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Abstract

We analyse R&D activity in transport and communication technology (TCRD)
in a differential game where firms compete, alternatively, in quantities or prices.
Transport and communication costs are of the iceberg type. Firms invest in
TCRD to increase the net amount of the product that reaches consumers. We
derive subgame perfect equilibria, and show that price competition yields the
socially optimal investment, while Cournot competition involves excess invest-
ment and lower outputs.
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1 Introduction

Transport and communication technologies (TC) have always represented a relevant
feature in the literature on trade (see Helpman and Krugman, 1985, inter alia). How-
ever, most of the works in this field tend to consider the transportation plan and its
related technology as fixed characteristics. Even if firms devote substantial amounts
on research and development (R&D), only process innovation and product innova-
tion have been widely explored. The activity of product innovation consists in the
development of technologies for producing new products or for increasing the quality
of the existing ones. On the other hand, process innovation aims at decreasing the
costs of producing existing products. Literature has considered the different degree of
efficiency of process innovating R&D between the Cournot and the Bertrand setting.
An established result states that there is an excess of process-innovating R&D under
Cournot competition, while the opposite holds under Bertrand competition (Brander
and Spencer, 1983; Dixon, 1985).

A more comprehensive analysis requires then the study of R&D activities that
allows firms to reach markets in a more efficient way and be more competitive in
serving their customers. Launhardt (1885), whose contribution has been recently
acknowledged, proposed a simple spatial duopoly model with both horizontal and
vertical product differentiation. Furthermore, he paid attention to the influence of
differences in transportation costs. He thus recognized the possibility of different
form of heterogeneity among firms, associated either to location or to transportation
technology. Recently Thisse and Dos Santos Ferreira (1996) expanded Launhardt
model by allowing firms to choose their transportation cost technologies.

So far, however, the topic of strategic investment to reduce the burden of T'C costs



has been rather neglected. In this paper we will then consider investments in R&D
that concern mainly transport and communication needed to let the product reach
the final buyer. The related R&D may be figured out as an expenditure that is going
to improve the technology of the last stage of the production process (investment
in the Internet, in advanced logistics, or in faster transport technology). We define
this sort of activity transport and communication R&D (TCRD). Transport and
communication costs are assumed to be of the ‘iceberg’ form invented by Samuelson
(1954) and widely used in trade theory (Helpman and Krugman, 1985; Krugman,
1990). When a quantity ¢; of product ¢ is produced, yet only a portion ¢;/s;, s; > 1
of the product reaches the consumer. By investing in communication and transport
specific R&D, a firm may increase such a portion thus enlarging its market share.

Lambertini, Mantovani and Rossini (2001) analyse R&D activity in transport
and communication technology (TCRD), in a static Cournot duopoly. They find
that a variety of equilibria may appear as a result of the different levels of TCRD
efficiency. If the analysis is extended to a continuous choice space equilibria exist
only if production costs are low vis & vis market size and transport costs. Finally,
Lambertini and Rossini (2001) investigate the role of TCRD in a Cournot duopoly
with trade.

The aim of this paper is to extend the previous model to a dynamic setting.
We propose a differential game where firms invest to increase the percentage of the
product that arrives at destination. Most of the applications of differential games can
be found in different fields of industrial organization.! Yet, as to our knowledge, the

problem of TCRD investments has never been considered in such a framework.

'See Mehlmann (1988), Dockner et al. (2000) and Cellini and Lambertini (2003) for an exhastive

survey on the topic.



We present a dynamic model of oligopoly with differentiated products, where firms
compete in the market and invest in TCRD. It is assumed, alternatively, that the two
firms behave as quantity-setters or price-setters, hence both Cournot and Bertrand
competition will be examined. Moreover, we will consider both open-loop and closed
loop Nash equilibria, with a closer attention to closed loop ones. Finally, we will
compare the solutions appearing in the previous cases with the social optimum and
proceed with a welfare appraisal. This will allow us to draw some conclusions on the
efficiency of Bertrand and Cournot oligopolies.

