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Abstract 

Understanding the dynamics of the leverage ratio is at the heart of the empirical 
research about firms' capital structure, as they can be very different under alternative 
theoretical models. The pillars of almost all empirical applications are the maintained 
assumptions of poolability and stationarity, which are motivated by the need of model’s 
simplicity and treatability, rather than being based on an empirical ground. In this paper 
we provide robust evidence of non-stationarity for a significantly large share of US 
firms' debt ratios and of strong heterogeneity in the speeds at which firms adjust 
towards their targets. These results stimulate new directions of the empirical research on 
debt ratio dynamics by relying more on the concept of heterogeneous degree of leverage 
persistence.  
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1. Introduction 1 

The empirical assessment of leverage dynamics is at the heart of the research on corporate 

capital structure, and is well grounded in three main theoretical approaches: the Trade-Off theory 

(henceforth TO, Bradley et al., 1984; Harris and Raviv, 1991), the Pecking-Order theory 

(henceforth PO, Myers and Majluf, 1984) and the Market-Timing theory (henceforth MT, Baker 

and Wurgler, 2002). TO theory predicts that the leverage ratio changes to bridge the gap between 

the actual and the optimal leverage ratio, the latter being determined by balancing the costs (for 

example, default costs) and the benefits (for example, tax savings due to the deductibility of interest 

paid) of borrowing. PO theory envisages that the leverage ratio changes to fulfill the need for 

investment financing when internal funds prove insufficient. Finally, the MT theory predicts that 

the leverage ratio changes to time the equity markets: when the market is perceived to be 

advantageous, the leverage ratio is reduced by raising equity capital. Different borrowing dynamics 

emerge out of the three approaches: TO theory predicts that the corporate debt ratio reverts to an 

optimal target, while both PO and MT theories do not entail such an adjustment.  

Since the seminal works of Taggart (1977) and Auerbach (1985) to the recent studies of 

Fama and French (2012) and Frank and Shen (2014), a relevant amount of empirical research has 

been (and is still) devoted to assess whether leverage dynamics fluctuate or not around an optimal 

target or, equivalently, if the speed of adjustment (henceforth SOA) of actual toward target debt is 

either significant or zero. Surveys of this huge literature are in Graham and Leary (2012), Parsons 

and Titman (2008), and Frank and Goyal (2008). The latter authors summarize the bulk of empirical 

findings with their stylized fact #11: "Corporate leverage is mean-reverting at the firm level. The 

speed at which this happens is not a settled issue". The first part of the sentence is supported by the 

outcome of many published empirical papers. The second part is motivated by the different 

dynamic models used in these papers, ranging from the classical linear adjustment model to 

alternative non-linear and asymmetric adjustment models. Given the wide spectrum of empirical 

evidence about the dynamics of the corporate leverage, we try to summarize main findings and 

critical points.  

Linear models usually find significant and quite slow SOAs of actual to target leverage 

("snail's pace" and "practically no-readjustment" respectively in the words of Fama and French 

                                                           
1 Preliminary drafts of this paper were presented at 1st Conference on Recent Developments in Financial Econometrics 
and Applications, Deakin University, Geelong Waterfront Campus, Melbourne, Australia, 4‐5, December, 2014, and at 
the 6th Italian Congress of Econometrics and Empirical Economics (ICEEE), Salerno, Italy, January 21-23, 2015. We 
are grateful, without implication, to Mauro Costantini as well as to conferences' participants for their comments and 
suggestions.  
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(2002) and of Welch (2004)).2 The recent works by Elsas and Florysiak (2014) and Flannery and 

Watson Hankins (2013) compare the statistical performance of alternative estimators for dynamic 

linear models, and implicitly support this specification.  

Models with non-linear or asymmetric adjustments always find significant departures from 

linearity, and cast doubts on the linear specifications’ ability to explain debt dynamics under both 

the statistical and the economic perspective. Further, the evidence in Chang and Dasgupta (2009) 

and Hovakimian and Li (2011) warns against the empirical validity of inferences based on linear 

target adjusting models, and DeAngelo and Roll (2013) point to the instability of their leverage 

relationships' estimates. Overall, Graham and Leary (2011) summarize these negative findings by 

acknowledging that: “Estimates of leverage adjustment speeds are biased (theme #6)”, and that: 

“Capital structure dynamics have not been adequately considered (theme #7)”. In synthesis, they 

strongly oppose the previously cited stylized fact #11 of Frank and Goyal (2008).  

Independently on being supportive or not of linear target adjustment dynamics, all the 

studies above rely on two maintained assumptions: the poolability of the SOA parameters and the 

stationarity of the debt ratio and of the main explanatory variables (like profitability or investment 

opportunities). These two hypotheses are implicit in the derivation of the empirical specifications 

from theoretical dynamic capital structure models, but rarely have been tested on actual data.3 In 

spite of Graham and Leary (2011) warning that models with pooled SOAs have limited informative 

value, since poolability assumes that all firms have the same adjustment costs, answers have not yet 

emerged about the issue of how to select sub-samples of firms with "homogeneous" adjustment 

costs without incurring in ad hoc assumptions. Although some papers4 claim to tackle the issue of 

heterogeneity, they simply split the whole sample in few sub-samples selected a priori and/or use 

models with firm-specific effects that – as we show – cannot emend for the issue of SOA 

heterogeneity.5  

Neglecting SOAs heterogeneity when, instead, a share of firms is not reverting to target 

leverages can explain most of the problems emerging from the empirical literature’s review: 1. 

statistically significant SOAs which, however, are extremely slow; 2. instability of the SOAs; 3.the 

awkward interpretation of the target leverage determinants. For example, the slow SOAs 

                                                           
2 Flannery and Rangan (2006) estimate only marginally faster SOAs. 
3 Note that a great deal of persistence and non-stationarity has been found by studies inspecting the statistical properties 
of alternative financial and profitability ratios: Ioannidis et al. (2003), McLeay and Stevenson (2009), and Canarella et 
al. (2013). 
4 See e.g. Shyam-Sunder and Myers (1999), Frank and Goyal (2003), Lemmon et al. (2008), and Antoniou et al. (2008). 
5 As far as we know, only two papers quote and partially account for the Graham and Leary (2011) argument. Elsas and 
Florysiak (2014) acknowledge the need of avoiding the SOA parameters' pooling for companies with too strongly 
different adjustment costs, but they only introduce a new panel estimator with a better small-sample performance. Frank 
and Shen (2014) estimate individual target leverages with four common factors extracted from 146 variables with 
heterogeneous factor loadings, but they assume the same (pooled) SOA towards these targets. 
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emphasized by Fama and French (2002) and Welch (2004) could come from invalid pooling of 

firms actually belonging to two groups: those adjusting to targets, and those not-adjusting at all. In 

addition, if the two shares of firms vary over time, the pooled SOA estimates could be subject to 

model parameters’ instability, as found in De Angelo and Roll (2013). In the context of lacking 

cointegration, strongly significant SOA parameters might be due to the invalid use of t-statistics in 

the non-stationary context where, instead, unit roots and cointegration tests should have been used 

to assess the role of the leverage determinants. Further, a lack of cointegration between leverage 

and its determinants could also explain the parameters' instability found in De Angelo and Roll 

(2013), and sheds light on the awkward outcomes of the random financing simulations in Chang 

and Dasgupta (2009).  

The aim of our paper is to assess the extent of invalid assumptions of poolability and 

stationarity which can contaminate SOA estimates and inferences and to propose alternative 

specifications of leverage dynamics in which parameters are allowed to vary across firms using 

methodological approaches that do not assume a priori variables' stationarity but, instead, test for it.  

Our main results are three. First, we find non-stationarity of a large share of US firms' 

leverage ratios: at single-firm level, target-adjustment dynamics do not seem to be particularly 

common.6 Second, the heterogeneity of SOA estimates is evident and significant, with a prevalence 

of SOAs not significantly different from zero. Third, when we model the dynamics of short and 

long term debt ratios separately, we find that non-stationarity affects more the latter. However, 

short- and long-term average SOA estimates of those firms which are target reverting are not much 

different from each other, and across alternative heterogeneous specifications.  

Overall, our evidence points to very persistent and heterogeneous dynamics that, coupled 

with a significant share of firms with non-stationary leverages (i.e. with zero SOAs), calls for 

capital structure models which should better account for the dichotomy of reverting and non-

reverting firms (i.e. of non-zero and zero SOAs). Therefore, the empirical approaches neglecting 

these issues are prone to find dubious (i.e. puzzling, unstable or arbitrary) evidence of the target 

adjustment mechanisms.7 

The rest of the paper is organized as follows. Section 2 which is complemented by Appendix 

A1 sketches the main features of the pooled dynamic models used in the empirical literature on 

capital structure, ranging from the linear to the non-linear and the asymmetric adjustment models. 

                                                           
6 Recently, also Eckbo and Kisser (2014) find little support to the target adjusting behavior from using models where 
the dependent variable is debt issues rather than the usual changes in leverage ratios. 
7 For example, when we compute, using our unrestricted individual estimates, the average SOA of the reverting 
companies, we obtain a measure of speed which is markedly higher than the one usually reported in the literature, and 
close to the results in Frank and Shen (2014) who, at least, account for the heterogeneity of target determinants 
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This review aims to provide the reader with information on the extant models and the benchmark of 

our heterogeneous approach with possibly non-stationary variables. 

Section 3 lists five alternative specifications of debt dynamics with heterogeneous speeds of 

adjustment. The heterogeneity assumption requires a very parsimonious model because the 

inference, which is conducted at the firm level, exploits the time-series variability of each company 

at a time. We propose various specifications of the simple, but effective, univariate representation 

of the debt ratio dynamics which extends the linear approach of Bontempi and Golinelli (2012)8 In 

particular, Section 3.1 makes use of Bontempi and Golinelli (2012) linear implementation, while 

Section 3.2 extends it to different forms of asymmetry and/or exponential smoothing transition in 

the presence of leverage determinants that are stationary. Section 3.3 considers leverage non-

stationarity due to one or two relevant events (breaks) occurring during the life of the firm. Section 

3.4 explains individual debt ratios as dynamically adjusting to targets measured by industry-wide 

averages (details are in Appendix A2). Section 3.5 introduces alternative cointegration tests to 

assess the relevance of the inclusion of explicit target leverage determinants. Section 4 lists the 

empirical outcomes: single-company unit-root (Section 4.1) and cointegration (Section 4.2) results 

are summarized by estimating the shares of the target reverting firms and their average SOAs in 

alternative balanced panels drawn from Compustat dataset (described in Appendix A3). Finally we 

test for the stability over time of our results by running the previous procedures over rolling 

windows (Section 4.3). Section 5 summarizes the main findings and discusses possible extensions 

of this research.  

 

2. A review of the literature about capital structure dynamics 

Much of the empirical capital structure literature can be summarized by the following 

reduced-form9 representation of leverage changes, ∆L, in a panel of firms (i = 1, 2, ... , N) observed 

over an enough long time span (t = 1, 2, ..., T):10 

( )*
11

/
−− −+′+=∆ ititit

MTPO
itititit LLXL αγη ,   with: 

TO
ititit ZL β′=*

   (1) 

where L and L* are, respectively, the observed and the optimal leverage ratios; 
MTPOX /

 is a 

vector of variables able to affect the short run dynamics of leverage, as suggested by the Pecking-
                                                           
8 In particular, they show that the unit root tests of Dickey and Fuller (1979) and of Elliott et al. (1996), if computed at 
single-firm time series level, can measure and test companies' SOAs in the heterogeneous context. 
9 In what follows, we will focus on reduced form approaches, and not on dynamic structural models of capital structure. 
For a sort of workhorse in the structural modeling field see Korteweg and Lemmon (2013). 
10 As quite usual in literature, equation (1) explains the borrowing by individual firms as a continuous process of 
changes in debt ratios, rather than discrete issuances and repurchases. For the opposite point of view, see Eckbo and 
Kisser (2014). 
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Order (PO) and Market-Timing (MT) theories. In particular, PO variables measure the need for 

investment financing not funded by retained earnings (i.e. according to the flow of funds deficit), 

and MT variables measure the timing of the equity markets (i.e. when the market is perceived to be 

advantageous, debt ratio is reduced by raising equity capital). 
TOZ  is a vector of variables 

determining the optimal debt ratio derived by balancing the costs (for example, default costs) and 

the benefits of borrowing (for example, tax savings due to the deductibility of interest paid), as 

predicted by the Trade Off (TO) theory.  

In model (1), γ, α, and β are unobservable components measuring the impact of the PO/MT 

and of the TO explanatory variables on leverage and, depending on the approach, they may be 

modeled as parameters or as linear/nonlinear functions of variables. The term η includes any other 

unobservable determinant of leverage changes and it is added to avoid biases from the omission of 

relevant variables.  

