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Abstract

We revisit the relationship between market power and �rms� in-
vestment incentives in a noncooperative di¤erential oligopoly game in
which �rms sell di¤erentiated goods and invest in advertising to in-
crease the brand equity of their respective goods. The feedback equi-
librium obtains under open-loop rules, and aggregate expenditure on
goodwill takes an inverted-U shape under both Cournot and Bertrand
behaviour, provided product di¤erentiation is su¢ ciently high. Total
industry expenditure is higher under Cournot competition.
Keywords: Goodwill; Oligopoly; Advertising; Di¤erential games;

Schumpeterian hypothesis.
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1 Introduction

The acquired industrial organization approach to the bearings of market
power on the size and pace of technical progress can be traced back to the
indirect debate between Schumpeter (1934, 1942) and Arrow (1962) on the so-
called Schumpeterian hypothesis, which, in a nutshell, says that one should
expect to see a direct relationship between innovation and market power
or industry concentration. Consequently, Schumpeter�s claim is that one
should expect to observe the highest R&D e¤ort under monopoly. The well
known counter-argument formulated by Arrow is that a monopolist, being
a¤ected by a replacement e¤ect, might rest on his laurels, being thus out-
performed along the R&D dimension by any form of even slightly more com-
petitive industry. An analogous, although not entirely equivalent version of
the Arrow-Schumpeter debates relies on the relationship between �rms�in-
vestment incentives and the intensity of competition rather than industry
structure. In this perspective, the Schumpeterian stance is that any factor
decreasing �rms�pro�tability should shrink their incentive to invest, while
the Arrovian position claims the opposite. The simplest way of formulating
this alternative view of the issue at hand consists in taking the number of
�rms (i.e., industry structure) as given and then assess the consequences of
quantity versus price competition on innovation e¤orts.
Irrespective of the nature of innovation (either for cost reductions or for

the introduction of new products), a large theoretical literature attains either
Schumpeterian or Arrovian conclusions (for exhaustive accounts, see Tirole,
1988; Reinganum, 1989; and Martin, 2002).1 That is, partial equilibrium the-
oretical IO models systematically predict a monotone relationship between
aggregate R&D e¤orts and industry structure, in either direction.
A completely di¤erent picture arises if one takes instead the standpoint of

modern growth theory à la Aghion and Howitt (1998). In particular, Aghion
et al. (2005) stress that empirical evidence shows a non-monotone relation-
ship between industry concentration (or, the intensity of market competition)
and aggregate R&D e¤orts: this takes the form of an inverted-U curve, at
odds with all existing theoretical IO models; in the same paper, the authors
provide a model yielding indeed such a concave result, and �tting the data.
A thorough discussion, accompanied by an exhaustive review of the related

1See also Gilbert (2006), Vives (2008) and Schmutzler (2010) for add-on�s on this
discussion, where still the Schumpeter vs Arrow argument remains unresolved.
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lively debate, can be found in Aghion et al. (2013).
One could say that the inverted-U emerging from data says that Arrow is

right for small numbers, while Schumpeter is right thereafter. Alternatively,
on the same basis one could also say that neither Arrow nor Schumpeter can
match reality, if our interpretation of their respective views is that �competi-
tion (resp., monopoly) outperforms monopoly (resp., competition) along the
R&D dimension.�Be that as it may, there arises the need of constructing
models delivering a non-monotone relationship between some form of invest-
ments in innovation, productive capacity or other relevant dimensions, and
the number of �rms in the industry.
One such dimension is advertising expenditure. Nerlove and Arrow (1962)

