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policy implications of this new set-up numerically and find that it is optimal to heavily subsidize
R&D for plausible parameter values. Although it is optimal to tax R&D for some parameter values,
this case only occurs when the steady-state rate of economic growth is very low.
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1 Introduction

Starting from the seminal contribution of Grossman and Helpman (1991), much research has been
devoted to exploring the normative implications of R&D-based growth models with quality im-
provements. This literature has largely investigated the question of whether to tax or subsidize
R&D, and has shown that the direction of the optimal R&D policy is sensitive to the nature of the
innovation, drastic (with a big skip separating two consecutive quality vintages) or non drastic (with
a small skip separating two consecutive quality vintages). In most of these contributions, R&D
policy recommendations are drawn and discussed with respect to the size of quality improvement,
the latter being usually treated as constant and identical across industries (see, e.g. Grossman and
Helpman, 1991; Segerstrom, 1998; Li, 2001 and 2003).1

However, assuming a constant innovation size is in contrast with the empirical evidence which
shows that the probability distribution of R&D outcomes, as well as the size distribution of profit
returns from innovations, are highly skewed toward the low value side, with a very long tail into
the high value side. This suggests that R&D projects are not equally profitable, with innovations
of lower size having a higher probability to be achieved.

In this paper, we propose an R&D growth model which is consistent with this evidence. In
our setting, firms address two different types of uncertainty when engaging in R&D. The first one
is the traditional uncertainty related to the outcome of the R&D race. The second one is new
in the literature and is related to the size of innovation; more specifically, we model the idea that
there is an increasing difficulty to realize innovations of greater size by assuming that the probability
distribution of quality improvements (denoted also as quality jumps) is Pareto. Now, since a patent
is granted to each innovator and the size of a quality increment determines the profitability of an
innovation, our modeling strategy is in accordance with the evidence reported by Scherer (1965)
where it is shown that R&D profits measured through a survey of U.S. patents conform quite well
to a Pareto-type distribution.

It is important to observe that firms are heterogenous in our model. In fact, once we allow
the quality jumps to vary, it is possible to record a drastic innovation subsequent to a non-drastic
one and so forth, with the result that the size of each industry leader, as well as its strategic be-
havior, may differ across industries and over time. We build upon the non-scale growth model of
Segerstrom (1998), recently discussed and extended by Li (2003); such a setting, characterized by
diminishing technological opportunities and knowledge spillovers within and across industries, is
thus generalized to the case of heterogeneous firms. The model has a unique steady-state equilib-
rium, with firms operating either as a price setting oligopolist or as a monopolist, depending on
the type of innovation pursued, drastic or just incremental.

The research objectives of this paper are twofold. First, we are interested in building a tractable
analytical framework that introduces firm heterogeneity into the class of quality-ladder growth
models. Second, we explore the policy implications of this new set-up and assess the robustness of
the normative results of the previous literature on the topic. In this respect, it is worth noticing

1Differences in R&D policy recommendations often emerge in this literature. Such discrepancies arise because
of interactions between different externalities at work in these models. For instance, while Grossman and Helpman
(1991) find that it is optimal to subsidize R&D when the size of quality improvement is very small or vary large
and to tax R&D for innovations of intermediate size, Segerstrom (1998), which extends Grossman and Helpman’s
work to the case of increasing R&D difficulty, shows that for small-sized innovations R&D subsidies are optimal,
whereas for sufficiently large-sized innovations R&D taxes are welfare maximizing. More recently, Li (2003), relaxing
the assumption of unitary elasticity of substitution between goods and allowing for positive across-industry R&D
spillovers, finds that R&D should be subsidized when innovations are sufficiently large, and taxed when innovations
are of intermediate size. These results hold when across-industry R&D spillovers are not too large. Instead, if these
spillovers are sufficiently big, it is optimal to subsidize R&D regardless of the size of innovation.
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that the optimal R&D policy we focus on does not lead to the first-best outcome. The reason
is that, differently from the canonical quality-ladder growth model, not all the industry leaders
operate under the same competition regime in our setting. In fact, in the presence of heterogeneous
firms, the markup of price over marginal cost differs across industries; in particular, goods are sold
at higher markups in sectors where leaders operate as price setting monopolists than in ones where
they behave like price setting oligopolists. This means that the first-best optimum, which requires
identical markups across firms, can not be achieved.

In order to determine the direction and magnitude of the optimal R&D policy, we calibrate the
model by using data from the U.S. economy. Our benchmark simulations show that it is optimal
to subsidize R&D at a rate of 56 percent, with the share of resources optimally allocated to R&D
being roughly twice the laissez-faire share. We check the robustness of this result by considering
high and low values for some key parameters. We find that the optimal R&D subsidy rate remains
positive and fluctuates between 18 and 56 percent when the steady-state rate of economic growth
is kept within the interval [0.5%, 2%]. Since the optimal R&D tax case only occurs when economic
growth is unreasonably low, our overall analysis suggests that over-investment in R&D, although
possible in principle, is very unlikely to occur in a decentralized economy. In earlier research by
Segerstrom (1998) and Li (2003), the possibility of optimal R&D taxes is discussed at length but
the importance of this case for plausible parameter values is not assessed since the models are not
solved numerically.2

The paper develops as follows. In Section 2 we report some empirical evidence on the distribu-
tion of innovation size and we discuss some recent theoretical work that treats the results of R&D
activity as uncertain. Section 3 sets up the model. Section 4 solves for the balanced-growth path
and analyzes the steady-state properties of the model. Section 5 performs the welfare analysis and
numerically explores the relevant policy implications. Finally, Section 6 concludes.

2 Uncertainty in the R&D activity

As mentioned before, the main departure of this paper from the existing literature is that the
realization of each R&D race is uncertain; in our contribution, such an uncertainty follows a Pareto
distribution. The concern that the innovation size is far from being identical in all industries is quite
acknowledged in the empirical literature on this topic. As there is no direct measure concerning
the value of innovation activity, economists have often made use of some proxies. For instance, the
standard patent-design literature uses the notion of patent claims to mean the size of innovation.3

The claims of a patent determine the “scope” or the “breadth” of an innovation and define, in
technical terms, the extent of the protection conferred by a patent. As a result, the number of
claims accorded to a patent may be taken as a proxy for the innovation size and, in our view,
its pattern over-time and across industries provides evidence on the fact that quality jumps vary
substantially both within the same industry line and across sectors.

Figure 1 shows the time evolution of the average number of claims made by technological fields
for the U.S. economy. The across industries differences are very large; in 1984, for instance, the

2Our finding that it is optimal to heavily subsidize R&D is in line with the results in Jones and Williams (2000).
They calibrate a growth model to U.S. data, obtaining under-investment in R&D for a wide range of parameter
values. However, Jones and Williams (2000) do not allow for firm heterogeneity; the markup of price over marginal
cost is the same for all firms in their model. Also, they study the case where innovations are increases in product
variety (instead of product quality).

3See among others, Klemperer (1990), O’Donoghue (1998), O’Donoghue et al. (1998) and O’Donoghue and
Zweimuller (2004).
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industry sectors with the larger patent scope are Drugs & Medical while Computer and Communi-
cations records the larger number of claims in 1997.

Another potential measure of the width of the innovation is the number of citations received
by a patent. Silverberg and Verspagen (2004), for instance, point out that forward patent citations
can be taken as a possible proxy for the innovation size. Hall et al. (2000) find out that citation-
weighted patent stocks are highly correlated with firm’s market value because of the high valuation
placed on firms that hold very highly cited patents.

Figure 2 is taken from Hall et al. (2000) and shows the estimated citation lag distribution per
technology field. The vertical axis measures the relative probability of citation, whereas the area
under each curve is the estimated overall relative citation intensity for a given field. Citation lag
differs across industries emphasizing a high heterogeneity in terms of innovation sizes. On average,
the most cited patents are those in Computers and Communications, followed by the patents in
Drug and Medical sector.

As regards the probability distribution governing R&D’s outcomes, as well as the size distri-
bution of profit returns from innovations, it is widely recognized that it is highly skewed toward
the low value side, with a very long tail into the high value side. In a seminal work Scherer (1965)
reports that the profits measured through a survey of U.S. patents conforms quite well to the
Pareto-type distribution with a slope coefficient of less than 0.5. Successive studies have tested
whether the patent values, profitability and citations obey a Pareto distribution. It is interesting
to observe that in all these tests the Pareto distribution is taken as a benchmark; this literature ei-
ther supports the Pareto distribution or concludes that it is hard to distinguish between the Pareto
and the lognormal distributions. For instance, Harhoff et al. (1997) examine the distribution of
the value of patents in Germany and the U.S.. The Authors find out that for patents worth more
than $500,000 or more than 100,000 Deutsche Marks, a Pareto distribution accurately describes
patent values, although for the entire range of patent values a lognormal distribution seems to fit
better. Bertran (2003) finds that the distribution for ideas is very close to the Pareto distribution
by using data on the number of citations to value patents.