The restriction most commonly imposed to equation (1) regards the pooling of model's 

slopes, together with the assumption of the presence of individual iµ , time tτ , and idiosyncratic itε  

effects:  

γγ =it ;  αα =it ;  ββ =it ;  ittiit ετµη ++=      (2) 

Substituting the restrictions (2) in the general specification (1), we obtain the linear dynamic 

model: 

( ) it
TO
itit

MTPO
ittiit ZLXL εβαγτµ∆ +−+++= −− 11

/     (3) 

In the linear model (3), the heterogeneity in Lit is explained by the PO/MT and TO 

determinants MTPO
itX /  and TO

itZ , by the individual effects iµ , by the macroeconomic shocks tτ  and 

by the idiosyncratic errors itε , while the slope parameters γ, α, and β are assumed to be fixed across 

individuals and over time. All firms are assumed to adjust at the same pace α, the so called speed of 

adjustment (SOA). The statistical significance of SOA is generally interpreted as "target adjustment 

behavior" or, in other terms, as "valid TO model": a non-zero SOA supports the existence of an 

optimal target debt as motivated by the TO theories. Despite the issues and shortcomings listed in 

Appendix A1, model (3) is the workhorse of the empirical specifications used to quantitatively 

study the dynamic of capital structure.11 

                                                           
11 Even limiting to the published articles based on Compustat data, we can, not exhaustively, list twelve papers: 
Auerbach (1985), Shyam-Sunder and Myers (1999), Fama and French (2002), Frank and Goyal (2003), Welch (2004), 
Flannery and Rangan (2006), Hovakimian (2006), Kayan and Titman (2007), Lemmon et al. (2008), Huang and Ritter 
(2009), de Jong et al. (2011), Fama and French (2012). Assumptions (2) are usually used also for the non-US case: 
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More recently, several papers propose nonlinear leverage models whose estimation results 

have been emphasized as being more reliable and reasonable than those of the linear model. The 

main specification changes to model (3) have to do with parameter shifts modeled in alternative 

ways, ranging from traditional variables interactions to maximum likelihood estimates of regime-

switching models (with threshold parameters or driven by thresholds of intervention).12 In symbols, 

these extensions imply the replacement of assumptions (2) - at the basis of the linear adjustment 

model - with the following less restrictive assumptions: 

)( itit Wγγ = ;  )( itit Wαα = ;  )( itit Wββ =       (4) 

Compared to the linear context, here γ, α, and β are no longer considered fixed over time and 

poolable across individuals, but are allowed to evolve as a function of a number of firm-, industry-, 

or macroeconomic-specific determinants itW 13 which are related with transaction and adjustment 

costs. The two assumptions on which this "nonlinear adjustment" literature is based are: (1) the TO 

theory is a valid representation of data assumed to be stationary; (2) unexplained parameters 

heterogeneity is driven solely by few and known a priori chosen variables W.14 Hence, this new 

strand of literature still assumes stationarity and poolability.  

As a matter of fact, the empirical findings based on the linear and non-linear models cited 

above raise many issues (see the list in Appendix A1) but their  results do not provide a clear and 

robust statement about SOA estimates which are still presently a puzzle. 

 

3. Extending the state-of-art models to heterogeneity under alternative degrees of persistence 

From the statistical point of view, the empirical literature on capital structure based on the 

pooled model (3) relies on the asymptotic of large N and small T panel estimation which admits 

fixed- or random-effects estimators, or a combination of fixed-effects and instrumental-variable 

estimators. Besides stationarity, these methods require pooling individual group slopes (i.e. only 

                                                                                                                                                                                                 

Bontempi (1999) for Italy, de Miguel and Pindado (2001) for Spain, Ozkan (2001) and Bevan and Danbolt (2002) for 
the UK, Gaud et al. (2007) for Europe, Nunkoo and Boateng (2010) for Canada, Guney et al. (2011) for China, and 
Noulas and Genimakis (2011) for Greece. Antoniou et al. (2008) compare the results between bank-oriented (France, 
Germany, Japan) and market-oriented (US, and UK) countries. 
12 De Angelo and Roll (2013) label the latter as "target zone models". 
13 For example, in the case of the simple model with interactions, the SOA is modeled as a linear function of the K 

drivers in )(kW : ∑
=

+=
K

k

k
itkit W

1

)(
0 ααα , where 0α  is the linear SOA of model (3) when kk ∀= 0α .  

14 This strand of literature counts a long and non exhaustive list: Fisher et al. (1989), Gilson (1997), Roberts (2002), de 
Haas and Peeters (2006), Drobetz and Wanzenried (2006), Byoun (2008), Cook and Tang (2010), DeAngelo et al. 
(2011), Elsas and Florysiak (2011), Aybar-Arias et al. (2012), Dang et al. (2012), Faulkender et al. (2012), Halling et al. 
(2012), Korteweg and Strebulaev (2012), Warr et al. (2012), Baum et al. (2014). Recently, Pereira-Alves and Ferreira 
(2011), and Oztekin and Flannery (2012) use dummy interactions to extend the international comparison (in the linear 
model context) of Antoniou et al. (2008) to explore the effect of country-specific institutional determinants. 
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the intercepts can differ across the groups). However, with the increase in time observations T of 

large N panels, not only nonstationarity concern grows, but also the assumption of homogeneity of 

slope parameters becomes inappropriate (see Pesaran and Smith (1995), Pesaran et al. (1999), and 

Phillips and Moon (2000)). In this context of "unavoidable" heterogeneity, the asymptotic of large 

N large T motivates our approach of using individual time series estimators in two respects. First, 

heterogeneous parameter estimates are the basic ingredient of the unbiased mean estimator of 

Pesaran and Smith (1995) and Pesaran, et al. (1999). Second, Costantini and Lupi (2014) find that 

individual time series-based inferences are one of the most efficient classification tools for the 

individuals belonging to a panel of data.15  

Therefore, in this paper we propose a way to reinterpret much of the previous results extant in 

the literature on the basis of very simple time series models of leverage dynamics under the 

assumptions of heterogeneity and possible non stationarity. We check for reversion of actual debt 

towards the target in the context of parameters' full heterogeneity across firms by using testing 

strategies that are still valid in the presence of unit-roots (i.e. no adjustment toward targets). In 

particular, we provide an approach of estimating and testing for the significance of individual SOAs 

in the context of either linear or non-linear models with stationary explanatory TO determinants 

(cases A1 and A2 in Section 3.1 and 3.2), and of linear adjustments with non-stationary explanatory 

TO determinants. The non-stationarity property of the variables can be alternatively due to breaking 

targets (case B1 in Section 3.3), to firms adjusting towards average ratios by sector (case B2 in 

Section 3.4), and to non-stationary, but cointegrated with leverage ratios, TO determinants (case C1 

in Section 3.5). 

Starting from the general model (1), heterogeneity of debt dynamics can be allowed across 

individuals (but not over time)16 by assuming the following restrictions: 

iit γγ = ;  iit αα = ;  iit ββ = ;  itiit εµη +=      (5) 

 Restrictions (5) correspond to the assumption that PO/MT and TO driving forces are 

measured by firm-specific parameters which are constant over time. By substituting restrictions (5) 

in equation (1) we obtain the linear model: 

( ) it
TO
itiiti

MTPO
itiiit ZLXL εβαγµ∆ +−++= −− 11

/      (6) 

Model (6) is the heterogeneous counterpart of the classical pooled model (3), in which the 

latter is nested. Imposing the assumption of poolability, γγ =i  , αα =i  , and ββ =i  on model 

                                                           
15 On the latter issue, see also Chortareas and Kapetanios (2009). 
16 The hypothesis of time invariance of our heterogeneous parameters will be validated in the empirical part of this 
study by estimating the models over recursive and rolling samples.  
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(6) unavoidably leads to inconsistent parameter estimates because the explanatory variables are 

correlated with the error (see e.g. Pesaran and Smith (1995), and Imbs et al. (2005)): 

( )
[ ]TO

it
TO
ii

TO
itiiti

MTPO
it

MTPO
iit

TO
itit

MTPO
itiit

ZZLX

ZLXL

111
//

11
/

)( −−−

−−

+−−++

+−++=∆

δδαβδδδε

βαγµ
 (7) 

where the second row of equation (7) lists all the components of the error term under invalid 

poolability. The expression in squared brackets is the error component due to not-modelled 

heterogeneity defined as: MTPO
ii

/δγγ += , ii δαα += , and TO
ii δββ += . Therefore, the 

poolability restrictions can be restated as: 0/ === TO
ii

MTPO
i δδδ  i∀ ; under such restrictions the 

expression in squared brackets vanishes and equation (7) collapses to model (3). Under parameters’ 

heterogeneity, inconsistent estimates arise even if we estimate nonlinear specifications of pooled 

debt equations, as non-linearity per se cannot prevent the problems of invalid poolability 

restrictions.  

 In this paper, we suggest the alternative approach of estimating model (6) and obtaining 

heterogeneous and consistent estimates. From the economic point of view, simulation results 

reported in Titman and Tsyplakov (2007) support our approach, as they suggest that the empirical 

research on the determinants of capital structure should estimate regressions on different 

subsamples representing different categories of firms. They show that the speed at which a firm’s 

debt ratio reverts to its target, as well as the extent to which it moves away from its target, depends 

on the firm’s susceptibility to financial distress, as well as on individual firms’ (and possibly 

heterogeneous) characteristics. Further, the advocates of the "spurious" mean-reversion/target-

adjustment (e.g. Chang and Dasgupta (2009) and Hovakimian and Li (2011)) always show their 

results in the pooled context, while our heterogeneous time series models exploit only the 

information on the pattern of leverage over time and, in doing so, are free from risks of invalid 

cross-section pooling. 

 Given that model (6) estimates are inefficient because all parameters are allowed to vary 

across companies, it is impossible to make reliable inferences unless very long time series by 

company are available. A possible way to bypass the problem of making estimates and inferences 

with single-company time series data is to reduce the number of parameters to be estimated. Given 

that the main interest here is in making inferences on the SOA, we can assume, without loss of 

generality, that PO/MT and TO determinants are summarized by two variables which admit a valid 

autoregressive (AR) representation: 
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TO
it

TO
iti

MTPO
it

MTPO
iti

ZLb

XLa

ε
ε

=

=

)(

)( //

        (8) 

where MTPO
itX /  and TO

itZ  are characterized by heterogeneous inertia, represented as ai(L) and bi(L) 

polynomials in the lag operator L, and by the white noise random shocks MTPO
it

/ε  and TO
itε  assumed 

to be unrelated to Lit-1. Depending on the stationary/integrated status of the data generation process 

of the drivers MTPO
itX /  and TO

itZ , different modeling options emerge.  

 Regarding the PO/MT determinants MTPO
itX / , the hypothesis of their stationarity does not 

seem particularly awkward, as a number of studies support the stationarity of PO/MT variables. For 

example, Raymar (1991) and Sarkar and Zapatero (2003) introduce theoretical models where 

earning processes are heterogeneous but mean-reverting; Alti (2006) shows that the impact of MT 

on leverage vanishes at the end of the second year: such limited persistence of MT shocks justifies 

the stationary assumption on ai(L) polynomials.  

 Therefore, in the following we will focus on cases in which only the TO drivers TO
itZ  are 

either stationary or not.  

3.1 - Case A1: stationary TO determinants in the linear context 

 We can exploit Wold representations (8) of AR models to replace in the linear equation (6) 

both PO/MT and TO explanatory variables, assumed to be stationary. After rearranging, we can 

obtain a very parsimonious and linear univariate AR(1) representation of the individual company’s 

debt ratio: 

 itiitiit eLL ++= − µα∆ 1          (9) 

where errors eit combine the distributed lags of PO/MT and TO random shocks MTPO
it

/ε  and TO
itε  

with the actual leverage shocks εit: it
i

TO
it

ii
i

MTPO
it

iit LbLa
e εεβαεγ +−= −

)()(
1

/

.  

 Given that eit are autocorrelated, the correlation between Lit-1 and eit would entail 

inconsistent estimates of SOA in model (9). The autocorrelation of errors in (9) can be fixed by 

augmenting the model dynamics with an appropriate number of lags of the dependent variable ∆Lit . 

In this way, we obtain the AR(pi+1) process: 

 itjit

p

j
ijiitiit LLL

i

νλµα +∆++=∆ −
=

− ∑
1

1        (10) 
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It is worth noting that, in model (10), the meaning of the αi parameter is the same as in model (6), 

and that the λij parameters measures the reduced-form dynamics in (8) of PO/MT and TO 

determinants as we assumed them to be both stationary.  

 The simple and heterogeneous univariate model (10) can parsimoniously summarize, 

through the heterogeneous αi parameter, both TO and PO/MT stylized facts in the linear and 

stationary context.  

 When αi < 0, model (10) suggests that the TO prediction is valid: companies borrow in order 

to gradually adjust towards their optimal debt ratios, assumed to be constant and equal to 
i

i
iL

α
µ

−
=* , 

while random idiosyncratic shocks νit have only transitory effects on the firms’ financial structure. 

