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Abstract

The discounted logit is widely used to estimate time preferences using data from
field and laboratory experiments. Despite its popularity, it exhibits the "problem of the
scale": choice probabilities depend on the scale of the value function. When applied to
intertemporal choice, the problem the scale implies that logit probabilities are sensitive
to the temporal distance between the choice and the outcomes. This is a failure of an
intuitive requirement of stationarity although future values are discounted geometri-
cally. As a consequence, patterns of choice following from the structure of the logit
may be attributed to non-stationary discounting. We solve this problem introducing
the discounted Luce rule. It retains the flexibility and simplicity of the logit while it
satisfies stationarity. We characterize the model in two settings: dated outcomes and
consumption streams. Relaxations of stationarity give observable restrictions charac-
terizing hyperbolic and quasi-hyperbolic discounting. Lastly, we discuss an extension
of the model to recursive stochastic choices with the present bias.
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1 Introduction

The discounted multinomial logit (DML) is the most common model of probabilistic

choice among those used in the estimation of time preference (e.g. Chabris et al.,

2008; Louie and Glimcher, 2010; Tanaka et al., 2010). Despite its popularity, the

DML may be inappropriate to study intertemporal choice due to the "problem of the

scale": choice probabilities depend on the scale of the value function (Fosgerau and

Bierlaire, 2009). Consider the probability of choosing now an outcome x at time t

over an alternative y at time s.1 Should this probability remain unchanged when

both rewards are equally delayed? A positive answer is motivated by an intuitive

form of stationarity borrowed from deterministic choice (Fishburn and Rubinstein,

1982): choice probabilities should be independent of the temporal distance between

the choice and the dates of the rewards. The only quantity that matters is the relative

time distance between the rewards, i.e. |t − s|. Therefore, a stationary stochastic

choice rule should assign the same probability to the choice of (x, t) over (y, s) and

the choice of (x, t + r) over (y, s + r). Although the discounted multinomial logit

discounts future values geometrically, it fails to satisfy an even weaker version of this

intuitive form of stationarity2 (see Section 2). Choice probabilities in the discounted

multinomial logit do depend on the temporal distance between the choice and the

delivery of the rewards. As a consequence, the estimation of time preferences may be

distorted. For example, attributing to quasi-hyperbolic discounting patterns of choice

probabilities that follows from the structure of the discounted multinomial logit, rather

than violations of geometric discounting (see Section 2).

We propose a new model, the discounted Luce rule, that solves the stationarity

problem while maintaining the flexibility and simplicity of the discounted logit. The

model is completely characterized through testable restrictions on choice probabilities.

Differently from the discounted logit, it allows a stark identification of the observational

consequences of hyperbolic and quasi-hyperbolic discounting, since they correspond to

certain violations of stationarity. We axiomatize the model in two settings: dated

rewards and consumption streams. Discrete choice over dated rewards (x, t), meaning

1According to the DML this probability is PLogit((x, t) ≥ (y, s)) = eδ
tv(x)

eδtv(x)+eδsv(y) .
2More precisely, in the discounted multinomial logit the ratio between the probability of choosing (x, t)

over (y, s) is different from the ratio between the probability of choosing (x, t+ r) over (y, s+ r).

2



a reward x delivered at time t, is interesting for two reasons: first, in this setting all

the properties characterizing the model are intuitive and easy to test. Second, choice

among dated rewards includes the Multiple Price List method (Coller and Williams,

1999), the workhorse of experimental and field studies devoted to the elicitation of

time preferences.3 In the dated reward setting, the probability of choosing (x, t) ∈ A

according to the discounted Luce rule is given by the relative discounted value of (x, t)

in A:

P ((x, t), A) = δtv(x)∑
(y,s)∈A

δsv(y)

with δ ∈ (0, 1] representing the discount factor. The model is completely characterized

by stochastic stationarity and stochastic impatience. The former implies that choice

probabilities are not sensitive to the temporal distance between the choice and the

timing of rewards. Generalizations of the previous rule accounting for quasi-hyperbolic

and hyperbolic discounting are provided through a relaxation of the stationarity axiom.

Quasi-hyperbolic discounting, for example, predicts that the probability of choosing an

immediate reward over a delayed one decreases when both rewards are equally delayed

(Section 3.1). The discounted logit may generate the same behavior while discounting

future values geometrically.

The more general setting of consumption streams, x = (x0, x1, . . . , xT ), allows us

to compare the properties characterizing the discounted Luce rule to axiomatizations

in the deterministic setting of additively separable discounted utility with geometric

(Koopmans, 1960) or quasi-hyperbolic discounting (Hayashi, 2003; Montiel Olea and

Strzalecki, 2014). In this case, the probability of choosing a consumption stream x

from a set A of alternatives is given by the relative present value of x in A:

P (x, A) =

T∑
t=0

δtv(xt)

∑
y∈A

T∑
t=0

δtv(yt)

Beyond an intuitive requirement of stationarity adapted to this setting, the main

novelty characterizing the previous rule is a property called separability: the relative

probability of choosing a consumption stream x over y in a set A is equal to the sum
3Among the others: Harrison et al. (2002) Andersen et al. (2008), Tanaka et al. (2010), Halevy (2015).
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of the relative probabilities of choosing its "components", properly defined (see Section

4). Separability is the stochastic counterpart of additive separability in deterministic

choice. Once stationarity is relaxed, we give observable conditions to characterize

quasi-hyperbolic discounting:

P (x, A) =
v(x0) + β

T∑
t=1

δtv(xt)

∑
y∈A

[
v(y0) + β

T∑
t=1

δtv(yt)
]

The properties are comparable to the ones used in deterministic choice (e.g. in Mon-

tiel Olea and Strzalecki, 2014). The restrictions characterizing stochastic choice with

quasi-hyperbolic discounting can inform applied works estimating time preferences

from field data (for example durable good adoptions, Chevalier and Goolsbee, 2009;

Dubé et al., 2014) and works estimating recursive models of stochastic choice with

quasi-hyperbolic discounting (see Section 6). These are structural econometric models

that retain the recursive dynamic structure of Rust (1987), but allow quasi-hyperbolic

discounting of the continuation value. Their behavioral characterization has not been

studied yet. Only recently, Fudenberg and Strzalecki (2015); Matêjka et al. (2015)

studied the particular case of geometric discounting and logit choice probabilities.

Therefore, our results can be helpful in understanding the implicit restrictions en-

tailed by the use of such models. In the recursive quasi-hyperbolic discounted model,

the individual stochastically selects in each period, an immediate consumption xt and

a continuation plan At+1. The value of an action at time t, at = (xt, At+1) is equal to:

Ut(xt, At+1) = v(xt) + βδ E
[

max
at+1∈At+1

Ut+1(at+1) + εat+1

]

and the choice from the menu at time t is probabilistic:

Pt(at, At) = Prob
(
Ut(at) + εat ≥ max

bt∈At
Ut(bt) + εbt

)

The individual correctly anticipates the shocks to her future utility and discounts the

continuation value quasi-hyperbolically. Non-experimental data on job search (Paser-

man, 2008), insecticide treated nets’ adoption (Tarozzi and Mahajan, 2011), drug
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compliance (An et al., 2014), mammography decisions (Fang and Wang, 2015) and

cellphone usage (Yao et al., 2012), have been used to separately identify time pref-

erences δ and the present bias factor β. The recursive Luce rule corresponds to the

previous model when the error terms are i.i.d. and distributed according to a Fréchet

(see Section 2.1). We show a simple application of the recursive Luce rule with quasi-

hyperbolic discounting to the purchase of a durable good and we study the elasticity

of demand with respect to a transitory or a permanent price shock. We also discuss

a possible extension of the model that relaxes the IIA axiom and retains the sta-

tionarity properties. Allowing the dependence of the value function on a parameter,

as in the mixed logit model, the discounted mixed Luce rule has the same station-

ary properties of the Luce rule and can accommodate realistic substitution patterns

among elements that are excluded by the IIA. Lastly, we study the elasticity and cross-

elasticity of choice probability when an element of a consumption stream varies. We

find that choice probabilities of the discounted Luce rule contain relevant information

concerning elasticities and cross-elasticities. For example, the probability of choosing

a consumption stream in a set is inversely related to the sum of the elasticities of its

components.