pointed out that advertising expenditure should be treated in the same way
as investment in a durable good. They assumed that there is a stock of
goodwill that determines the current level of market demand. This stock of
goodwill incorporates the advertising carried out in the past and, like capital
stock, depreciates over time. This has generated a large literature extending
their seminal contributions in several directions, indeed too many to be sum-
marised here (see, e.g., Feichtinger et al., 1994; Erickson, 2004; Jørgensen and
Zaccour, 2004; and Huang et al., 2012, for comprehensive surveys). A com-
paratively smaller number of contributions deal with oligopoly models (see
Pauwels, 1977; Friedman, 1983; Fershtman, 1984; Erickson, 1995; Cellini
and Lambertini, 2003a,b, inter alia) and either disregard the in�uence of in-
dustry structure on aggregate advertising expenditure or �nd a monotone
relationship.
In this paper, we develop a dynamic oligopoly model of advertising to

revisit the discussion between Arrow and Schumpeter looking at the �rms�
e¤orts to increase goodwill or brand equity. Firms are single-product units
and sell di¤erentiated varieties of the same good, investing in advertising to
increase goodwill over an in�nite horizon. Market competition takes place
in outputs or prices, alternatively, and the game is fully noncooperative. All
of this allows us to revisit the vexata quaestio of the relationship between
investment incentives and market power/pro�tability in both the aforemen-
tioned ways. Our results can be spelled out as follows. First, the open-loop
Nash equilibrium is strongly time consistent (i.e., subgame perfect) under
both Cournot and Bertrand behaviour. Second, the relationship between the
equilibrium aggregate advertising expenditure and the number of �rms is
concave and single-peaked, so that an inverted-U curve indeed arises, again
irrespective of the market variable, provided that the degree of product dif-
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ferentiation is su¢ ciently high. Third, individual and aggregate advertising
investments are higher in the Cournot setup then in the Bertrand one. Hence,
under this respect, the �avour of the model is Schumpeterian.
The remainder of the paper is organised as follows. The model is laid

out in section 2. Section 3 investigates the game under quantity-setting be-
haviour, while price-setting behaviour is considered in section 4. Concluding
remarks are in section 5.

2 The setup

Consider an industry existing over continuous time t 2 [0;1) ; populated by a
set N � f1; 2; 3; :::ng of a priori fully symmetric single-product �rms. Each
of them uses the same productive technology characterised by a constant
marginal cost (normalised to zero for simplicity) to supply a di¤erentiated
variety, whose instantaneous demand function is2

pi (t) = a� qi (t)� sQ�i (t) ; (1)

where Q�i (t) =
P

j 6=i qj (t) is the instantaneous output of rivals and a > c
and s 2 [0; 1] are constant parameters. In particular, s measures the degree
of substitutability between any pair of varieties. In the special case s =
0, all varieties are independent of each other and all �rms behave as pure
monopolists in N fully isolated markets. The inverse demand functions in
(1) are for the Cournot (quantity-setting) game, while in the Bertrand (price-
setting) case one has to specify the direct demand system as follows:

qi (t) =
a

1 + s (n� 1) �
[1 + s (n� 2)] pi (t)� s

P
j 6=i pj (t)

(1� s) [1 + s (n� 1)] : (2)

The instantaneous pro�ts of the individual �rm are

�i (t) = Gi (t) [a� qi (t)� sQ�i (t)] qi (t)� bk2i (t) ; (3)

where Gi (t) is a state variable representing the goodwill or brand equity
associated with variety i: Firm i�s brand equity is (i) positively a¤ected by the

2This demand structure is generated by a linear-quadratic utility function of the rep-
resentative consumer, as in Singh and Vives (1984), where only duopoly is considered.
For the extension to oligopoly, see Vives (1985), Ottaviano et al. (2002) and Cellini et al.
(2004), inter alia.
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advertising campaign, whose intensity is measured here by the instantaneous
advertising e¤ort ki (t) ; entailing a cost �i (t) = bk2i (t) ; b > 0; and (ii)
negatively a¤ected by the rival�s collective e¤ort K�i (t) =

P
j 6=iKj (t) ; so

that the state dynamics writes as follows:

�
Gi �

dGi (t)

dt
= ki (t)� �K�i (t)� �Gi (t) ; (4)

in which parameter � 2 [0; 1= (n� 1)] scales the negative spillover e¤ect
exerted by the n � 1 rivals of �rm i, in such a way that if � = 1= (n� 1),
the spillover neutralizes altogether �rm i�s e¤ort. Parameter � > 0 is the
goodwill decay rate, assumed constant and common to all varieties. Also
constant and symmetric across the whole population of �rms is taken to be
the discount rate � > 0:
Hence, each �rm has two controls, the advertising e¤ort and a market

variable, either price or quantity, so that the game features n states and 2n
controls. The objective of �rm i is to maximise the discounted pro�t �ow

�i (t) �
Z 1

0

�i (t) e
��tdt; (5)

subject to the set of dynamic constraints (4) and initial conditions Gi0 =
Gi (0) > 0; plus the set of the appropriate transversality conditions to be
speci�ed in the remainder. Independently of the market variable being set,
�rms move simultaneously at all times, the solution concept being thus the
Nash equilibrium under open-loop information. The reason for the choice of
open-loop rules will become clear in the remainder.

3 The Cournot game

Under quantity-setting behaviour, the relevant demand structure is (1). As
a result, the current-value Hamiltonian of �rm i is

Hi (t) = e
��t

(
�i (t) + �ii (t) _Gi (t) +

X
j 6=i

�ij (t) _Gj (t)

)
; (6)

where �ij(t) = �ij(t)e
�t is the costate variable (evaluated at time t) asso-

ciated with the state variable Gj (t) : We shall omit from now on the time
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argument when no ambiguity may arise. From (6) we can derive the �rst
order conditions (FOCs) on controls:3

@Hi

@qi
= Gi (a� 2qi � sQ�i) = 0; (7)

@Hi

@ki
= �2bki + �ii � �

X
j 6=i

�ij (t) = 0; (8)

and the set of co-state equations:

_�ii = �
@Hi

@Gi
+ ��ii , (9)

_�ii = (� + �)�ii � qi (a� qi � sQ�i) ;

_�ij = �
@Hi

@Gj
+ ��ij , _�ij = (� + �)�ij: (10)

The accompanying set of transversality conditions is limt!1 �ijGje
��t = 0

for all i; j = 1; 2; :::; n:
Before proceeding any further, note that (10) admits the solution �ij = 0

at all times, and therefore (7-9) imply that the open-loop Nash solution is
indeed subgame perfect as it is a degenerate feedback equilibrium.4 More
formally, we can formulate this result in the following:5

Lemma 1 The open-loop information structure gives rise to a strongly time
consistent equilibrium.

Then, we can impose symmetry across variables, thus rewriting (7-9) as

G [a� q (1 + s (n� 1))] = 0; (11)

�� 2bk = 0; (12)

3Henceforth we will omit the explicit indication of the time argument for the sake of
brevity.

4For more on the arising of strongly time consistent equilibria in di¤erential games
solved under open-loop information, see Fershtman (1987), Mehlmann (1988, ch. 4),
Dockner et al. (2000, ch. 7) and Cellini et al. (2005).

5The analysis of the feedback equilibrium based on the Hamilton-Jacoby-Bellman equa-
tion of the Cournot game is in the Appendix. It shows that indeed the feedback equilibrium
degenerates into the open-loop one illustrated here.
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_� = (� + �)�� q [a� q (1 + s (n� 1))] : (13)

Now notice that (11) admits the quasi-static solution

q�CN =
a

1 + s (n� 1) ; (14)

replicating the static Cournot-Nash output (whence the subscript). Equa-
tions (12-13) can be manipulated to derive the control equation

_k =
_�

2b
= (� + �)�� q [a� q (1 + s (n� 1))] ; (15)

so that, using � = 2bk and (14), the dynamics of the advertising e¤ort is
described by