In our paper we model the uncertainty concerning R&D outcomes by assuming that quality
jumps are drawn independently from a Pareto distribution. Since a patent is granted to each
innovator and, as we will see, the size of a quality increment determines the profitability of an
innovation, our model is consistent with the evidence that the distribution of patent values is close
to the Pareto distribution.

It is interesting to observe that other authors have recently used the Pareto distribution to
model the uncertainty regarding the results of R&D projects. Bental and Peled (1996) describe
R&D activity as a sequential search involving random draws - also called technology draws - from a
population of untried technologies characterized by a Pareto distribution. Kortum (1997) and Eaton
and Kortum (1999) also use the Pareto distribution to characterize the R&D novelty distribution.
As observed by Kortum (1997), a nice property of the Pareto distribution is that the distribution
function for new inventions does not depend on the current state of knowledge.4 In addition to
this, a key-advantage of using a Pareto distribution is its simplicity; among all the probability
distributions, it is probably the easiest to work with. This also explains the reason why recently
there has been a wide utilization of the Pareto distribution in economic applications.5

4Later, we will interpret accurately this property in our model.
5See for instance Bental and Peled (2002) and Popp (2005). In addition to the literature on R&D and growth,

the recent literature of trade largely use the Pareto distribution for modeling uncertainty concerning the future
productivity levels of firms after the process of entry into the industry (see for instance Melitz, 2003; Melitz and
Ottaviano, 2003).
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3 The model

We consider a closed economy with a continuum of industries indexed by ω ∈ [0, 1]. In each industry
ω, firms are distinguished by the quality of the products they produce. Better quality products
cannot be manufactured until they have been invented, and firms in each industry ω engage in
R&D races. As in the standard quality ladders model by Grossman and Helpman (1991), when the
top quality in an industry is the product of vintage j, the next winner of an R&D race becomes
the sole producer of vintage j + 1 quality product. In contrast with the standard model though,
the quality-jumps realized by the winners of each R&D race are not fixed and are drawn from a
probability distribution with support [1,+∞).

3.1 Consumers

There is a representative household that is modeled as a dynastic family that grows over time at
an exogenous rate n. Normalizing the initial number of members of this family to equal one, the
economy’ population size at time t amounts to L(t) = ent. Each individual provides labor services
in exchange for wages and choose from the continuum of products ω ∈ [0, 1], where each product ω
can potentially be supplied in a countably-infinite number of qualities. Quality vintage j of product
ω provides quality q (j, ω, t). By the definition of quality improvement, new generations are better
than the old ones; i.e., q (j, ω, t) > q (j − 1, ω, t). At time t = 0, the state-of-the-art quality q for
each product ω equals one.

The representative household has additively separable intertemporal preferences given by the
following lifetime utility function:

U =
∫ ∞

0
e−(ρ−n)t lnu (t) dt, (1)

where ρ > n denotes the subjective discount rate and u (t) is the static utility of each household
member. The static utility function u (t) takes the following Dixit-Stiglitz form:

u (t) =
{∫ 1

0

[
Σjq (j, ω, t)

1
σ−1 · d (j, ω, t)

]σ−1
σ dω

} σ
σ−1

, (2)

where d (j, ω, t) is consumption by an individual of a product ω with quality vintage j at time t
and σ > 1 is the elasticity of substitution between products. Note that goods of different vintages
are perfect substitutes.6

The representative household maximizes lifetime utility (1) subject to the following intertem-
poral budget constraint:∫ ∞

0
ensc (s) e−R(s) ds = A (0) +

∫ ∞
0

ensw (s) e−R(s) ds, (3)

where c (t) is the flow of individual consumer spending, R(t) ≡
∫ t

0 r (τ) dτ is the cumulative interest
rate (with R′(t) = r (t)), r(t) is the market interest rate, A (0) is the initial value of asset holdings

6The specification (2) has been used by Thompson and Waldo (1994), Dinopoulos and Thompson (1998), Thomp-
son (1999), Li (2003) and Segerstrom (2007).
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of the representative household and w (t) is the wage rate earned by each household member.
Households own firms in equal shares and receive profits as dividends. Individual consumer spending
is given by:

c (t) =
∫ 1

0
[Σjp (j, ω, t) d (j, ω, t)] dω,

where p (j, ω, t) is the price of product ω with quality vintage j at time t.
The household maximization problem can be broken into three stages: the allocation of expen-

diture at each instant for each product across available quality levels, the allocation of expenditure
at each instant across products, and the allocation of expenditure across time. The first two sub-
problems are two static maximization problems while the last subproblem is essentially a dynamic
or intertemporal maximization problem.

3.1.1 The allocation of expenditure for each product across available quality levels

In the first stage, each household member solves a within-industry static optimization problem
which consists in selecting the vintage for each product. Formally, this within-industry static
maximization reads:

max
d(·)

Σjq (j, ω, t)
1

σ−1 · d (j, ω, t)

subject to:
c (ω, t) = Σjp (j, ω, t) d (j, ω, t) ,

where ω and t are fixed and c (ω, t) is consumer expenditure in industry ω at time t.
It is straightforward to verify that the representative household member is indifferent between

quality vintage j and quality vintage j − 1 if:

p (j, ω, t)
p (j − 1, ω, t)

= λ (ω, t)
1

σ−1
,

where λ (ω, t) ≡ q(j,ω,t)
q(j−1,ω,t) is the quality jump separating two consecutive vintages of product ω at

time t. When consumers are indifferent between two vintages, we restrict attention to equilibria
where consumers only buy the higher quality product, with the result that only the highest quality
level available is sold in equilibrium.

3.1.2 The allocation of expenditure across products

In the second stage, each household member decides the allocation of expenditure c (ω, t) across
the unit measure of products. Formally, for fixed time t, this across-industry static optimization
problem is:

max
d(·)

[∫ 1

0
q (jω, ω, t)

1
σ · d (jω, ω, t)

σ−1
σ dω

] σ
σ−1

,

subject to:

c (t) =
∫ 1

0
p (jω, ω, t) d (jω, ω, t) dω,
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where q (jω, ω, t) is the quality level, jω is the vintage, and d (jω, ω, t) is the individual quantity
demanded for the product with the lowest quality-adjusted price in industry ω at time t. Solving
this problem yields the individual consumer demand function:

d (jω, ω, t) =
p (jω, ω, t)

−σ q (jω, ω, t) c (t)
P (t)1−σ . (4)

where

P (t) ≡
[∫ 1

0
q
(
jω′ , ω

′, t
)
p
(
jω′ , ω

′, t
)1−σ dω′

]1/(1−σ)

(5)

is the relevant quality-adjusted price index. According to (4), the representative household mem-
ber demands the amount d (jω, ω, t) of product ω with a quality level q (jω, ω, t), and no units of
lower quality versions of that product. Other things being equal, there is stronger consumer de-
mand for products of higher quality. Because preferences are homothetic, aggregate demand equals
D (jω, ω, t) = d (jω, ω, t)L (t) in each industry ω.

3.1.3 The allocation of lifetime wealth across time

In the first stage, the representative household allocates its lifetime expenditure across time. The
optimal control problem consists of maximizing discounted utility (1) given (2), (3), (4) and (5).
The solution to this optimal control problem yields the well-known Euler equation:

ċ (t)
c (t)

= r (t)− ρ, (6)

which says that individual consumer expenditure c grows over time if and only if the market interest
rate r exceeds the subjective discount rate ρ.

3.2 Product Markets

In each industry, firms compete in prices. Labor is the only input used in production and there are
constant returns to scale. One unit of labor is required to produce one unit of output, regardless of
quality. The labor market is perfectly competitive and the wage is normalized to unity throughout
time. Consequently, each firm has a constant marginal cost of production equal to one.

The pricing decision of each state-of-the-art good producer (henceforth, industry leader) will
depend on the kind of innovation obtained: drastic (radical) or non-drastic (incremental). When

λ (ω, t) <
(

σ
σ−1

)σ−1
, the innovation are non-drastic and the industry leader uses the limit-price

p = λ (ω, t)1/(σ−1) to ensure that consumers purchase his good instead of the second-highest quality

good. On the other hand, when λ (ω, t) ≥
(

σ
σ−1

)σ−1
, charging the unconstrained monopoly price

p = σ/ (σ − 1) is profit-maximizing for the industry leader. As a result, the firm’s pricing decision
can be summarized as follows:

p (jω, ω, t) =

 λ (ω, t)1/(σ−1) if λ (ω, t) <
(

σ
σ−1

)σ−1

σ
σ−1 if λ (ω, t) ≥

(
σ
σ−1

)σ−1 (7)
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The instantaneous flow of profits earned by each industry leader will depend on the size of the
quality increment. Using (4) and (7), the flow of profits when innovation is drastic is:

πD (jω, ω, t) =
σ−σ (σ − 1)σ−1 q (jω, ω, t) c (t)L (t)

P (t)1−σ ,

whereas the flow of profits when innovation is non-drastic is:

πI (jω, ω, t) =

[
λ (ω, t)

1
σ−1 − 1

]
λ (ω, t)

− σ
σ−1

q (jω, ω, t) c (t)L (t)

P (t)1−σ .