The paper is organized as follows. The basic model is laid out in Section 2.
Section 3 considers Bertrand competition while Section 4 deals with the Cournot
setting. Section 5 deals with the social optimum and the welfare appraisal. Section

6 gives the conclusion.

2 The model

We employ a quadratic utility function for a representative consumer as in Bowley

(1924), Dixit (1979) and Singh and Vives (1984):

U (1) = 4G (1) + AGy (1) — 3 [@ (1 + 233 (0 (1) + G (1)) (1

whose maximization under the budget constraint Y'(¢) > > p; (t) G (), i = {1,2}

where Y'(¢) is nominal income, yields demand functions:
pit) = A= q(t) —~g;(t) Vi#j, i, j={1,2} (2)

where v € [0, 1] stands for the symmetric degree of substitutability between the two
g (1)
S; (t

represents the share of firm 4’s good that is available for consumption at price p;(t),

goods and A is the market-size, both supposed to be constant over time; ()

S~
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Le, 1 —1/s;(t), with s;(t) > 1 Vt € [0,00), indicates the fraction of firm i’s good
that is lost during the transportation phase (see Samuelson, 1954).

The direct demand functions can be obtained by solving (2) for ¢;(t):

si(t) [A(y = 1) +pi(t) —vp,(1)]
7?1

qi(t) =

(3)

We analyse a duopoly where two firms compete in both a Cournot and a Bertrand
setting. We make the assumption that production entails constant marginal costs,

normalized to zero for the sake of simplicity. Instantaneous profits are then given by:

m(t) = L) = B (0P (W

where k;(t) represents the amount of effort made by firm 7 at time ¢ in order to reduce
s; (t) and parameter 3 is an inverse measure of TCRD productivity. By reducing
s; (t) through capital accumulation over time, firm ¢ increases the fraction of ¢;(f)
that reaches the market. We assume that s; (t) evolves over time according to the

following kinematic equation:

Ds4(1)
5 = k(1) = 0s,(D] [1 = s,(1)] (5)

where ¢ denotes the depreciation rate, which is common to both firms and constant
over time; « is a time-invariant parameter positively affecting the accumulation pro-
cess. It is worth noting that (5) accounts for the fact that s; (f) has to be always
greater than unity for our model to be meaningful: when s; () = 1 what is produced
corresponds to what is offered, and capital accumulation stops, otherwise an increase
in the capital stock yields a decrease in s;(t) as long as k;(t) > gsi(t).

We assume that the two firms behave alternatively as either price or quantity

setters. Each firm 7 aims at maximizing the discounted profit flow:
I;(t) = / mi(t) e Pt (6)
0
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w.r.t. controls k;(t) and the market variable, either p;(f) or ¢;(¢), under the constraint
given by the state dynamics (5). The discount rate p > 0 is assumed to be constant
and common to both firms. The corresponding current value Hamiltonian function
is:

H(t) = e (1) + M) (6) + Ay (0)5 (0] @
where \ii(t) = p;(t)e?* and N (t) = p;;(t)e”, p; (1) being the co-state variable asso-
clated to s;(t).

For future reference, we also define consumer surplus CS(t) = U(t)=>_, p; (t) ¢;(%).
Under the symmetry assumption ¢ (t) = q; (t) = ¢(t) = g(t), consumer surplus
writes as:

q(t)

OS5 (1) = (0P [1 1) = [@] 14] ®)

Disregarding the issue of surplus distribution among agents, we can define social
welfare as SW(t) = 2n(t) + CS(t), with 7 (t) = q(t){(As(t) — q(t)[1 +~]}/[s(t)]*:
T TUB F10N &
SW () = 247(0) = 707 (1+) = 2455 - [ 208 4] )

Note that the above welfare function is decreasing in s (¢).

