

SMART-M3 v.0.9:
A semantic event processing engine

supporting information level
interoperability

in ambient intelligence

 A quick start tutorial

Francesco Morandi

Fabio Vergari

Alfredo D’Elia

Luca Roffia

Tullio Salmon Cinotti

Revised by Jussi Kiljander

7/10/2013

ALMA MATER STUDIORUM – UNIVERSITA’ DI BOLOGNA

ARCES - ADVANCED RESEARCH CENTER ON ELECTRONIC SYSTEMS

 SEMANTIC ARCHITECTURES LAB

Bologna,

SMART-M3 v.0.9: A semantic event processing engine supporting

information level interoperability in ambient intelligence

Francesco Morandi, Fabio Vergari, Alfredo D’Elia, Luca Roffia, Tullio Salmon Cinotti

Revised by Jussi Kiljander

ARCES

AlmaDL

Alma Mater Studiorum Università di Bologna

Quest'opera è distribuita con Licenza

 Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Unported.

SMART-M3 v.0.9: A semantic event processing engine supporting information level

interoperability in ambient intelligence/ Francesco Morandi, Fabio Vergari,

Alfredo D’Elia, Luca Roffia, Tullio Salmon Cinotti. – Bologna: ARCES -; AlmaDL
Alma Mater Studiorum Università di Bologna , 7 Ottobre 2013. –. P.27; 30 Cm.
ISBN: 978-88-98010-12-7

Quest’opera è stata realizzata con il patrocinio di:

Anna Ciampolini – Coordinator of the Laurea Magistrale in Ingegneria Informatica

Riccardo Rovatti - Coordinator of the Laurea Magistrale in Ingegneria Elettronica

Versione elettronica disponibile in AMS Acta, il deposito istituzionale per la ricerca dell’Alma Mater

Studiorum Università di Bologna, alla pagina:

http://amsacta.unibo.it/3877/

This work was supported by EIT-ICT Labs – Action Line Smart Spaces – Activity OLDA - Open Local Data

Applications (2013)

.

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.it
http://amsacta.unibo.it/3877/

1

Foreword

Emerging computing paradigms such as pervasive computing, Internet of Things, and cyber-

physical systems require novel approaches for managing interoperability between heterogeneous

systems and devices. This tutorial describes in detail how Semantic Web technologies can be

utilized in order to build systems interoperable at the semantic level. In particular, the tutorial

focuses on systems where fast event processing is vital and introduces simple primitives for

creating and subscribing to events with SPARQL. The tutorial also describes how to design such

systems in modular and extendable way and provides the reader with important hands-on

knowledge on application development.

The proposed software infrastructure is the result of European research projects with significant

contribution from the University of Bologna and all the material here discussed is available as open

source so the reader can instantly start experimenting by developing her/his own applications.

- Jussi Kiljander, Research Scientist, VTT Technical Research Centre of Finland

2

3

Contents

Foreword ... 1

Contents .. 3

Glossary ... 5

Introduction ... 7

SPARQL primitives for semantic event processing .. 9

Delayed SPARQL update .. 10

SPARQL Update Template ... 13

SPARQL Subscription ... 14

SPARQL Subscribe template .. 15

Programming approach ... 16

Application model and programming style ... 18

Presence Sensor KP ... 20

LampActuator KP ... 21

LampManager KP... 22

Hands on .. 25

Downloading, installing and running the Semantic Event Broker ... 25

Downloading .. 25

Installing .. 25

Running .. 25

Examples .. 25

References ... 27

4

5

Glossary

M3

A middleware architecture to share semantic information about the physical world in cross-domain multi-

vendor, multi-device, multi-platform applications.

SMART-M3

The first open-source implementation of the M3 architecture (Sept 30, 2009, San Jose, CA).

Semantic Information Broker (SIB)

In SMART-M3 the SIB is the host and manager of the shared information.

Knowledge Processor (KP)

Any actor exchanging information with the SIB ;it is a producer and/or a consumer of information.

Smart Space Access Protocol (SSAP)

The protocol used by KPs to communicate with the SIB.

RedSIB

A SIB implementation (Release0.4) based on Redland triple store.

SEB

A SIB implementation (Release0.9) supporting delayed SPARQL update. SEB stands for Semantic Event

Broker.

Resource Description Framework (RDF)

The World Wide Web Consortium standard for information modeling and conceptual description. SMART-

M3 information is represented in RDF.

Web Ontology Language (OWL)

The World Wide Web Consortium language for authoring ontologies.

