¢?3. In the admissable region of parameters, then, it is always

confirmed that:

ks > ki, k3 > ks, ks > kr and ks > k; (67)

As a consequence, I get that ky < ks < k3 and ky > ks, thus verifying the
result appearing in 52 and 53.

2: - - . i - .
23] am in fact only interested in values of t grater than T to ensure the existence of the
matrix under considaration.
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Lastly, ks > k7 for t7, < t < tgp, while the opposite holds outside the
interval. Feasibility restraints limit my analysis to values for which ¢ >  and,
being t7, > t, I have that:

ks > k7 Zf trg < T <trp; k7 > ks Zf < t<trgandty <t<l. (68)

Furthermore, t7, > t; and this implies that in the interval of ¢ under con-
sideration it is always verified that k7 > k5 . In other words,

kr > ks int<t<ty (69)

The result appearing in 54 is then easily verified by combining 67 with 69.

ot <t<ty:

in this interval I have to compare ks, k7, ks and ko. From 67 I know that
ks > k5 and k3 > k7. Moreover, combining 68 with the fact that t7, > to,

k7 > ks inty <t<ts. (70)
As for ko, it is always verified that, in the admissable region of parameters,
ko > ks (71)

Let me consider now k2 vs. k7: simple algebra shows that ko > k7 for ¢t < t5,
and t > t55. The opposite holds for t5, < t < t5,. However, by considering the
feasibility condition t > % = 5/4_3%, I_get tsq <t < tsp and this implies that
ko > k¢ for t > t5 and ky < k7 for t < t < t5, where t5 = t55. As for the
position of t5, I found that t; < t5 < t3 and then:

/{?2<k7ift1<t<t5 and /{?2>k57ift5<t<t2 (72)

I have now to compare ko with k3: the first step is to find the threshold
values of t. I obtain that ko > kg for t < tg, and t > tg, while the opposite
holds for tg, < t < tey. Furthermore, tg, < t < tg and this implies that
ko > ks for t > tg and ky < k3 for t < t < tg, where tg = tg,. By considering
the interval under study, it is also easy to find that t; < tg < t2 and then:

ko <ksifti<t<tg and ky > ks iftg <t <ts (73)

Finally, 5 < tg and I can combine 67, 71, 72, 73 to obtain the result appear-
ing in 56.
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o 1o <t <ty

in this interval the threshold values of k£ which enter in the analysis are ks,
k4, ks and k7. From 71 I know that ks > ks5; moreover, in the admissable region
of parameters, it is always verified that ko > k4 and k4 > k5. This yields to the
following result:

k’5 < k’4 < kg (74)

As for ko vs. k7, given that ko > k7 for t > t5, such a result is valid within
the interval considered, because the values of ¢t are always greater then t52¢. In
other words:

ko > ky in ty <t <ty (75)

The most difficult part is represented by the evaluation of k5 vs. k7 and ky
vs. kr. As far as k5 vs. k; is concerned, from 68 I know that ks > kr for tr,
< t < t7, while the opposite holds outside the interval found. Furthermore,
Tt <ty < tr, <ty <ty and this implies that:

ks <k7 inty <t<trandk; <ksint; <t <ty, (76)

where t7 = t7,. Let me now consider k4 vs. k7: simple algebra shows that
ks > ky for t < t1g9, and t > t10b, while k4 < k7 for t10, < t < t1gp. By taking
into account the feasibility condition I get ti0, < t < tiop and then ks > kr
only for t > t195. However, by comparing the values of ¢ appearing in this part I
obtain that t195 < t9 < t4, and then in the interval under consideration ¢ > t1gp,
leading to:

ky>kr inty <t <ty (77)
By combining the results appearing in 74, 75,76 and 77 it is immediate to
demostrate the validity of 58.

o 1o <t <ty

I have to analyse the relation among ks, k4, k5 and kg. In 74 I found that
ks < k4 < ko. I need only to find the relative position of kg. In the admissable
region of parameters it is possible to show that:

kg < ko and kg < k4. (78)

241y fact, ko < k7 for T < t < ts, as it was demostrated above, but I am studying the
interval tg < t < t4, with tg > t5 and then ko > k7.
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The only difficulty is given by the evaluation of k5 vs. kg. By using the same
method as before, I find that kg > ks for t < tg, and t > tgp, while k5 > kg for
tgq <t < tgp. The feasibility conditions lead to tg, < < tg, and then kg > ks
only for t > tgp, while ks > kg for ¢ < t < tg. Furthermore, the comparison of
the threshold values of t shows that t4 < tg < t3, with tg = tg; to simplify the
notation. As a consequence:

ks > ks inty <t<tg and kg > ks intg <t <ts. (79)

By combining the results appearing in 74, 78 and 79 it is then possible to
easily verify 61.

e tg<t<l:

in this last interval I compare k2, k4, kg and ks. From 74 and 78 it is
immediate to get kg < k4 < k2. I need only to find the relative position of kg.
In the admissable region of parameters it is possible to show that:

kg < ko and ke < k4. (80)

As for kg vs. kg, it is easy to obtain that kg > kg for t < t11, and t > t11, and
viceversa. However, t < t114 < t11p, which implies kg > kg only for £ < t < t114
and for ¢ > t115. The opposite holds in the interval t11, < t < t115, Where kg
> kg. Furthermore, the comparison of the threshold values of ¢ shows that tq1,
< t11p < ts, and given that I am studying an interval where t > t3, then ¢ > t11;
. As a consequence:

ks > kg intg <t<1 (81)

The result appearing in 64 is then confirmed by combining 74, 78, 80 and
81.