3.3 Research and development

There is free entry into each R&D race, so firms may target their research effort at any of the
continuum of state-of-the-art quality products. Labor is the only input used in R&D and all firms
have the same R&D technology. Any firm i that hires `i (ω, t) units of R&D labor in industry ω at
time t is able to discover the next higher quality product jω + 1 with instantaneous probability (or
Poisson arrival rate):

ιi (ω, t) =
Q (t)ψ `i (ω, t)

aX (ω, t) q (jω, ω, t)
, (8)

where Q (t) ≡
∫ 1

0 q (jω, ω, t) dω is the average quality across industries at time t, ψ > 0 is an
across-industry R&D spillover parameter and a > 0 is a R&D productivity parameter. X(ω, t) is
a R&D difficulty index which takes on the initial value X(ω, 0) = 1 for all ω and grows over time
according to:

Ẋ (ω, t)
X (ω, t)

= µ · ι (ω, t) , (9)

where µ > 0 a R&D difficulty growth parameter and ι (ω, t) =
∑

i ιi (ω, t) is the industry-wide
instantaneous probability of R&D success.

This R&D technology was introduced by Li (2003). It captures two reasons why innovating
can become more difficult over time and one reason why innovating can become less difficult over
time. First, innovating can become more difficult over time because X(·) increases. During each
R&D race, researchers start off pursuing the most promising projects and if they fail, they try less
promising projects. Equation (9) captures increasing R&D difficulty arising from a series of research
failures, as in Segerstrom (1998). Second, innovating can become more difficult over time because
q (jω, ω, t) increases. Since q (jω, ω, t) only increases when innovation occurs, this term highlights
another source of increasing R&D difficulty, namely research successes. As products improve in
quality and become more complex, the creation of the next vintage quality becomes more difficult.
Third, innovating can become less difficult over time because Q(t)ψ increases. This term captures
the possibility of positive across-industry knowledge spillovers. As other industries experience R&D
successes and Q(t) increases over time, this contributes to increasing the likelihood of research
success by individual firms. These positive R&D spillovers have been found to be significant in
many empirical studies (see Griliches (1992) and Sveikauskas (2007)).

Once a firm wins a R&D race, it observes its realized quality jump λ and decides whether to
charge the unconstrained monopoly price or the limit price. We assume that the size of the quality
jump is drawn from a Pareto distribution with a shape parameter 1/κ and a scale parameter equal
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to 1. The probability density function for this Pareto distribution is given by:

g(λ) =
1
κ
λ−(1+κ)/κ, λ ∈ [1,∞). (10)

The parameter κ ∈ (0, 1) governing the shape of the Pareto distribution can be interpreted as a
measure of dispersion or heterogeneity. A lower value of κ corresponds to a thinner upper tail of the
distribution of quality jumps. As κ increases, the expected value of λ increases, in fact, it equals
1/(1− κ).

As in Grossman and Helpman (1991), Segerstrom (1998) and Li (2003), we solve the model for
symmetric equilibrium behavior where the industry-level innovation rate ι(ω, t) is the same in all
industries ω at each point in time t. This allows us to simplify notation since both ι and X are
simply functions of t, that is, ι(ω, t) = ι (t) and X(ω, t) = X(t) for all ω. Furthermore, to simplify
the transitional dynamics analysis, we assume that the initial distribution of λ values is given by
g(λ) at time t = 0. Then as firms innovate and draw new values of λ, the distribution of λ values
does not change over time.

3.4 Quality dynamics

Consider now how average quality Q (t) evolves over time. In industry ω, the quality index
q (jω, ω, t) jumps to q (jω + 1, ω, t) = λq (jω, ω, t) at the rate ι (t) when an innovation occurs. Since
this process of quality improvement is common to all industries in the economy, the time derivative
of Q (t) can be written as:

Q̇ (t) =
∫ 1

0
(λ− 1)q (jω, ω, t) ι (t) dω.

Using the law of large numbers, the previous equation becomes:

Q̇ (t) = ι (t)
∫ 1

0
q (jω, ω, t)

[∫ ∞
1

λg (λ) dλ− 1
]

dω,

which can be rewritten as:
Q̇ (t)
Q (t)

=
κ

1− κ
ι (t) . (11)

The growth rate of the average quality is an increasing function of the Pareto parameter κ (which
measures the dispersion of the innovation size distribution) and the industry-level innovation rate
ι (t).

Given that the expected number of R&D successes before time t is Φ (t) ≡
∫ t

0 ι (τ) dτ , solving
the differential equation (11) with initial condition Q(0) = 1 yields Q (t) = eκΦ(t)/(1−κ). Likewise,
solving the differential equation (9) with initial condition X(0) = 1 yields X(t) = eµΦ(t). It follows
that Q(t)ψ

X(t) = Q(t)φ for all t, where φ ≡ ψ−µ(1−κ)/κ. The net-spillover parameter φ can be either
positive or negative depending on whether the positive spillovers associated with ψ dominate the
negative spillovers associated with µ, or vice versa. Using this insight, the R&D technology (8) can

8



be rewritten as

ιi (ω, t) =
Q (t)φ `i (ω, t)
aq (jω, ω, t)

. (12)

We use this simplified R&D technology in the rest of the paper since the parameter values ψ and
µ only influence equilibrium outcomes through their combined effect on φ. An increase in ψ is
equivalent to an increase in φ and an increase in µ is equivalent to a decrease in φ. The only
restriction that we impose on φ is that φ < 1, to guarantee that the equilibrium rate of economic
growth is finite.

3.5 R&D Optimization

Now, let us consider a firm’s choice of industry in which to target its R&D effort. The prize for a
research success in an industry is a flow of profits that will last until the next success is achieved
in the same industry. At the beginning of each R&D race, a firm faces two different types of
uncertainty. The first one is related to the outcome of the race, because the firm may fail to win
the R&D race. The second one is related to the size of the quality jump and determines whether
the firm will practice limit-pricing or pure monopoly pricing.

Let ve(jω + 1, ω, t) denote the expected value of the uncertain profit stream for winning a R&D
race and discovering the next higher quality product jω + 1 in industry ω at time t. Let sR denote
the fraction of the firm’s R&D cost subsidized by the government. As in Segerstrom (1998) and Li
(2003), we assume that the government finances the chosen R&D subsidy sR by means of lump-
sum taxation. By hiring `i (ω, t) units of R&D labor for a time interval dt, firm i expects to realize
ve(jω +1, ω, t) with probability ιi (ω, t) dt. Thus, at each point in time t, firm i will choose its R&D
employment `i in order to solve:

max
`i

{
ve(jω + 1, ω, t)

Q (t)φ `i (ω, t)
aq (jω, ω, t)

− `i (ω, t) (1− sR)

}
.

The first order condition for an interior solution is:

ve(jω + 1, ω, t) = aq (jω, ω, t)Q (t)−φ (1− sR) . (13)

If ve(jω+1, ω, t) < aq (jω, ω, t)Q (t)−φ (1− sR), then the marginal cost of R&D exceeds the marginal
benefit and it is profit-maximizing for firms to devote no labor to R&D. In contrast, if ve(jω +
1, ω, t) > aq (jω, ω, t)Q (t)−φ (1− sR), then the marginal benefit of R&D exceeds the marginal cost
and it is profit-maximizing for firms to devote infinite resources to R&D. Only if (13) holds for all
ω can a symmetric equilibrium exist where the innovation rate ι(t) is positive, finite and the same
in all industries. Then marginal cost equals marginal benefit in all R&D activities.

3.6 The stock market

There is a stock market that channels consumer savings to R&D projects and helps consumers to
diversify the risks of holding stocks issued by firms. The stock market valuation of each innovation
is the expected discounted profits that the innovation generates. We now solve for these expected
discounted profits.
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Regardless of whether an innovation is drastic or non-drastic, over a time interval dt the share-
holder receives an expected dividend πe(jω+1, ω, t)dt and the value of the quality leader appreciates
by v̇e(jω + 1, ω, t)dt. Because each quality leader is targeted by other firms that conduct R&D to
discover the next higher quality product, the shareholder suffers an expected loss of ve(jω + 1, ω, t)
if further innovation occurs. This event occurs with probability ι(t)dt, whereas no innovation oc-
curs with probability 1 − ι(t)dt. Efficiency in the stock market requires that the expected rate
of return from holding a stock of a quality leader is equal to the riskless rate of return r(t) that
can be obtained through complete diversification. Taking limits as dt approaches zero, we get the
following no-arbitrage condition for the stock market:

πe(jω + 1, ω, t)
ve(jω + 1, ω, t)

+
v̇e(jω + 1, ω, t)
ve(jω + 1, ω, t)

= r (t) + ι(t).

