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Abstract. Persistence modules are algebraic constructs that can be
used to describe the shape of an object starting from a geometric repre-
sentation of it. As shape descriptors, persistence modules are not com-
plete, that is they may not distinguish non-equivalent shapes. In this
paper we show that one reason for this is that homomorphisms between
persistence modules forget the geometric nature of the problem. There-
fore we introduce geometric homomorphisms between persistence mod-
ules, and show that in some cases they perform better. A combinatorial
structure, the H0-tree, is shown to be an invariant for geometric isomor-
phism classes in the case of persistence modules obtained through the
0th persistent homology functor.
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1 Introduction

The shape description problem is at the core of many shape recognition methods
used in computer vision and computer graphics. It is based on the fundamen-
tal idea of using compact representations of shapes, namely, shape descriptors,
to analyze, understand, and compare objects [17]. Roughly speaking, a shape
descriptor is complete when any two different shapes have two different descrip-
tions.

In this paper we consider persistence modules as shape descriptors, focusing
on the completeness problem, that is the problem of deciding whether persistence
modules are able to discriminate between different shapes. We highlight some
differences that arise in this respect depending on whether we work in a purely
algebraic setting or we also keep memory of the underlying geometric setting to
define the set of homomorphisms between persistence modules.

Approaching the shape description problem by persistence, one usually mod-
els the shape of an object as a geometric pair (X, f), where X is a geometric
representation of the object under study (e.g., a manifold or a triangular mesh),
and f is a function on X measuring some shape property of the object (e.g.,
curvature, height, distance from a fixed point). Two objects are considered to



have the same shape whenever the pairs (X, f) and (X ′, f ′) modeling them are
isomorphic in a suitable category C [12]. However, since answering the isomor-
phism question in C is not an easy problem, one is usually satisfied with moving
to persistence modules via the persistent homology functor, and studying the
isomorphism question for persistence modules [18, 4]. In this way the shape de-
scriptors that are actually used for comparison are persistence modules.

The rationale behind this approach is that the persistent homology functor
does not change the isomorphism classes. Moreover, the isomorphism question
for persistence modules is easier than for objects in C. Sometimes one simplifies
further the problem by only considering as shape descriptors invariants of iso-
morphism classes of persistence modules, such as barcodes [5], or size functions
[7].

The completeness problem for persistence modules is studied in [11] for the
case of curves. The authors show that two different shapes can have isomorphic
persistence modules (i.e. the persistent homology functor forgets some relevant
geometric features of the original shape), and prove that completeness can be
achieved by increasing the number of components of the measuring function f .

In this paper, after reporting the basic definitions about persistence in Sect.
2, in Sect. 3 we present an example showing that, in some cases, persistence
modules cannot discriminate non-equivalent shapes because in the category of
persistence modules there are homomorphisms that are purely algebraic. More
precisely, they do not reflect geometric transformations between the original
shapes. For this reason, in Sect. 4, we introduce the notion of geometric ho-
momorphisms between persistence modules and show that in some case they
perform better than algebraic homomorphisms. Finally, in Sect. 5, we consider
the problem of completeness for invariants. As for invariants with respect to
algebraic isomorphisms, we review some results about the rank invariant from
[2]. In the case of invariants with respect to geometric isomorphisms, we present
an invariant in the case of 0th homology, the H0-tree. We end the paper with a
brief list of open questions in Sect. 6.

2 Background on persistence

2.1 The geometric approach to persistence

According to the spirit of the original persistence papers [10, 1], one has some
category C of interest of geometric nature, and a functor F from that category to
the category n-filt of n-filtrations. One then studies and works with the functor
Hi ◦ F , Hi being the ordinary ith homology functor. This composite functor is
generally called an ith persistent homology functor.

In the most simple case, fixed n ∈ N, C = C(n) is the category defined as
follows [15]:

1. Objects of C are pairs (X, f), where X is a topological space and f =
(f1, . . . , fn):X → R

n is a continuous function.



2. If (X, f), (X ′, f ′) ∈ obj(C), then the set of morphisms of C from (X, f) to
(X ′, f ′) is the set of continuous functions γ:X → X ′ such that f(x) ≥
f ′(γ(x)) for all x ∈ X (with the convention that u = (ui) ≤ v = (vi) in R

n

means ui ≤ vi for all i).

We observe that an isomorphism in C is a homeomorphism mapping level
sets into level sets. Therefore we obtain the following easy remark.

Proposition 1. If two pairs (X, f) and (X ′, f ′) are isomorphic in C then their
natural pseudo-distance vanishes:

δ((X, f), (X ′, f ′)) := inf
γ

sup
x∈X

‖f(x)− f(γ(x))‖∞ = 0,

where γ varies in all possible homeomorphisms between X and X ′.