More precisely, αi < 0 supports debt ratios stationarity and also corroborates the assumption that 

TO
itZ  is actually stationary. 

 When αi = 0 the behavior of model (10) is consistent with the PO/MT models only if TO 

determinants, TO
itZ , are stationary. In fact, only in such context, PO/MT models do not support the 

existence of a target debt ratio and of the adjustment towards it. Borrowing is not driven by any 

attempt to attain an optimal capital structure: it simply reflects the need for external and low-risk-

cost funds to finance investment projects (in the PO), or the outcome of timing the equity market (in 

the MT). Hence, random idiosyncratic shocks νit have permanent effects on firms financial 

structure, since the actual debt ratio behaves as a stochastic trend driven by shocks faced year after 

year by the companies.17 

 In the fully stationary context, the inference regarding the heterogeneous αi gives the answer 

as to which theory, TO or PO/MT, is better suited to explaining the ith company debt ratio. In other 

words, heterogeneous parameter estimates enable us to identify the share of firms whose behavior 

conforms to a specific theory, be it pure TO, or PO/MT.  

                                                           
17 It could be argued that there is a non-zero probability that the PO/MT-like debt ratio will explode (the firm’s solvency 
condition cannot be met). Nevertheless, from the theoretical point of view, Fama and French (2002) point out that there 
are certain forces preventing this to happen. Firms that pay dividends can maintain lower debt ratios by lowering 
payouts, while nonpayers may need to borrow more to finance investments but, given both current and future borrowing 
costs, they tend to preserve low-risk debt capacity until positive net cash flows arrive, or through financial slacks. From 
the empirical point of view, the conclusion that debt ratios are integrated processes cannot be true in a very strict sense 
because integrated series are unbounded, while debt ratios are bounded between zero and one. Nevertheless, when 
sample data suggest that the statistical characteristics of debt ratios are closer to integrated rather than stationary series, 
it is better to treat these series as if they had stochastic trends; see e.g. Hall et al. (1992). In addition, as noted in 
Brunello et al. (2000) regarding the estimates of the NAIRU, the relevant issue is not the fact that the variables are 
bounded from above by 1 and from below by 0, but it is the time needed for the limits 0 and 1 to be binding. In our 
context, for reasonable values of the variance of debt shock νit, the expected time required for the barriers to be binding 
is extremely large (of an order of magnitude of about 1,700 years) and, during such a huge temporal interval, the debt 
ratio is exactly equivalent to an unrestricted random walk. 
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 Of course, parsimony and heterogeneity do not come without a cost: model (10) does not 

allow for the estimation of specific γi and βi PO/MT and TO effects of equation (6), i.e. it does not 

extricate the relevance of the alternative theories in explaining debt fluctuations. Still, model (10) 

makes it possible to concentrate on the key empirical parameter of the SOA, which is of paramount 

interest because “it is important to analyze how quickly [corporations] revert to their target capital 

structure when moved away by random events.”, Antoniou et al. (2008, p. 2).  

 On the other side, the parsimonious nature of model (10) prevents many of the problems 

common to those empirical studies based on model (3) panel estimates, namely: the cumbersome 

interpretation of a large number of estimation results related to (sometimes ad hoc) explanatory 

variables; the excess of statistical significance of parameters' estimates; the risk (which increase as 

model size increases) of measurement errors and of simultaneity, as shown by model (7) above, 

which is only apparently tackled by instruments (often weak); the occurrence of pooled inconsistent 

estimates discordant with the theoretical predictions.18 

 Equation (10) can be estimated firm by firm with OLS and, under the null that debt ratios 

are integrated, inferences on αi parameters can be accomplished by using the distribution of the 

Dickey-Fuller (1979) test, henceforth ADF.  

 The practical issue of selecting pi in model (10) is tackled - here as well as in the other 

applications of this paper - by a data dependent procedure which starts from a maximum number of 

lags pmax and then sequentially tests down until the higher-lag parameter is 10% significant. This 

procedure, introduced by the seminal work of Campbell and Perron (1991), has been deepened by 

Ng and Perron (1995) who also showed the improvements in the size of the ADF test. 

 Table 1 summarizes the ADF test interpretation, and introduces the variants to model (10) 

which will be implemented below. Along the columns of Table 1 the two hypothetical scenarios of 

interest are depicted: in the PO/MT scenario (in the first column) firms do not follow the target 

leverage; in the TO scenario (in the second column) firms follow a constant target driven by TO 

determinants assumed to be stationary. Along the rows of Table 1 we list the two possible outcomes 

of the ADF test: rejection of the null hypothesis αi = 0 (in the first row); not rejection of the null 

hypothesis αi = 0 (in the second row). Along the main diagonal, the decisions based on ADF test 

results are right as they correctly interpret the underlying assumed states of the world. 

Table 1 here 

 Outside the main diagonal, in the down-left quadrant, we acknowledge that some 

circumstances can trick ADF to reject PO/MT when it would actually be the best representation of 

                                                           
18 The comments of Gordon (1985) to Auerbach (1985) model are along these lines.  
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how firms behave. For example, the presence of sizeable MA terms in model (9) errors dynamics 

could weaken the ability of the testing down procedures to select the appropriate lag order pi of 

model (10). Although with annual data this case should not be frequent, we use, besides the ADF 

test, the Elliott et al. (1996) test (henceforth DFGLS) based on GLS detrended data which has 

excellent size and power properties in assessing the null αi = 0 (see also Ng and Perron (2001)), and 

works well also in small samples. Other cases of ADF over-rejection are due to αi estimates 

variability over time and to the presence of breaks near the beginning of the series. To keep under 

control the latter two circumstances, in Section 4.3 below we also estimate our models over rolling 

samples. In general, the problems of the performance of the ADF test listed in the down-left 

quadrant are mainly due to the structure of model (10) errors. 

 In the up-right quadrant we under-reject the false null hypothesis because of SOA non-

linearity (see case A2 below), shifts in the target leverage (see case B1), or non-stationary drivers of 

the target leverage (cases B2 and C1). In other terms, ADF test problems of power emerge because 

of specification errors of the model under the alternative hypothesis.  

3.2 - Case A2: stationary TO determinants in the non-linear context 

  The SOA parameters could be time-varying or affected by some kinds of non-linearity. For 

example, the autoregressive decay specification could depend on the state of the debt ratio: if the 

SOA is fast when the firm is over-levered (i.e. when actual debt is above its target) and slow when 

it is under-levered, peaks would be less persistent than troughs, e.g. because of low adjustment 

costs. Thus, the heterogeneous linear model (10) with symmetric adjustment processes can be 

extended to allow for SOA non-linearity either in the form of asymmetric AR processes (where 

SOAs can be different if the firm is over- or under-levered with respect to the target), or in the form 

of exponential smooth transition AR processes (where SOAs get higher the farer actual leverage is 

from the target).  

 The asymmetric adjustment extension in the context of testing for unit roots (i.e. for no 

adjustment under the null hypothesis) has been introduced by Enders and Granger (1998), and 

reconsidered in Berben and van Dijk (1999), henceforth BvD. The threshold AR model (TAR) with 

asymmetric SOA is specified as: 
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where we have two different heterogeneous SOA, −
iα  and +

iα , for under- and over-levered firms 

in t-1, respectively. As with ADF test, the inclusion of pi lags aims to white noise idiosyncratic 

shocks itν . Model (11) may be seen as an extension towards heterogeneity of the non-linear 

approach of Warr et al. (2012) who report distinct SOA pooled estimates for the groups of firms 

over- and under-levered and over- and under-valued, and of Byoun (2008) who considers pooled 

SOA parameters for firms above (below) the target debt and with a financial surplus (deficit). 

 In case of known thresholds *iL , the speeds of adjustment and augmentation parameters of 

model (11) can be estimated with OLS. In our case, since the debt target *iL  is unknown and has to 

be estimated, we use the sequential conditional least squares suggested by BvD. This procedure 

chooses the estimate of *iL  (belonging to the 15% trimmed interval within the minimum and 

maximum historical value of the actual debt ratios) which minimizes the residuals variance, and 

then uses a statistic F (tabulated by BvD) to test for the null hypothesis of non stationarity: −iα = +
iα

=0. 19 If the unit-root null is rejected, we can test for −
iα = +

iα  (i.e. that the two speeds do not 

significantly differ) with a standard F statistic.20 

 By comparing the outcomes of ADF and BvD tests,21 the share of firms stationary according 

to the BvD test, but classified as non stationary by the ADF test, provides the gain in power of the 

test thanks to the asymmetry allowed under the alternative: for these companies, the assumption of 

asymmetric SOA is crucial for the understanding of their dynamics of adjustment. 

 Besides the BvD approach, we also use the Kapetanios et al. (2003) test (henceforth KSS). 

This test assumes, under the alternative, that the speed of adjustment is that of a stationary 

exponential smooth transition AR process (ESTAR): 
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where the nonlinear SOA in brackets is both heterogeneous and may vary over time, depending on 

the distance between actual and target debt ratios: 1
2*

1 )( −= −− − iiti LL
it e θα .22 In model (12), the unit 

                                                           
19 The innovation of the BvD approach with respect to Enders and Granger (1998) is that of searching the target which 
minimizes the residuals variance of model (11), rather than of estimating the debt target with the sample mean of the 
actual data. When the strength of the adjustment towards the attractor L* is very different in the two regimes, the sample 
mean is a biased estimator of the target, and the Enders and Granger (1998) procedure may lack of power with respect 
to the standard unit roots approach (based on the linear AR).  
20 The linear specification under the null of the F test is a data congruent representation which is more parsimonious 
than the (unneeded) asymmetric adjustment model. 
21 We suggest comparing the BvD test outcome with that of ADF, rather than of DFGLS, because the ADF test equation 
(10) is nested in the nonlinear extension (11).  
22 As in the ADF test, the inclusion of pi lags in model (12) aims to reach white noise idiosyncratic shocks. 
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root null corresponds to the hypothesis that 0=iθ  (corresponding to 0=itα ), against the 

alternative 0>iθ , i.e. the larger the distance between actual and target debt, the larger the SOA. 

Note also that, under the alternative of nonlinear target adjustment, SOA is symmetric (as the speed 

of adjustment depends on the squared distance), and its non-linearity cannot be tested against the 

linear ADF test equation (as instead BvD approach does).  

 The KSS test equation (12) may be seen as an extension towards heterogeneity of the non-

linear approach of Korteweg and Strebulaev (2012), who developed a stationary and poolable (S,s) 

model of capital structure with an upper and a lower refinancing thresholds: when the actual debt is 

inside the thresholds the firm does not feel the need to change its capital structure. Despite model 

(12) is not a threshold model, its SOA grows with the actual-target leverage distance following the 

same economic intuition of Korteweg and Strebulaev (2012): the extent of the stimulus to change 

the actual leverage depends on how far companies’ leverages are from the target.  

 The implementation of the KSS test is straightforward by computing a first-order Taylor 

series approximation to the ESTAR model under the null. In fact, the approximation leads to the 

classical ADF-like auxiliary regression (10), where we simply substitute the lagged and demeaned 

actual debt ratio regressor *
1 iit LL −−  with ( )3*

1 iit LL −− . The t-statistic of the estimate of the 

parameter of the latter cubic regressor (given the distribution tabulated in KSS) may be used to test 

for the unit root in the process generating the debt ratio.23 

 As with the BvD test, comparing outcomes of the ADF and the KSS tests provides the gain 

in power of the test with ESTAR nonlinearity under the alternative, which is measured by the share 

of firms classified as non stationary by ADF test and stationary under the KSS test: for these 

companies, the assumption of a SOA increasing with actual-target squared distance is crucial to 

understand the dynamics of the adjustment. 

3.3 - Case B1: non stationary TO determinants measured as broken targets  

 Cases A1 and A2 above are alternative ways to model debt choices through linear or non-

linear SOA towards fixed debt targets assuming stationary of the TO
tZ  TO determinants. The 

empirical literature on capital structure usually makes (without testing) this stationarity assumption, 

as it is required by the statistical properties of all models and approaches discussed in Section 2. In 

this stationary context, the failure to reject zero SOAs means that firms do not move towards the 

target, and that the PO/MT theory explains debt dynamics with a sequence of permanent shocks 

                                                           
23 In the implementation of their procedure, in the case where the data has nonzero mean, KSS suggest to use demeaned 
data, i.e. to estimate the target debt ratio with the sample mean. For a similar non-linear approach applied to a 
heterogeneous panel of UK companies' debt ratios, see Ioannidis et al. (2003).  
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MTPO
t

/ε  measuring the need for external funds and/or the timing of the equity market. However, if 

TO
tZ  is not stationary, the non rejection of the null under the invalid assumption of stationary TO

tZ  

does not necessarily invalidate the TO theory. 