39



References

1]

[13]

[14]

Abernathy, W. J. and J.M. Utterback (1982), Patterns of Industrial In-
novation, in: M. L. Tushman and W. L. Moore, eds., Readings in the
Management of Innovation, Boston: Pitman, 97-108.

Albach, H. (1994), Culture and Technical Innovation: a Cross-Cultural
Analysis and Policy Recommendations, Research Report 9, The Academy
of Sciences and Technology in Berlin, Berlin, New York: Walter de Gruyter.

Battaggion, M.R., Tedeschi, P. (1998), Innovation and Vertical Differenti-
ation, Working Paper n. 75, Universita degli Studi di Padova, Padova.

Bester, H. and E. Petrakis (1993), The incentives for cost reduction in a
differentiated industry, International Journal of Industrial Organization,
11, 519-534.

Bonanno, G. and B. Haworth (1998), Intensity of Competition and the
Choice between Product and Process innovation, International Journal of
Industrial Organization, 16, 495-510.

Brander, J. and B. Spencer (1983), Strategic commitment with R&D: the
symmetric case. Bell Journal of Economics, 14, 225-235.

Brander, J. and P.R. Krugman (1983), A “Reciprocal Dumping” Model of
International Trade, Journal of International Economics, 15, 313-321.

De Bondt R. (1997), Spillovers and Innovative Activity, International Jour-
nal of Industrial Organization, 15, 1-29.

Delbono, F. and V. Denicold (1990), R&D investment in a symmetric and
homogeneous oligopoly, International Journal of Industrial Organization,

8, 297-313.

Dixit, A. K. (1979), A model of duopoly suggesting a theory of entry bar-
riers. Bell Journal of Economics, 10, 20-32.

Dixon, H.D. (1985), Strategic investment in a competitive industry. Journal
of Industrial Economics, 33, 205-212.

Dos Santos Ferreira, R. and J.F. Thisse (1996), Horizontal and vertical
differentiation: The Launhardt model. International Journal of Industrial
Organization, 14, 485-506.

Eswaran M. and N. Gallini (1996), Patent policy and the direction of tech-
nological change (1996), RAND Journal of Economics, 4, 722-746.

Filippini, L. and G. Martini (2000), Vertical Differentiation and Innovation
Adoption, Quaderno n. 28, ISTECIL, Universita Cattolica di Milano.

40



[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

Gabszewicz, J.J. and J.F. Thisse (1986), On the nature of competition with
differentiated product. Economic Journal, 96, 160-172.

Helpman, E. and P. R. Krugman (1985), Market Structures and Foreign
Trade. Cambridge, MA, MIT Press.

Hotelling, H. (1929), Stability in competition. Economic Journal, 39, 41-57.

Klepper, S. (1996), Entry, Exit and Innovation over the Product Life Cycle,
American Economic Review, 86, 562-583.

Krugman P. R. (1990), Rethinking International Trade. Cambridge, MA,
MIT Press.

Krugman P. R. (1991), Increasing returns and economic geography, Journal

of Political Economy, 99, 483-499.

Krugman P. R. and A. Venables (1990), Integration and the competitive-
ness of peripheral industry, CEPR, Discussion Paper 363.

Lambertini, L., Mantovani A. and G. Rossini (2001), R&D in transport and
communication in a Cournot duopoly, Quaderni - Working Papers DSE n.
401, Universita degli Studi di Bologna.

Lambertini, L. and R. Orsini (2000), Process and product innovation in a
vertically differentiated monopoly, Economic Letters, 68, 333-37.

Lambertini, L. and G. Rossini (1998), Product homogeneity as a prisoner’s
dilemma in a duopoly with R&D. Economic Letters, 58, 297-301.

Lancaster, K. J. (1979), Variety, Equity and Efficiency, New York:
Columbia University Press.

Launhardt, W. (1985), Mathematische Begriindung der Volkswirtschaftsle-
here. B.G. Teubner, Leipzig.

Launhardt, W. (1993), Principles of mathematical economics. Edward El-
gar, Gloucester.

Mansfield, E. (1988), Industrial R&D in Japan and the United States: A
Comparative Study, American Economic Review, 78, 223-228.

Martin, P. and C.A. Rogers (1995), Industrial location and public infras-
tructure, Journal of International Economics, 39, 335-351.

Mussa, M. and S, Rosen (1978), Monopoly and Product Quality, Journal
of Economic Theory, 18, 301-317.

Reinganum, J. (1989) The timing of innovation: research, development and
diffusion, in: Schmalensee, R. and R. Willig, eds., Handbook of Industrial
Organization, Vol. I, North-Holland, Amsterdam.

41



[32] Rosenkranz, S. (1996), Simultaneous Choice of Process and Product Inno-
vation, CEPR Discussion Paper n. 1321.

[33] Samuelson, P. (1954), The transfer problem and transport costs, II: Anal-
ysis of effects of trade impediments, Economic Journal, 64, 264-289.

[34] Shapiro, C. and H. R. Varian (1999), Information Rules. A Strategic Guide
to the Network Economy. Harward Business School Press - Boston, Mas-
sachusetts.

[35] Singh, N. and Vives, X. (1984), Price and quantity competition in a differ-
entiated duopoly, RAND Journal of Economics, 15, 564-54.

[36] Wolfram S. (1991), Mathematica: A System for Doing Mathematics by
Computer, 2nd ed., Addison-Wesley, MA.

42



