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Abstract 

This study aims to investigate the utility and potentialities of statistical process control for 

monitoring performances of healthcare organizations. We retrospectively applied the 

statistical process control for monitoring perioperative system performance, represented in 

this study by the operating room turnaround time. The results showed that the control 

charts are able to identify the steady-state behavior of the process and to detect 

improvements or deteriorations in process performance over time. 

 

Keywords: Operating room turnaround time, Organizational Indicator, Shewhart control 

charts; EWMA control charts;  
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1. Introduction  

There is growing attention in the use of Statistical Process Control (SPC) in healthcare, [1-

5], to aid in process performance monitoring, to obtain ideas for improvement, to test 

changes to see whether they are improvements, and to see whether improvements are 

maintained. 

However, SPC is relative new to clinicians and healthcare managers and cultural and 

conceptual barriers slow down the spread of SPC within the healthcare framework. 

The Ferrara University Hospital “Sant’Anna” employs 2,628 members of staff, houses 

626 beds for inpatients and 85 for those receiving day-hospital care. In 2013, there were 

22,647 admissions and 9,048 day-hospital patients.  

Since 2001, the hospital developed a web-based performance measurement system, 

comprising a total of 768 internal and 67 external measures, with a view to improving 

service provision, accountability and quality of care, [6]. 

Within this framework, in order to improve understanding of processes and increase the 

quality of performance, hospital management decided to monitor several clinical, 

organizational and economic indicators through a suitable methodology. 

An important organizational indicator is the Operating Room (OR) Turnaround Time 

(TaT). OR TaT is defined as the time between the “incision close” of patient n to the 

“incision open” of patient n+1. It is a key process indicator for hospital business 

management: delays in OR turnaround time lead to a reduced number of surgical 

interventions per day with a consequent increase in costs and decrease in efficiency. 

This study aims to investigate the utility and potentialities of statistical process control 

for monitoring the OR TaT, assessing the steady-state behaviour of the process and 

identifying changes that indicate either improvement or deterioration in quality. With this 

purpose, we applied SPC retrospectively to the data conveniently extracted from the 

hospital information system.  

The results showed that Shewhart and EWMA control charts are able to identify the 

steady-state behaviour of the process and to detect positive or negative changes in process 

performance. 

 

2. The Data  

The Hospital Quality Department decided to focus attention on the five operating room 

suites located in Block 24. For these ORs, we examined the data from January 2013 to 
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February 2014 considering only the elective surgeries performed on weekdays: in total 

there were 2,469 surgical operations. In particular, we considered the OR 1 in detail, which 

was the most used with 680 (28%) surgical operations. 

Table 1 contains several descriptive statistics and Figure 1 shows the histogram of the 

TaT of operating room 1. 

 

First Quartile 34.75 

Median 50.00 

Third Quartile  70.00 

Mean 57.44 

Standard Deviation 40.68 

Table 1: descriptive statistics for OR1 TaT 

 

 

Figure 1: Histogram of the original data for OR 1 TaT 

 

The data were highly positively skewed as evidenced by the histogram and by the 

estimated moment coefficient of skewness: 1̂ 2.93  . 

We performed a preliminary application of the SPC on the original data and, as 

expected, we found an unreasonable number of false alarms likely due to the high 

skewness.  
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In order to reduce the asymmetry, we performed a Box–Cox power transformation [7] 

using the R package “car” [8]. The optimal lambda value has been determined using a 

profile log-likelihood approach (Figure 2) and resulted: 0.0084   . 

 

Figure 2: Profile Log-likelihood for Box-Cox transformations 

 

Although not normally distributed (Shapiro-Wilk normality test: p<0.01), the 

transformed data (Figure 3) exhibited only a slight departure from symmetry: 

1̂ 0.0019.    

 

 

Figure 3: Histogram of transformed data for OR 1 TaT 
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Therefore, in the rest of the work we used the transformed data for process performance 

monitoring. 