_k =
2bk (� + �) [2 + s (n� 1)]2 � a2

2b [2 + s (n� 1)]2
; (16)

which, together with

�
G = k [1� � (n� 1)]� �G; (17)

forms the state-control dynamic system of the present formulation of the
game. Imposing stationarity on (16-17), we obtain the coordinates of the
unique steady-state-equilibrium point

k�CN =
a2

2b (� + �) [2 + s (n� 1)]2
; G�CN =

k�CN [1� � (n� 1)]
�

: (18)

Note that G�CN , which is non-negative for all admissible values of �, corre-
sponds to

lim
t!1

GCN (t) = e
��tG0 + k

�
CN [1� � (n� 1)]

�
1� e��t

�
: (19)

The foregoing analysis can be summarised in

Proposition 2 The open-loop advertising game associated with Cournot com-
petition produces a unique steady-state-equilibrium point at fG�CN ; k�CN ; q�CNg ;
which is subgame perfect.

Moreover, the stability analysis of the system (16-17) can be easily per-
formed to prove:
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Proposition 3 The steady-state equilibrium fG�CN ; k�CN ; q�CNg is a saddle
point.

Proof. It su¢ ces to observe that the determinant of Jacobian matrix asso-
ciated with the dynamic system (16-17) is � = �� (� + �) < 0:
We are now in a position to tackle the main issue we are interested with,

namely, the shape of the equilibrium advertising e¤ort at the industry level,
K�
CN = nk�CN ; whose main features are captured by the following partial

derivatives:
@K�

CN

@n
=

a2 [s (n+ 1)� 2]
2b (� + �) [2 + s (n� 1)]2

; (20)

@2K�
CN

@n2
=

a2 [s (n+ 2)� 4]
b (� + �) [2 + s (n� 1)]4

: (21)

Solving @K�
CN=@n = 0; we have

nCN =
2� s
s

� 28 s 2
�
0;
2

3

�
; (22)

in correspondence of which (21) is negative. Accordingly, we may claim

Proposition 4 For all s 2 [0; 2=3] ; the aggregate advertising e¤ort K�
CN

is concave and single-peaked in the number of �rms, taking its maximum at
nCN = (2� s) =s � 2:

The above result says that a su¢ ciently high degree of product di¤er-
entiation delivers an inverted-U aggregate advertising e¤ort at equilibrium.
This claim can be complemented by the ancillary observation that nCN = 1
in correspondence of s = 1; i.e., if products are perfect substitutes, then the
model takes a Schumpeterian �avour, as it happens for all s 2 (2=3; 1]: if vari-
eties are too little di¤erentiated, aggregate equilibrium investment decreases
monotonically in the number of �rms.

4 The Bertrand game

Under price-setting behaviour, (2) replaces (1). The Hamiltonian function of
�rm i is:

Hi = e
��t
�
Gi

�
a

1 + s (n� 1) �
[1 + s (n� 2)] pi � s

P
j 6=i pj

(1� s) [1 + s (n� 1)]

�
pi (23)
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�bk2i + �ii _Gi +
X
j 6=i

�ij _Gj

)
;

which generates the following set of necessary conditions:

@Hi

@pi
=
Gi

h
a (1� s)� 2 (1 + s (n� 2)) pi + s

P
j 6=i pj

i
(1� s) [1 + s (n� 1)] = 0; (24)

@Hi

@ki
= �2bki + �ii � �

X
j 6=i

�ij = 0; (25)

and the set of co-state equations:

_�ii = �
@Hi

@Gi
+ ��ii , (26)

_�ii = (� + �)�ii �
pi

h
a (1� s)� (1 + s (n� 2)) pi + s

P
j 6=i pj

i
(1� s) [1 + s (n� 1)] ;

_�ij = �
@Hi

@Gj
+ ��ij , _�ij = (� + �)�ij; (27)

with the same transversality conditions as above. Once again, (27) admits
�ij = 0 at all t 2 [0;1) ; and the open-loop solution is strongly time consis-
tent. Proceeding in the same manner as in the previous section, we obtain
the Bertrand-Nash equilibrium price

p�BN =
a (1� s)