The paper is organized as follows: after a review of the relevant literature, Section

2 introduces the shortcoming of using the discounted multinomial logit. In Section

3 we provide an axiomatization of the discounted Luce rule when choices are over

dated outcomes. We then relax stationarity to pin down the observable restrictions

of hyperbolic and quasi-hyperbolic discounting. In Section 4 we extend the model to

consumption streams. Elasticity and cross-elasticity of choice probabilities is studied

in Section 5. Section 6 discusses an extension of the model to recursive stochastic

choice. Section 7 proposes a version of the model that relaxes the independence of

irrelevant alternatives assumption.

1.1 Related literature

In the static setting, the multinomial logit and the Luce choice rule are equivalent.

The latter has been introduced by Luce (1959). Recent works provided various foun-

dations for the static multinomial logit based on bounded rationality (Mattsson and
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Weibull, 2002), rational inattention (Matêjka and McKay, 2015) and neuroscientific

models of choice (Webb, 2015). Two recent models generalize the Luce rule to account

for violations of the IIA: Gul et al. (2014) proposed a model similar to the nested

logit, Echenique et al. (2014) included perception priorities. The axioms we introduce

in the present work can be extended to their model, since stationarity and the IIA

are not related. Concerning the dynamic setting, Fudenberg and Strzalecki (2015)

axiomatized a general version of the recursive stochastic choice model in which larger

menus may be disliked due to choice aversion. The individual stochastically chooses

at each time an action and a continuation menu. The dynamic logit, widely used

in applied works4 (Rust, 1987; Hendel and Nevo, 2006; Gowrisankaran and Rysman,

2012; Chen et al., 2013), is a particular case of their model. The aim of their paper is

different from ours since, we are interested in the effect of discount on choice proba-

bilities and we focus on "static stochastic choice" over consumption streams. They are

interested in the dynamics of stochastic choice. However, the notion of stationarity

they use is comparable to ours. We show that it is weaker and it cannot distinguish the

discounted logit from the discounted Luce rule (see Section 4). The axiomatic charac-

terization of the quasi-hyperbolic Luce rule of Theorem 3 can be used to characterize

(for example, adapting the axioms of Fudenberg and Strzalecki (2015)) a recursive

model of stochastic choice, that allows for quasi-hyperbolic discounting. Such model

is receiving an increasing attention in applied works (e.g. Paserman, 2008; Tarozzi and

Mahajan, 2011; Yao et al., 2012; An et al., 2014; Fang and Wang, 2015). The interac-

tion of discounting and stochastic choice has been understudied so far. Recently, Lu

and Saito (2016) introduced a model where stochastic choice follows uncertainty about

the discount function. They characterize geometric and quasi-hyperbolic discounting.

Concerning critiques to the multinomial logit, Fosgerau and Bierlaire (2009) proposed

a random utility model with multiplicative error that solves the scale problem. A more

general critique of the use of stochastic choice models in the study of risk aversion and

time preference comes from Apesteguia and Ballester (2015). They show that a large

class of models including the logit is not monotone with respect to parameters mea-

suring risk aversion or impatience. In other words, an increase in the risk aversion or

impatience parameter is not necessarily followed by a larger probability of selecting a
4See (Aguirregabiria and Mira, 2010) for a review.
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less risky or more impatient option. Our critique of the multinomial logit is different

since it is not related to parametric restrictions. Moreover, the model we introduce in

Section 7 belongs to the class of random parameter models proposed by Apesteguia

and Ballester (2015) as a solution to the monotonicity problem. In general, both pa-

pers highlight substantial flaws of the logit model that should be taken into account

in applied works.

2 The "problem of the scale" and its conse-
quences

Consider a multinomial logit model of choice from a general set A and two "value

functions" u and u′ with u′ = ku for some k ≥ 0, the "problem of the scale" (Fosgerau

and Bierlaire, 2009) comes from the following inequality:

P u
′

Logit(a,A) = eku(a)∑
b∈A

eku(b) 6=
eu(a)∑

b∈A
eu(b) = P uLogit(a,A)

The choice probabilities are sensitive to the scale of the value function. The problem is

particularly relevant when we consider the discounted logit. Assume that the elements

of A are dated outcomes and the individual has to choose today between a dated

outcome (x, t), meaning x delivered/payed at time t, and an alternative (y, s) and

that u((x, t)) = δtv(x). For simplicity, if A = {(x, t), (y, s)}, we write P ((x, t), A) =

P ((x, t) ≥ (y, s)). The scale problem produces the following:

PLogit((x, t) ≥ (y, s)) = eδ
tv(x)

eδsv(y) + eδtv(x)

and when both payments are delayed by r > 0 periods,

PLogit((x, t+ r) ≥ (y, s+ r)) = eδ
t+rv(x)

eδs+rv(y) + eδt+rv(x)

It is easy to see that

PLogit((x, t) ≥ (y, s)) 6= PLogit((x, t+ r) ≥ (y, s+ r))
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the probability of choosing a dated outcome changes when both elements are equally

postponed. Since delaying both outcomes by r > 0 periods is equivalent to multiplying

the value function by δr, it is a "rescaling" of the value function v, and the scale

problem implies that the probability of choosing (x, t) over (y, s) is different from the

probability of choosing (x, t + r) over (y, s + r). Therefore, choice probabilities are

affected by the temporal distance between the decision time and the outcomes, even

if it discounts future values geometrically.5 This is a violation of "stationarity" in the

sense of Fishburn and Rubinstein (1982) translated to the stochastic choice setting.

To see the consequences, assume x, y ∈ R, x ≤ y and v(x) > δsv(y) for some s > 0,

then

PLogit((x, 0) ≥ (y, s)) = ev(x)

eδsv(y) + ev(x) >
eδ
rv(x)

eδs+rv(y) + eδrv(x) = PLogit((x, r) ≥ (y, s+r))

the probability of choosing an immediate/smaller payment over a later/larger payment

decreases when both are equally postponed. This is the typical violation of stationarity

attributed to the present bias (Laibson, 1997), however, it follows from the structure

of the logit and not from the form of discounting, since future values are discounted

geometrically. The same problem occurs if one considers discounting in continuous

time. For example, Tanaka et al. (2010) estimated the parameters of the general

discount using the following logistic function,

PLogit((x, 0) ≥ (y, t)) = 1
1 + exp

(
x− yβ(1− (1− θ)kt)1/1−θ)

The discount function D(t) , β(1 − (1 − θ)kt)1/1−θ, where k is the discount rate, β

the present-bias coefficient and θ the hyperbolic coefficient, encompasses geometric,

hyperbolic and quasi-hyperbolic discounting.6 Suppose θ → 1 and β = 1, then (see

Tanaka et al., 2010), D(t) = e−kt, the standard geometric discount. It is immediate

to note that, when both (x, 0) and (y, t) are postponed by r periods, the probability:

PLogit((x, r) ≥ (y, t+r)) = 1
1 + exp (e−kr(ye−kt − x)) 6=

1
1 + exp (ye−kt − x) = PLogit((x, 0) ≥ (y, t))

5The result is true for the discounted multinomial logit. Given a set A, assume all payments in A are
postponed by r > 0 periods and define Ar = {(x, t+ r) : (x, t) ∈ A}, the probability of choosing (x, t+r) from
Ar is PLogit((x, t+ r), Ar) = eδ

t+rv(x)∑
(y,s+r)∈Ar

eδs+rv(y) and it is different from PLogit((x, t), A) = eδ
tv(x)∑

(y,s)∈A
eδsv(y) .

6For θ → 1 and β = 1, D(t) = e−kt. For θ = 2 and β = 1, D(t) = 1/(1 + kt). For θ → 1, D(t) = βe−kt.
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Again, choice probabilities are sensitive to the distance between the decision time and

the payments.

The requirement of equality between the two probabilities PLogit((x, t), A) and

PLogit((x, t + r), Ar), where Ar = {(x, t+ r) : (x, t) ∈ A}, may be excessively strong.

The previous distortion, however, occurs even if we impose a much weaker condition.

Consider the relative probability of choosing today (x, t) over (y, s), again:

PLogit((x, t), A)
PLogit((y, s), A) = eδ

tv(x)

eδsv(y) 6=
eδ
t+rv(x)

eδs+rv(y) = PLogit((x, t+ r), Ar)
PLogit((y, s+ r), Ar)

Though weaker, it is still violated by the discounted logit model. The relative proba-

bility of choosing (x, t) from A changes when all the rewards in A are equally delayed.