 

3. Control Charts 

We were interested in monitoring the average ( X -chart) and the standard deviation (S-

chart) of the transformed operating room TaT per week. In the time interval of interest, the 

number of surgical operations per week was variable. On average there were 12.15 surgical 

interventions per week (minimum=3, median=12, maximum=26 and mode=7). 

We considered the week as a suitable “small window of time” representative of a stable 

process subject only to natural variation. Furthermore, due to the non-elevated number of 

surgical interventions per week and to the consideration that in healthcare settings there is 

much less emphasis on sampling only a portion of the output of a process at periodic 

intervals than in the industrial SPC [3], we decided to consider all the surgical 

interventions performed in each week. In such a way, we used control charts with variable 

sample size [9]. 

To estimate process parameters on which to base the control limits, we performed 

“Phase I” using the first m=30 weeks (January 2013-August 2013). 

The X  and S-Shewhart control charts (3-sigma limits) are given by:  

 

ˆ3 iLCL X n   

CL X  

ˆ3 iUCL X n  , 

and 

CL S  

4( )iUCL SB n , 

3( )iLCL SB n  

respectively. 

With 
1 1

m m

i i i

i i

X n x n
 

  , 
   1 4 1 4...

ˆ m ms c n s c n

m


 
  and 

 
1/2

2

1 1

1
m m

i i i

i i

S n s n m
 

  
    

  
  , where in  is the sample size, ix  is the sample mean, is  
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is the sample standard deviation of the i-th subgroup (week), m is the number of subgroups 

and  3 iB n ,  4 iB n ,  4 ic n  are the values of the factors 
3B , 4B  and 4c  for samples of size 

in  [9-10]. 

The control charts, obtained using the R package [11], for the m=30 preliminary 

samples, are shown in the left side (Calibration) of Figures 4 and 5. 

 

 

Figure 4: S-chart for the preliminary samples (Calibration 1÷30) and new observations (31÷56). 

 

 

Figure 5: X  chart for the preliminary samples (Calibration 1÷30) and new observations (31÷56). 

 

Process parameters estimates should be based on a process that is in control. Therefore, 

we investigated the run above CL (weeks: 6÷12) in the calibration data of the X -chart 

(Figure 5) seeking common features that might indicate a non-random cause for their 
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occurrence. No consistent assignable cause was found for these data points and considering 

that a few “out-of control” points (in our case none, since we observed only a sequence of 

statistics above CL but below UCL) will not distort the control limits significantly [9], we 

chose to retain these data and keep the parameter estimates unchanged. 

Based on these preliminary samples, we obtained: 3.798X  , 0.584S   and 

ˆ 0.591  . These estimates were calculated on the transformed data. However, since it 

was of interest for the Hospital Quality Department to know the “in control” process mean 

and variability of the original data, we also computed the corresponding estimates on the 

untransformed data: the average OR TaT was 55.65 minutes and the standard deviation 

was 41.20 minutes. 

Therefore, once we assessed the stability of the process in the preliminary samples, we 

retrospectively monitored the remaining data (26 weeks). 

On studying the control charts from week 31 it can be noted that: the S-chart showed a 

sequence of points (weeks 32÷38) below the central line (Figure 4); the X -chart showed a 

similar sequence of statistics (weeks 31÷37) below the central line (Figure 5). 

Then, as of week 39, the S-chart did not show any systematic behaviour or out-of 

control points, while very different results were observed in the X -chart.  

Two sequences above the central line were present: the first run involving weeks 38÷44; 

the second sequence from week 46 to 52 (Figure 5). Applying the Western Electric run 

rules [9, 11-12] the presence of such a non-random behaviour is a strong indication that in 

this period the process was affected by assignable causes. 

With the benefit of hindsight in such a retrospective study, we naturally know where to 

look for any anomalies in the control charts. However, it is incontrovertible that as of week 

39 the performance monitored by X -chart degraded slightly: the systematic pattern above 

the central line indicates an increase in the average of the OR TaT.  

On October 1, 2013 (week 39) an important change occurred in the OR organizational 

system. Patient transportation from and to the operating room, carried out until then by 

internal hospital staff, was committed to an external private company. 