 Since the seminal work by Nelson and Plosser (1982), the univariate representation of many 

time series have been found to be characterized by stochastic non-stationarity. Non stationary 

patterns of debt ratios could be due to few (one or two) relevant events occurring during the life of 

the firm, rather than to unit roots (Perron, 1989).24 If we assume for simplicity that just one 

fundamental shock occurs at time iTB1 , the debt ratios dynamics can be decomposed in a sequence 

of transitory PO/MT and TO shocks, as the AR models (8), plus a permanent effect of the event in 

iTB1  that can be modeled and estimated as a deterministic shift in the debt targets. If this is the 

case, the specification of model (10) must account for such target shift by using impulse and step 

dummy variables.  

 We exploit the innovational outlier models to test for unit roots against leverage stationarity with 

one (Perron and Vogelsang (1992)) and two (Clemente et al. (1998)) breaks. In particular, the AR model 

with gradual change after one break over the sample period (the innovational outlier model of 

Perron and Vogelsang (1992)) is specified as: 
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while the corresponding model with two breaks (Clemente et al. (1998)) is: 
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where kiTB  (k = 1, 2) denote the year of the first (k=1) and of the second (k=2) break; kitDTB  (k=1, 

2) is a pulse variable that takes the value 1 if t = 1+kiTB  and 0 otherwise; and kitDU = 1 if t > 

kiTB  (k = 1, 2) and 0 otherwise.  

 Since the time in which the break(s) occurs is a priori unknown, parameters' estimation of 

models (13)-(14) is implemented as a sequential procedure run over the full sample, with dummy 

variables for each possible break date(s). The break date is found where the evidence is least 

favorable for the unit root null. Given the estimate(s) of the break date(s), if we reject the null iα  = 

0 of unit roots in either model (13) or (14), we find evidence supporting a stationary model with 

                                                           
24 Note that with long spans of data there is more chance to include at least one of such major events which can be 
considered as an exogenous outlier.  
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breaking *
itL  driven by not modeled TO determinants. In the case of one break, the target leverage 

shifts from 
i

i
iL

α
µ

−
=*

 up to the break date iTB1  to 
i

ii
i

d
L

α
µ

−
+

= 1*
 afterwards.  

 If we ignore the occurrence of such shift(s), inferences based on constant-target models (as 

in cases A1 and A2 above) would fail to reject the null, and would erroneously support the 

dominance of the PO/MT theory (see the up-right quadrant of Table 1).  

3.4 - Case B2: non stationary TO determinants measured as debt averages by group 

 A large portion of the empirical literature estimates the parameters of the pooled-linear 

model (3) by allowing for time dummies tτ . Usually, time dummies are motivated by the need to 

account for a degree of dependency across individuals due to collectively significant but 

unobservable effects, such as widespread optimism or pessimism. The use of time dummies is 

strictly related with the practice of data demeaning (see Appendix A2), and this fact allows for the 

introduction of another simple heterogeneous model. 

Lev (1969) estimates heterogeneous linear models by assuming that firms adjust their 

financial ratios to predetermined ratios, based on industry-wide averages (in symbols: 

∑
=

=
sN

i
it

s
st L

N
L

1

* 1
, where s = 1, 2, ... S denotes different industries and sN  is the number of firms 

belonging to sector s). Lev's idea is shared by other works in which sectorial debt ratio averages 

(usually medians) are added to the list of the explanatory variables of the target, see e.g. Fama and 

French (2002), Hovakimian et al. (2001), Hovakimian (2006), Flanney and Rangan (2006), 

Lemmon et al. (2008), and de Jong et al. (2011).  

 If we assume that data of model (9) are demeaned using debt ratio averages by some 

grouping variable g (i.e. ∑
=

−=
gN

i
it

g
it

d
it L

N
LL

1

1
, where g = 1, 2, ... G) we have: 
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and the linear heterogeneous model: 

 itgtigtitiit eLLLL +++−= −− ∆µα∆ )( 11       (16) 

where - besides the individual effects iµ  - the target debt heterogeneity is also explained by the 

pattern over time of the groups' averages (in symbols gt
i

i
it LL +

−
=

α
µ*

). Equation (16) measures, in 

brackets, the discrepancy between each debt ratio and its group average. In this new context, we can 
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drop the assumption of stationarity of the pecking order determinants of the debt target by replacing 

it with the assumption of the relevance of average (possibly non stationary) targets by group in 

explaining the actual debt in the long run.25 Under the latter assumption, the stationarity or not of 

the time series averages is irrelevant for the interpretation of the test results. 

 While approaches presented in previous sections are not affected by the sample composition, 

this new test is based on some categorical (selection) variable used to classify firms into g groups. 

The corresponding debt ratio averages (weighted or not-weighted means, or medians) become the 

driving forces of the heterogeneous firms' targets in the long run; hence the selection variable must 

be relevant for differentiating the sub-samples. 

Lev (1969, Table 1), in the heterogeneous context with N=245 observations over the period 

1947-1966, finds that equity to total debt ratios reverts to industries arithmetic means in very few 

cases: the third quartile (ninth decile) of the SOA's estimates distribution (with sign reversed) is 

equal to 0.42 (0.65) with t-statistics equal to 2.30 (2.94).26  This lack of reversion in the 

heterogeneous context is supported by MacKay and Phillips (2005), who estimate a pooled 

regression for total debt/assets ratios against their industry medians (2-digit SIC level): the very 

slow-reversion SOA estimate of -0.032 is hardly significant despite being pooled.27 

3.5 - Case C1: non-stationary TO targets measured by heterogeneous cointegration relationships 

 In this Section we estimate the SOA heterogeneous parameters using the dynamic model (6) 

in which - as above - we substitute the PO/MT determinants MTPO
itX /  with their univariate 

representation MTPO
it

MTPO
iti XLa //)( ε= , but we do not make any assumption regarding the data 

generation process of the TO determinants TO
itZ . Therefore, TO

itZ  must be measured with variables 

(selected on the basis of the TO theory) that are explanatory in the dynamic specification of debt 

ratios as an equilibrium-correction model (EqCM): 

 ( ) iti
TO
itiitiit eZLL ++−=∆ −− µβα 11        (17) 

                                                           
25 For example, the industry (group) median leverage is one of the alternative measures exploited by D'Mello and Farhat 
(2008) to proxy the time-varying optimal (target) debt ratio. Other measures are the firm's time-series mean leverage (as 
discussed in cases A1 and A2 in Sections 3.1 and 3.2) and the leverage ratio predicted from cross-sectional regressions. 
26 Note that Lev (1969) model specification defines reverted-signs SOAs, i.e. that the speed of adjustment is expected to 
be positive. Accordingly, the critical value at 5% (10%) of the Dickey-Fuller statistic distribution is 3.0 (2.63) when 
T=20, as in the Lev's sample.  
27 These findings against the relevance of the role played by industry determinants in explaining capital structure are 
also supported by Kayo and Kimura (2011) who use a statistical multilevel approach: time- and firm-level determinants 
explain 78% of leverage, the rest is left to less relevant industry- and country- determinants. 



19 
 

where errors eit combine the distributed lags of PO/MT random shocks MTPO
it

/ε  with the actual debt 

shocks εit: it
i

MTPO
it

iit La
e εεγ +=

)(

/

. Given that eit are autocorrelated, the dynamics of model (17) must 

be augmented with pi lags of the dependent variable ∆Lit  in order to reach iid errors νit: 
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Although simple, model (18) is less parsimonious than model (10). The explicit presence of 

TO
itZ  among the regressors makes it possible to estimate the long-run target without assuming 

neither the stationarity of TO
itZ  (as in cases A1 and A2 above), nor the existence of breaking targets 

(case B1) or the driving effect of industry-wide averages (case B2). Here, the time varying target 

leverage is conditional on TO
itZ :  
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 The actual-target debt discrepancy *
itit LL −  is always stationary if firms follow the TO. In 

fact we have two possibilities: (1) when the variables in TO
itZ  are stationary, both the actual debt itL  

and the target *itL  are stationary (and consequently their discrepancy too); (2) under non stationary 

TO
itZ , itL  and *

itL  deviations can be only temporary, as the two non-stationary variables must share - 

under valid TO - one or more common stochastic trends; in statistical jargon, itL  and TO
itZ  are 

cointegrated. The cointegration between itL  and TO
itZ  variables can be tested with alternative 

approaches, which can lead to not equivalent outcomes as they focus on different statistical 

characterizations of the non-cointegration (see Gregory et al. (2004)). Monte Carlo experiments 

usually show that no one cointegration test is found to dominate the others in terms of size and 

power in finite sample sizes (Gonzalo and Lee (1998)). Therefore, we will inspect the results 

coming from three different cointegration approaches 

 The first is the Engle and Granger (1987), henceforth EG, cointegration test, which is based 

on the direct assessment of the stationarity of *
itit LL −  deviations with a Dickey-Fuller type test, 

where *
itL  is proxied by the fit of the OLS regression of itL  against TO

itZ . Under the EG approach, 

we run static regressions like:  

 iti
TO
itiit ucZL ++= β          (20) 
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which represent the heterogeneous counterpart of the pooled linear models, iββ =  i∀ , for the 

target usually employed by the literature. In particular, three remarkable differences with the pooled 

literature emerge: (1) the static long run regression (20) is fully heterogeneous, as it is estimated 

firm by firm; (2) the significance of iβ  parameters (the significance of the TO effects in shaping 

the target leverage) is assessed by testing the stationarity of the residuals =itu
) −itL )( i

TO
iti cZ

))
+β  

with suitable statistical distributions, to prevent the spurious significance that could arise from 

standard t statistics (Granger and Newbold (1974)); (3) under cointegration, OLS estimators of 

equation (20) are super-consistent, i.e. not affected either by TO
itZ  endogeneity or omitted dynamics, 

see Stock (1987). The drawbacks of the EG approach are: the disequilibria *
itit LL −  is assumed to 

feedback only to debt changes, and not to TO
itZ  (this is the so called “weak exogeneity” of TO

itZ ); a 

common factor restriction is imposed to the dynamics of the relationship between debt and TO 

determinants. 

 The EG common factor restriction is relaxed in the second cointegration approach we 

follow, that of Boswijk (1994), henceforth BO, and of Banerjee et al. (1998), henceforth BA. They 

base their cointegration tests on the OLS estimate of this dynamic relationship: 
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where the dynamics of TO
itZ  is added to equation (18), so that iii βαγ −= . In particular, BA 

cointegration test is the t-statistic on the null hypothesis 0=iα , whereas BO cointegration test is 

based on the Wald F-statistic testing the joint null hypothesis 0== ii γα . Under both null 

hypotheses of no-cointegration, the distributions of t- and F-statistics are not standard and specific 

critical values must be used. Although apparently quite close to model (3), equation (21) not only 

introduces heterogeneity, but also acknowledges that non-standard t and F distributions are more 

appropriate when variables are persistent (see Hall et al. (1992)).  

 In order to relax the weak exogeneity assumption for TO
itZ , still present in both BA and BO 

tests, we refer, as the third cointegration test, to the Johansen (1995) approach, JO henceforth. The 

JO test is the test on the rank r of the matrix Π deriving from a vector autoregression (VAR) model 

parameterized as a vector error correction mechanism (VECM): 
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where X is the vector of all the variables explained by the system ( itL  and TO
itZ ), and r is the 

number of cointegration relationships among the variables in X. The significance of TO
itZ  in driving 

the long run debt target needs that r > 0. 

 Even though the JO approach is more general than EG, BA and BO approaches, it presents 

some pitfalls. First, being VAR-based, JO entails a larger number of parameters to be estimated 

than that of the other single-equation approaches; as said, this can be a severe limitation in our 

context. Second, the cointegration rank can be inflated by the presence of stationary variables in the 

system: besides genuine cointegrated relationships between non stationary variables, some 

stationary company ratios might be combined with intercepts leading to a stationary steady state. 

Finally, if the non-stationary variables have a VAR representation with a near-singular covariance 

matrix, JO tends to find spurious cointegration.  

 

4. Empirical results 

Our panel data is drawn from Compustat for the period 1950-2011. Cleaning rules, depicted 

in Appendix A3, leads to a strongly unbalanced panel. In order to maximize the number of time 

observations T by company, we extract alternative balanced sub-panels by selecting only those 

firms belonging without interruptions to alternative time spans, from the longer 1950-2011 to the 

shorter one 1990-2011. Accordingly, the number N of firms of each balanced sub-panel decreases 

with the length of the span (from about 400 for the shorter one to 50 for the longer). Note that the 

firms belonging to a given-span sub-panel are by definition included in all the shorter-span panels. 

To assess the robustness of our findings, we provide results over seven alternative sub-panels with 

decreasing T and increasing N (details are e.g. in the first column of Table 2) 

4.1 - To what extent and at what speed debt ratios revert to deterministic targets?  