Consider now a present biased individual and A = {(x, 0), (y, t)}. It is plausible to

imagine that for a general discounted stochastic choice rule P :

P ((x, 0), A)
P (((y, t), A) ≥

P ((x, r), Ar)
P ((y, t+ r), Ar)

Confronted with a choice between a smaller/immediate reward and a bigger/later,

the relative probability of choosing the smaller reward is greater when the payment is

immediate, then the relative probability of choosing it when both payments are equally

delayed. However, the relative probability according to the discounted Logit is:

PLogit((x, 0), A)
PLogit((y, t), A) = ev(x)

eδtv(y)

When both payments are equally delayed, say by r periods, the ratio becomes:

PLogit((x, r), Ar)
PLogit((y, t+ r), Ar)

= eδ
rv(x)

eδt+rv(y)

but, eδ
rv(x)

eδ
t+rv(y) =

(
ev(x)

eδ
tv(y)

)δr
and v(x) ≥ δtv(y) implies the same violation attributed

to quasi-hyperbolic discounting, i.e. PLogit((x,0),A)
PLogit(((y,t),A) ≥

PLogit((x,r),Ar)
PLogit((y,t+r),Ar) . Again, the in-

equality follows from the structure of the logit model rather than the form of dis-

counting. We believe these distortions should be considered by any work using the

discounted logit to estimate time preferences, especially when using the Multiple Price

List method.
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A different consequence of the lack of stochastic stationarity concerns the asymp-

totic behavior of the discounted multinomial logit. Consider the case in which all the

payoffs in A are infinitely postponed. In that case:

lim
r→∞

PLogit((x, t+ r), Ar) = lim
r→∞

eδ
t+rv(x)∑

(y,s+r)∈Ar

eδ
s+rv(y) = 1

|A|

the discounted logit predicts that the asymptotic probability of choosing among in-

finitely delayed payoffs converges to the uniform distribution (see Fudenberg and Strza-

lecki, 2015). Asymptotic uniformity is difficult to reconcile with empirical evidence.

For example, Giglio et al. (2015) found substantial long-run discount rates (more than

100 years) exploiting the features of the housing markets in the UK and Singapore,

suggesting that individuals are sensitive to extremely delayed outcomes. Similarly, the

choice of long-term environmental policies or investment in R&D, cannot be explained

by the discounted logit. The stationarity property of the discounted Luce rule gives,

lim
r→∞

P ((x, t+ r), Ar) = lim
r→∞

δt+rv(x)∑
(y,s+r)∈Ar

δs+rv(y)
= P ((x, t), A)

The probability of choosing an element is independent of the delay when all elements

are delayed. A last consideration on the discounted logit concerns its asymptotic be-

havior when only one dated outcome is infinitely delayed. Suppose A = {(x, t), (y, s)}

with s 6= t and let t→∞. Then,

lim
t→∞

PLogit((x, t), A) = lim
t→∞

eδ
tv(x)

eδtv(x) + eδsv(y) = 1
1 + eδsv(y) > 0

For the discounted logit, the probability of choosing a delayed outcome x is strictly

positive, even when it is infinitely delayed. This is paradoxical if one consider the

case of a very small δ ≈ 0. The probability of choosing an infinitely delayed x,

limt→∞ PLogit((x, t), A) ≈ 1
2 , although future has very low value. Differently, the

discounted Luce rule for t→∞, limt→∞ P ((x, t), A)→ 0, as expected.

The violation of stationarity of the discounted logit persists in the more general

setting of consumption streams. If we consider the discounted logit, the probability of
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choosing a consumption stream x = (x0, x1, . . . , xT ) from a set A is

PLogit(x, A) =
exp

(
T∑
t=0

δtv(xt)
)

∑
y∈A

exp
(

T∑
s=0

δsv(ys)
)

An intuitive form of stationarity would require that a "shift forward" of consump-

tion should not affect preferences. In other words, the probability of choosing x =

(x0, x1, . . . , xT−1, z) over y = (y0, y1, . . . , yT−1, z) should not change if we "lag" x and

y by one period (see Fishburn, 1970, Def. 7.3). Namely, it should be equal to the

probability of choosing x+1 = (z, x0, x1, . . . , xT−1) over y+1 = (z, y0, y1, . . . , yT−1).

However, in the discounted logit model the two probabilities differ. To see this, let

A = {x,y} and A+1 = {x+1,y+1}, then:

PLogit(x, A) =
exp

(
T−1∑
t=0

δtv(xt) + δT v(z)
)

exp
(
T−1∑
t=0

δtv(xt) + δT v(z)
)

+ exp
(
T−1∑
t=0

δtv(yt) + δT v(z)
)

it is equal to

PLogit(x, A) = 1

1 + exp
(
T−1∑
t=0

δt(v(yt)− v(xt))
) (1)

and PLogit(x+1, A+1) is equal to

PLogit(x+1, A+1) = 1

1 + exp
(

T∑
t=1

δs(v(yt−1)− v(xt−1)
) (2)

It is easy to see that Eq. (1) and Eq. 2 are different. Lagging by one period both

consumption streams x and y changes the likelihood of choosing them, contradict-

ing an intuitive form of stationarity although discounting is geometric (see Fishburn,

1970, Def. 7.3). Similarly to the dated outcome case, this may affect the elicitation

of temporal preferences, for example confounding geometric and quasi-hyperbolic dis-

counting. To the contrary, the discounted Luce rule satisfies stationarity (see Section

4).
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2.1 Discounted random utility models

The discounted Luce rule is a particular case of the random utility model (Marschak,

1959) and there are two ways to see it. The first has been suggested by Fosgerau and

Bierlaire (2009). It is well known that the multinomial logit can be derived from the

additive random utility model (ARUM), P (a,A) = Prob(u(a)+εa ≥ maxb∈A u(b)+εb),

if the error terms are i.i.d. and distributed according to an extreme value distribution.

To solve the scale problem, they proposed a multiplicative specification of the error

terms, i.e. P (a,A) = Prob(u(a) · ε̂a ≥ maxb∈A u(b) · ε̂b), with errors distributed accord-

ing to a transformation of an extreme value distribution. In the case of the discounted

Luce rule, this implies

P (x, A) = Prob
(

T∑
t=0

δtv(xt) · εx ≥ max
y∈A

T∑
t=0

δtv(yt) · εy

)

Fosgerau and Bierlaire (2009) illustrated the practical implementation of the multi-

plicative error specification. An alternative way follows from Mattsson et al. (2014)

and consists in changing the distribution of the error terms in the ARUM. The dis-

counted Luce rule arises assuming error terms that are i.i.d. and distributed according

to a Fréchet distribution7 with θ = 1:

P (x, A) = Prob
(

T∑
t=0

δtv(xt) + ε̃x ≥ max
y∈A

T∑
t=0

δtv(yt) + ε̃y

)

Embedding the discounted Luce rule into the random utility framework greatly sim-

plifies the empirical applicability of the model.

3 Discrete choice of dated outcomes

The interest in studying dated outcomes stems from the popularity of the Multiple

Price List method (Coller and Williams, 1999; Andersen et al., 2008; Halevy, 2015)

used to elicit time preferences in both laboratory and field experiments. The MPL

is often coupled with logistic regressions to estimate discount rates (Chabris et al.,

2008; Tanaka et al., 2010; Louie and Glimcher, 2010). However, Section 2 highlighted
7A random variable X is Fréchet distributed with parameters θ, v > 0, written F (θ, v), if it has a

distribution function F (x) = [−(v/x)θ] for all x > 0.
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the possible drawbacks of using the discounted logit in this setting. We propose a

model, the discounted Luce rule that addresses the stationarity problem and retains

the flexibility of the logit. The properties that characterize the discounted Luce rule

are intuitive and directly comparable with the axioms of deterministic intertemporal

choice of dated outcomes (Fishburn and Rubinstein, 1982). Two axioms: Stochastic

Impatience and Stationary Independence of Irrelevant Alternatives completely char-

acterize the model.

Let Z be a finite set of alternatives and X ⊆ Z × {0, . . . , T}, be a finite set of

dated alternatives, i.e. (x, t) ∈ X, is a reward x at time t. A choice set is an element

of A = 2X \ {∅}. Choice probabilities are functions P : A×A → [0, 1], for all A ∈ 2X .

Throughout the first part of the work, we assume that all choice probabilities are

strictly positive,8 i.e. for all x ∈ Z, t ∈ {0, . . . , T} and all A ∈ A, P ((x, t), A) > 0.