In equilibrium, the dividend rate plus the expected rate of capital gains equals the riskless interest
rate plus a risk premium (since quality leaders risk being driven out of business by further innova-
tion). Using the free entry condition (13) and taking into account that q (jω, ω, t) is fixed during a
R&D race, v̇e(jω+1,ω,t)

ve(jω+1,ω,t) = −φ Q̇(t)
Q(t) . Consequently, the expected dividend rate is:

πe(jω + 1, ω, t)
ve(jω + 1, ω, t)

= r (t) + ι(t) + φ
Q̇ (t)
Q (t)

.

Solving for the expected profit flow of the firm that wins the R&D race and produces the top
quality q (jω + 1, ω, t), we get:7

ve(jω + 1, ω, t) =
q(jω ,ω,t)c(t)L(t)

Q(t)
κ(1+κ)χ
σ+κ−1

r (t) + ι(t) + φQ̇ (t) /Q (t)
, (14)

where χ ≡
[
1 +

κ( σ
σ−1)−(σ−1)/κ

1−κ

]
/

[
1 + κ

(
σ
σ−1

)−(σ−1)(1+κ)/κ
]

is completely determined by parame-

ter values. Combining (14) with (13), we get the following research equation:

κ(1+κ)χ
σ+κ−1 c (t)

r (t) + ι (t) + φQ̇ (t) /Q (t)
= ax (t) (1− sR) , (15)

where x (t) ≡ Q(t)1−φ

L(t) is a new endogenous variable that measures relative R&D difficulty in the
economy.

The economic intuition behind (15) is straightforward. The left-hand side is proportional to the
benefit (expected discounted profits) of winning each R&D race and the right-hand side is propor-
tional to the cost. The benefit from innovating increases when c (t) increases (the representative
consumer buys more), when r (t) decreases (future profits are discounted less), when ι (t) decreases
(the industry leader is less threatened by further innovation), and when φQ̇ (t) /Q (t) decreases
(there are higher capital gains from remaining in business). The cost of innovating increases when
a increases (R&D workers become less productive at generating innovations), when x (t) increases

7See Appendix A.1 for further details.

10



(innovating becomes relatively more difficult), and when sR decreases (the government subsidizes
R&D less).

3.7 The labor market

Labor is perfectly mobile across industries and between production and R&D activities. In each
industry ω, consumers only buy from the current quality leader. Employment in the manufacturing
sector is given by:8

LM (t) =
∫ 1

0
D (jω, ω, t) dω =

(σ − 1) (1 + κ)
σ (κ+ 1)− 1

c (t)L (t) .

Total employment in the R&D sector is given by:

LI(t) = aι (t)Q (t)−φ
∫ 1

0
q (jω, ω, t) dω = aι (t)Q (t)1−φ .

Consequently, it follows from the full employment of labor condition L(t) = LM (t) + LI(t) that:

1 =
(σ − 1) (1 + κ)
σ (1 + κ)− 1

c (t) + aι (t)x (t) . (16)

The two terms on the right-hand-side of (16) are the shares of labor in production and R&D
activities, respectively. The production employment share increases when c (t) increases (the rep-
resentative consumer buys more). The R&D employment share increases when a increases (more
R&D labor is needed to generate any given innovation rate), when ι(t) increases (firms innovate at
a faster rate), and x (t) increases (innovating is relatively more difficult).

This completes the description of the model. In the next section we analyze the dynamic
properties of the model.

4 The balanced-growth equilibrium

We are interested in solving the model for a balanced growth (or steady-state) equilibrium where all
endogenous variables grow over time at constant (not necessarily the same) rates and the innovation
rate ι is the same in all industries.

Differentiating the identity x (t) ≡ Q (t)1−φ /L (t) with respect to time, and plugging ι (t) from
the full employment of labor condition (16) into (11), it is easy to verify that the time evolution of
relative R&D difficulty x(t) is governed by the following differential equation:

ẋ (t)
x (t)

=
B

a (1− κ)x (t)

[
1− (σ − 1) (1 + κ)

σ(κ+ 1)− 1
c (t)

]
− n, (17)

where B ≡ (1− φ)κ and the assumption φ < 1 guarantees that B > 0.
8See Appendix A.2 for further details.

11



Next we derive a second differential equation governing the time evolution of consumer expen-
diture c(t). Using the labor full-employment condition (16) to substitute for the innovation rate
ι (t), and then using (15) and (11) to substitute for the interest rate r (t), the Euler equation (6)
becomes

ċ (t)
c (t)

=
κ (1 + κ)χc (t)

(σ + κ− 1) ax (t) (1− sR)
− 1−B

(1− κ) ax (t)

[
1− (σ − 1) (1 + κ)c (t)

σ(κ+ 1)− 1

]
− ρ. (18)

Equations (17) and (18) form a system of two non-linear differential equations in the two endogenous
variables x(t) and c(t).

Equation (17) implies that ẋ(t)
x(t) is constant over time only if both x and c are constant over

time. Thus we solve the model for balanced growth equilibria by solving for when both ẋ(t)
x(t) = 0

and ċ(t)
c(t) = 0. This yields the following pair of equations that are linear in (x, c) space:

1 =
(σ − 1) (1 + κ)
σ(κ+ 1)− 1

c+
a (1− κ)n

B
x, (19)

κ(1+κ)χ
σ+κ−1 c

ρ+ 1−B
a(1−κ)x

[
1− (σ−1)(1+κ)

σ(κ+1)−1 c
] = ax (1− sR) . (20)

It is easily verified that (19) is downward-sloping in (x, c) space, (20) is upward-sloping in (x, c)
space, and they have a unique intersection in the strictly positive orthant given by:

c∗ =
(1− sR)

[
ρ+ 1−B

B n
] σ(κ+1)−1

(σ−1)(1+κ)

(1− sR)
[
ρ+ 1−B

B n
]

+ n(1−κ)
B

κχ[σ(κ+1)−1]
(σ+κ−1)(σ−1)

, (21)

x∗ =
κχ[σ(κ+1)−1]
a(σ+κ−1)(σ−1)

(1− sR)
[
ρ+ 1−B

B n
]

+ n(1−κ)
B

κχ[σ(κ+1)−1]
(σ+κ−1)(σ−1)

. (22)

Furthermore, this balanced growth equilibrium is saddle-path stable; starting from any initial value
of x, if c jumps immediately to the saddle-path value, then over time both x and c converge to the
balanced growth values given by (21) and (22).

Next, we solve for the innovation rate ι∗ corresponding to this balanced growth equilibrium.
From the definition x (t) ≡ Q(t)1−φ

L(t) and (11), ẋ(t)
x(t) = (1−φ)κι/(1−κ)−n. Solving for when ẋ(t)

x(t) = 0
yields the unique balanced growth innovation rate:

ι∗ =
n(1− κ)
(1− φ)κ

. (23)

Equation (23) has two implications that are standard and one implication that is new. As in
Li (2003), the steady-state innovation rate ι∗ is an increasing function of the population growth
rate n and an increasing function of the strength of R&D spillovers parameter φ. What is new is
that the steady-state innovation rate ι∗ is also a decreasing function of κ, the Pareto distribution
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parameter that determines the expected size of innovations. Since the expected size of innovations
is increasing in κ, (23) implies when innovations are bigger on average, they occur less frequently
on the steady-state equilibrium path.

We can also solve for the steady-state share of labor employed in R&D activities. From (19),
the R&D share is a(1−κ)n

B x. Substituting into this expression using (22) yields:

(
LI
L

)∗
=

n(1−κ)
B

κχ[σ(κ+1)−1]
(σ+κ−1)(σ−1)

(1− sR)
[
ρ+ 1−B

B n
]

+ n(1−κ)
B

κχ[σ(κ+1)−1]
(σ+κ−1)(σ−1)

. (24)

The steady-state R&D employment share is an increasing function of the R&D subsidy rate sR and
asymptotically approaches 1 as sR approaches 1.

Finally, we solve for the steady-state rate of economic growth g∗. Substituting the individual
demand function (4) into (2) and simplifying using (5), we obtain:

u(t) =
[∫ 1

0
q (jω, ω, t)

1
σ · d (jω, ω, t)

σ−1
σ dω

] σ
σ−1

=
c(t)
P (t)

.