We summarize the outcome of all the heterogeneous models introduced in Section 3 by 

computing the shares of companies which display significant reversion rates of their actual debt 

ratios towards the target against those which do not revert. We also average and compare the SOAs 

of reverting and of non-reverting firms. As suggested in Pesaran and Smith (1995) and Pesaran et 

al. (1999), SOA mean group estimates for the two different groups of reverting and not-reverting 

firms offer consistent estimates of aggregate SOAs, independently on being SOA parameters 

poolable or not. Of course, the larger the difference between the two average estimates, the less 

likely the poolability assumptions. 
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Although the company targets depend on alternative test procedures, in this section we focus 

only on those models assuming that debt targets are implicit in the deterministic components of the 

various univariate models or come from specific correlations across idiosyncratic shocks, as 

described in cases A and B of Section 3.  

Main results are in Table 2. The upper panel of Table 2 refers to the short-term debt ratio, the 

middle panel to the long-term ratio, and the lower panel to the total debt ratio (i.e. the sum of the 

previous two). The outcomes along the columns refer to alternative testing procedures. It is worth 

remembering that, more or less implicitly, the mainstream literature assumes the stationarity of the 

leverage, i.e. that the shares in Table 2 are very close to one. 

Table 2 here 

The first two columns - labeled as "ADF" and "DFGLS" - report the shares in each balanced 

panel of companies which revert over time to constant and heterogeneous targets according to linear 

models. Both tests suggest that the share of reverting firms is clearly below one, around 50% and 

20% in the case of short-term and long-term debt respectively. The shares for the total debt range 

only slightly above those for the long term debt (about 25-30%); this result can be expected, given 

that long-term debt represents, on average, about the 70% of total debt. 

The subsequent five columns of Table 2 refer to the issue of target reverting with asymmetric 

and non linear models. The "BvD" column reports the share of target-reverting firms with 

asymmetric speeds of adjustment. With respect to the case of linear models, this share goes up to 

about 60-70% for the short term and to 25-30% for the long term debt: there is a portion of firms for 

which the assumption of an asymmetric adjustment is crucial to detect a reverting behavior 

(remember the upper-right cell in Table 1). Interestingly, almost all (about 98%) the mean-reverting 

firms have higher (or at worst not lower) SOAs when they are over-levered in their short-term debts 

as if being above the target for this kind of debt would imply costs markedly higher than those 

related to being below the target. This asymmetry is reversed in the case of the long term debt 

Quite reasonably, the longer the available time span the more likely detection of significant 

asymmetries, given that, in the context of heterogeneity, the finding of such asymmetric behaviors 

needs fairly long spans of observations. Oppositely, the pooling literature uses unbalanced panels 

with quite shorter than ours average T and, in this way, finds results which depend more on the 

cross-section variability (i.e. on the poolability assumption) than on the single-firms' pattern over 

time. 
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When non-linearity is measured through SOAs with ESTAR dynamics ("KSS" column) the 

shares of mean reverting firms are in line with those delivered by the linear models, also because of 

the inefficiency of the KSS approach.28 

In the next three columns, we allow the linear model to adjust with respect to a breaking - 

rather than constant - target. The shares go further up: the short term debt reverts for about 70% of 

the cases (in the large majority of them only one break in the target is needed), while the long term 

debt reaches shares around 35-40% and equally relies on models with one or two breaks in the 

target. This fact could suggest that the (unknown at this stage) determinants of target leverage could 

be quite persistent over time, and that in the present context breaks in target can proxy for its long 

and persistent waves. Given that this effect is by far more relevant for longer term debt, persistence 

in debt shocks seems to affect more this form of financing. 

Finally, the last two columns of Table 2 report the shares of firms whose ratios revert towards 

the mean and median industry leverage respectively.29 Results - obtained by running ADF tests on 

demeaned data - are in line with those obtained with simple linear models and agree with the 

findings in Lev (1969): the pattern of the industry averages over time does not drive, alone, the 

leverage of the companies belonging to that sector. This result is at odds with Frank and Goyal 

(2009) who, in a pooled context, claim that the median industry is empirically the single most 

powerful factor in explaining debt ratios. While our finding is also consistent with Hovakimian et 

al. (2001) who claim that their outcomes do not change when models are estimated with or without 

demeaning data.  

Overall, results in Table 2 are quite clear cut: regarding the total debt ratios, the shares of 

target-reverting firms are always well below 40%, independently on the test used (i.e. on the 

definition of the target). This fact leads to two main broad considerations: 1. the econometric 

methods used in the literature to estimate SOAs are at least questionable, as they are broadly based 

on data in prevalence unfit to their statistical assumptions; 2. heterogeneity matters, because 

poolability would entail shares equal either to zero (when all firms are non reverting) or to one 

(when all firms are target reverting, although in this case poolability would also require the same 

SOA for all the companies) while the estimates in Table 2 are never close to their upper and lower 

limits.30  

                                                           
28 Given its data-intensive aspect, the KSS dynamics has not been estimated for the shorter 1990-2011 span. 
29 The 12-industry disaggregation used to compute sectorial averages is that downloadable from Kenneth French 
website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/Industry_Definitions.zip. To allow for enough data 
in each cell, the averages are computed over the whole unbalanced panel. In this way, we expect that these averages 
better represent the by-industry patterns for the US economy (see Table A3.1). Results, available upon request, are 
robust to the use specific averages by sub-panels.  
30 Following Pesaran (2012), we checked for the robustness of the finding of shares of reverting firms higher than zero 
by using the panel unit root tests of Im et al. (2003) and of Pesaran (2007). The null hypothesis is strongly rejected in all 
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In particular, the target reversion behavior is largely more likely for the short-term debt, 

leading to the presumption that this financing form is less affected by adjustment costs. On the 

contrary, the long-term debt seems more driven by PO considerations: the needs of financing 

investment, that is an activity usually requiring more than one year, has a greater impact on the 

long-term debt; the possibly random changes in the cash flow deficit impart persistent shocks to the 

historical leverage pattern. 

 

The latter point is deepened in Table 3, where averages of SOA estimates (the unbiased mean 

group estimators, MG) are computed for reverting and not-reverting firms; the structure of Table 3 

is quite similar to that of Table 2.  

Table 3 here 

The average SOA estimates for the group of non target-reverting firms in both short- and 

long-term debt ratios is much lower (less than one-third) than those of all the other estimates 

referring to mean-reverting firms. Two interesting facts emerge in comparison with the empirical 

literature: 1.the average SOA estimates of not reverting firms are in line with those obtained from 

pooled models under the assumption of stationary; 2. the average SOA estimates of reverting firms 

are, instead, in line with those reported in Frank and Shen (2014) who assume time varying targets 

as heterogeneous functions of a high number of determinants. We can conclude that pooled SOA 

estimates (sometimes labeled as "snail's pace") is an upward-biased estimate of a speed of 

adjustment that in the population is often zero. At the firm-level, it is important to consider time-

varying, rather than static, leverage targets.  

Linear SOA estimates are higher for the short-term debt than for the long-term debt: this 

confirms the reasonable hypothesis of less costly and easier adjustments for the short-term 

financing. When we use sub-panels with shorter time spans this difference tends to vanish, and the 

average SOA for both debt-ratios converge towards a broad estimate of -0.7/-0.8: about the 70-80% 

of the discrepancy between actual and desired (target) debt ratios is closed in the following year. 

This quite high speed is even larger if we consider estimates based on asymmetric dynamics or 

shifts.  

From Table 2 (column "+>-") we know that, especially for short term debt, the most frequent 

adjustment is that of firms which react more to the actual-target gap when over-levered. The two 

                                                                                                                                                                                                 

sub-panels under different assumptions about de-meaning or not of the data, and about the nature of firms’ shocks 
heteroscedasticity and cross-correlation. The outcome that a portion of firms is target-reverting has been also found in 
Peel et al. (2004) for the UK, Bontempi and Golinelli (2012) for Italy, and Yang et al. (2014) for Taiwan and China. 
Symmetrically, shares of reverting firms "significantly" smaller than one are supported by the clear rejection of Hadry 
(2000) heterogeneous panel stationarity test. Results are available upon request. 
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columns under the label " −+ < ii αα ))
" report the average SOA estimates for these firms, with +

iα)  ( −
iα) ) 

being the estimated speed of closing the gap when these firms are over-levered (under-levered). 

Analogously, the two columns under the label " −+ > ii αα ))
" report the average SOA estimates for the 

firms which react more to the actual-target gap when under-levered (column "+<-" of Table 2), with 

+
iα)  ( −

iα) ) being the estimated speed of closing the gap when these firms are over-levered (under-

levered). SOAs close to -1 mean that gaps are closed after one year, while SOAs above -1 (for 

example -1.2) indicate that firms overshoot the target. Hence, estimated SOAs show that the 

overshooting dynamics pushes the firms, when over-levered, below the target in less than one year, 

while the process of climbing up towards the target is quite slow for firms in under-levered state as 

they act if were waiting for positive shocks. When the estimates of +
iα)  and −

iα)  are not significantly 

different, the target-reverting process needs just a single SOA that, as expected, is very close to that 

estimated by the linear model.  

Since the average SOA estimates cannot be computed for ESTAR models as they are non-

linear functions of the actual-target leverage gaps, Figure 1 plots two of these SOA functions which 

correspond to the first and third quartiles of the distribution of θ (in equation (12)) estimated for 

reverting firms over the period 1980-2001. 

Figure 1 here 

The wide distance between the two depicted patterns suggests large SOA heterogeneity when 

the size of the gap is about half of the average total debt ratio (±0.125), the two corresponding 

speeds range from -0.9 to -0.4, i.e. from an adjustment process that closes 90% of the gap in about 

one year to another one that takes almost five years to close the same amount of gap. 

Finally, when the target is proxied by a shifting process, SOAs are in general above -0.80, 

suggesting that, independently on the term structure of debt, the 90% of the adjustment process is 

accomplished in slightly more than one year. Again, these SOAs estimated for firms reverting 

towards industry-level targets confirm that the adjustment process is more rapid than that estimated 

by pooled regressions. 

4.2 - Extending the models to targets driven by explicit explanatory variables  

We can extend the results above by switching from univariate to the multivariate approach of 

model (18). In order to empirically augment with regressors the univariate specification, the first 

step must be that of selecting the variables entering the set of TO determinants TO
itZ . To do so, we 

have to acknowledge that the assumption of parameters' heterogeneity is quite expensive in terms of 

number of parameters to be estimated with time series of T observations. Therefore, in order to keep 
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the model as much parsimonious as possible, we summarized the effect of TO determinants with 

four variables, on the basis of the most commonly used variables in literature: 1. the net stock of all 

tangible assets; 2. the internal cash flow; 3. the relative cost of capital; and 4. the non-debt tax 

shields.31 Details about their definition are in Appendix A3. Further, the number of parameters to be 

estimated is also kept low by choosing the lag order of both single-equation (21) and VAR models 

(22) with the parsimonious Schwarz's Bayesian information criterion. 

The main results are reported in Table 4, which is broadly structured as Tables 2 and 3: its 

columns list both shares of firms reverting towards the debt target and average SOA estimates, 

while the rows detail results over alternative sub-periods. In order to ensure results' comparability, 

the companies entering each sub-panel are exactly the same as those in the previous section. 

However, the inclusion of other variables (the TO determinants), raises the issue of the 

completeness of their information set, as the alternative panels in sub-samples were balanced on the 

basis of the available data for debt ratios. For this, the column labeled as "incomplete" reports the 

share over the total of those firms for which we were not able to run the cointegration approaches of 

this section because of lacking of the data.32 

Table 4 here 

The next two columns respectively report the shares of the firms which do not revert to the 

(cointegrated) target and the complementary share of those firms which revert. The approach that 

we follow to classify our firms is that of Engle-Granger (EG), which can be seen as a sort of 

baseline method, whose parsimony is well known. Results are quite clear cut: the advantage of 

using explicit and potentially non-stationary determinants for debt targets, does not trade off the 

disadvantage of more parameters to be estimated, as the composition of reverting/not reverting 

firms is quite similar to that detected with univariate approaches. In other terms, the advantage of 

explaining the persistency of debt ratios with persistent TO explanatory variables is not really much 

relevant, as it is easily offset by the complexities induced by the multivariate setting we follow here. 

In addition, a number of previous findings remain qualitatively the same. The share of target 

reverting firms is larger if we focus on short term debt, and the corresponding average SOA 

estimates for the reverting companies in the last column of Table 4 are broadly in line with those 

obtained with breaking trends in Table 3. 

                                                           
31 As with debt, all variables measuring levels are defined as ratios over the total assets. 
32 With this regards, note that the share of firms with incomplete data slightly grows in shorter T samples, as the related 
increase in the number of firms is likely to select companies with lacking data.  
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The intermediate three columns report alternative shares of reverting firms on the basis of the 

other three approaches listed in Section 3.5, namely Johansen33, Banerjee et al. and Boswijck that 

allow relaxing some of the Engle-Granger restrictive assumptions. 