3 Bertrand competition

Let us move from the case of firms competing in prices. By substituting (3) in (6) we

get the relevant objective function for firm i:

- [ e {| A0 s wer e (o

1—~2

Using the Hamiltonian function (7), first order conditions on controls are (we omit



the indication of time for brevity):*

oM _ A(l—7) +p

ap; =D = 2 (11)
OH; 28k
R s (12)

Note, first, that (12) does not contain \;; since the present game features separated
dynamics. Therefore, we set A;; = 0 for all ¢ € [0, 00). Secondly, (11) does not contain

s, therefore the open-loop solution and the closed-loop memoryless solution coincide.?

3.1 Degenerate Markov Perfect Nash Equilibrium

According to the closed-loop memoryless solution concept, we specify the firm 7’s

co-state equation as follows:

_%Hi = N (ak; + 0 — 20s;) = Mii = PAii (13)
S

along with the transversality and initial conditions:

lim y;s; =0, s(0) > 1. (14)

t— o0

Now, by using (12), (11) and the co-state equation (13), we write:
The steady state equilibrium requires {/@ =0,8 = 0}, yielding:*

5 5
ks = L0 oy, sfsz%>1 (16)
(@7

2Second order conditions are always met throughout the paper. They are omitted for brevity.

3There exist several classes of games where open-loop and closed-loop solutions coincide. For

exhaustive expositions, see Mehlmann (1988, ch. 4) and Dockner et al. (2000, ch. 7), inter alia.

S

4There also exists another steady state, given by ki® =0, Sf = 1, which is not taken into

account since if s; = 1, of course, no TCRD is undertaken. Such equilibrium is also unstable.
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Proposition 1 The steady state defined by {k{*, s7°} is a saddle point.

Proof. See the Appendix. W
We are interested in the dynamics of the system (15) (5) in the {k;,s;} space

which can be represented in Figure 1:

s; |
ds; _0
.._T dt
-
%5 dk
14 L i T

Figure 1 : Phase Diagram

>From the above phase diagram it can be easily seen that the equilibrium is a
saddle, and it can be approached along the north-est arm of the path. It is worth
noting that if s;(0) >> pT—I-57 then the system never converges to the equilibrium,
the reason being that the effort required to increase the share of the good arriving at

destination is too costly.

As to the comparative statics of the steady state w.r.t. all involved parameters,

Ds5® Ds5®
we have the following properties: 81 > 0 and 83 < 0. First, when the rate of
P

time preference p increases, firms invest more at the steady state level but a lower
fraction arrives at destination. Firms are impatient to deliver a higher fraction and

spend substantial amounts on TCRD without waiting for the beneficial effect coming



from the accumulation dynamics. As to §, at the steady state a higher depreciation
rate increases the level of capital and consequently the fraction of output that reaches

the market. To verify the intuition behind this, observe that:

88@ . 881‘ 81@
96 — Ok, 00
where:
881‘ 81@
%, < 0 and 55 > 0.

4 Cournot Competition

The relevant objective function for firm ¢ in case of quantity competition is:

Y R N R N B
Hi—/o GP{Si [A . 78'] 5[/@]}@5 (17)

J

Using the Hamiltonian function (7), first order conditions on controls are:

oM, 28k
o 0=\ = Py (19)

Note that, first, (19) is equivalent to (12), so it does not contain A (we set
Aij = 0 for all ¢ € [0,00)). However, (18) contains s;, i.e., the state variable of the
rival, meaning that the open-loop solution and the closed-loop memoryless solution

does not coincide anymore. As a consequence, we deal with the two solution concepts.