The standard Luce choice axiom or Independence of Irrelevant Alternatives (IIA)

in this setting is the following:

(IIA). For all A,B ∈ A and (x, t), (y, s) ∈ A ∩B,

P ((x, t), A)
P ((y, s), A) = P ((x, t), B)

P ((y, s), B)

The relative probability of choosing a dated outcome (x, t) over (y, s) is constant across

menus. The IIA axiom is necessary and sufficient for the existence of a positive random

scale9 u : X → R++, such that

P ((x, t), A) = u(x, t)∑
(y,s)∈A

u(y, s)

For a given set A ∈ A and r ≥ 0, let define Ar , {(x, t+ r) : (x, t) ∈ A}, Ar contains

all the rewards in A postponed by r periods. Following the discussion in Section 2,

the Stochastic Stationarity Axiom imposes the following:

8As pointed out in Fudenberg and Strzalecki (2015), a small positive probability is empirically indistin-
guishable from a zero probability.

9A random scale is unique up to positive multiplication, i.e. if u and u′ define the same probabilities,
there exists a a > 0 such that u = au′.
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(SSA). For all A ∈ A and t, s, r ≥ 0,

P ((x, t), A)
P ((y, s), A) = P ((x, t+ r), Ar)

P ((y, s+ r), Ar)

The relative probability of choosing x at time t over y at time s, does not vary when

both payments are equally delayed. The condition holds for the sets Ar and says noth-

ing concerning the interaction with dated outcomes that can be added or subtracted

to the set. In other words, without assuming IIA, the relative probability of choos-

ing (x, t) over (y, s) from A = {(x, t), (y, s)}, can be different from the probability of

choosing (x, t+r) over (y, s+r) from B = {(x, t+ r), (y, s+ r), (z, q + r)}. So the SSA

does not restrict possible interactions among outcomes. Consider now the following

Stationary version of the IIA:

(SIIA). For all A,B ∈ A and t, s, r ≥ 0,

P ((x, t), A)
P ((y, s), A) = P ((x, t+ r), B)

P ((y, s+ r), B)

The SIIA axiom implies the IIA axiom for r = 0 and for B = Ar it implies the SSA.

Next lemma shows the opposite implications:

Lemma 1. The SIIA holds, if and only if, the IIA and the Stochastic Stationarity

Axiom hold.

Assuming the SIIA is equivalent to assume both stochastic stationarity and the IIA

axiom. In this work, we will retain the IIA and we will study the role of stationarity

and the consequences of its weakening. Section 7 discusses a simple extension of the

discounted Luce rule that relaxes the IIA. The next condition imposes a stochastic

form of impatience: if two rewards have the same probability of being selected when

one is payed later, the equality is broken in favour of the latter when both are delivered

at the same date.

(Stochastic Impatience). For all x, y ∈ Z and t ≥ 0, if P ((x, t), A) = P ((y, t + 1), A)

then P ((x, t), B) ≤ P ((y, t), B).

The next theorem characterizes the discounted Luce rule:
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Theorem 1. The SIIA axiom and Stochastic Impatience hold, if and only if, choice

probabilities are represented by the discounted Luce rule:

P ((x, t), A) = δtv(x)∑
(y,s)∈A

δsv(y)

for some random scale v : Z → R++ and δ ∈ (0, 1].

The IIA axiom, implied by the SIIA, gives choice probabilities the Luce’s relative

weight form. The Stochastic Stationarity part of the SIIA imposes separable and

geometric discounting. Lastly, Stochastic Monotonicity allows us to interpret δ as a

discount factor. Due to the great amount of empirical and theoretical research in non-

geometric discounting, the rest of the section focuses on violations of the SSA axiom,

while maintaining IIA. Relaxing the latter and maintaining stationarity represents an

interesting line for future research.

As a final note, we show how to elicit time preferences with the discounted Luce

rule. Consider the following ratios P ((x,t+1),A)
P ((y,0),A) and P ((y,0),B)

P ((x,t),B) for some t ≥ 0 and

x, y ∈ Z. It is immediate to see that P ((x,t+1),A)
P ((y,0),A) ·

P ((y,0),B)
P ((x,t),B) = δ. The discount factor δ

can be inferred directly from choice probabilities.

3.1 Implications of non-geometric discounting

Geometric discounting of future rewards is normatively plausible, but it is often chal-

lenged by the experimental evidence of diminishing impatience (for example, Thaler,

1981). Well-known alternatives are the quasi-hyperbolic discounting of Laibson (1997)

and the hyperbolic discounting of Prelec (2004). Deviations from geometric discount-

ing necessarily induce violations of the Stochastic Stationarity Axiom, for example, let

consider the quasi hyperbolic discounting model of Laibson (1997), 1, βδ, βδ2, βδ3 . . ..

for some β ∈ [0, 1) and δ ∈ (0, 1]. With quasi-hyperbolic the trade-off between con-

sumption in two consecutive periods is maximum at the present. It is plausible to

imagine that, for a general stochastic choice rule, quasi-hyperbolic discounting implies

the following violation of the SSA:

Prob((x, 0), A)
Prob((y, 1), A) >

Prob((x, t), At)
Prob((y, t+ 1), At)

(3)
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the relative probability of choosing x now over y tomorrow decreases when both out-

comes are equally delayed. This is the stochastic counterpart of the present bias.

The discounted Luce rule of Theorem 1 cannot accommodate the previous inequal-

ity. Therefore, we introduce the general discounted Luce rule. Let define a dis-

count function D(t), as a decreasing function D : N+ → (0, 1], with D(0) = 1 and

limt→∞D(t) = 0 then, the choice probabilities according to the generalized discounted

Luce rule are:

P ((x, t), A) = D(t)v(x)∑
(y,s)∈A

D(s)v(y)

The following axiom is the required relaxation of the SSA that allows for general

discounting of future consequences.

(Weak SSA). For all A ∈ A and all t, r ≥ 0,

P ((x, t), A)
P ((y, t), A) = P ((x, t+ r), Ar)

P ((y, t+ r), Ar)

It imposes invariance of the relative probability of choosing between two payoffs, only

when they are payed at the same date. Intuitively, this ratio is not influenced by

intertemporal trade-offs, since both outcomes are delivered on the same date. Then

we have the following result:

Proposition 1. The IIA axiom, Weak SSA and Stochastic Impatience hold, if and

only if, choice probabilities are represented by a generalized discounted Luce rule., i.e.

P ((x, t), A) = D(t)v(x)∑
(y,s)∈A

D(s)v(y)

for some random scale v : Z → R++ and discount function D : {0, . . . , T} → (0, 1].

We imposed the static IIA axiom to give probabilities a simple structure and we

relax stochastic stationarity to allow non-geometric discounting. The result is a flexible

rule that accommodates common discount functions, such as the hyperbolic and the

quasi-hyperbolic. Violations of the SSA can be related to the degree of impatience of

D(t), defined as

I(t) = D(t)
D(t+ 1)
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we say that D(t) exhibits the present bias if I(0) > I(t) for all t > 0. We say that

D(t) exhibits strict diminishing impatience if I(t) > I(t+1) for all t. Quasi-hyperbolic

discounting, D(0) = 1, D(t) = βδt, exhibits the present bias and does not exhibit strict

diminishing impatience. Hyperbolic discounting, D(t) = 1
1+kt , exhibits both. Then we

have the following simple consequences:

• P ((x,0),A)
P ((y,1),A) >

P ((x,t),At)
P ((y,t+1),At) , ∀t > 0, if and only if, D(t) exhibits the Present Bias.

• P ((x,t−1),At−1)
P ((y,t),At−1) > P ((x,t),At)

P ((y,t+1),At) , ∀t > 0, if and only if, D(t) exhibits strict Dimin-

ishing Impatience.

With DI, the relative probability of choosing an earlier over a later payoff is always

greater than the same probability when both are delayed by an additional period.

One may be interested in distinguishing quasi-hyperbolic of Laibson (1997) from

the general discount function D(t). The next axiom contains the required restrictions:

(Quasi-hyperbolic SSA). For all A ∈ A:

1. (Delayed SSA): P ((x,t),A)
P ((y,s),A) = P ((x,t+r),Ar)

P ((y,s+r),Ar) , for all t, s > 0, r ≥ 0.

2. (Present Bias): P ((x,0),A)
P ((y,t),A) ≥

P ((x,r),A)
P ((y,t+r),Ar) , for all t ≥ 0, r > 0.