Overall, results are broadly in line with the univariate outcomes of the previous section 

probably because of the poor identification of reliable target drivers using few variables.34 

The preliminary results of this section suggest that the use of the cointegration approach to 

explain very persistent leverage patterns with the inertia of few but potentially relevant TO 

determinants does not entail per se evidence of the relevance of such determinants to explain debt 

dynamics. This outcome, which is fully in line with the recent strand of critiques to the results of 

dynamic panel (pooled) estimates, emerges even more clearly with our heterogeneous approach 

based on cointegration tests. 

The messages coming from these first results are twofold. First, it is not easy to find relevant 

drivers of debt targets, as the apparently statistical significance detected by much of the past studies 

was much more due to the poolability assumption rather than to genuine theoretical relevance. 

Second, the concept of SOA is founded on concepts related with model dynamics, and the 

deepening of time series methods can be very helpful to improve our knowledge about company 

financing choices. 

Our findings can suggest some future directions of the applied research in this field. Based on 

these results, we can suggest two main developments: 1. to improve the use of the Johansen 

approach by supporting it with more preliminary data analyses to better characterize the statistical 

models for the TO explanatory variables; 2. to enlarge the number of the TO determinants but at the 

same time keep low the number of variables in VAR models by exploiting the increased 

information set with few common factors. Without explicitly tackling cointegration and non-

stationarity issues, the latter development has been recently introduced by Frank and Shen (2014) 

who acknowledge the need of better measures of time-varying targets. 

                                                           
33 The implementation of the Johansen approach is based on the following stylized steps:  the test for the cointegration 
rank is zero; under the non rejection of the null the company is classified as non reverting, if the null is rejected, we 
impose rank one and tested for loading parameters significantly negative in the debt equation; if the null is not rejected, 
we again classify the company as non reverting , under the alternative the company is classified as reverting towards a 
long run debt target.  
34 Similarly to the case of unit root tests, we can support the finding of larger-than-zero shares of firms whose leverage 
ratios are cointegrated with TO determinants by running the heterogeneous panel cointegration tests of Pedroni (1999) 
and Westerlund (2007). Results are again clear cut: Pedroni test statistics (with and without time dummies) always 
reject the null that all the firms in the panel are not related in the long run with the four explanatory variables used in 
this paper. The same outcome is delivered by Westerlund test (whose standard errors were bootstrapped to tackle the 
issue of the cross-correlation between debt ratio shocks) only for the short-run leverage ratios, while the null of no 
relationship between leverage and selected TO variables is never rejected for the long-run ratios. 
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4.3 - The stability of results over rolling windows  

Previous section showed that the shares of stationary firms in each sub-sample are 

significantly higher than zero and lower than one, i.e. that firms are significantly heterogeneous in 

their adjustment processes of leverage ratios towards targets. However, such analyses have been 

carried out over alternative samples of balanced panels of those firms that always belong to specific 

sub-periods. In this case, the variability of the results listed along the rows of Tables 2-4 is due to 

the joint effect of two factors: (a) the sample composition variability, because of the increase in the 

number N of panels' members due to the decrease in the number of years T in which firms have to 

report no-missing data; (b) the time variability, because specific and different events can affect the 

behavior of firms over different time sub-periods. 

The sample composition variability over alternative T-fixed samples is depicted in Figure 2 

by four straight lines: each line counts N (the number of firms) in the sub-period of time reported in 

its corresponding label. Conventionally, the horizontal axis reports the first year of the alternative 

sub-samples. Of course, the information in this axis is also reported in selected rows of the first 

column ("Begin") of Tables 2-4, and the information in the vertical axis is also reported in the third 

column ("Time span"), same rows. The sum of the "begin" year plus the labeled T gives the "end" 

year of each subsample.  

Figure 2 here 

The time variability of counts is represented by the upper curve in Figure 2. Its pattern reports 

the number of Compustat firms belonging to a sequence of sub-samples with a rolling window of 

amplitude T=27 years. For example, the observation corresponding to "60" on the horizontal axis 

measures the number of firms (N=356) always in the sample over the period 1960-1986, and the 

following observation (N=345) is the number of firms belonging to the 1961-1987 sub-period.  

Over the period 1960-2011, 97 firms always belong to all rolling samples above because they 

have no missing data from 1960 to the end of the whole sample (2011). The balancing of the panel 

over the 1970-2011 period adds further 64 new firms which entered Compustat from 1961 to 1970 

and then never dropped out. The reduction of other 5 years of the sub-sample further increases the 

balanced 1975-2011 sub-panel of other 35 new firms. The entry of other 31 new firms occurred 

during the five years from 1976 to 1980, for a total of N=227 firms belonging to the 1980-2011 

balanced panel.35 The story told by the upper curve is quite different, as the time series of counts is 

                                                           
35 The latter count N=227 is obtained by summing the number of firms always in the data-set from 1960 to 2011 (97) 
plus the three changes mentioned in the text (i.e. 64+35+31). Two points are noticeable: (1) the increased number of 
firms is due to new companies in the sample which never drop out in the following years, up to 2011; (2) the rate at 
which firms enter the sequence of sub-samples is approximately the same, i.e. about 65 new firms every ten years. 



29 
 

the annual balance of the entry of new firms net of those firms which exit (did not survived) each 

year, plus of course the firms always belonging to the two consecutive rolling subsamples. As a 

result, the average level of the rolling sample, about 300/350 firms by year, is much larger than that 

of the balanced samples. Therefore, both shares and mean-group SOA averages are better estimated 

here than in previous sections.  

In addition, given that the rolling sub-samples analyzed in this section are affected more by 

events occurring over time rather than by sample composition, the fluctuations in the rolling 

estimates are more due to models' parameter instability over time.  

The four graphs in Figure 3 show the shares of reverting firms (upper panel) and the average 

SOAs (lower panel) over rolling samples of 27 years beginning in the years reported along the x-

axes. The left side columns pertain to short-term debt, the right side ones to long-term debt.  

Figure 3 here 

The upper panel graphs compare the outcomes in terms of alternative shares of reverting firms 

for short- and long-term debt. As noted in previous sections, the shares relating to short-term debt 

are markedly higher than those relating to long-term always in rolling samples. Further, the shares 

show a slight tendency to increase since mid-1970s, and the asymmetric adjustment and breaking 

target models deliver shares of short-term debt reverting firms which are higher than those of the 

other three models, while in the long-term debt case only breaking targets shares seem slightly 

higher. In both cases, the study of the cointegration between debt and specific determinants does not 

modify the basic outcomes. 

The lower panel compares alternative rolling SOA estimates. They all are remarkably stable 

over time, and suggest that debt targeting firms broadly revert to their optimal levels in around one-

two years, independently of whether short- or long-term debt. It is worth stressing again that - in 

general - the estimates of average speeds for the target-adjusting firms are again greatly higher than 

those usually reported in studies assuming poolability.  

 

5. Concluding remarks 

In this paper, a novel and very simple approach has been introduced to inspect the dynamics 

of companies' leverage ratios, based on the explicit acknowledgment of two well known stylized 

facts: 1. firms are potentially heterogeneous in their speed of adjustment because they face different 

constraints in adjusting towards their leverage optimal targets; 2. actual leverage ratios fluctuations 

over time are very persistent. The novelty here is not methodological because our tools are based on 

consolidated unit root and cointegration tests, but our contribution stands in the use of these 
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techniques in assessing the target-reversion of leverage ratio fluctuations through the lens of fully 

heterogeneous models. In this, our models make a good job in further improving the understanding 

of data features that previous models cannot, as we are able to explain much of the results of the 

empirical literature on leverage dynamics and suggest focusing in few issues.  

We provide evidence that the existence of a dynamic process of actual debt adjustment 

towards the target, as suggested by the Trade-off theories (TO) of capital structure, is not 

necessarily the rule. In fact, when we consider the most favorable case of the short-term leverage 

ratio, the share of firms which behave following the TO theories - about 60-70% - is never even 

close to levels which could support the stationarity assumption. This share dramatically drops to 

about one-quarter in the case of the long-term leverage ratio. Given the prevalence of the latter form 

of financing, only about 30-35% of firms in our sample have total debt ratios which revert towards 

their leverage targets, independently on the way the alternative models here proxy the target.  

This outcome trace the causes of the most awkward results of the literature on empirical 

capital structure (see e.g. Chang and Dasgupta, 2009, and Hovakimian and Li, 2011) and give a new 

interpretation of the acknowledged low SOA estimates usually reported in the empirical research 

(see e.g. Fama and French, 2002, Flannery and Rangan, 2006, and Iliev and Welch, 2010). The 

invalidity of the maintained hypothesis of SOA parameter poolability biases its estimates, and with 

leverages generated by non stationary processes the usual significance tests are invalid. In other 

terms, firms' behavior is too much heterogeneous to be summarized by pooled parameters, and the 

practice of exploiting this bulk of heterogeneity through the ex ante imposition of ad hoc variables 

cannot be statistically rejected by data independently on their usefulness. 

Therefore, any statistically sounded method of inference about firms' financing behavior 

should better start from parsimonious models of unconstrained-heterogeneity and, only afterwards, 

assess the ability of alternative measures of the theoretical determinants to explain such 

heterogeneity in the multivariate context. Unfortunately, the preliminary cointegration results 

obtained here are not much encouraging, as the inclusion in the model of heterogeneous target 

drivers (TO determinants) leads to results that do not substantially differ from the ones we obtain 

with univariate unit root tests.  

This lack of cointegration, i.e. of a statistically founded long run relationship between target 

leverage and some TO variables, for a significant portion of companies can be explained by the well 

known difficulty (see among others Lemmon et al. 2008) of measuring the wide range of theoretical 

TO determinants with few variables. Very recently, Frank and Shen (2014) have introduced the 

common factors approach to summarize, with few heterogeneous factors, a wide information set of 



31 
 

146 variables which likely encompasses the TO unobservable determinants, and their results show a 

substantial increase of firms' SOA which is in line with our evidence.  

Merging these results will lead to the future challenges of the empirical capital structure 

literature: heterogeneity matters and the genuine TO determinants are difficult to capture with few 

explicit variables. A promising approach to explain leverage fluctuations could be based on the core 

concept of persistence: we must find, using heterogeneous cointegration tools, the few variables that 

genuinely explain the persistent waves of leverage, rather than looking for statistically significant 

effects that, with so much persistence, may be simply spurious. 
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Appendix A1 – Issues in modeling pooled capital structure dynamics 

A1.1 - Theoretical determinants and the corresponding measurements 

The empirical relevance of PO/MT and TO determinants in explaining firms’ debt choices is 

not only based on a number of theoretical assumptions, but is also supported by survey evidence.36 

However, the big issue of measuring the explanatory variables of the general model (1) is still not 

settled in a satisfying way. Frank and Goyal (2009) report a long list of empirical proxies of PO/MT 

and TO theoretical variables which are used in empirical works, i.e. which can enter in X and/or Z 

vectors. Even excluding the most strongly correlated measures belonging to the same block of 

determinants, they list 25 explanatory variables. However, among the others, Lemmon et al. (2008) 

point to the difficulty of measuring the wide range of TO determinants with few relevant variables.  

A1.2 - Adjustment costs and slow pooled SOA estimates 

Some papers (see the recent Graham and Leary (2011)) acknowledge that testing capital 

structure adjustments for the whole economy through the linear model (3) - as it is usually done  in 

the literature - has limited informative value since it is assumed that all firms have the same 

adjustment costs.37 As an alternative, some authors compare the estimation results coming from 

subsamples of firms, with potentially different adjustment costs. However, the ex ante 

selection/definition of subsamples cannot prevent results from being affected by an invalid 

poolability assumption of SOAs. 

As documented by Flannery and Watson Hankins (2013), in the recent econometric practice 

for capital structure, within or first-difference transformations of model (3) are employed to get rid 

of the individual effects iµ .The resulting large information sets made of firm-year observations are 

exploited by either OLS or GMM estimators under the assumptions of data stationarity and slope 

parameters poolability. Even more recently, Elsas and Florysiak (2014) extend Flannery and 

Watson Hankins (2013) results to account for the fractional nature of the dependent variable and, in 

doing so, they introduce a new pooled estimator for data assumed to be stationary. 