4.1 Open-Loop Nash Equilibrium

Under the open-loop solution concept, we can specify the firm i’s co-state equation

as follows:



OH: _ 2¢7 | qi(vg; — As; \
UL %+%_M (ki + 0= 205,) = A — A (20)
i i ()

along with the transversality and initial conditions:
tlgilo wisi =0, s,(0) > 1. (21)
Now, by using (19), (18) and the co-state equation (20), we write:
ki = ki (p+ 6 — 0s;) (22)

The steady state equilibrium requires {/@ =05 = 0}, yielding:

por = LH0 o _pH0 (23)

It is straightforward to see that (23) are the same as (16), albeit it may be quickly
checked that equilibrium profits are different. Nonetheless, such a comparison has a
limited interest in that it involves open loop solutions, which are only weakly time

consistent.

4.2 Closed-Loop Nash Equilibrium

In order to perform a meaningful comparison between market regimes, we need to
solve the game in closed-loop, taking into account the feed-back between player i’s
strategy and player j’s state variable. This will lead to an equilibrium characterized
by subgame perfection.

We specity the firm i’s co-state equation:
OH, OH,;0q; :
_ TN g A, — oAy 924
881‘ 8qj 881‘ v pAii ( >
with

2
)

2 ; — As. ‘ N
¢ = q3 +W—M (ak; + 0 — 2ds;) — <— 7q1> <7%33>

S5 5,54 5i5j
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along with the transversality and initial conditions:

t—o0
Now, by using (19), (18) and the co-state equation (24), we write:

A (s — D a+4B8(2+9) kisi (p — s +0)

ki :
4B (2+7)" si

(26)

The steady state conditions {/@ =0, s = 0} do not yield tractable solutions.®
Therefore, we proceed as follows. We impose /@ = 0 to determine an equilibrium
relation between k; and s;:

A2 (s — D

kiCL<Si):4 5
B(247)"si(p—ds; +9)

(27)

We are now in a position to compare the optimal open-loop and closed-loop level
of R&D investments under Cournot competition. This is equivalent to compare the
closed-loop solution arising in Cournot vis a vis Bertrand’s, given that the open-loop
solution with quantities as a control variable corresponds to the closed-loop solution
with prices as a control variable.

>From a direct comparison between (23) and (27), we have:

Proposition 2 k70 > kPL = 00 < sPL. The optimal effort in TCRD is higher

under Cournot competition than under Bertrand competition.
A2 (5, — 1)

4b (24 7)%s; (p — 05, + 0)

numerator is always positive by definition, it has to be true that p — ds; +06 > 0 =

o
s < % = sPL. This amounts to saying that k't > kP, W

Proof.  kFE(s) =

> 0 to be acceptable. Since the

>We find three solutions, only one being real. Calculations are available upon request.
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This result is in line with the kind of R&D activity under consideration, which
aims at increasing the percentage of the produced good that reaches the market.
Moreover, we confirm the conventional wisdom that firms invest more when using

closed-loop decision rules than open-loop ones.

5 Social Optimum and Welfare Appraisal

The aim of this section is threefold: (i) characterizing the first best solution; (ii)
comparing the private optima with the social optimum; (iii) comparing the welfare
generated by Bertrand competition with that generated by Cournot competition. The

objective function of an hypothetical benevolent planner is:

— ooefpt q(_t)_ M i — 2
SW(t)_/O {2A8<t> L@} (14 ) — 28 [k (1) }dt (28)

to be maximized w.r.t. ¢ (¢) and k (¢) under the dynamic constraint:

Js(t)

22— Jak(t) — 8s(0)) [1 - (1) (29)

The current value Hamiltonian function writes:
HP (1) = e PLISW (t) + A(t)5(t)] (30)

First-order conditions on controls are (we omit the indication of time for brevity):

OHSP B As

dq 4 147~ (31)
OHSF 45k
% _0:>)\_—oz(1—s) (32)
OHSF 245 — 2 (1 + )]+ As? [0 (1 — 2s) + ok :
— ZQ[ q( 7)]83 [0 ( ) ]Z—p)\—l-)\ (33)

12



By differentiating (32) w.r.t. time we obtain:

. _45(k(1—s)+ks)

A a(l—s)? (34
By plugging (34), (32) and (31) into (33) and by using (29) we have:
k=ki(p+0—ds;) (35)
The steady state equilibrium requires {k =0,5s= 0}, yielding:
LSP — pP+o. $SP — p+o (36)

a )
On the basis of the steady state solutions previously obtained, we can write:
Proposition 3 Consider closed-loop memory less equilibria. Under price competi-

tion, the amount of effort in TCRD is socially optimal; under quantity competition,

the amount of effort in TCRD is socially excessive.