3. (Invariance): For all x, y ∈ Z, P ((x,0),A)
P ((y,0),A) = P ((x,t),At)

P ((y,t),At) .

All the intuitive features of the quasi-hyperbolic discounting affect relative choice prob-

abilities. For non-immediate outcomes, the relative choice probabilities are constant

when outcomes are equally delayed, since the (delayed) SSA holds. However, the rela-

tive probability of choosing an immediate payment over a delayed one is strictly greater

than the same proportion when both payments are equally delayed, this is the present

bias. The last part, Present Weak SSA, imposes equality of relative probability only

when the outcomes are payed at the same date (it is a weakening of the weak SSA).

All the restrictions of the Quasi-hyperbolic SSA are easily observable in laboratory or

fields experiments. Then we have:

Proposition 2. The IIA axiom, Quasi-hyperbolic SSA and Stochastic Impatience hold,

if and only if, there exists a positive ratio scale v : Z → R++ and a discount function

D(t) such that:

P ((x, t), A) = D(t)v(x)∑
(y,s)∈A

D(s)v(y)
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and D(t) = βδt if t > 0 and D(0) = 1, for some β, δ ∈ (0, 1].

4 Consumption streams

The dated outcomes setting is quite restrictive and cannot be compared with ax-

iomatizations of additively separable discounted utility with geometric discounting

(Koopmans, 1960; Fishburn, 1970) or quasi-hyperbolic discounting (Hayashi, 2003;

Montiel Olea and Strzalecki, 2014). In this section we fill the gap extending to finite

consumption streams the intuitions of the previous section.

For T > 0, let ZT+1 = Z×Z×· · ·Z be a T+1 product of a finite set of alternatives.

An element of ZT+1 represents a consumption stream x = (x0, x1, . . . , xT ). A choice

set is an element ofA = 2ZT+1\{∅}. Given a set A, the discounted Luce rule probability

of choosing x ∈ A is given by

P (x, A) =

T∑
t=0

δtv(xt)

∑
y∈A

T∑
t=0

δtv(yt)

for some δ ∈ (0, 1]. The probability of selecting a given consumption stream is given

by its relative weight in the choice set. The weight is a discounted sum of the values

of its components.

For an arbitrary x ∈ Z, denote x(t) the consumption stream x(t) = (z, z, . . . , x, z, . . . , z),

i.e. x is payed at t and z otherwise. The next condition postulates the existence of

special z ∈ Z:

(Separability). There exists z ∈ Z such that, for all x,y ∈ ZT+1, with x,y ∈ A,

y,xt(t) ∈ B for all t ≥ 0 and with P (y, A) > 0, P (y, B) > 0 implies,

P (x, A)
P (y, A) =

∑T
t=0 P (xt(t), B)
P (y, B)

Separability implies that the relative probability of choosing x from a menu A when

y is available, is equal to the sum of the probabilities of choosing its "components"

xt(t) = (z, z, . . . , xt, z, . . . , z), relative to y. To gain intuition, assume T = 1, x =

(x0, x1), y = (y0, y1), A = {(x0, x1), (y0, y1)} and B = {(x0, z), (z, x1), (y0, y1)}. Then
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Separability implies

P ((x0, x1), A)
P ((y0, y1), A) = P ((x0, z), B) + P ((z, x1), B)

P ((y0, y1), B)

Suggesting that the probability of selecting a consumption stream can be decomposed

in the probability of selecting its components. Separability is the stochastic choice

counterpart of additive separability in deterministic choice. Let z = (z, z, . . . , z), the

first consequence of Separability is the following:

Lemma 2. For all z ∈ Z satisfying Separability, P (z, A) = 0 for all A ∈ A with

x, z ∈ A and x 6= z.

The elements z can be interpreted as being "nothing" and the probability of se-

lecting them is zero whenever there is an alternative. Given the existence of special

z ∈ Z, we can turn to the stationarity properties of the discounted Luce rule in the

consumption stream setting. For each A ∈ A, we define A+1 = {(z,x) : x ∈ A}, where

the notation (z,x) indicates (z,x) = (z, x0, . . . , xT−1). Differently, for x ∈ ZT+1,

(x, z) = (x0, x1, . . . , xT−1, z) and (z,x, z) = (z, x0, x1, . . . , xT−2, z). As for the inter-

pretation, (z,x) is a "shift forward" of (x, z). Following the intuitions of the dated

outcome setting, we consider a choice rule to be stationary if (assume the probabilities

at the denominator are strictly positive):

P ((z,x), A)
P ((z,x′), A) = P ((x, z), A+1)

P ((x′, z), A+1) (4)

The relative probability of choosing (z,x) over (z,y) remains unchanged after a shift

forward of both. The property resembles the definition of stationarity of deterministic

choice (see Fishburn, 1970, Def. 7.3). Equation (4) holds for the discounted Luce rule

if v(z) = 0, indeed:

P ((z,x), A)
P ((z,x′), A) = v(z) + δv(x0) + δ2v(x1) +

∑T
t=3 δ

tv(xt−1)
v(z) + δv(x′0) + δ2v(x′1) +

∑T
t=3 δ

tv(x′t−1)
= P ((x, z), A+1)
P ((x′, z), A+1)

but this follows from Lemma 2. Therefore, a discounted Luce rule satisfies the previous

equality. Consider now the discounted multinomial logit. The probability of choosing

19



x ∈ A is:

PLogit(x, A) =
exp

(
T∑
t=0

δtv(xt)
)

∑
y∈A

exp
(

T∑
t=0

δtv(yt)
)

and the equality in Eq. (4) does not hold for the discounted logit:

PLogit((z,x), A)
PLogit((z,x′), A) =exp(v(z) +

∑T
t=1 δ

tv(xt−1))
exp(v(z) +

∑T
t=1 δ

tv(x′t−1))

6=exp(
∑T−1
t=0 δtv(xt) + δT v(z))

exp(
∑T−1
t=0 δtv(x′t) + δT v(z))

= PLogit((x, z), A+1)
PLogit((x′, z), A+1)

Therefore, according to the discounted logit, the relative probability of choosing a

consumption stream x over y in a set A, changes when all the elements in A are

"shifted" by one period. This form of stationarity is then able to tell apart the two

models. We call it Stochastic Fishburn Stationarity:

(SFS). For all x,x′ ∈ ZT+1, A ∈ A with (x, z), (x′, z) ∈ A and P ((x′, z), A) > 0,

P ((z,x′), A+1) > 0:
P ((x, z), A)
P ((x′, z), A) = P ((z,x), A+1)

P ((z,x′), A+1)

Fudenberg and Strzalecki (2015) proposed an alternative notion, called stream station-

arity, that imposes the following:

P ((x, y), A) ≥ P ((x′, y), A) ⇐⇒ P ((y,x), B) ≥ P ((y,x′), B)

Stream stationarity is too weak to distinguish the discounted logit and the discounted

Luce rule, since it is satisfied by both models.

Separability and the SFS axiom are the main innovations of the section, the fol-

lowing axioms are standard. Since we deal with zero probability events, we use a more

general axiom than the IIA.10

10GIIA is equivalent to the original Luce choice axiom (see Luce, 1959), which is more general than the
IIA.
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(GIIA). For all A ∈ A and x ∈ A, there exists u : ZT+1 → R+, such that:

P (x, A) = u(x)∑
y∈A

u(y)

Lastly, we define a stochastic notion of impatience similar to the one in the delayed

rewards setting:

(Stochastic Impatience). For all x, y 6= z ∈ Z and t ≥ 0, if P (x(t), A) = P (y(t+1), A),

then P (x(t), B) ≤ P (y(t), B).

The next theorem characterizes the discounted Luce rule:

Theorem 2. The GIIA axiom, SFS, Separability and Stochastic Impatience hold, if

and only if, choice probabilities are represented by a discounted Luce rule, i.e.

P (x, A) =

T∑
t=0

δtv(xt)

∑
y∈A

T∑
t=0

δtv(yt)

for a ratio scale v : Z → R+ and δ ∈ (0, 1].