The large amount of available variability, thanks to thousands observations used to estimate 

few pooled parameters, leads to very precise estimates of γ, α, and β; small standard errors 

                                                           
36 See Graham and Harvey (2001) for the US, and Brounen et al. (2006) for some European countries. 
37 Leary and Roberts (2005) show that firms' financing behavior is consistent with the presence of adjustment costs, and 
companies actively rebalance their leverages to stay within an optimal range. In this context, the persistency of 
leverage's shocks (low SOAs) emerging from linear models is more likely due to high adjustment costs than to 
indifference towards the target. On the other side, Titman and Tsyplakov (2007) note that a number of findings are 
inconsistent with models based solely on adjustment costs. The reason, they argue, is that both target leverage and SOA 
are affected by an extended list of interacting determinants, besides adjustment costs, which can be firm specific. We 
face this point in Section 3.  
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unavoidably inflate the SOA statistical significance.38 The precision/significance of SOA estimates 

is usually interpreted as supporting the linear dynamic model (3), and not much attention is paid to 

consider that SOA point estimates - usually ranging between -0.15/-0.35 - suggest amazingly slow 

speeds of adjustment: with a SOA estimate of -0.25 we are saying that all firms in the sample 

bridge 90% of the gap between actual and target debt within the space of about 8 years.39 Fama and 

French (2002, p. 24) label such low rates of mean reversion as "snail's pace", and Welch (2004, p. 

129) talk about "practically no-readjustment". Of course, these unconvincing results stimulated a 

strand of literature to revisit model (3) to measure more reliable SOAs.  

A1.3 - The awkward interpretation of significant adjusting mechanisms 

Since Shyam-Sunder and Myers (1999, section 4.4), it has been noted that the explanatory 

variables driving TO debt targets are presumably related to firms' characteristics. If this is true, also 

firms' leverage is related to individual characteristics, and this independently on being generated by 

an optimization exercise. As a consequence, the correlation of leverage with its target determinants 

does not necessarily corroborate the validity of the prediction of the TO theory.40 Chang and 

Dasgupta (2009) show that Shyam-Sunder and Myers (1999) results can be replicated by using 

simulated data for leverage, generated as being unrelated with any target. Also Hovakimian and Li 

(2011) show that models like equation (3) produce results severely biased in favor of the target 

adjustment, and list a number of good practices - such as the use of recursive two-step estimation 

methods and the exclusion of firms characterized by extremely high debt ratios – useful to estimate 

dynamic models with better power properties   

A1.4 - Neglected unit roots and cointegration 

From the statistical point of view, much of the problems listed in issues #2 and #3 can be 

explained in the light of spurious co-trending literature (see e.g. Granger and Newbold (1974)): if 

actual leverage L and some PO determinants Z in model (3) are strongly persistent (i.e. 

characterized by stochastic trends), the statistical significance of SOAs cannot be assessed by using 

                                                           
38 Iliev and Welch (2010, p. 2) say that "Ironically, the main challenge in this literature could be viewed as not too 
much, but too little estimation uncertainty". We believe that our approach can tackle this challenge. 
39 The misunderstanding of the literature assuming poolability is well represented by quotes like this: "A SOA 
coefficient estimate of 25% [i.e. α = -0.25 in model (3)] means that it takes the average firm 2.4 years to recover half of 
the target leverage deviation [...].", Eckbo and Kisser (2014, note 2). Actually, the a priori assumption of SOA 
poolability implies that it is not the average firm but every firm in the sample to react so slowly. 
40 Chen and Zhao (2007) go further and explicitly talk about the mechanical mean reversion of leverage ratios. In short, 
they claim that debt ratios revert towards the mean simply because they are ratios, and not because they are pushed by 
TO-like behaviors. In order to prevent this issue, sometimes authors exclude from the sample ratios smaller than 10% 
and higher than 90% (see e.g. Warr et al. (2012)), and Elsas and Florysiak (2014) suggest a new estimator for fractional 
leverage. 
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standard t-statistics, but have to be tackled in the context of the integration-cointegration properties 

through the Granger representation theorem.41 

Following a non-parametric approach, Iliev and Welch (2010) model leverage ratios under 

the null hypothesis of no readjustment and find SOA estimates around zero. This fact suggests that 

the unit-root model is reasonable for the leverage of the average US firm. Although frictions can 

play a substantial role in shaping the cost-benefits adjustment (see e.g. Myers (1984) and Fischer et 

al. (1989)), Welch (2004, p. 123) argues that TO models with transaction costs cannot be entirely 

responsible for such low SOA estimates.  

A1.5 - Heterogeneous ways to escape from linearity 

Several papers try to emend some shortcomings listed above by relaxing the restrictive 

assumption of linearity. For example, regarding macroeconomic conditions, the SOA is 

significantly faster in good states (see e.g. Drobetz and Wanzenried (2006), Cook and Tang (2010), 

and Halling et al. (2012)). Regarding firm specific variables, Faulkender et al. (2012) find that large 

(in absolute value) operating cash flow drives more aggressive changes of leverage towards the 

target; in Byoun (2008) most adjustments of actual toward the target debt ratio occur when firms 

face a financial deficit or surplus; also in Dang et al. (2012) firms with large financing imbalances, 

large investments or low earnings volatility, adjust faster. In Warr et al. (2012) over-levered firms 

adjust rapidly when equity is overvalued, while undervalued firms adjust at a much slower pace. 

Baum et al. (2014) provide evidence that risk exerts asymmetric effects on SOAs, even after 

controlling for financial unbalances in driving actual/target leverage deviations.42 There are cases in 

which conclusions disagree: for example, Aybar-Arias et al. (2012) find that firms adjust faster 

when the actual debt is closer to the target because of lower adjustment costs, while in Drobetz and 

Wanzenried (2006) firms further away from optimal capital structure adjust more readily.  

Faulkender et al. (2012) and Korteweg and Strebulaev (2012) use approaches technically 

more demanding (such as simulated moment estimation and (S, s) models) and carry evidence in 

favor of firms adjusting towards their target debt ratio with discontinuity, experiencing periods of 

inaction (i.e. not refinancing) when the actual debt lays inside upper/lower financing thresholds, 

while issuing transitory debt when actual debt is below the lower threshold.  

 

                                                           
41 See Engle and Granger (1987). Ioannidis et al. (2003) explicitly stress the risk of spurious regressions using very 
persistent financial ratios. 
42 In this strand of research, both financial deficit/surplus and equity mispricing do not exert PO/MT effects as explicit 
explanatory MTPO

itX /  variables of model (3), but rather they drive the non-linear effects. 
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Appendix A2 – Relating the use of time dummies with the practice of data demeaning 

The estimation of a model with time dummies is equivalent to the estimation of the model 

(without tτ ) where all the variables are demeaned. In this context, "demeaning" means that we 

measure the dependent variable of the leverage model with tit
d
it LLL −=  rather than itL , where 

∑
=

=
N

i
itt L

N
L

1

1
 (N is the number of firms in the panel).  

The inclusion of time effects tτ  (or demeaning model's variables) under the assumption of 

stationary variables assumes that the disturbance for each firm in the panel can be decomposed into 

common disturbances that are shared by all the members of the panel, and independent 

idiosyncratic disturbances that are specific to each member.  

 To give the intuition with a simple example, let's start from the univariate model which in 

the main text has been introduced to assess for heterogeneity in the linear context: 

 itiitiit eLL ++= − µα∆ 1          (A2.1) 

and demean its data: 

 iti
d
iti

d
it eLL ++= − µα∆ 1         (A2.2) 

 If we substitute the definition, given above, of demeaned data we have: 

 ittititiit eLLLL +++−= −− ∆µα∆ )( 11       (A2.3) 

where tL∆  proxies the shocks common to all N members of the panel and ite  embodies all other 

idiosyncratic shocks. As shown in equation (A2.3), estimating model (A2.1) with demeaned data 

assumes an equilibrium-correction mechanism (EqCM) process of adjustment where individual debt 

ratios converge to the heterogeneous target t
i

i
it LL +

−
=

α
µ*

. 

Model (A2.3) can be augmented, as the Dickey-Fuller test equation can be, to fix residuals' 

autocorrelation problem. In this case, the dynamic specification (A2.3) is still an EqCM: 

 itjt

p

j
ijjit

p

j
ijititiit LLLLL

ii

ω∆λ∆λα∆ +++−= −
=

−
=

−− ∑∑
01

*
11 )(    (A2.4) 

which corresponds to the Dickey-Fuller equation augmented by the changes in the common driving 

component jtL −∆ .  

For a theoretical justification of a slight generalization of model (A2.4), see the cross 

sectional augmented Dickey-Fuller (CADF) test of Pesaran (2007), where the common stochastic 

disturbance is proxied by a single common factor independent from the idiosyncratic disturbances. 
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Appendix A3 - Data 

We start from a broad data-sample of firms drawn from the Compustat database and 

covering the period 1950-2012. The Compustat data-set contains information about balance sheet 

and income statement of more than 400,000 firms from different economic sectors such as 

agriculture, manufacturing or financial services, and more than 350 variables.  

We first select firms that have an annual balance sheet with the closing date on the 31st of 

December (291,880 observations which duration period equal to twelve months). We drop firms 

classified as Financial Services according to the variable Industry Format43 going to an unbalanced 

panel of 263,454 firm-year observations. We excluded firms-year observations with missing data on 

employees and total assets, with total debt negative or higher than total assets, with gross tangible 

and intangible capital stocks higher than total assets, with market value of leverage and effective 

interest rate outside the 1st and 99th percentiles. As standard in the literature, we also excluded all 

financial firms (SIC codes 6000-6999), and regulated firms (SIC codes 4900-4999), as well as 

companies involved in major mergers (Compustat footnote code AB) are excluded. We end up with 

an unbalanced panel of 168,696 observations for 15,577 companies (going from about 350 

companies in 1950 to more than 4,000 companies in 2011).  

Total leverage is measured by debt ratio at book values, as the sum of short-term debt 

(Compustat current liabilities, item #34) and long-term debt (item #9) over total assets (item #6); 

long and short term leverages are defined accordingly.  

Table A3.1 presents the sample distribution by industry and the corresponding averages for 

total, long- and short-term debt ratios. The latter summarize the sectorial data which are used as 

targets in models where (possibly non stationary) TO determinants are measured as debt averages 

over time. 

Table A3.1 here 

In the cointegration experiments we add some explanatory variables which are standard in 

the empirical financial literature (see e.g. Frank and Goyal (2003), Flannery and Rangan (2006), 

and de Jong et al. (2011)). Variable (1) of Section 4.2 represents guarantees, which are measured as 

fixed asset proportion, i.e. property, plant, and equipment over total assets (Compustat item #14 / 

item #6). Cashflow (variable (2)) is computed as income before extraordinary items (item #123) 

plus extraordinary items and discontinued operations (item #124) plus depreciation and 

amortization (item #125) plus equity in net loss – earnings (item #106) plus sale of property plant 

                                                           
43 According to the Standard & Poor Compustat Xpressfeed manual “Understanding the data”, Industry Format 
represents company industry format at record level by identifying the basic financial presentation - mainly Financial 
Services (FS) versus Industrial format (INDL). 
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and equipment and investments – gain (loss) (item #213) plus funds from operations – other item 

#217) plus exchange rate effect (item #314) (plus deferred taxes (item #126) and sources of funds – 

other (item #218) if format code for the cash flow statement is equal to 1, 2 and 3). 44 The relative 

cost of capital (variable (3)) is given by (libor/100) - (ratedebt × (1-TaxRate)), where ratedebt is 

interest and related expense - total (item #15) divided by lagged total debt and TaxRate is the 

corporate statutory tax rate. Non-debt tax shields (variable (4)) are given by depreciation as a 

proportion of total assets (Compustat item #14 / item #6). 

 
 
  

                                                           
44 The data from 1971 to 1987 is from the “Cash Statement by Sources and Use of funds” (Compustat format codes 1, 2, 
3); the structure has funds from operations plus other sources of funds minus uses of working capital equals change in 
working capital. Beginning in 1988, most firms start reporting “Statement of Cash Flows” (format code 7), structured as 
income plus indirect operating activities plus investing activities plus financing activities equals change in cash and 
cash equivalents (Frank and Goyal (2003)). 
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Tables and Figures 

 

Tab. 1 - Schematic view of the ADF tests and its weaknesses 
 

  When the theory actually valid is: 

  PO/MT TO with stationary drivers 

ADF null 
that αi=0 

not 
reject 

ADF is right, as in this column firms 
are assumed to follow PO/MT theories 
and do not have a target leverage (SOA 
is zero). Note that ADF may lack 
power (in the cell on the right), and/or 
size (in the cell below). 

ADF is wrong, as it does not reject PO/MT 
which is false. This failure can be do either 
to not constant SOA (non-linearity may be a 
cause of equation (10) mis-specification, see 
case A2), or to breaks/shifts in leverage 
levels (see case B1). An additional issue is 
the non-stationarity of the target leverage 
determinants (see cases B2, C1). 

reject 

ADF is wrong, as it suggests that firms' 
leverage reverts towards a fixed target 
over time. Among the causes of ADF 
over-rejection note: sizeable MA 
terms, variability of AR parameters, 
breaks at the beginning of the time 
series. 