Since static consumer utility u(t) is proportional to consumer expenditure c(t), static consumer
utility is a measure of real consumption and it is appropriate to use the growth rate of static
utility as our measure of economic growth. Now Ṗ (t)

P (t) = 1
1−σ

Q̇(t)
Q(t) = 1

1−σ
κ

1−κ ι = n
(1−σ)(1−φ) since the

distribution of prices does not change over time. Thus the steady-state rate of economic growth is:

g∗ =
u̇(t)
u(t)

= − Ṗ (t)
P (t)

=
n

(σ − 1)(1− φ)
. (25)

The steady-state rate of economic growth g∗ is increasing in the population growth rate n, is
increasing in the strength of R&D spillovers φ and is decreasing in the elasticity of substitution
between products σ. Note that the R&D subsidy rate sR does not appear in (25) and hence this is
a semi-endogenous growth model.

The following Proposition summarizes the steady-state properties of the model:

Proposition 1 The model has a unique symmetric balanced-growth equilibrium where consumer

expenditure c, relative R&D difficulty x, the innovation rate in each industry ι, the R&D employ-

ment share LI/L, and the rate of economic growth g are all constant over time and given by (21),

(22), (23), (24) and (25), respectively.

Ha and Howitt (2007) have recently called into question semi-endogenous growth models, ar-
guing that fully-endogenous growth models have better empirical support. However, their analysis
has an important limitation. They implicitly assume that convergence to steady-state is fast, so
that with 50 years of data, one can just focus on the steady-state implications of growth mod-
els. This assumption is called into question in Steger (2003). He calibrates the Segerstrom (1998)
semi-endogenous growth model using US data and finds that convergence to steady-state is slow: it
takes almost 40 years to go half the distance to the steady-state. With such slow convergence, we
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think that future tests of semi-endogenous growth theory should take into account the transition
path implications of the theory.9

5 Welfare Properties

The previous section has analyzed the equilibrium properties of the model. In this section we study
the model’s welfare properties. For the sake of exposition, in what follows we only report the main
results of the welfare analysis and leaving to Appendix A.3 the detailed calculations. We assume
that the social planner can only intervene by subsidizing or taxing R&D and solve for the R&D
subsidy/tax policy that maximizes the discounted utility of the representative household.10

The main results of the welfare analysis can be summarized as follows: (i) the optimal R&D
intensity is the same as (23) and (ii) the optimal share of labor in R&D is

(
LI
L

)s
=

nκ

nκ+Bρ(σ − 1)
. (26)

As in Segerstrom (1998) and Li (2003), even though the optimal innovation rate coincides with
the equilibrium innovation rate (23), the government can in general improve welfare by intervening
in the economy. By comparing (24) to (26), we get that the steady-state equilibrium outcome is
optimal if and only if

1− sR = Λ, Λ ≡ ρχ (1− κ) [σ(κ+ 1)− 1]
(σ + κ− 1)

[
ρ+ 1−B

B n
] , (27)

which implies that the optimal R&D policy is

tax R&D ⇐⇒ Λ > 1
subsidize R&D ⇐⇒ Λ < 1

The optimal R&D policy can be either a tax or a subsidy depending on the parameters of the
model. Because Λ is a rather complicated function of the model’s parameter values, we study the
model’s properties numerically to gain further insights about its welfare implications.

5.1 Numerical Results

In our computer simulations, we use the following benchmark parameter values: ρ = 0.07, n =
0.014, κ = 0.2132, σ = 2, a = 1, µ = 0 and φ = ψ = 0.3.

The subjective discount rate ρ is chosen to get a steady-state equilibrium interest rate matching
its long-run average value in the data. The real interest rate in the model is both the risk-free
interest rate as well as a measure of the average real return on the stock market. In the simulations

9We also think that Ha and Howitt (2007) use inappropriate data. In most of their paper (except for section 6),
they use aggregate R&D expenditure data, which includes defense and space R&D. We see no reason to expect that
semi-endogenous growth models would do a good job of explaining movements in defense and space R&D. In these
models, all R&D decisions are made by profit-maximizing firms who sell their products to consumers, not the public
sector.

10The optimal R&D subsidy/tax policy that we solve for does not lead to the first-best outcome since the markup
of price over marginal cost differs across firms. To achieve the first-best outcome, the markup of price over marginal
cost should be the same for all products. But that does not hold in equilibrium with heterogenous firms.

14



we set ρ = 0.07, consistent with the 7 percent average real return on the US stock market over the
past century as calculated by Mehra and Prescott (1985).

The population growth rate n = 0.014 is chosen to match the world population growth rate.
According to the World Development Indicators (World Bank, 2003), the average annual rate of
population growth in the world between 1990 and 2000 was around 1.4 percent.

The Pareto distribution parameter κ and the elasticity of substitution parameter σ are chosen
to generate markups of price over marginal cost consistent with the data. In the model, since
marginal cost equals one for each firm, the markup of price over marginal cost for each firm is the
firm’s price, so the average markup is the expected price Ep charged by industry leaders. Using
(7) and (10), the average markup in the economy is

Ep ≡
∫ ∞

1
p(λ)g(λ) dλ =

(
σ
σ−1

)1+ 1−σ
κ − 1

κ
σ−1 − 1

+
(

σ

σ − 1

)1+ 1−σ
κ

and the highest markup in the economy is

pmax ≡
σ

σ − 1
.

The average markup of price over marginal cost has been estimated as ranging between 1.05 and
1.4 [see Basu (1996) and Norrbin (1993)]. We calibrate the model so the average markup is in
the middle of this range, Ep = 1.25 or 25 percent, and the highest markup is pmax = 2.0 or 100
percent. These properties imply that κ = 0.2132 and σ = 2.

In the model, the R&D productivity parameter a plays no role in determining either the equilib-
rium share of labor in R&D (24) or the optimal R&D subsidy rate (27), so we set a = 1. Likewise,
since the parameter values ψ and µ only influence equilibrium outcomes through their combined
effect on φ ≡ ψ − µ(1 − κ)/κ, we set µ = 0 so the parameter φ = ψ fully determines the size of
R&D spillovers. Finally, we chose φ to guarantee that the steady-state rate of economic growth is
2 percent, which is consistent with the average US GDP per capita growth rate from 1950 to 1994
reported in Jones (2005). Given n = 0.014, σ = 2 and g = 0.02, g = n

(σ−1)(1−φ) implies that the
net-spillover parameter φ is 0.3.

The numerical results with the benchmark parameter values are reported in Table 1. The left

Table 1: The Benchmark Case

Equilibrium Optimal
sR 0 0.56
g 0.02 0.02
Ep 1.25 1.25
x 1.50 3.01
c 1.04 0.91

LI/L 0.11 0.22
1/I 13.5 13.5
û 1.86 4.41

column shows different endogenous variables that we solve for, the middle column shows the steady-
state equilibrium results when R&D is not subsidized and the right column shows the steady-state

15



equilibrium results when R&D is optimally subsidized.
The main result from Table 1 is that it is optimal to heavily subsidize R&D. In the benchmark

case where the steady-state rate of economic growth is 2 percent (g = 0.02) and the average markup
is 25 percent (Ep = 1.25), the optimal R&D subsidy rate is 56 percent (sR = 0.56). Given this
property, it is not surprising that optimally subsidizing R&D leads to a big increase in relative
R&D difficulty (x increases from 1.50 to 3.01), a big increase in the share of labor employed in
R&D activities (LI/L increases from 0.11 to 0.22), and a fall in consumer expenditure on goods (c
decreases from 1.04 to 0.91).

Instead of reporting the steady-state innovation rate I in Table 1, we report its inverse 1/I
since this provides more useful information. The inverse 1/I represents the average time duration
between innovations or the expected duration of profits for industry leaders. With the benchmark
parameter values, this expected duration of profits is a reasonable 13.5 years (both before and after
R&D is optimally subsidized).

We also report information about how much consumers gain from optimal policies being imple-
mented. It could be that implementing the optimal R&D subsidy policy is associated with just a
small increase in real consumption, even though the optimal R&D subsidy rate is high. Comparing
steady-state equilibrium paths before and after R&D is optimally subsidized, we show in Appendix
A.3 that the percentage increase in real consumption is the same as the percentage increase in
subutility û. Optimally subsidizing R&D leads to a 137 percent increase in real consumption (û
increases from 1.86 to 4.41). Thus in the benchmark case, not only is it optimal to heavily subsidize
R&D but doing so has a big effect in increasing steady-state real consumption.

The question naturally arises, how robust is the finding that it is optimal to heavily subsidize
R&D? Can we find plausible parameter values for which it is optimal to tax R&D?