Also in this setting, we are interested in relaxing stationarity to determine the ob-

servable restrictions following quasi-hyperbolic discounting. Indeed, although v(z) =

0, quasi-hyperbolic discounting violates SFS. Let,

P (x, A) =
v(x0) + β

T∑
t=1

δtv(xt)

∑
y∈A

[
v(y0) + β

T∑
t=1

δtv(yt)
]
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then SFS is violated:

P ((x, z), A)
P (x′, z), A) =

v(x0) + β
T−1∑
t=1

δtv(xt) + βδT v(z)

v(x′0) + β
T−1∑
t=1

δtv(x′t) + βδT v(z)

6=
v(z) + β

T∑
t=1

δtv(xt−1)

v(z) + β
T−1∑
t=1

δtv(x′t−1)

=

T∑
t=1

δtv(xt−1)

T−1∑
t=1

δtv(x′t−1)
= P ((z,x), A+1)
P ((z,x′), A+1)

The following relaxation of SFS is parallel to that introduced in the delayed rewards

setting and includes all the intuitive features of a present-biased Luce rule. They

are comparable with the axioms characterizing quasi-hyperbolic discounting in deter-

ministic choice (e.g. Montiel Olea and Strzalecki, 2014). It contains three properties:

Delayed Stochastic Fishburn Stationarity, Present Bias and Invariance.

(Quasi-hyperbolic Stationarity).

1. (DSFS): For all A ∈ A, with (z,x), (z,x′) ∈ A, if P ((z,x′, z), A) > 0 and

P ((z, z,x′), A+1) > 0:

P ((z,x, z), A)
P ((z,x′, z), A) = P ((z, z,x), A+1)

P ((z, z,x′), A+1)

2. (PB): For all A ∈ A, with x, (z,x) ∈ A, if P ((z,x, z), A+1) > 0 and

P ((z, z,x′), A+1) > 0:

P ((x, z, z), A)
P ((z,x, z), A+1) ≥

P ((z,x′, z), A)
P ((z, z,x′), A+1)

3. (Invariance): For all x, y ∈ Z \ {z}, t > 0 and all A ∈ A, if P (y(0), A) > 0

and P (y(1), A+1) > 0:

P (x(0), A)
P (y(0), A) = P (x(1), A+1)

P (y(1), A+1)
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The DSFS imposes stationarity to non-immediate shifts. The present bias imposes a

greater probability of choosing a stream of consumption when the immediate outcome

has a positive value. Invariance excludes variations of the relative likelihood of choosing

two outcomes when they are payed at the same date.

Theorem 3. The GIIA axiom, Quasi-hyperbolic Stationarity, Separability and Stochas-

tic Impatience hold, if and only if, choice probabilities are represented by a quasi-

hyperbolic discounted Luce rule, i.e.

P (x, A) =
v(x0) + β

T∑
t=1

δtv(xt)

∑
y∈A

[
v(y0) + β

T∑
t=1

δtv(yt)
]

The axioms characterizing the quasi-hyperbolic Luce rule can be used to extend

the recursive axiomatization of Fudenberg and Strzalecki (2015) to a dynamic discrete

choice model that accounts for quasi-hyperbolic discounting (see Section 6 for a dis-

cussion). Such model has recently gained attention in applied works (Paserman, 2008;

Tarozzi and Mahajan, 2011; Yao et al., 2012; An et al., 2014; Fang and Wang, 2015)

but, its behavioral restrictions are not yet understood.

5 Elasticity and cross-elasticity

Elasticity measures how a variation in an observable factor, for example a component of

the consumption stream xt, affects choice probabilities (Train, 2009). The elasticities

of the discounted Luce rule have similar properties to the elasticities of the logit,

although they inherit the scale-free property of the model. Fosgerau and Bierlaire

(2009) provides calculations that are valid for a Luce rule. Since we are studying

the interaction of intertemporal preferences and stochastic choice, we will exploit the

structure of the discounted Luce rule to study elasticity. We are interested in the

elasticity of the probability of choosing x when one element xt of x changes. Formally:

E [P (x, A);xt] ,
∂P (x, A)
∂xt

xt
P (x, A)
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Given x = (x0, x1, x2, . . .), first consider the expression δtv(xt)∑T

s=0 δ
sv(xs)

, it can be in-

terpreted as the "weight" of xt if x = (x0, x1, . . . , xT ). Denote it as W (xt,x) =
δtv(xt)∑T

s=0 δ
sv(xs)

. With this notation, simple calculations give:

E [P (x, A);xt] = xt
v(xt)

∂v(xt)
∂xt

W (xt,x) [1− P (x, A)]

Elasticity depends on the complementary probability of choosing x form A and the

relative weight of xt in the consumption stream x. Notice that elasticity does not

depend on the scale of the value function. If we multiply v by a positive number

k, the elasticity does not change. This is a stark difference with the multinomial

logit. If the elements in the consumption stream are monetary payments and for a

linear v(xt) = kxt, E [P (x, A);xt] = W (xt,x) [1− P (x, A)]. In the case of a linear

v(xt) = kxt, a simple calculation shows that:

∑
xt∈x
E [P (x, A);xt] = 1− P (x, A)

showing that the smaller is the elasticity of each component in x, the higher is the

probability of choosing x from A. This follows from the "separate" contribution of each

component to the value of a consumption stream. Discounting interacts with elasticity

through W (xt,x), ceteris paribus, the further in time is xt, the smaller is W (xt,x).

A different measure of sensitivity worth studying is the cross-elasticity: the vari-

ation of the probability of choosing x from A when an element ys of y ∈ A changes.

Formally,

E [P (x, A); ys] ,
∂P (x, A)
∂ys

ys
P (x, A)

Easy calculations show that:

E [P (x, A); ys] = −∂v(ys)
∂ys

ys
v(ys)

δsv(ys)∑
y′∈A

T∑
r=0

δrv(y′r)

Cross-elasticity depends negatively on the weight of ys in the whole A. An increase in

the probability of choosing y negatively affects all the alternatives in A. In the case
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of a linear v(xt) = kxt, E [P (x, A); ys] = − δsv(ys)∑
y′∈A

∑T

r=0 δ
rv(y′r)

and

∑
ys∈y
E [P (x, A); ys] = −P (y, A)

Choice probabilities provides information concerning elasticity and cross-elasticity also

in the intertemporal setting.

6 Recursive Luce rule with quasi-hyperbolic dis-
counting

We discuss in the final section an interesting application of our characterization of

the discounted Luce rule with quasi-hyperbolic version. The properties characteriz-

ing the representations can be embedded into the axiomatization of Fudenberg and

Strzalecki (2015) to model dynamic stochastic choice. Recursive structural models are

widely used in econometrics (Rust, 1987; Aguirregabiria and Mira, 2010) and their

behavioral foundation has been studied only recently (Fudenberg and Strzalecki, 2015;

Matêjka et al., 2015). In the recursive setting, in each period the individual chooses

stochastically an immediate consumption and a continuation menu and she correctly

anticipates future noise. To gain intuition, we briefly introduce the recursive setting

of Fudenberg and Strzalecki (2015). There is a finite number of periods T > 0, in each

period t, the choice is made from a menu At. We denote actions at, bt the elements

of the menu At and At the space of all actions at time t. We define recursively the

choice problem starting from the terminal node T , where the only actions are one-

period outcomes, i.e. AT = Z. For a set S, K(S) denotes the family of non-empty

and finite subsets of S. We then define recursively MT = K(AT ) and for all t < T ,

At = Z ×Mt+1 and Mt = K(At). An action at in a menu At is a pair (xt, At+1)

of immediate consumption xt and a continuation menu At+1. According to recursive

models of stochastic choice, the value of an action at time t is given by the following:

Ut(xt, At+1) = v(xt) + δE
[

max
at+1∈At+1

Ut+1(at+1) + εat+1

]
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and the stochastic choice from the menu At is given by:

Pt(at, At) = Prob
[
Ut(at) + εat ≥ max

bt∈At
Ut(bt) + εbt

]

Assumptions on the distribution of the errors characterize different models of choice.

A recent extension of the previous recursive model introduced quasi-hyperbolic dis-

counting (Paserman, 2008; Tarozzi and Mahajan, 2011; Fang and Wang, 2015; An

et al., 2014; Yao et al., 2012) and assumed logit choice probabilities from menus. In

this case the value of an action (xt, At+1) is equal to:

Ut(xt, At+1) = v(xt) + βδ E
[

max
at+1∈At+1

Ut+1(at+1) + εat+1

]

An axiomatic foundation of such model has not been proposed in the literature, how-

ever the characterization of the quasi-hyperbolic Luce rule in Theorem 3 can be used

to axiomatize the previous model along the lines of Fudenberg and Strzalecki (2015).