2 + s (n� 3) > 08 s 2 [0; 1) ; (28)

which collapses onto marginal cost if the good is homogeneous, and the con-
trol equation

_k =
2bk (� + �) [2 + s (n� 3)]2 [1 + s (n� 1)]� a2 (1 + s) [1 + s (n� 2)]

2b [2 + s (n� 3)]2 [1 + s (n� 1)]
;

(29)
which, together with (17), constitutes the state-control system relevant for
the Bertrand case. The unique stationary point of the system (17-29) is

k�BN =
a2 (1� s) [1 + s (n� 2)]

2b (� + �) [2 + s (n� 3)]2 [1 + s (n� 1)]
; G�BN =

k�BN [1� � (n� 1)]
�

;

(30)
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where G�BN � 0 is the level at which the goodwill trajectory

GBN (t) = e
��tG0 + k

�
BN [1� � (n� 1)]

�
1� e��t

�
; (31)

leads in steady state. It can be easily shown that (30) is a saddle point
equilibrium (the proof is omitted for brevity).
The steady-state advertising e¤ort of the entire industry is K�

BN = nk
�
BN ;

whose partial derivative with respect to n is

@K�
BN

@n
= � � 2 + 3s (n� 3) + s

2 (13� 7n)� s3 [n2 (n� 1)� 2 (2n� 3)]
2b (� + �) [2 + s (n� 1)]2

;

(32)
where � � a2 (1� s) = [2b (� + �)] : Hence we are interested in solving

2 + 3s (n� 3) + s2 (13� 7n)� s3
�
n2 (n� 1)� 2 (2n� 3)

�
=

2� s [9 + s (13� 6s)] + n [3 + (4s� 7) s] s+ n2s3 � n3s3 = 0 (33)

Now de�ne � � s3; 
 � 2� s [9 + s (13� 6s)] and � � [3 + (4s� 7) s] s;
so that (33) can be rewritten as

��n3 + �n2 + �n+ 
 = 0; (34)

which can be treated geometrically, knowing that � > 0 for all s 2 [0; 1) ; � >
0 for all s 2 [0; 3=4) and negative elsewhere; and 
 < 0 for all s 2 (1=2; 2=3)
and positive elsewhere.
The �rst step consists in observing that any n solving (34) also solves

�n2 � �n� � = 


n
; (35)

so that the roots of @K�
BN=@n = 0 are identi�ed by the intersections of the

following system:
y1 = �n

2 � �n� �;
y2 =




n
;

(36)

i.e., the critical values of n, if they exist, are identi�ed by the intersections
- if any - of the parabola y1 and the hyperbola y2. First, observe that y1 is
convex for all s 2 (0; 1] ; moreover, y1 = �n2 � �n� � = 0 at

n� =
1

2

 
1�

r
� + 4�

�

!
; (37)
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with n� < 1 for all s 2 [0; 1] and n+ � 2 for all s 2 [0; 1=2] : Secondly, y1
takes its minimum in correspondence of

@y1
@n

= (2n� 1)� = 0; (38)

i.e., in n = 1=2; which entails that y1 is increasing for all n � 1. Thirdly, y2 >
0 for all s 2 (0; 1] and y2 � y1 for all s 2 [0; 1=2] : Finally, @K�

BN=@njn=1 =
1=4 irrespective of the value of s: The latter observation, in particular, en-
tails that if a unique intersection does occur at some nNB � 2; then it is a
maximum point and we can disregard the sign of @2K�

BN=@n
2 as it is surely

negative. These properties jointly establish the following result:

Proposition 5 s 2 [0; 1=2] is a su¢ cient condition for @K�
BN=@n to be nil in

correspondence of a unique number nNB � 2: At such nNB; @2K�
BN=@n

2 < 0
because @K�

BN=@njn=1 > 0:

In order to single out the necessary condition one must carry out some
numerical calculations. It turns out that

K�
BN jn=1 > K�

BN jn=2 8 s 2 (0:618; 1] : (39)

and conversely in the complementary range of the key parameter s. Accord-
ingly, we can formulate:

Proposition 6 The parameter range wherein Bertrand behaviour generates
an inverted-U-shaped aggregate advertising e¤ort at the steady state equilib-
rium is a proper subset of the range wherein Cournot behaviour yields the
same result.