As a first robustness check, we study what happens when the steady-state rate of economic
growth is 0.5 instead of 2 percent (g = 0.005 instead of g = 0.02). To obtain this lower rate of
economic growth (remember g = n

(σ−1)(1−φ)), we lower the R&D spillover parameter φ from 0.3 to
-1.8, hold all other parameters fixed at their benchmark values. With negative instead of positive
R&D spillovers, the case for taxing R&D becomes stronger.

The results are reported in Table 2. Even when the rate of economic growth is low (only half

Table 2: The Low Growth Case

Equilibrium Optimal
sR 0 0.18
g 0.005 0.005
Ep 1.25 1.25
x 3.00 3.61
c 1.11 1.10

LI/L 0.055 0.067
1/I 54.2 54.2
û 1.64 1.74

a percent per year), we get that it is still optimal to subsidize R&D, although the subsidy rate is
lower (18 percent instead of 56 percent). Optimally subsidizing R&D leads to an increase in the
share of labor employed in R&D activities by 22 percent (LI/L increases from 0.055 to 0.067) and
an increase in steady-state real consumption by 6 percent (û increases from 1.64 to 1.74). On the
negative side, the expected duration of profits for industry leaders has now jumped up from 13.5
to 54.2 years, but this is an unavoidable implication of assuming a low rate of economic growth.
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To get that it is optimal to tax R&D subsidy, we need to assume a very low rate of economic
growth. Table 3 illustrates what happens when we keep on lowering φ and the corresponding
economic growth rate g (holding all other parameters fixed at their benchmark values). In this

Table 3: Very Low Growth

φ -1.8 -3 -6.2 -7 -10
(sR)s 0.18 0.10 0.000 -0.015 -0.052
g 0.005 0.003 0.002 0.0018 0.0013

(LI/L)0 0.055 0.043 0.0027 0.025 0.019
(LI/L)s 0.067 0.047 0.0027 0.024 0.018

1/I 54.2 77.4 138 154 213

table, we report the optimal R&D subsidy rate (sR)s, the R&D share when the subsidy rate is
zero (LI/L)0 and the R&D share when the subsidy rate is optimal (LI/L)s. The second column
represents the same information as in Table 2. What is striking is that the optimal R&D subsidy
rate does not become negative (a R&D tax) until φ is below -6,2 and the economic growth rate is
below 0.2 percent. Then the expected duration of profits exceeds 138 years.

As another robustness check, we study what happens when we vary the Pareto distribution
parameter κ holding all other parameters fixed at their benchmark values. Increasing κ increases
the average size of innovations and average markup of price over marginal cost in the economy. The

Table 4: Varying κ: The Benchmark Case

κ 0.05 0.1 0.3 0.5 0.7 0.9
(sR)s 0.85 0.73 0.49 0.43 0.42 0.43
g 0.02 0.02 0.02 0.02 0.02 0.02

(LI/L)0 0.04 0.07 0.13 0.14 0.14 0.14
(LI/L)s 0.22 0.22 0.22 0.22 0.22 0.22

1/I 2.63 5.55 21.4 50.0 116 450

results are presented in Table 4. As shown, there is a U-shaped relationship between the Pareto
parameter κ and the optimal R&D subsidy rate (sR)s: as κ increases, (sR)s first falls and then
rises. Furthermore, the bottom of the U-shape occurs around κ = 0.7 and an optimal R&D subsidy
rate of 42 percent. We never get close to the case of R&D taxes being optimal.

As a final robustness check, we study what happens when we vary the Pareto distribution
parameter κ holding all other parameters fixed at their Table 2 values: “The Low Growth Case.”

Table 5: Varying κ: The Low Growth Case

κ 0.05 0.1 0.3 0.5 0.7 0.9
(sR)s 0.55 0.35 0.15 0.17 0.22 0.28
g 0.005 0.005 0.005 0.005 0.005 0.005

(LI/L)0 0.03 0.04 0.06 0.06 0.05 0.05
(LI/L)s 0.07 0.07 0.07 0.07 0.07 0.07

1/I 10.5 22.2 85.7 200 467 1800

These results are presented in Table 5. Again, there is a U-shaped relationship between the Pareto
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parameter κ and the optimal R&D subsidy rate (sR)s: as κ increases, (sR)s first falls and then
rises. This time, the bottom of the U-shape occurs around κ = 0.3 and an optimal R&D subsidy
rate of 15 percent. Even in this low growth case with g = 0.005, we never get close to R&D taxes
being optimal.

The model has a striking property that sheds light on why it is so hard to find cases where
taxing R&D is optimal. First note that

(
LI
L

)s
= nκ

nκ+Bρ(σ−1) implies that 1/
(
LI
L

)s
= 1 + Bρ(σ−1)

nκ .
Then substituting into this expression using g = nκ

(σ−1)B , we obtain

(
LI
L

)s
=

g

ρ+ g
. (28)

The optimal share of labor devoted to R&D
(
LI
L

)s
only depends on the economic growth rate g and

the interest rate parameter ρ. In the benchmark case where the interest rate is 7 percent (ρ = 0.07)
and the economic growth rate is 2 percent (g = 0.02), the optimal R&D share is 22 percent. In
“the low growth case” where the interest rate is 7 percent (ρ = 0.07) and the economic growth rate
is 0.5 percent (g = 0.02), the optimal R&D share is 9 percent. Plugging possible values into (28),
one quickly realizes that there do not exist plausible cases where the optimal R&D share is small
and that is what one needs if taxing R&D is going to be optimal.

5.2 Discussion

To provide the economic intuition behind our numerical results, we focus on the familiar external
effects associated with R&D discussed in Segerstrom (1998). First, every time a firm innovates,
consumers benefit from being able to purchase higher quality products and firms do not take this
into account in their profit-maximizing calculations. This consumer surplus effect represents one
reason why firms may under-invest in R&D from a social perspective. Second, every time a firm
innovates, it drives another firm out of business and firms do not take the losses of other firms into
account in their profit-maximizing calculations. This business stealing effect represents one reason
why firms may over-invest in R&D from a social perspective. Finally, there are the intertemporal
R&D spillover effects associated with research failures and successes. For example, if φ < 0, then
R&D investment today raises the costs of innovating in the future and this represents an additional
reason why firms may over-invest in R&D from a social perspective.

In the previous section, we found that the optimal R&D subsidy rate (sR)s decreases when the
R&D spillover parameter φ falls and the optimal R&D tax case only occurs when φ is sufficiently
negative (Table 3). We can understand these findings by thinking about the above-mentioned
external effects. When φ falls, there is no change in the size of the positive consumer surplus effect.
But a fall in φ does contribute to lowering the innovation rate ι, makes the expected duration of
each monopoly position longer (see the 1/ι ratio in Table 3). Therefore, when an innovation occurs,
the loss experienced by the owners of the displaced firm becomes larger when φ falls and there is
a larger negative business stealing effect. Also a fall in φ directly lowers the positive intertemporal
R&D spillover effect if φ > 0 and raises the negative intertemporal R&D spillover effect if φ < 0.
Both the increase in the size of the business stealing effect and the “more negative” intertemporal
R&D spillover effect contribute to reducing the optimal R&D subsidy rate (sR)s and when these
two external effects become sufficiently negative, then it becomes optimal to tax R&D. Since a low
value of φ is associated with a low innovation rate ι, the optimal R&D tax case only occurs when
the rate of economic growth g is relatively low.
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6 Conclusions

In quality-ladder growth models, it is typically assumed that innovation size is constant and identical
across industries. This assumption contrasts with the empirical evidence showing that innovation
size is far from being identical across industries and that the innovation size distribution is skewed
toward the low value side.

In this paper, we develop a quality-ladder growth model without scale effects that is consistent
with the empirical evidence. In particular, we formalize the idea that there is an increasing difficulty
to realize innovations of greater value by assuming that the size of quality improvements is the result
of a random draw from a Pareto distribution. Our model extends the class of quality-ladder growth
models to encompass firm heterogeneity: both the prices charged and the quantities produced vary
across firms and depend on the type of innovation achieved.

In the earlier literature, Grossman and Helpman (1991), Segerstrom (1998) and Li (2003) solve
their quality-ladder growth models analytically and find that whether it is optimal to subsidize or
tax R&D depends on the size of innovations. In this paper, we go further by also solving our model
numerically and this allows us to assess how important is the optimal R&D tax case. We find
that the decentralized economy almost always under-invests in R&D relative to what is socially
optimal. The only exceptions arise when the steady-state rate of economic growth is very low. As
under-investment in R&D holds for a wide range of parameter values, our analysis provides support
for a public policy of subsidizing R&D activities.
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Appendix

Solving the integrals in this Appendix involves lengthy calculations. These calculations are pre-
sented in full in a “Guide to the Appendix” that is available from the authors upon request.