If we assume that errors εat are i.i.d. for all at and t and distributed according to a

Fréchet distribution with parameter θ = 1 (see Mattsson et al., 2014), time t choice

probabilities are of the Luce form: Pt(at, At) = Ut(at)∑
bt∈At

Ut(bt)
. The discounted Luce rule

is a particular case of the previous expression in which all the continuation menus are

singletons. Indeed, Mattsson et al. (2014) again proved that with Fréchet errors, we

can rewrite Ut(xt, At+1) = v(xt) + βδ
[∑

at+1∈At+1 Ut+1(at+1)
]
and assuming that all

continuation menus are singletons, we are back to the (quasi-hyperbolic) discounted

Luce rule, i.e.

Pt(at, At) =
v(xt) + β

T∑
s=t+1

δsv(xs)

∑
bt∈A

[
v(yt) + β

T∑
s=t+1

δsv(ys)
]

To gain intuition concerning the effect of quasi-hyperbolic discounting in the Luce

model, we apply it to the adoption of a durable good, for example a smartphone

(Gowrisankaran and Rysman, 2012). At time zero, the choice is between two smart-

phones, x, y with prices px, py. At time one, there is another smartphone z with

price pz. If x is bought at time zero, the time one choice is between keeping x or

replacing it with z at price pz. At time zero the choice is ax = ((x, px), Ax) or
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ay = (y, py), Ay) where Ax = ((x, 0), (z, pz)) and Ay = ((y, 0), (z, pz)). The value

V (Ax) = v(x) + v(z) − pz and V (Ay) = v(y) + v(z) − pz. So, at time zero, the

probability of buying x is

P (ax, A0) = v(x)− px + βδV (Ax)
v(x)− px + βδV (Ax) + v(y)− py + βδV (Ay)

Suppose that at time one the individual may decide to switch, for example from x to

y and vice-versa paying the relative price. Then, the problem becomes, at time zero

the choice is ax = ((x, px), Ax) or ay = (y, py), Ay) where Ax = ((x, 0), (y, py)) and

Ay = ((y, 0), (x, px)). Now, V (Ax) = v(x) + v(y)− py and V (Ay) = v(y) + v(x)− px.

The probability of buying x at time t is:

P (ax, A0) = v(x)− px + βδ(v(x) + v(y)− py)
v(x)− px + βδ(v(x) + v(y)− py) + v(y)− p0

y + βδ(v(y) + v(x)− px)

We are interested to study the variation of choice probabilities with respect to a per-

manent or a temporary shock to the price of a smarthpone. A permanent shock is

modeled assuming that the variation of the price at time zero implies a variation in

price at time one as well. For a temporary shock, we treat the price at time one as a

constant. Therefore, assume the price of x changes permanently, then

Eperm[P (ax, A0), px)] = −px(1 + βδ)P (ay, A0)K(x)

where K(x) = 1
v(x)−px+βδ(v(x)+v(y)−py) . Differently, a temporary shock to the price of

x at time zero does not affect its price at time one, therefore:

Etemp[P (ax, A0), px)] = −pxP (ay, A0)K(x)

The permanent shock has a stronger effect than a temporary one, but it is mitigated

by the present bias factor β. The probability of choosing x today decreases since the

probability of selecting y increases in both periods. However, the magnitude of the

variation in the second period is lowered by the present bias factor.
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7 Relaxing the IIA: the mixed discounted Luce
rule

Throughout the paper, we maintained the assumption that choice probabilities satisfy

the IIA (or a weaker version). The IIA sometimes imposes unrealistic substitution

patterns among the elements of a menu (see Train, 2009) and its violations are well-

documented (for example, the similarity effect Simonson (1989) and the compromise

effect Simonson and Tversky (1992)). We are not aware, however, of evidence sup-

porting violations of the IIA in the intertemporal setting. Testing violations of the

IIA in the dated rewards or consumption streams setting would be an interesting path

for future research. We propose here a simple extension of the discounted Luce rule

that allows for realistic substitution patterns relaxing the IIA axiom. It can be derived

from the mixed logit (see Train, 2009, Ch. 6). The mixed logit is a mixture of logit

probabilities depending on a parameter θ ∈ Θ. Suppose that the value function of a

logit model depends on a parameter θ ∈ Θ then, we can define the discounted mixed

logit:

PMLogit(x, A) =
∫

Θ

∑T
t=0 e

δtv(xt|θ)∑
y∈A

∑
t=0 e

δtv(yt|θ)
f(θ)dθ

for some density f . It is easy to see that the failure of stationarity we discussed in

Section 2 occurs for the discounted mixed logit as well. Differently, stationarity holds

for the discounted mixed Luce rule, defined as:

PMLuce(x, A) =
∫

Θ

∑T
t=0 δ

tv(xt|θ)∑
y∈A

∑
t=0 δ

tv(yt|θ)
f(θ)dθ

hence, the discounted mixed Luce rule is an extension of the discounted Luce rule that

allows for substitution patterns and violation of the IIA, but retains the (stochastic)

stationarity property of the model. We are not aware of any axiomatization of the

mixed logit.

8 Conclusion

We study the interaction of discount and stochastic choice in two settings: dated

outcomes and consumption streams. We propose a new model, the discounted Luce

28



rule, that solves the stationarity problem of the discounted logit. We characterize

the observable restrictions on choice probabilities generated by geometric, as well as,

hyperbolic and quasi-hyperbolic discounting. An extension to recursive choice problem

is proposed with an application to the purchase of a durable good when discounting

is quasi-hyperbolic.

Appendix: Proofs
Proof. Of Lemma 1. The SIIIA clearly implies the other axioms. Now consider
P ((x,t),A)
P ((y,s),A) , by the SSA

P ((x,t),A)
P ((y,s),A) = P ((x,t+r),Ar)

P ((y,s+r),Ar) and by the IIA P ((x,t+r),Ar)
P ((y,s+r),Ar) = P ((x,t+r),B)

P ((y,s+r),B)
for all B ∈ A with (x, t+ r), (y, s+ r) ∈ B ∩Ar.

Proof. Of Theorem 1. Necessity is straightforward. For the sufficiency, let r = 0, then
the SIIIA axiom implies the standard IIA. Hence, there exits u : X → R++ such that
P ((x, t), A) = u(x,t)∑

(y,s)∈A u(y,x) . Let assume, x = y, t = 1 and s = 0, then

P ((x, 1), A)
P ((x, 0), A) = P ((x, 1 + r), B)

P ((x, r), B)

or
u(x, 1)
u(x, 0) = u(x, r + 1)

u(x, r)
The equality above implies u(x, t + 1)u(x, 0) = u(x, 1)u(x, t). Going back recursively
gives u(x, t) =

(
u(x,1)
u(x,0)

)t
u(x, 0). Let define δx = u(x,1)

u(x,0) , by Stochastic Impatience
with t = 1, s = 0, u(x,0)

u(y,0) = 1, implies u(x,1)
u(y,0) ≤ 1, hence u(x,1)

u(y,0) ≤
u(x,0)
u(y,0) = 1 and

1 ≥ u(x,1)
u(x,0) = δx. Plugging u(x, t) = δtxu(x, 0) into the SIIA gives δtx

δsy
= δt+rx

δs+r
y

, for s = 0

and r = 1, δtx = δt+1
x
δy

and it implies δx = δy. Hence, defining v(x) = u(x, 0) gives the
result.

Proof. Of Proposition 1. By the IIA axiom there exits v such that P ((x, t), A) =
v(x,t)∑

(y,s)∈A v(y,x) . Let consider t = 0, then

P ((x, 0), A)
P ((y, 0), A) = P ((x, r), Ar)

P ((y, r), Ar)

by IIA P ((x,r),Ar)
P ((y,r),Ar) = P ((x,r),B)

P ((y,r),B) for all B ∈ A such that (x, r), (y, r) ∈ B. Then

u(x, 0)
u(y, 0) = u(x, r)

u(y, r)

or u(x,r)
u(x,0) = u(y,r)

u(y,0) . Since, it is true for all x, y, D(t) defined as D(t) , u(x,t)
u(x,0) is inde-

pendent of x, by Stochastic Impatience 0 ≤ D(t) ≤ 1, then, defining v(x) , u(x, 0) we
have u(x, t) = D(t)v(x) and the result follows.