Hence, under both quantity- and price-setting behaviour, there emerges
an inverted-U curve describing aggregate investment in goodwill at the steady-
state equilibrium provided di¤erentiation is su¢ ciently high. Accordingly,
one can say that the concave shape of industry investments is robust to a
change in market variables. However, the requirement on the level of product
di¤erentiation is milder in the Cournot model, intuitively because - Cournot
competition being less aggressive, and consequently its pro�ts higher than
Bertrand�s - quantity-setting behaviour more easily allow for the balance
between the competitive e¤ect (Schumpeter) and the replacement e¤ect (Ar-
row) to �ip over at some n > 1.
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As a last step, we may compare aggregate steady state investments to
�nd that

K�
CN �K�

BN =
a2 (n� 1)2 ns3 [2 + s (n� 2)]

2b (� + �) [2 + s (n� 3)]2 [1 + s (n� 1)] [2 + s (n� 1)]2
> 0;

(40)
for all n > 1 and s 2 (0; 1] : Moreover,

GCN (t)�GBN (t) =
[1� (n� 1) �]

�
1� e��t

�
�

(k�CN � k�BN) � 0;

(41)

G�CN �G�BN =
[1� (n� 1) �]

�

�
kC � kB

�
� 0:

So, if one interprets the Schumpeterian hypothesis in the sense that any
reduction in the intensity of competition must be expected to foster invest-
ments, for example by choosing quantity-setting rather than price-setting
strategies for any degree of substitutability, then (40) shows that Schum-
peter was right:

Proposition 7 Cournot competition enhances equilibrium individual and col-
lective advertising e¤orts as compared to Bertrand competition. The resulting
individual and collective amount of goodwill is higher under quantity-setting
behaviour.

The explanation appears to be that since quantity strategies are less ag-
gressive than price strategies, and the corresponding gross pro�ts react ac-
cordingly, a fully Schumpeterian argument applies: the size of pro�ts def-
initely matter. There remain to be assessed the consequences on social
welfare, which are however intuitive and can be quickly dealt with, since
the above proposition clearly implies that welfare is higher under Bertrand
competition (welfare - gross of advertising costs - is higher under Bertrand
competition; hence, a fortiori, it is higher than that generated by Cournot
after subtracting total advertising costs).

5 Concluding remarks

We have characterised the e¤ects of industry structure and market competi-
tion on individual and aggregate advertising e¤orts in a di¤erential oligopoly
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game in which �rms sell di¤erentiated varieties of the same good. Irrespec-
tive of whether �rms are quantity- or price-setting agents, an inverted U-
shaped aggregate investment curve emerges at equilibrium, if varieties are
su¢ ciently di¤erentiated. This is in line with recent empirical and theoret-
ical results (Aghion et al., 2005) shedding new light on the long-standing
debate between Schumpeter and Arrow. A Schumpeterian �avour instead
characterises the bearings of market competition on individual and aggregate
advertising expenditure, as the latter is higher under Cournot competition,
for any industry structure.
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6 Appendix

What follows illustrates the feedback solution of the game in which �rms set
output levels. Observe that each player�s payo¤ and dynamics depend only
on her own goodwill. (There is of course an indirect dependence through the
control variables of the other players.) Denote by Vi (Gi) the value function
of player i. The Hamilton-Jacobi-Bellman (HJB) equation of this player
reads as follows:

�Vi(Gi) = max
qi;kj

�
Gi (a� qi � sQ�i) qi � bk2i + V 0i (Gi) (ki � �K�i � �Gi)

	
:

(a1)
Assuming an interior solution, from the necessary conditions for optimality
taking the partial derivatives of the RHS in (a1) with respect to qi and ki
and equating to zero, we obtain:

Gi (a� 2qi � sQ�i) = 0; (a2)

�2bki + V 0i (Gi) = 0: (a3)

The �rst condition shows that the quantities are strategic substitutes, that
is, @qi=@qj < 0, which is a feature of Cournot model. The second condition
states that advertising strategy is determined by the familiar rule of marginal
cost (2bki) being equal to marginal bene�t, measured by the marginal value
of goodwill V 0i (Gi).
As the model�s parameters are identical for all players, it is intuitively

appealing to look for a symmetric equilibrium. The ensuing analysis shows
that the solution of the HJB equation (a1) indeed delivers the same outcome
as the open-loop formulation of the same problem investigated in the main
text.
Assume Gi (t) 6= 0 for all i 2 N and all t 2 [0;1). In a symmetric

equilibrium, qi = q; ki = k and Gi = G for all i 2 N . We conjecture that
the value function of player i is linear and given by V (G) = C + DG. The
equilibrium conditions (a2-a3) become

q =
a

2 + s (n� 1) = q
�
CN ; (a4)

k =
D
2b
: (a5)
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Inserting (a4-a5) in (a1) yields

�V (G) = G (a� q � s (n� 1)) q � bk2 + V 0(G) (k � � (n� 1) k � �G) ;

� (C +DG) =
a2G

(2 + s (n� 1))2
+
D2
4b
([1� 2� (n� 1)])� �DG: (a6)

By identi�cation, we have

D =
a2

(�+ �) (2 + s (n� 1))2
; (a7)

C =
a4 (1� 2� (n� 1))

4�b (�+ �)2 (2 + s (n� 1))4
; (a8)

Using k = D= (2b), we obtain

k =
a2

2b (� + �) (2 + s (n� 1))2
= k�CN : (a9)

The value function is linear and given by

VCN (G) =
a2

(�+ �) (2 + s (n� 1))2
�

a2 (1� 2� (n� 1))
4�b (�+ �) (2 + s (n� 1))2

+G

�
(a10)

The above results call for the following two observations:

1. The analysis of the feedback game has been carried out under the as-
sumptions that the solution is interior, which obviously holds true, and
the goodwill stock is never equal to zero. Substituting for the adver-
tising strategies in the goodwill dynamics and solving the di¤erential
equation yields the trajectory

GCN (t) = e
��tG0 +

a2 (1� (n� 1) �)
2b� (� + �) (2 + s (n� 1))2

�
1� e��t

�
: (a11)

Under our speci�cation that � 2 [0; 1= (n� 1)] ;we clearly have G (t) �
0 for all t 2 [0;1). The steady-state value is given by

G�CN =
a2 (1� (n� 1) �)

2b� (� + �) (2 + s (n� 1))2
> 0: (a12)
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2. The result that the quantity and advertising strategies are independent
of the state (i.e., constant or degenerate feedback) is surprising. In-
deed, we would have expected this to occur if the di¤erential game were
of the linear-state variety, but this is not the case here. (In fact, the
game is not even linear quadratic). This result has surely something to
do with two facts: (i) the other players�state variables do not appear
in each player�s optimization problem; and (ii) the multiplicative form
in G of the revenue function. In any event, with constant strategies,
we conclude that open-loop and Markov-perfect Nash equilibria coin-
cide. Interestingly, this implies that the characterization of the entire
industry�s advertising e¤ort is indeed independent of the information
structure.

The feedback solution of the Bertrand game con�rms the same conclusions
reached in the Cournot setting (namely, that the open-loop equilibrium is a
degenerate feedback one) and is omitted for brevity.
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