SPARQL Protocol and RDF Query Language (SPARQL)

A query language to retrieve and manipulate RDF information.

6

7

Introduction

This document is a quick start tutorial. It describes how to create open ambient intelligence applications

with Smart-M3 v.0.9 platform [1]. The reader is expected to have a basic knowledge about the following

Semantic Web technologies: Resource Description Framework (RDF), RDF Schema (RDFS), Web Ontology

Language (OWL) and SPARQL[3][4]. The proposed examples and programming templates are intended to

be suitable for any popular programming language.

Smart-M3 v.0.9 provides new functionalities which will be enlightened in this guide.

Smart-M3 is an open-source middleware proposed by SOFIA, an European Project (2009-11) of the

ARTEMIS framework, to enable information interoperability in cross-domain multi-vendor, multi-device,

multi-platform applications. The platform implements the separation of concerns principle, decouples

information producers and consumers, and inherently supports system modularity.

In M3 vision, all actors of the application (i.e. sensors, devices, services, actuators, etc.) cooperate by

sharing information via common RDF database.

The architecture supports:

 information interoperability: interoperability is enabled by a shared data model which relies on

Semantic Web technologies.

 prompt reaction to context changes: the functional architecture provides mechanism for

subscribing to complex events.

Fig.1 shows the M3 functional architecture. The “legacy gate” is an interface to the external physical world.

Many legacy gates may coexist in M3 based ecosystems.

Fig. 1 - M3 architecture

8

The Semantic Information Broker (SIB) is the entity responsible for storing and governing information

shared in M3 applications. Software agents exchanging information with each other via the SIB are called

Knowledge Processors (KPs). The Smart Space Access Protocol (SSAP) defines to methods and syntax for KP-

SIB communication; this protocol consists of XML messages transmitted over TCP/IP. Application

Programming Interfaces (APIs) implement the SSAP for the KPs and are available in several programming

languages.

Smart-M3 attempts to solve the information interoperability problem capitalizing on Semantic Web

technologies. Semantic Web is a framework developed by the World Wide Web Consortium to enable data

sharing and reuse across applications, enterprises and communities. Smart-M3 uses RDF to represent

information. In RDF information is represented as triples consisting of subject, predicate and object. The

RDF triples stored into the SIB form a directed labeled graph. It should be noted that the graph is not

necessarily a connected graph however.

While RDF provides the standard data model for information representation, use of an ontology language is

essential to specify the information semantics. Ontology languages such as RDFS and OWL provide a

common vocabulary. The use of a common ontology allows all actors (humans and machines) to mutually

understand the semantics of information and cooperate with each other through the SIB. Smart-M3 is

ontology agnostic and thus allows developers to choose the best way to model the information in order to

satisfy the functional requirements of the addressed application domain.

Developers can write their own software (i.e. their own KPs) using APIs available in the following

programming languages: Python, C, C#, Java, PHP, JavaScript.

9

SPARQL primitives for semantic event processing

The Semantic Event Broker (SMART-M3 v.0.9) was developed starting from the RedSIB (SMART-M3 v.0.4)

implementation.

The RedSib is a Semantic Information Broker based on Redland RDF store [2] and supports the following

operations:

The Semantic Event Broker (SEB) supports all of the above mentioned primitives and introduces two new

features:

 SPARQL update

 Time management

SPARQL 1.1 Update[4]is a W3C language to update RDF graphs. A basic operation in the SPARQL Update

language is “DELETE/INSERT” that can be used to perform conditional update operations. A conditional

update is an atomic operation consisting of: a query (i.e. a WHERE pattern) and an update (i.e. RDF triples

to be inserted and removed). The update is executed only if the query provides result(s). In this case, if the

RDF triples to be inserted and deleted contain variables, then the variables are substituted with the

bindings obtained in the WHERE pattern matching.

Time management is a new feature that enables time sensitive behaviors. The SEB hosts the shared current

time value and provides specific primitives to handle the time. KPs can retrieve the current time from the

SEB to synchronize themselves by using the get_sib_time() function embedded within a SPARQL pattern. In

addition to retrieve the current time, time management enables KPs to specify when the SPARQL update

should be performed (delayed SPARQL update).

These new features simplify KP application logic design and encourage application programming style

rethinking. KP lifetime logic (i.e. between join and leave), can be implemented only with delayed SPARQL

update and SPARQL Subscription.