Summarising, monitoring the process from August 2013 through February 2014, an 

increment in average OR TaT appeared during the first week of October 2013, coinciding 

with the change in patient transfer service. The increase is significant, from a former 
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average of 55.65 minutes of non-operative time between operations (for the preliminary 

samples) to 66.13 minutes (for the period October 2013, February 2014). 

In the X -chart, to detect the shift in the process outcomes, we used one of the Western 

Electric rules (seven, or eight, consecutive points on one side of the centre line). Runs rules 

can increase the ability of the chart to detect small process shifts (<1.5) but can also 

increase the number of false alarms. To avoid this problem the combined use of Shewhart 

and exponentially weighted moving average (EWMA) charts is suggested and strongly 

encouraged also in healthcare applications [3,13]. In such a way, the relatively poor 

performance in detecting small process shifts of the Shewhart chart is balanced by the 

ability of EWMA which on the other end may be less sensitive to detect large process 

shifts. Therefore we complete our study using also an EWMA chart for the process mean.  

Each point on the chart indicates the value of the exponentially weighted moving 

average for that subgroup.  

The EWMA statistic for the i-th subgroup iZ  is defined recursively as [9] 

  11i i iZ x Z      

where ix  is the mean of the sample i of size in ,  is a weight parameter ( 0 1  ). 

When the process mean is known 0Z   otherwise 0Z X  where 
1 1

m m

i i i

i i

X n x n
 

   and 

m is the number of preliminary samples.  

 

In the case of variable sample size, the EWMA control limits are [9,10]  

 

 
1 22

0
ˆ 1

i j

i jj
UCL X L n  




    
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 
1 22

0
ˆ 1

i j

i jj
LCL X L n  




   , 

where L is the constant for the control limits and as before 

   1 4 1 4...
ˆ m ms c n s c n

m


 
  
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In our case, in order to use an EWMA chart with the same “in-control” performance of 

the X -chart, we chose 0.05   and 2.492L  : in such a way the EWMA control chart 

has an ARL0=370.4 [9]. 

The EWMA control chart for the process mean, obtained using the R package [11], is 

shown in Figure 6. 

 

 

Figure 6: EWMA chart for the process mean: preliminary samples (Calibration 1÷30); new 

observations (31÷56). 

 

There are several features of Figure 6 that are worthy of discussion.  

First, as for the X -chart, the preliminary samples were in statistical control.  

Second, in weeks 35÷37, the EWMA statistic is below the LCL. These out-of-control 

signals confirm the pattern observed in the X -chart where we noted a sequence of points 

(weeks 31÷37) below the central line (Figure 5). A very tentative explanation might be that 

the awareness of future changes in the OR working conditions might have affected the 

internal hospital staff with consequently improved performances.  

Third, the performance deterioration in OR TaT since October 2013 (i.e. coinciding 

with the change in the OR patient transfer staff) is also confirmed by the EWMA chart: 
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since week 39, the EWMA statistic iZ  is constantly rising with two out-of-control points 

on weeks 50 and 51. 

 

4. Concluding remarks 

In the European Union the cost of each OR wasted minute can easily be greater than 

€30, [14]. Therefore, OR TaT can be extremely expensive and this measure is also a good 

indicator of efficiency.  

Managers of health care organizations need to evaluate and monitor efficiency 

indicators and they also need to find benchmarks to reduce costs and increase efficiency. 

The challenge is thus to select a useful statistical tool for accurately monitoring and 

providing benchmarks for such indicators.  

Statistical process control provides both a method for assessing the undisturbed, or 

steady-state, process behaviour and a method for detecting positive or negative changes in 

performance quickly.  

We have retrospectively used Shewhart and EWMA control charts for monitoring the 

operating room turnaround time.  

Our results showed that control charts are able to detect quality improvements or quality 

deterioration. We have not been able to test SPC as a monitoring tool applied continuously 

in a prospective mode: this will be the next step of our work. 
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