More details on the natural pseudo-distance and its relationship with persis-
tence can be found, e.g., in [6, 8]. We remark that the converse of Proposition 1
in general is false, although it can be true in certain cases (cf., e.g., [3]).

For (X, f) ∈ obj(C), and for u = (ui) ∈ R
n, let Xu = ∩n

i=1f
−1
i ((−∞, ui]). If

u ≤ v ∈ R
n, then there is an inclusion iX(u, v):Xu →֒ Xv. Thus the collection

{Xr}r∈Rn is an n-filtration of X. If (X, f), (X ′, f ′) ∈ obj(C), and γ:X → X ′ is
a morphism from (X, f) to (X ′, f ′), then the restriction of γ to Xu, denoted by
γu, maps Xu to X ′

u, for all u ∈ R
n. Moreover, for all u ≤ v ∈ R

n, γv ◦ iX(u, v) =
iX′(u, v) ◦ γu. Thus the collection {γr}r∈Rn is a morphism of n-filtrations. The
functor F : C → n-filt which maps (X, f) to {Xr}r∈Rn and γ to {γr}r∈Rn is called
the sublevelset filtration functor.

2.2 The algebraic approach to persistence

In [2, 18], the authors showed that persistence can be defined at algebraic level
directly, without the need for an underlying topological setting. More precisely,
they introduced the concept of a persistence module M as the one of a family
{Mu}u∈Rn of vector spaces (or modules over the same commutative ring) to-
gether with a family of homomorphisms {ιM (u, v):Mu → Mv}u≤v∈Rn such that
ιM (u,w) = ιM (v, w) ◦ ιM (u, v) and ιM (u, u) = idMu

for all u ≤ v ≤ w ∈ R
n.

Given two persistence modules M and N, the set of homomorphisms from M

to N consists of collections of homomorphisms of vector spaces h = {hu:Mu →
Nu}u∈Rn such that ιN (u, v) ◦ hu = hv ◦ ιM (u, v) for all u ≤ v ∈ R

n. Therefore,
in a purely algebraic setting two persistence modules M and N are isomorphic
if there exists a collection h = {hu:Mu → Nu}u∈Rn of isomorphisms of vector
spaces such that ιN (u, v) ◦ hu = hv ◦ ιM (u, v) for all u ≤ v ∈ R

n. We call h an
algebraic isomorphism of persistence modules.

The category of persistence modules will be denoted by M. Clearly, objects
and homomorphisms of M can be constructed by applying the persistent ho-
mology functor to objects and morphisms of C. It is known that, in the case of
objects, the converse is also true, at least for finite persistence modules [2, Th.
2]. For this reason, in this paper we focus on morphisms rather than on objects
of M.



3 A preliminary example

Let us begin considering the following example. It shows that, even in the very
basic case of curves endowed with simple Morse functions, we can find non-
isomorphic pairs (X, f) and (X ′, f ′) in C taken by the persistent homology func-
tor into algebraically isomorphic modules.

Example 1. Let (X, f) and (X ′, f ′), with X = X ′ = S1, be the two curves
displayed in Figure 1. (X, f) and (X ′, f ′) are not isomorphic in C. Indeed, an
isomorphism between (X, f) and (X ′, f ′) necessarily takes a critical point of f to
the critical point of f ′ at the same height, which is clearly impossible in this case.
On the other hand, the persistence modules M and N obtained by applying the
0th persistent homology functor to the pairs (X, f) and (X ′, f ′), respectively,
are isomorphic in M. To see this, it is sufficient to consider the diagram

M5 =< z1, z2, z3|z1 = z2 = z3 >
h5→ N5 =< z′1, z

′
2, z

′
3|z

′
1 = z′2 = z′3 >

↑ ↑

M4 =< z1, z2, z3|z1 = z3 >
h4→ N4 =< z′1, z

′
2, z

′
3|z

′
2 = z′3 >

↑ ↑

M3 =< z1, z2, z3 >
h3→ N3 =< z′1, z

′
2, z

′
3 >

↑ ↑

M2 =< z1, z2 >
h2→ N2 =< z′1, z

′
2 >

↑ ↑

M1 =< z1 >
h1→ N1 =< z′1 >,

(1)

where the vertical maps are induced by inclusions, and the horizontal maps
are defined by setting h1(z1) = z′1, h2(z1) = z′1, h2(z2) = z′2, h3(z1) = z′1,
h3(z2) = z′2, h3(z3) = z′1 + z′2 − z′3, h4(z1) = z′1, h4(z2) = z′2, h5(z1) = z′1.

f f ′

a1a1

a2a2

a3a3

a4a4

a5a5

a6a6

X X ′

Fig. 1. Two curves not distinguishable by persistence modules in M.

The previous example proves the following result, saying that algebraic iso-
morphism of persistence modules may not distinguish the shapes of two pairs.