A.1 Calculation of the expected profit flow earned by an industry leader

In this section, we determine the expected value of the uncertain profit stream earned by an industry
leader that produces the quality product jω + 1 in industry ω at time t, that is:

πe(jω + 1, ω, t) =
∫ “

σ
σ−1

”σ−1

1
πI (jω + 1, ω, t) g (λ) dλ+

+
∫ ∞“

σ
σ−1

”σ−1
πD (jω + 1, ω, t) g (λ) dλ.

By substituting the flow of profits for incremental and drastic innovations, the expected profit flow
πe(jω + 1, ω, t) can be written as:

πe(jω + 1, ω, t) = q(jω ,ω,t)c(t)L(t)
P (t)1−σ


∫ “

σ
σ−1

”σ−1

1
λ

(
λ

1
σ−1 − 1

)
λ
− σ
σ−1

g (λ) dλ︸ ︷︷ ︸
(a)

+

+
∫ ∞“

σ
σ−1

”σ−1
σ−σ (σ − 1)σ−1 λg (λ) dλ︸ ︷︷ ︸

(b)

 . (A1.1)

First, we calculate the two integrals (a) and (b) of Eq. (A1.1). As concerns the first integral, we

notice that the term λ

(
λ

1
σ−1 − 1

)
λ
− σ
σ−1 can be easily written as

(
1− λ

1
1−σ
)

. As the probability

density function g(λ) is Pareto and is equal to 1
κλ
− 1+κ

κ , integral (a) can be rearranged as:

1
κ

∫ “
σ
σ−1

”σ−1

1

(
1− λ

1
1−σ
)
λ−

1+κ
κ dλ =

κσ −
(

σ
σ−1

) 1−σ
κ [σ (κ+ 1)− 1]

(κ+ σ − 1)σ
. (A1.2)

Let us now focus on integral (b). Using the Pareto density function g(λ) and solving, we get:

σ−σ (σ − 1)σ−1

κ

∫ ∞“
σ
σ−1

”σ−1
λ−

1
κ dλ =

(σ−1)σ−1( σ
σ−1)

(κ−1)(σ−1)
κ

σσ(1−κ) . (A1.3)
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Summing the two expressions in Eqs. (A1.2) and (A1.3), it yields:

κ

(σ + κ− 1)

[
1 +

κ( σ
σ−1)−

σ−1
κ

1−κ

]
. (A1.4)

Next, we calculate P (t)1−σ which is at the denominator of the ratio that is outside the square
brackets of Eq. (A1.1). By using Eq. (5), this term can be written as:

P (t)1−σ ≡
∫ 1

0

[∫ ( σ
σ−1)σ−1

1

q(jω′ ,ω
′,t)

λ g (λ) dλ +

+
∫ ∞
( σ
σ−1)σ−1

(
σ
σ−1

)1−σ
q
(
jω′ , ω

′, t
)
g (λ) dλ

]
dω′,

which can be further rearranged as:

P (t)1−σ ≡
∫ 1

0
q
(
jω′ , ω

′, t
)

∫ ( σ

σ−1)σ−1

1

g(λ)
λ dλ︸ ︷︷ ︸

(c)

 dω′+

+
(

σ
σ−1

)1−σ
∫ 1

0
q
(
jω′ , ω

′, t
)

∫ ∞
( σ
σ−1)σ−1

g (λ) dλ︸ ︷︷ ︸
(d)

 dω′. (A1.5)

Firstly, we consider integral (c) . As before, replacing the Pareto density function g(λ) and solving,
we get:

1
κ

∫ ( σ
σ−1)σ−1

1
λ−1− 1+κ

κ dλ =
1

(1 + κ)

1−
(

σ

σ − 1

) (κ+1)(1−σ)
κ

 . (A1.6)

Secondly, we calculate integral (d) . Once again, using the Pareto density function g(λ), this integral
boils down to:

1
κ

∫ ∞
( σ
σ−1)σ−1

λ−
1+κ
κ dλ =

(
σ

σ − 1

) 1−σ
κ

. (A1.7)

Plugging Eqs. (A1.6) and (A1.7) into (A1.5), the term P (t)1−σ can be rewritten as:

P (t)1−σ ≡
∫ 1

0
q
(
jω′ , ω

′, t
) 1

(1 + κ)

1−
(

σ

σ − 1

) (κ+1)(1−σ)
κ

 dω′ +

+
(

σ
σ−1

)1−σ
∫ 1

0
q
(
jω′ , ω

′, t
) [( σ

σ − 1

) 1−σ
κ

]
dω′.
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The latter can be rearranged as:

P (t)1−σ ≡ 1
(1 + κ)

[
1−

(
σ
σ−1

) (1+κ)(1−σ)
κ

]∫ 1

0
q
(
jω′ , ω

′, t
)

dω′︸ ︷︷ ︸
=Q(t)

+

+
(

σ

σ − 1

) (κ+1)(1−σ)
κ

∫ 1

0
q
(
jω′ , ω

′, t
)

dω′︸ ︷︷ ︸
=Q(t)

.

Collecting Q (t) and simplifying terms, we get:

P (t)1−σ ≡ Q (t)

[
1+κ( σ

σ−1)−
(σ−1)(1+κ)

κ

1+κ

]
. (A1.8)

Finally, using Eqs. (A1.4) and (A1.8), we can write the expected profit stream as:

πe(jω + 1, ω, t) =
q (jω, ω, t) c (t)L (t)

Q (t)
· κ (1 + κ)χ

(σ + κ− 1)
.

with χ being equal to

(
1 +

κ( σ
σ−1)−

(σ−1)
κ

1−κ

)
/

[
1 + κ

(
σ
σ−1

)− (σ−1)(1+κ)
κ

]
.

A.2 Labour in the manufacturing sector

In this section, we determine the amount of employment in the manufacturing sector, that is:

LM (t) =
∫ 1

0
D (ω, t) dω

=
∫ 1

0

[∫ ( σ
σ−1)σ−1

1
D (ω, t) g (λ) dλ+

∫ ∞
( σ
σ−1)σ−1

D (ω, t) g (λ) dλ

]
dω.

By using Eqs. (4) and (7) to substitute for D (ω, t), the previous expression becomes:

LM (t) = c(t)L(t)
R 1
0 q(jω ,ω,t) dωR 1

0 q(jω′ ,ω
′,t)p(jω′ ,ω

′,t)1−σ dω′︸ ︷︷ ︸
(e)


∫ ( σ

σ−1)σ−1

1
λ−

σ
σ−1 g (λ) dλ︸ ︷︷ ︸

(f)

+

+
(

σ
σ−1

)−σ ∫ ∞
( σ
σ−1)σ−1

g (λ) dλ︸ ︷︷ ︸
(g)

 . (A2.1)
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We first consider the ratio (e) outside the square brackets in Eq. (A2.1). The denominator is
P (t)1−σ ≡

∫ 1
0 q (jω′ , ω′, t) p (jω′ , ω′, t)

1−σ dω′, that is equal to (A1.8); in the numerator,
∫ 1

0 q (jω, ω, t)
dω can be replaced by Q (t). Simplifying terms, the ratio (e) boils down to:

c(t)L(t)
R 1
0 q(jω ,ω,t) dωR 1

0 q(jω′ ,ω
′,t)p(jω′ ,ω

′,t)1−σ dω′
=

(1 + κ) c (t)L(t)

1 + κ
(

σ
σ−1

)− (1+κ)(σ−1)
κ

. (A2.2)

Then, we focus on the two integrals inside the square brackets of Eq. (A2.1). Integral (g) is the
same of integral (d) of formula (A1.5); the solution is given by Eq. (A1.7). Integral (f) reads as:

∫ ( σ
σ−1)σ−1

1
λ−

σ
σ−1 g (λ) dλ.

Using the Pareto density function g(λ) and solving the integral, we get:

1
κ

∫ ( σ
σ−1)σ−1

1
λ−

σ
σ−1
−κ+1

κ dλ =
σ − 1

σ (κ+ 1)− 1

1−
(

σ

σ − 1

)−σ(κ+1)−1
κ

 . (A2.3)

By using Eqs. (A2.2), (A1.7) and (A2.3) into Eq. (A2.1), it yields:

LM (t) =
(1 + κ) c (t)L(t)

1 + κ
(

σ
σ−1

)− (1+κ)(σ−1)
κ

 σ − 1
σ (κ+ 1)− 1

1−
(

σ

σ − 1

)−σ(κ+1)−1
κ

+

+
(

σ
σ−1

)−σ ( σ

σ − 1

) 1−σ
κ

}
.

which, after a bit of algebra, can be simplified as:

LM (t) =
(σ − 1) (1 + κ)
σ (κ+ 1)− 1

c (t)L (t) .