Operation

Join/Leave -

Insert RDF Triple

Remove RDF Triple

Update RDF Triple

Query RDF Triple / SPARQL

Subscribe/Unsubscribe RDF Triple / SPARQL

10

Delayed SPARQL update

The Delayed SPARQL update primitive performs a conditional SPARQL update at a specific time. This

primitive has two input parameters: the SPARQL update itself and the desired time for its execution. If the

time is not specified the operation is scheduled as soon as it is received by the SEB.

Underneath you’ll find some examples of SPARQL messages where the Delayed SPARQL update is used. This

primitive replaces and extends the insert, remove and update primitives originally available in the original

SSAP protocol.

PREFIX unibo:<http://www.UniboExample/ExampleOntology.owl#>

DELETE DATA {

 unibo:LampActuator_1 unibo:HasValue "False" .

 unibo:LampActuator_2 unibo:HasValue "True" .

 }

INSERT DATA {

 unibo:LampActuator_1 unibo:HasValue "True" .

 unibo:LampActuator_2 unibo:HasValue "False" .

 }

Example of SPARQL update data (concrete triples)

In the first line the PREFIX keyword is used to make the operation more compact and readable by defining a

short label (i.e. unibo) for the ontology namespace: http://www.UniboExample/ExampleOntology.owl#.

Typically the PREFIX keyword is used like this (i.e. for ontology namespaces), but it can be used also to

shorten any other URI. In practice, the SPARQL engine will just replace each prefix label present in the

operation with the URI string.

The SPARQL primitive includes also two fields specifying the RDF triples to be inserted in and removed from

the RDF store. When this SPARQL update is sent to the SEB, the SEB performs the following atomic

operation: two triples are deleted and two triples are inserted, with the following result: the instance

LampActuator_1 is set to on (it was off originally) and the instance LampActuator_2 is set to off (it was on

originally).

http://www.uniboexample/ExampleOntology.owl

11

With the SPARQL update the option exists to update information if and only if a set of conditions are

satisfied. Going back to the previous example, let’s suppose now that we want to switch on

LampActuator_1 and switch off LampActuator_2 only if SensorPresence_1 detects a presence i.e. only if the

triple (unibo:SensorPresence_1, unibo:HasValue, “True”) exists in the RDF store. This can be done with the

following atomic SPARQL DELETE/INSERT operation:

PREFIX unibo:<http://www.UniboExample/ExampleOntology.owl#>

DELETE {

 unibo:LampActuator_1 unibo:HasValue "False" .

 unibo:LampActuator_2 unibo:HasValue "True" .

 }

INSERT {

 unibo:LampActuator_1 unibo:HasValue "True" .

 unibo:LampActuator_2 unibo:HasValue "False" .

 }

WHERE {

 Unibo:SensorPresence_1, unibo:HasValue, “True”

}

Example of SPARQL update with WHERE pattern

Conditions are specified in the WHERE pattern (which specifies a condition check query). Only when there

is a solution matching the WHERE pattern, the updates requested with the DELETE and/or INSERT

sentences are performed.

 The SPARQL update is logically an atomic operation consisting of a query and an update.

With the Delayed SPARQL update programmers can specify the time when their SPARQL update operation

is executed. The assumed time base is UNIX time represented with six decimal digits. In the current

implementation the scheduled time is specified inside the SPARQL update message by defining a specific

PREFIX label (scheduled_time): this approach was adopted to maintain backward compatibility with the

SSAP protocol.

12

Let’s consider now the following SPARQL update message:

PREFIX scheduled_time:<1378737852.770930>

PREFIX unibo:<http://www.UniboExample/ExampleOntology.owl#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

DELETE {

 ?LampActuator unibo:HasValue "False" .

 }

INSERT {

 ?LampActuator unibo:HasValue "True" .

 }

WHERE {

 ?LampActuator, rdf:type, unibo:LampActuator .

 ?LampActuator, unibo:HasValue, “False” .

}

Example of delayed SPARQL update with WHERE pattern and variables

The operation will be performed by the SEB only at the UNIX time expressed in the scheduled_time prefix

(i.e. 1378737852.770930). As already described, when the KP sends its SSAP message to the SEB, the SEB

receives the requested primitive but it will execute it only at the specified time. At the specified SEB time,

the update is performed. In the example at UNIX time 1378737852.770930 all lamps are switched on. More

in detail, in this example all LampActuator class instances that are off are retrieved (by the query specified

in the WHERE patterns (?LampActuator, rdf:type, unibo:LampActuator . ?LampActuator, unibo:HasValue,

“False”), then they are switched on.