Proof. Of Proposition 2. Necessity is straightforward. For sufficiency, by the IIA and
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the Delayed SSA,

P ((x, t), A)
P ((y, s), A) = P ((x, t+ r), Ar)

P ((y, s+ r), Ar)
= P ((x, t+ r), B)
P ((y, s+ r), B)

is equivalent to
u(x, t)
u(y, s) = u(x, t+ r)

u(y, s+ r)
for some ratio scale u : X → R++. Let x = y, t = 2 and s = 1, then

u(x, 2)
u(x, 1) = u(x, r + 2)

u(x, r + 1)

hence u(x, r + 2) = u(x,2)
u(x,1)u(x, r + 1), going back until r = 0 implies u(x, r + 2) =

u(x,2)
u(x,1)

r+1
u(x, 1), now, let δx = u(x,2)

u(x,1) , by S. Impatience δx ∈ (0, 1], then u(x, t) =
δt−1
x u(x, 1). By Delayed SSA with t, s = 1 and r = 1,

P ((x, 1), A)
P ((y, 1), A) = P ((x, 2), A1)

P ((y, 2), A1) =⇒ u(y, 2)
u(y, 1) = u(x, 2)

u(x, 1)

for all x, y ∈ Z, hence δx = δy for all x, y ∈ Z. For t = 1, r = 1, Present Bias implies

u(x, 0)
u(y, 1) ≥

u(x, 1)
u(y, 2)

or u(x,1)
u(x,0) ≤

u(y,2)
u(y,1) = δ hence u(x, 0)δ ≥ u(x, 1), then for some βx ≤ 1, βxδu(x, 0) =

u(x, 1), then we have u(x, t) = βxδ
tu(x, 0) for t > 0. By Present Weak SSA and IIA,

P ((x,0),A)
P ((y,0),A) = P ((x,t),B)

P ((y,t),B) implies u(x,0)
u(y,0) = βxδtu(x,0)

βyδtu(y,0) or βx
βy

= 1, hence βx = βy, since it is
true for arbitrary x, y, the result follows, defining v(x) = u(x, 0) and D(t) = βδt for
t > 0 and D(0) = 1.

Proof. Of Lemma 2. Take A = B, by Separability, P (z, A) =
∑T
t=0 P (zt(t), A) for

some A containing z, but zt(t) = z for all 0 ≤ t ≤ T , hence, P (z, A) = (T + 1)P (z, A)
and this can be true only if P (z, A) = 0 since T > 0. In turn, P (z, A) = 0 implies
u(z, z, . . . , z) = 0 since z is unique.

Proof. Of Theorem 2. By the GIIA, there exists a random scale u : ZT+1 → R+
such that P (x, A) = u(x0,x1,...,xT )∑

y∈A u(y0,y1,...,yT ) . For an arbitrary x ∈ Z, let define v(x) =
u(x, z, z, . . .) = u(x(0)) for some z satisfying Separability, moreover v(z) = 0 for all
z ∈ Z0, where Z0 = {z ∈ Z : z satisfies Separability}. For an arbitrary x ∈ Z \ Z0, let
define δx = u(x(1))

u(x(0)) . By SFS and x, y ∈ Z,

P (x(1), A+1)
P (y(1), A+1) = P (x(0), A)

P (y(0), A)

or equivalently,

P (x(1), A+1)
P (x(0), A) = P (y(1), A+1)

P (y(0), A) =⇒ u(x(1))
u(x(0)) = u(y(1))

u(y(0))

and this implies δx = δy = δ for all x, y ∈ Z and define δz = δ for all z ∈ Z0. SFS
implies

P (x(1), A)
P (x(0), A) = P (x(2), A+1)

P (x(1), A+1)
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another application of SFS implies

P (x(2), A+1)
P (x(1), A+1) = P (x(3), (A+1)+1)

P (x(2), (A+1)+1)

equivalently,
u(x(1))
u(x(0)) = u(x(2))

u(x(1)) = u(x(3))
u(x(2))

By Impatience δ ≤ 1. The first equality implies u(x(2)) = u(x(1)) · u(x(1))
u(x(0)) and the sec-

ond, u(x(3)) = u(x(2)) · u(x(1))
u(x(0)) , and together u(x(3)) = u(x(1)) ·

(
u(x(1))
u(x(0))

)2
, repeating

the same argument gives

u(x(t)) = u(x(1)) ·
(
u(x(1))
u(x(0))

)t−1

multiplying and dividing by u(x(0)), gives

u(x(t)) = u(x(0)) ·
(
u(x(1))
u(x(0))

)t
(5)

in our notation this becomes u(x(t)) = δtv(x). To conclude, we need to prove that
u(x0, x1, x2, . . .) =

∑∞
t=0 δ

tv(xt). To see this, consider P ((x0, x1, . . . , xT ), A) for some
A, Separability implies

u(x0, x1, . . . , xT )
u(y0, y1, . . . , yT ) =

∑T
t=0 u(xt(t))

u(y0, y1, . . . , yT )

then, by Eq. (5)

u(x0, x1, . . . , xT ) =
T∑
t=0

u(xt(t)) =
T∑
t=0

δtv(xt)

Proof. Of Theorem 3. By the GIIA, there exists a random scale u : ZT+1 → R such
that P (x, A) = u(x0,x1,...,xT )∑

y∈A u(y0,y1,...,yT ) . For a given x ∈ Z, let define v(x) = u(x, z, z, . . .)

for some z ∈ Z0. For an arbitrary x ∈ Z \ Z0, let define δx = u(x(2))
u(x(1)) By QSFS,

P (x(2), A+1)
P (y(2), A+1) = P (x(1), A)

P (y(1), A)

or equivalently,

P (x(2), A+1)
P (x(1), A) = P (y(2), A+1)

P (y(1), A) =⇒ u(x(2))
u(x(1)) = u(y(2))

u(y(1))

and this implies δx = δy = δ for all x, y ∈ Z \ Z0 and define δz = δ for all z ∈ Z0.
QSFS implies

P (x(2), A)
P (x(1), A) = P (x(3), A+1)

P (x(2), A+1))
another application of QSFS implies

P (x(3), A+1)
P (x(2), A+1)) = P (x(4), (A+1)+1)

P (x(3), (A+1)+1)
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equivalently,
u(x(2))
u(x(1)) = u(x(3))

u(x(2)) = u(x(4))
u(x(3))

The first equality implies u(x(3)) = u(x(2))· u(x(2))
u(x(1)) and the second, u(x(4)) = u(x(3))·

u(x(2))
u(x(1)) , and together u(x(4)) = u(x(2)) ·

(
u(x(2))
u(x(1))

)2
, repeating the same argument for

an arbitrary t > 0, gives

u(x(t)) = u(x(2)) ·
(
u(x(2))
u(x(1))

)t−2

multiplying and dividing by u(x(1)), gives

u(x(t)) = u(x(1)) ·
(
u(x(2))
u(x(1))

)t−1
(6)

By PB. with x′ = y(0) and x = x(0):

u(x(0))
u(x(1)) ≥

u(y(1))
u(y(2))

hence u(x(1))
u(x(0)) ≤

u(y(2))
u(y(1)) = δ then, there exists βx ∈ [0, 1] such that u(x(0)) = βxδu(x(1))

Multiplying and dividing Eq. (6) by u(x(0)) and using the last fact gives

u(x(t)) = u(x(0)) · βx
(
u(x(2))
u(x(1))

)t
for all t > 0. In our notation u(x(t)) = βxδ

tv(x) for t > 0 and u(x(0)) = v(x). By
Invariance,

P (x(1), A+1)
P (x(0), A) = P (y(1), A+1)

P (y(0), A)
and,

u(x(1))
u(x(0)) = u(y(1))

u(y(0)) ⇐⇒ v(x)βxδ
v(x) = v(y)βyδ

v(y)
that implies βx = βy for all x, y ∈ Z \ Z0. To conclude, we need to prove that
u(x0, x1, x2, . . .) = v(x0) + β

∑T
t=1 δ

tv(xt). To see this, consider P ((x0, x1, . . . , xT ), A)
for some A that satisfies the condition, then Separability implies

u(x0, x1, . . . , xT )∑
y∈A u(y0, y1, . . . , yT ) =

T∑
t=0

u(xt(t))∑
y∈A u(y0, y1, . . .)

then,

u(x0, x1, . . . , xT ) = v(x0) + β
T∑
t=1

δtv(xt)
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