ADF is right, as in this column firms are 
assumed to follow TO with stationary 
drivers, which imply that the target leverage 
is constant over time. 
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Tab. 2 - Shares of firms with target reverting debt ratios by term structure and in alternative balanced panels (deterministic targets) 

   
 

Linear around 
a fixed target b 

 
Asymmetric or non-linear around 

a fixed target c 
 

Linear around 
a broken target d 

 
Linear with industry 
time varying targets 

Begin End 
Time 
span 

# of 
firms 

 
ADF DFGLS 

 
BvD +> - += - +< - KSS 

 
BT 

One 
break 

Two 
breaks 

 
mean median 

Short term debt ratios a 

1950 2011 62 50  0.440 0.520  0.680 0.706 0.265 0.029 0.480  0.740 0.649 0.351  0.520 0.440 
1960 2011 52 97  0.583 0.567  0.711 0.623 0.333 0.043 0.474  0.773 0.680 0.320  0.557 0.573 
1970 2011 42 161  0.640 0.491  0.733 0.534 0.407 0.059 0.488  0.776 0.760 0.240  0.590 0.566 
1975 2011 37 196  0.631 0.520  0.714 0.493 0.471 0.036 0.523  0.740 0.752 0.248  0.590 0.577 
1980 2011 32 227  0.602 0.520  0.670 0.526 0.461 0.013 0.522  0.731 0.735 0.265  0.558 0.569 
1985 2011 27 290  0.561 0.507  0.641 0.446 0.527 0.027 0.458  0.662 0.729 0.271  0.552 0.531 
1990 2011 22 412  0.542 0.430  0.604 0.402 0.594 0.004 --  0.585 0.714 0.286  0.549 0.550 

Long term debt ratios a 

1950 2011 62 50  0.163 0.160  0.280 0.286 0.214 0.500 0.224  0.320 0.500 0.500  0.143 0.163 
1960 2011 52 97  0.253 0.206  0.402 0.308 0.359 0.333 0.253  0.371 0.528 0.472  0.211 0.170 
1970 2011 42 161  0.233 0.335  0.348 0.304 0.286 0.411 0.297  0.329 0.642 0.358  0.222 0.237 
1975 2011 37 196  0.240 0.306  0.332 0.200 0.415 0.385 0.215  0.342 0.627 0.373  0.196 0.183 
1980 2011 32 227  0.242 0.326  0.317 0.236 0.417 0.347 0.194  0.344 0.551 0.449  0.246 0.204 
1985 2011 27 290  0.256 0.283  0.303 0.182 0.455 0.364 0.187  0.421 0.574 0.426  0.237 0.241 
1990 2011 22 412  0.216 0.250  0.294 0.223 0.479 0.298 --  0.420 0.497 0.503  0.219 0.220 

Total debt ratios a 

1950 2011 62 50  0.220 0.160  0.360 0.500 0.222 0.278 0.180  0.300 0.667 0.333  0.260 0.300 
1960 2011 52 97  0.229 0.258  0.392 0.342 0.421 0.237 0.175  0.309 0.667 0.333  0.198 0.188 
1970 2011 42 161  0.306 0.292  0.391 0.206 0.476 0.317 0.231  0.348 0.554 0.446  0.239 0.196 
1975 2011 37 196  0.246 0.276  0.316 0.258 0.452 0.290 0.193  0.337 0.561 0.439  0.202 0.201 
1980 2011 32 227  0.267 0.308  0.335 0.276 0.487 0.237 0.194  0.339 0.545 0.455  0.232 0.204 
1985 2011 27 290  0.254 0.283  0.331 0.219 0.385 0.396 0.184  0.376 0.532 0.468  0.230 0.191 
1990 2011 22 412  0.208 0.252  0.286 0.254 0.466 0.280 --  0.383 0.437 0.563  0.210 0.224 

(a) Debt ratios at book values. (b) ADF= Dickey and Fuller (1979), DFGLS= Elliott et al. ((1996) tests. (c) BvD= asymmetric Berben and van Dijk (1999), KSS= non-linear 
Kapetanios et al. (2003) tests ("--" stands for not computed); in Italic, the following three columns report the composition of target reverting firms with SOAs larger (>), equal (=) or 
smaller (<) when actual debt ratios are above (+) or below (-) the fixed target. (d) BT= share of firms stationary around broken targets (Perron and Vogelsang (1992) for one break, 
Clemente et al. (1998) for two breaks); in Italic, the following two columns report the composition of the stationary firms on the basis of the number of breaks in the target.  
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Tab. 3 - Average SOA estimates by groups of non-reverting and reverting firms on the basis of alternative univariate models.a 

Begin End 
Time 
span 

# of 
firms 

MG of non-
reverting firms 

MG of  
reverting firms 

Linear 
        Asymmetric adjustment dynamics Breaking target Time varying target 

          −+ < ii αα ))
 −+ = ii αα ))

     −+ > ii αα ))
 One Two mean median 

Short term debt ratios b 
1950 2011 62 50 -0.194 -0.516 -0.968 -0.138 -0.463 -0.510 -1.746 -0.727 -0.820 -0.479 -0.533 
1960 2011 52 97 -0.229 -0.544 -1.067 -0.155 -0.525 -0.436 -1.508 -0.816 -0.845 -0.538 -0.554 
1970 2011 42 161 -0.261 -0.638 -1.214 -0.176 -0.607 -0.605 -1.755 -0.851 -0.933 -0.614 -0.637 
1975 2011 37 196 -0.272 -0.711 -1.317 -0.193 -0.706 -0.879 -1.914 -0.933 -0.945 -0.672 -0.699 
1980 2011 32 227 -0.314 -0.763 -1.377 -0.199 -0.816 -0.623 -1.834 -0.987 -1.039 -0.742 -0.749 
1985 2011 27 290 -0.339 -0.827 -1.404 -0.208 -0.848 -0.458 -1.526 -0.995 -1.174 -0.799 -0.824 
1990 2011 22 412 -0.391 -0.845 -1.523 -0.192 -0.850 -0.695 -1.974 -1.012 -1.196 -0.858 -0.856 

Long term debt ratios b 
1950 2011 62 50 -0.129 -0.323 -0.877 -0.098 -0.324 -0.084 -1.109 -0.590 -0.656 -0.303 -0.295 
1960 2011 52 97 -0.160 -0.345 -1.001 -0.125 -0.343 -0.108 -1.403 -0.654 -0.790 -0.348 -0.372 
1970 2011 42 161 -0.193 -0.499 -1.130 -0.148 -0.481 -0.142 -1.503 -0.757 -0.800 -0.456 -0.436 
1975 2011 37 196 -0.202 -0.539 -1.327 -0.139 -0.544 -0.172 -1.470 -0.811 -0.936 -0.497 -0.490 
1980 2011 32 227 -0.222 -0.603 -1.307 -0.136 -0.626 -0.183 -1.593 -0.822 -0.942 -0.558 -0.551 
1985 2011 27 290 -0.256 -0.643 -1.393 -0.179 -0.625 -0.230 -1.574 -0.877 -1.142 -0.632 -0.628 
1990 2011 22 412 -0.299 -0.701 -1.489 -0.183 -0.624 -0.268 -1.719 -1.008 -1.068 -0.716 -0.712 

Total debt ratios b 
1950 2011 62 50 -0.121 -0.318 -0.840 -0.081 -0.311 -0.082 -1.157 -0.521 -0.754 -0.301 -0.289 
1960 2011 52 97 -0.151 -0.371 -1.090 -0.117 -0.340 -0.106 -1.367 -0.585 -0.738 -0.387 -0.390 
1970 2011 42 161 -0.180 -0.441 -1.115 -0.123 -0.426 -0.143 -1.458 -0.753 -0.893 -0.466 -0.459 
1975 2011 37 196 -0.206 -0.499 -1.396 -0.109 -0.504 -0.181 -1.582 -0.815 -0.986 -0.522 -0.500 
1980 2011 32 227 -0.219 -0.532 -1.420 -0.150 -0.538 -0.190 -1.647 -0.864 -0.974 -0.553 -0.556 
1985 2011 27 290 -0.258 -0.595 -1.559 -0.198 -0.560 -0.216 -1.588 -0.859 -1.037 -0.595 -0.621 
1990 2011 22 412 -0.292 -0.696 -1.568 -0.220 -0.641 -0.234 -1.700 -1.085 -1.079 -0.711 -0.686 

(a) MG = mean group estimates, i.e. averages of individual SOA estimates within the groups whose shares are reported in Table 2. (b) Debt ratios at book values.  
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Tab. 4 - Shares of firms with stochastic targets, and SOA estimates by groups of reverting firms. 

     
Engle-Granger (EG) 

Reverting with alternative 
approaches  

Begin End 
Time 
span 

# of 
firms 

Incomplete 
Non-

reverting 
firms 

Reveting 
firms 

Johansen 
Banerjee 

et al. 
Boswijk SOA (EG) 

Short term debt ratios 

1950 2011 62 50 0.000 0.400 0.600 0.280 0.580 0.540 -0.657 
1960 2011 52 97 0.010 0.396 0.594 0.313 0.542 0.531 -0.705 
1970 2011 42 161 0.012 0.422 0.566 0.296 0.497 0.535 -0.815 
1975 2011 37 196 0.015 0.410 0.575 0.332 0.492 0.482 -0.903 
1980 2011 32 227 0.009 0.449 0.542 0.302 0.449 0.489 -0.976 
1985 2011 27 290 0.028 0.497 0.475 0.309 0.426 0.511 -1.048 
1990 2011 22 412 0.034 0.614 0.352 0.304 0.402 0.588 -1.228 

Long term debt ratios 

1950 2011 62 50 0.000 0.800 0.200 0.120 0.120 0.140 -0.411 
1960 2011 52 97 0.021 0.832 0.147 0.095 0.158 0.211 -0.517 
1970 2011 42 161 0.025 0.803 0.172 0.127 0.185 0.293 -0.640 
1975 2011 37 196 0.026 0.833 0.141 0.120 0.120 0.272 -0.779 
1980 2011 32 227 0.018 0.816 0.166 0.121 0.121 0.300 -0.824 
1985 2011 27 290 0.024 0.792 0.184 0.163 0.159 0.357 -0.859 
1990 2011 22 412 0.032 0.863 0.105 0.208 0.246 0.524 -1.044 

Total debt ratios 

1950 2011 62 50 0.000 0.860 0.140 0.200 0.040 0.220 -0.401 
1960 2011 52 97 0.010 0.896 0.094 0.125 0.052 0.208 -0.426 
1970 2011 42 161 0.019 0.823 0.158 0.133 0.082 0.304 -0.546 
1975 2011 37 196 0.015 0.850 0.135 0.140 0.067 0.254 -0.639 
1980 2011 32 227 0.009 0.880 0.111 0.151 0.076 0.284 -0.765 
1985 2011 27 290 0.014 0.878 0.108 0.217 0.115 0.360 -0.786 
1990 2011 22 412 0.024 0.906 0.070 0.189 0.197 0.550 -1.057 
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Fig. 1 - Total debt SOA for ESTAR adjusting firms over the sample 1980-2011 
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The two SOA estimates for different debt gaps are obtained by using the first and third quartile of the distribution 
of θ estimates in model (12). 
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Fig. 2 - Counts of firms (N) belonging to alternative fixed and rolling sub-samples a 
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(a) Conventionally, the x-axis reports the first year (begin) of the alternative the sub-sample periods. 
Of course, for straight lines the sum of the begin year plus the labeled T gives the end year of each 
fixed sub-period (always 2011), while the rolling sub-periods are defined form the beginning to 27 
years later. 
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      Fig. 3 - Rolling estimates of reverting firms' shares (upper panel) and of average SOAs (lower panel) by debt term structure a 
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(a) Conventionally, the horizontal axes report the first year of the alternative rolling sub-samples with a 27-years window over which shares and average SOAs are 
estimated.  
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Tab. A3.1 - Sample distribution by industry and average debt-ratios 

        Average debt ratios 
Obs. % Total Long-term Short-term 

1-Non Durables 10,053 5.96   0.237 0.167 0.070 

2-Durables 4,570 2.71 0.238 0.159 0.078 

3-Manufacturing 23,939 14.19 0.237 0.180 0.058 

4-Energy 10,756 6.38 0.246 0.199 0.047 

5-Chemicals 4,550 2.7 0.234 0.183 0.052 

6-Business Equipments 20,909 12.39 0.151 0.095 0.056 

7-Telcommunications 5,875 3.48 0.370 0.321 0.050 

8-Utilities 9,094 5.39 0.416 0.367 0.049 

9-Trade, shops 11,283 6.69 0.256 0.178 0.078 

10-Hotels 12,665 7.51 0.177 0.126 0.051 

11-Finance 29,630 17.56 0.216 0.139 0.077 

12-Other 25,372 15.04 0.259 0.198 0.061 

Total 168,696 100   0.238 0.176 0.062 

 
 
 



 