Now, we proceed with a comparison between market regimes in terms of equilib-

rium welfare. Steady state welfare levels, gross of investment efforts, are:

SWe = 22517 (37)
2+7)
9
SWE - g2 3" (38)

(L+7) (=2+7)"
where superscript C' and B stand for Cournot and Bertrand, respectively. Note that

the state variable does not enter the above welfare expressions, in that it cancels
out once plugged equilibrium quantities into (9). From a direct comparison between
(37) and (38) it is straightforward to conclude that SWZ > SW¢ always in the
relevant parameter range, since the quantity firms decide to produce under Bertrand

competition is always higher than the one they decide to produce under Cournot’s,

13



no matter the share of the good that reaches the market. A fortiori, taking into
account that, as we know from Proposition 2, k% > k9L the welfare performance
of the Bertrand game is superior to that of the Cournot game, net of steady state
investments.

One could ask himself whether the fact that a planner would prefer firms to be
price setters depends upon the fact that in this regime market coverage is larger. Rea-
soning for given quantities produced, meaning that production plans are independent
of market regimes, one can investigate upon the effect of TCRD investments on wel-
fare under both kinds of competition. Since (9) is decreasing in the state variable,
and provided that firms invest more in TCRD under quantity competition, it is now
true that SW¢ > SW25. Net of investment efforts, this inequality may indeed take

either sign. Hence, our final result is the following:

Proposition 4 Consider a given amount of production that must reach the final
market. The welfare generated by Cournot competition may be higher than the one

generated by Bertrand competition.

The above Proposition states that a planner willing to ask firms to produce a
given amount of substitute goods and ship it to the final market for consumption, is
not indifferent over the choice of variable, rather, he might have a strict preference
towards quantity competition. The reason of this result lies in the incentives for firms
to invest in TCRD, which are higher under Cournot than under Bertrand competition.
As a consequence, under the former, a larger mass of consumers is served and welfare

might improve.

14



6 Concluding remarks

An established result states that there is an excess of process-innovating R&D under
Cournot competition, while the opposite holds under Bertrand competition (Brander
and Spencer,1983; Dixon, 1985). In this paper we have taken a differential game
approach to investments in transport and communication technology, confirming the
acquired wisdom. Comparing the closed loop private optima with the social optimum,
we have shown that the unique distortion that arises under price competition involves
equilibrium prices, above marginal cost due to the presence of market power, while
under Cournot competition, together with the usual downward market distortion, the
amount of effort in TCRD turns out to be upward distorted. Finally, dealing with
a welfare appraisal, we have shown that a planner willing to ask firms to produce a
given amount of substitute goods and ship it to the final market for consumption,
might have a strict preference towards quantity competition. Once accounted for
different production levels, no matter the share of the good that reaches the market,

the same planner would opt for price competition.
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Appendix

Proof of Proposition 1.

We consider first the system composed by (5) in combination with the appropriate
kinematics of the control variable k;, that is, (15) The system can be written in matrix
form as follows:

54 —0+20s; —ak; —a(—14+s) 84
k; —k; (p+0—dsy) k;

Now, we evaluate the 2 X 2 matrix in the steady state:

(8%
) o
S(p+6
ot
(8%

Since the determinant of the above 2 X 2 matrix is —p (p + ) < 0, the equilibrium
we have obtained is a saddle. From the phase diagram, it is clear that this saddlepoint

equilibrium can be approached only along the north-est arm of the saddle path.
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