A.3 The welfare analysis

First note that the price index P (t) ≡
[∫ 1

0 q (jω′ , ω′, t) p (jω′ , ω′, t)
1−σ dω′

]1/(1−σ)
can be written

as P (t) =
[
Q(t) · Ep1−σ]1/(1−σ) where Ep1−σ is the expected value of p1−σ and p is the price

charged by each industry leader firm. This follows because q equals one for each product at time
t = 0, the innovation rate is the same in each industry and the distribution of prices does not
change over time. Since u(t) = c(t)/P (t),

lnu(t) = ln c(t) +
1

σ − 1
lnQ(t) +

1
σ − 1

lnEp1−σ.
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In any balanced growth equilibrium where consumer expenditure c is constant over time, consumer
utility grows solely because the average quality of products Q(t) increases over time.

Second, we derive the state equation relevant to the social planner. Since x(t) ≡ Q(t)1−φ/L(t),
ẋ(t)
x(t) = (1− φ) Q̇(t)

Q(t) −
L̇(t)
L(t) = (1− φ) κ

1−κ ι(t)− n, the relevant state equation is

ẋ(t) =
[

B

1− κ
ι(t)− n

]
x(t).

At time t = 0, Q(0) = 1 and L(0) = 1 imply that the relevant initial condition is x(0) = 1.
Third, we derive a relationship between the state variable x(t) and average quality Q(t). Since

x(t) ≡ Q(t)1−φ/L(t) = e(1−φ)κΦ(t)/(1−κ)/ent, lnx(t) = BΦ(t)/(1 − κ) − nt and using this equation
we obtain lnQ(t) = κΦ(t)

1−κ = κ
1−κ [lnx(t) + nt] 1−κ

B or

lnQ(t) =
κ

B
[lnx(t) + nt] .

Using (16), we also obtain a relationship between the state variable x(t), the innovation rate ι(t)
and consumer expenditure c(t):

ln [1− aι (t)x (t)] = ln
(σ − 1) (1 + κ)
σ (1 + κ)− 1

+ ln c (t) .

We are now ready to state the social planner’s problem. We want to maximize discounted utility
U =

∫∞
0 e−(ρ−n)t lnu (t) dt subject to the state equation, and using the above-derived equations,

we obtain

lnu(t) = ln [1− aι (t)x (t)]− ln
(σ − 1) (1 + κ)
σ (1 + κ)− 1

+
κ

(σ − 1)B
[lnx(t) + nt] +

1
σ − 1

lnEp1−σ.

Since the terms ln (σ−1)(1+κ)
σ(1+κ)−1 , κnt

(σ−1)B and 1
σ−1 lnEp1−σ play no role in determining the optimal

control, they can be ignored and the social planner’s optimal control problem can be written more
simply as

max
ι(t)

{∫ ∞
0

e−(ρ−n)t

[
ln [1− aι (t)x (t)] +

κ

(σ − 1)B
lnx(t)

]
dt

}
subject to ẋ(t) =

[
B

1−κ ι(t)− n
]
x(t), x (0) = 1.

The current value Hamiltonian function for this problem is given by

H ≡ ln [1− aι (t)x (t)] +
κ

(σ − 1)B
lnx(t) + ζ(t)

[
B

1−κ ι(t)− n
]
x(t),

where ζ(t) is the costate variable associated to the state variable x(t). Pontryagin’s maximum
principle yields the first order conditions:

∂H

∂ι
=
[
− a

1− aι(t)x(t)
+ ζ(t)

B

1− κ

]
x(t) = 0, (A3.1)
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ζ̇(t)− (ρ− n) ζ(t) = −∂H
∂x

= − κ

(σ − 1)B
1
x(t)

− ζ(t)
[

B

1− κ
ι(t)− n

]
+

aι(t)
1− aι(t)x(t)

, (A3.2)

and the transversality condition

lim
t→∞

e−(ρ−n)tζ(t)x(t) = 0.

Solving (A3.1) for ι(t) yields ι(t) = 1
ax(t) −

1−κ
ζ(t)Bx(t) and substituting this into both (A3.2) and the

state equation, we obtain the following system of non-linear differential equations:

ζ̇(t) = ρζ(t)− κ

(σ − 1)Bx(t)
,

ẋ(t) =
B

a (1− κ)
− 1
ζ(t)
− nx(t).

The curve ẋ = 0 is upward sloping in (x, ζ) space, the curve ζ̇ = 0 is downward sloping in (x, ζ)
space, and they have a unique intersection in the positive orthant given by

ζs =
a (1− κ) {nκ+Bρ(σ − 1)}

B2ρ (σ − 1)

and
xs =

κB

a (1− κ) {nκ+Bρ(σ − 1)}
,

where the superscript s denotes the steady-state value of the variable. It is easy to verify that
the system of differential equations is saddle-path stable. Jumping onto the saddle-path at time
t = 0 and staying on it forever is a candidate solution to the social planner’s problem that satisfies
the first order conditions (A3.1) and (A3.2) as well as the transversality condition. Since the
maximized Hamiltonian is strictly concave in x and all the sufficiency conditions for infinite-horizon
autonomous optimal control problems are satisfied by this candidate solution, we conclude that it
is the unique solution to the social planner’s problem (see Theorem 7.14 in Acemoglu (2008)).

Focusing on the steady-state properties of this solution, we can solve for the optimal steady-
state innovation rate ιs. Setting ẋ = 0 yields ιs = n(1−κ)

B , which coincides with the equilibrium
steady-state innovation rate in Eq. (23). We can also solve for the optimal steady-state share of
labor employed in R&D activities (LI/L)s. Eq. (16) implies that (LI/L)s = aιsxs. Substituting
into this expression for ιs and xs yields(

LI
L

)s
=

nκ

nκ+Bρ(σ − 1)
.

Comparing the optimal R&D share (LI/L)s with the equilibrium R&D share (LI/L)∗ given by Eq.
(24), they only coincide if

1− sR = Λ, Λ ≡ ρχ (1− κ) [σ(κ+ 1)− 1]
(σ + κ− 1)

[
ρ+ 1−B

B n
]
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In steady-state equilibrium, it is optimal to subsidize R&D if Λ < 1 and it is optimal to tax R&D
if Λ > 1. Which case occurs depends on the parameters of the model.

Finally, we present some results used in the numerical analysis.
First, we calculate the expected price in the economy Ep. Using (7) and (10),

Ep ≡
∫ ∞

1
p(λ)g(λ) dλ =

∫ “
σ
σ−1

”σ−1

1
λ

1
σ−1 g(λ) dλ+

∫ ∞“
σ
σ−1

”σ−1

σ

σ − 1
g(λ) dλ

=

(
σ
σ−1

)1+ 1−σ
κ − 1

κ
σ−1 − 1

+
(

σ

σ − 1

)1+ 1−σ
κ

.

Second, we calculate what static utility equals for the representative consumer in steady-state
equilibrium. From before u(t) = c(t)/P (t) and in steady-state equilibrium, consumer expendi-
ture c(t) takes on the constant value c∗. The price index satisfies P (t) =

[
Q(t) · Ep1−σ]1/(1−σ)

and in steady-state equilibrium, since x(t) ≡ Q(t)1−φ/L(t) takes on the constant value x∗, x∗ent =
Q(t)1−φ. It follows thatQ(t) = (x∗)1/(1−φ)ent/(1−φ) and P (t) =

[
(x∗)1/(1−φ)ent/(1−φ) · Ep1−σ]1/(1−σ)

.
Thus static utility in steady-state equilibrium is given by

u(t) = c∗(x∗)
1

(1−φ)(σ−1)
[
Ep1−σ] 1

σ−1 eg
∗t.

Third, we compare static utility when R&D is not subsidized u0(t) to static utility when R&D
is optimally subsidized us(t). This yields

us(t)
u0(t)

=
c∗s(x

∗
s)

1
(1−φ)(σ−1)

[
Ep1−σ] 1

σ−1 eg
∗t

c∗0(x∗0)
1

(1−φ)(σ−1) [Ep1−σ]
1

σ−1 eg∗t
=
c∗s(x

∗
s)

1
(1−φ)(σ−1)

c∗0(x∗0)
1

(1−φ)(σ−1)

since subsidizing R&D does not affect the distribution of prices or the steady-state rate of economic
growth g∗. Comparing steady-state equilibrium paths before and after R&D is optimally subsidized,
the ratio us(t)

u0(t) reveals the percentage increase in real consumption from optimally subsidizing R&D.

In the presentation of the numerical results, we report the subutility value û ≡ c∗(x∗)
1

(1−φ)(σ−1)

associated with some steady-state outcomes since this information allows the reader to calculate
us(t)
u0(t) .
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Figure 1: Averages number of claims made by technological fields for the U.S. economy (source:
Hall et al., 2001).
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Figure 2: Estimated citation lag distribution per technology field (source: Hall et al., 2000).
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