It is up to the programmer to compute the desired argument for the scheduled_time prefix.

13

SPARQL Update Template

PREFIX Namespace Definition

PREFIX scheduled_time:<op_time> (only for postponed operation)

DELETE

{

Subgraph to be removed

}

INSERT

{

Subgraph to be inserted

}

WHERE

{

Conditions based on graph pattern

}

14

SPARQL Subscription

M3 is a content-based publish/subscribe architecture. One of its main specificities is its ability to react to

context changes according to the subscribe/notify paradigm. In Smart-M3 V.0.9, subscriptions are

expressed with the SPARQL subscription primitive (see the example below) which consists of:

 The required set of namespace definitions each specified by a PREFIX keyword

 The “SELECT” keyword followed by the addressed variables.

 The “WHERE” keyword followed by the query pattern.

The SPARQL subscription works as follows:

 When a SPARQL Subscription request is sent to the SEB, the SEB immediately replies with the query

result;

 any subsequent RDF database change which matches the SPARQL query pattern defined in the

subscription is automatically notified to the subscribed KP: Notifications include added and

removed results.

For instance, if a KP performs the subscription shown below, 8it will first receive initial results specifying the

URIs of the unibo:LampActuator instances that have the unibo:hasValue attribute assigned with value

“True”. Afterwards the KP will be notified both whenever information matching the query is inserted and

whenever triples are removed, so that the original results become obsolete. In this case, for example, the

original results are made obsolete either by turning unibo:LampActuator “Off” or by completely removing

the instance from the RDF database.

PREFIX unibo:<http://www.UniboExample/LampExampleOntology.owl#>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?LampActuator

WHERE {

 ?LampActuator rdf:type unibo:LampActuator .

 ?LampActuator unibo:HasValue "True" .

 }

Example of SPARQL subscription (only “SELECT” queries are currently supported)

15

SPARQL Subscribe template

PREFIX Definition

SELECT Variables Definition

WHERE

{

Conditions

}

16

Programming approach

M3 architecture supports event driven programming.

Consumers and producers are not directly connected, on the contrary, they are loosely connected through
the SEB.

The M3 programming paradigm is inherently distributed and multi-language.

Interacting agents do not have to agree on their own proprietary data format as information semantics is
specified by a shared ontology stored in the SEB semantic store.

M3 applications may react to both local and remote events, and the SEB may notify circumstances that
relate local and remote contexts.

Producers and consumers are clearly decoupled and the application of the separation of concerns principle
is straightforward.

The M3 architecture is inherently oriented to enable interoperability at information level in the emerging
vision of the Internet of Things, and its implementations aim to provide frameworks for open Cyber Physical
systems.

M3 applications interact with the physical world with sensors and actuators; while sensors produce new
information to the SEB actuators needs to be reactive to context changes (typically detected by sensors)
published to the SEB.

Sensors and actuators are considered “legacy devices”. They are interfaced to the SEB through KPs.

Beside acting as interface between legacy devices and the SEB, KPs may implement data abstraction
functionalities, consisting in the creation of more meaningful information from row sensor data; in this case
they are called aggregator KPs. Eventually they may implement the application business logic.

KPs interact with the SEB with multi-language APIs which handle the SSAP protocol and, particularly,
convey the delayed SPARQL update and the SPARQL subscription primitives to the SEB.

Fig. 2: Sensor, Aggregator and Actuator KPs programming model

17

Fig.2 shows how:

 sensor KPs interact with the SEB with the delayed SPARQL update primitive only

 actuator KPs interact with the SEB with the SPARQL subscription primitive only

 aggregator KPs (e.g. services) interact with the SEB with both primitives, SPARQL subscription and

delayed SPARQL update; through the subscriptions they are notified of context changes detected by

the SEB; they share their output with other KPs through the SEB thanks to delayed SPARQL update.

The delayed SPARQL update primitive has the capability to perform sophisticated and semantics-rich

information processing activity, relieving the KPs from such a burden, and simplifying the KP application

logic.

18

Application model and programming style

A very simple, powerful and modular application model is proposed in this tutorial.

According to this model the application consists of the following KPs:

 One KP per sensor (producer KPs) responsible for updating the SEB with up-to-date sensor
parameters

 One KP per actuator (consumer KPs) responsible for reacting to appropriate SEB updates with
corresponding actuators actions

 One or more KPs responsible for the application specific business logic. They react to SEB updates
issued by the sensors (i.e. producer KPs) with SEB updates that will trigger the actuators (i.e.
actuator KPs).