Proposition 2. The persistent homology functor Hi◦F : C → M does not reflect
isomorphisms (i.e., Hi ◦ F (X, f) isomorphic to Hi ◦ F (X ′, f ′) in M does not
imply (X, f) isomorphic to (X ′, f ′) in C).

This prompts a new definition that will be given in the next section.

4 Geometric homomorphisms

In this section we focus on particular homomorphisms between persistence mod-
ules that we call geometric because they are the image of a morphism in C. In
Proposition 3 we prove that, restricting to geometric homomorphisms, we can
distinguish the curves of Example 1.

Definition 1. Let (X, f) and (X ′, f ′) be two objects in C. A homomorphism
(resp., isomorphism) h between the persistence modules Hi ◦ F (X, f) and Hi ◦
F (X ′, f ′) is called a geometric homomorphism (resp. geometric isomorphism) if
it belongs to the image of the persistent homology functor.

We now prove that no isomorphism between the persistence modules
⊕

i∈Z
Hi◦

F (X, f) and
⊕

i∈Z
Hi ◦F (X ′, f ′) of Example 1 belongs to the image of the per-

sistent homology functor.

Proposition 3. Let (X, f) and (X ′, f ′) be as in Example 1. No morphism γ

between (X, f) and (X ′, f ′) is taken by
⊕

i∈Z
Hi ◦ F into an isomorphism of

persistence modules.

Proof. Let γ:X → X ′ be a continuous function such that f(x) ≥ f ′(γ(x)) for
every x ∈ X (i.e., γ is a morphism in C). Let us assume that Hi ◦ F (γ) is an
isomorphism for every i ∈ Z. Hence, in particular, H1(γ):H1(X) → H1(X

′) is
an isomorphism, and therefore the degree of γ is non-zero (recall that X = X ′ =
S1). It follows that γ(X) = X ′.

Let ai with i = 1, . . . , 6 be as in Figure 1 and let pi (resp. qi) be the only
critical point of f in f−1(ai) (resp. of f

′ in (f ′)−1(ai)). Since f(p1) ≥ f ′(γ(p1)),
necessarily γ(p1) = q1. Moreover, it must hold γ(p6) = q6. Indeed, since γ(X) =
X ′, there is some p ∈ X such that γ(p) = q6. Thus we get f(p) ≥ f(γ(p)) = a6,
implying p = p6. Using again f(x) ≥ f ′(γ(x)), we deduce that f ′(γ(p2)) ≤ a2.
Hence, either γ(p2) = q2 or γ(p2) belongs to the arc of X ′ containing q1 and
staying under a2.

Let us assume γ(p2) = q2. By considering the arcs in which p1, p6 (resp.
q1, q6) split the curve X (resp. X ′), since p3 does not belong to the arc contain-
ing p2, by continuity we get that γ(p3) does not belong to the arc containing
γ(p2). Moreover, γ(p3) stays under a3. Thus, the classes of γ(p1) and γ(p3) are
homologous in N3 = H0(X

′
a3
). Since the classes of p1 and p3 are not homologous

in M3 = H0(Xa3
), we conclude that H0 ◦ F (γ) is not an isomorphism.

Otherwise, if γ(p2) belongs to the arc of X ′ containing q1 and staying under
a2, then γ(p1) and γ(p2) are homologous in N2 = H0(X

′
a2
). Since the classes of

p1 and p2 are not homologous in M2 = H0(Xa2
), we conclude that H0 ◦ F (γ) is

not an isomorphism in this case either, yielding the claim. ⊓⊔



Thus, if we consider the subset of geometric isomorphisms we can distin-
guish the curves of Example 1. This seems to suggest that the image of the
persistent homology functor is better suited for the aims of shape comparison
than persistence modules.

5 Invariants

In this section we study invariants for isomorphism classes of persistence modules
in the algebraic as well as in the geometric case.

5.1 Algebraic setting

Invariants for classes of persistence modules up to algebraic isomorphism have
been thoroughly studied for cases n = 1 in [18] and n > 1 in [2]. The main
invariant proposed is the rank invariant.

Definition 2. Given a persistence module M consisting of vector spaces {Mu}u∈Rn

and homomorphisms {ιM (u, v):Mu → Mv}u≤v∈Rn , its rank invariant is an
integer-valued function ρM of two variables u ≤ v ∈ R

n, defined by ρM(u, v) =
rk (ιM (u, v)).

In [18] the authors show that, for n = 1, the rank invariant is a complete
invariant for algebraic isomorphism of persistence modules admitting a finite
presentation (in terms of generators and relators). This means that any two
such persistence modules are algebraically isomorphic if and only if their rank
invariants coincide.

The analogous property for n > 1 is false, as the following example shows
(see also [2]).

Example 2. Consider the bi-dimensional persistence modules M and N, given
by

M1,3 =< zb >

M2,2 =< za >

M3,1 =< za >,

M0,0 =< za, zb >

(

0 1
)

77

(

1 1
)

f
f
f
f
f
f

33
f
f
f
f
f
f

(

1 0
)

11

N1,3 =< z′a >

N2,2 =< z′b >

N3,1 =< z′a > .

N0,0 =< z′a, z
′
b >

(

1 0
)

77

(

0 1
)

g
g
g
g
g

33
g
g
g
g
g

(

1 1
)

22

where the row matrix displayed on each arrow represents the homomorphism
between the modules connected by the arrow, with respect to the bases enclosed
by angle brackets.



X0,0

X3,1

X2,2

X1,3

Y0,0

Y3,1

Y2,2

Y1,3

Fig. 2. Filtrations taken by the 1st homology functor into M (left) and N (right).

For instance,M andN can be obtained by applying the 1st homology functor
with coefficients in Z2 to the 2-filtrations displayed in Fig. 2.

M and N, as persistence modules over Z2, are not isomorphic, although their
rank invariants coincide.

5.2 Geometric setting

We now consider invariants for classes of persistence modules up to geometric
isomorphism. We confine our treatment to the case n = 1, that is to scalar
functions f :X → R. In this setting we can consider the so-called H0-tree of f
introduced in [1].

Trees are of widespread use in topology, either for invariant computations
in a discrete setting (e.g., spanning trees for the fundamental group [13], and
spanning forests for homology [16]) or as signatures in a continuous setting (e.g.,
contour trees [14] for domains of the plane, and merge trees [9] for arbitrary
manifolds). The use we make of trees in this section is in the latter spirit.

H0-trees can be defined on any topological space endowed with a (suitable)
scalar function used to filter the space. Intuitively, the connected components
of the sub-level sets of a function f , thanks to the inclusion relation, can be
organized in a directed tree structure where node parenthood maps component
inclusion. We shall prove that H0-trees are invariant for geometric isomorphism
classes of 0th homology.

Definition 3. For a closed (i.e. compact and without boundary) connected man-
ifold X and a simple Morse function f :X → R, the H0-tree of f is a rooted
binary tree labeled on the nodes defined as follows:

– the set of nodes is equal to the set of points of X such that for every suffi-
ciently small real value ε > 0, the homomorphism induced by the inclusion
ι(f(p)− ε, f(p) + ε):H0(Xf(p)−ε) → H0(Xf(p)+ε) is not an isomorphism;

– the label of a node p is equal to f(p);
– p is a child of q if q has the lowest label among the nodes for which f(p) <

f(q) and ι(f(p), f(q)):H0(Xf(p)) → H0(Xf(q)) takes the class of p to that of
q.

The H0-trees corresponding to the curves of Fig. 1 are displayed in Fig. 3.



a1a1

a2a2

a3a3

a4a4

a5a5

H0(X, f) H0(X
′, f ′)

Fig. 3. The H0-trees associated with the two curves of Fig. 1.

Proposition 4. Let X,X ′ be closed connected manifolds, and f :X → R, f ′:X ′ →
R be simple Morse functions. If h is a geometric isomorphism between M =
H0 ◦F (X, f) and N = H0 ◦F (X ′, f ′), then the H0-trees of f and f ′, say T and
T ′, are isomorphic as labeled trees.

Proof. Since h is an isomorphism, there is a label preserving bijection σ between
the set of nodes of T and that of T ′. Let us see that σ also preserves the edges.
Let p be a child of q in T . Then ι(f(p), f(q)) sends the class of p into that of
q. Since h is induced by a morphism γ:X → X ′, ι(f ′(γ(p)), f ′(γ(q))) sends the
class of γ(p) into that of γ(q), and the class of γ(p) (resp. γ(q)) coincides with
that of σ(p) (resp. σ(q)). Therefore σ(p) is a child of σ(q). ⊓⊔

We remark that H0-trees are not invariant for algebraic isomorphism classes
of 0th persistence modules. Indeed, the curves of Example 1 have non-isomorphic
H0-trees whereas their persistence modules are algebraically isomorphic.

We can see that H0-trees are not complete invariants for geometric isomor-
phism classes by taking the examples in Fig. 1 with −f and −f ′ instead of f and
f ′. However, in the case X = S1, we can prove that a curve (X, f), f :X → R be-
ing a simple Morse function, can be completely reconstructed up to f -preserving
homeomorphisms, from the H0-trees of f and −f .

6 Open questions

We think that further investigations on the subject presented here could tackle
the following problems:

1. Is it true that the image of the persistent homology functor is a category?
2. Does a simple characterization of geometric homomorphisms exists?
3. Can H0-trees be generalized so to obtain combinatorial structures providing

invariants for geometric isomorphism classes for other homology degrees?
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