Thus sensors, actuators and business logic modules are entirely decoupled, they are not bound to be
located on the same platform and each of them may be replaced without any impact on the other
components.

Next a simple example is presented to illustrate how to design and build a M3 application based on the
application model above depicted.

 Let’s consider a simple physical world scenario consisting of a lamp (i.e. the actuator) and a presence
sensor. They are managed by two legacy adapter KPs. A third KP implements a service (the LampManager)
which is responsible of:

 Turning on the lamp when the sensor detects a presence

 Turning off the lamp if the sensor does not detect any presence for a 10 s time interval.

Fig. 3 Application Overview

This simple application shows the programming approach for applications supported by the SEB platform.
The Python code for this example is available on the SEB repository on Smart-M3 SourceForge website[1].

The reader is encouraged to draw the finite state machine that describes this application (Fig. 3).

To develop a Smart-M3 application, starting from its requirements and constrains, its software architecture
should be designed first. This design work consists of two concurrent steps:

 ontology definition

 application partitioning into KPs and information flow specification

19

In this application the simple ontology shown in Fig. 4 represents and describes all relevant entities and the
relations among them. Specifically Fig.4 shows that we have one instance for each class (Sensor and
Actuator are the classes), while two data properties describe their values and timestamps.

Fig. 4: Information representation for the proposed application example

The KPs definition is simple and intuitive; the following KPs implement the application:

 a Presence Sensor KP

 a LampActuator KP

 a LampManager KP implementing the application business logic.

Fig. 5: KPs and associated sequence diagram describing the information flow

20

Presence Sensor KP

This KP is the interface between the presence sensor and the SEB. It is responsible for sharing with other
KPs – through the SEB -the most recent value of the presence sensor. Every time the presence sensor
changes the presence value (i.e. presence/no presence), the KP performs a SPARQL update to keep the SEB
up to date. The following SPARQL Update operation is invoked by the Presence Sensor KP when “presence”
is detected by the physical sensor handled by the KP.

PREFIX unibo:<http://www.UniboExample/LampExampleOntology.owl#>

INSERT {

unibo:PresenceSensor_1 unibo:HasValue "True" .

unibo:PresenceSensor_1 unibo:HasSIBTimestamp ?real_time .

 }

DELETE {

 unibo:PresenceSensor_1 unibo:HasValue "False" .

 unibo:PresenceSensor_1 unibo:HasSIBTimestamp ?timestamp_sens .

 }

WHERE {

 unibo:PresenceSensor_1 unibo:HasValue "False" .

 unibo:PresenceSensor_1 unibo:HasSIBTimestamp ?timestamp_sens .

 BIND (get_sib_time() AS ?real_time)

 }

Updating a sensor value with its time stamp: the BIND clause retrieves the current time value from the SEB with the
get_sib_time() function

In this example the WHERE pattern check is made to verify the following condition inside the SEB: “the

PresenceSensor_1 value is not ‘presence detected’ and the timestamp of this sensor instance has a value”.

In addition to such condition checking, the current UNIX time is bound to the variable named ?real_time

inside the WHERE pattern. The time is retrieved by the SEB using the get_sib_time() function and bound to

the variable by using the BIND pattern.

If the condition is met the DELETE and the INSERT operations are executed. The variables in the DELETE and

INSERT graphs are replaced with solutions obtained in the WHERE pattern matching. I.e. with the DELETE

sentence the off value and the old timestamp are removed; while with the INSERT sentence the presence

value is set to “True” and the timestamp is updated with the value of the ?real_time variable. The same

approach is taken to change the PresenceSensor_1 value in the SEB when no-presence is detected by the

physical sensor (see next text box).

21

PREFIX unibo:<http://www.UniboExample/LampExampleOntology.owl#>

INSERT {

unibo:PresenceSensor_1 unibo:HasValue "False" .

unibo:PresenceSensor_1 unibo:HasSIBTimestamp ?real_time .

 }

DELETE {

 unibo:PresenceSensor_1 unibo:HasValue "True" .

 unibo:PresenceSensor_1 unibo:HasSIBTimestamp ?timestamp_sens .

 }

WHERE {

 unibo:PresenceSensor_1 unibo:HasValue "True" .

 unibo:PresenceSensor_1 unibo:HasSIBTimestamp ?timestamp_sens .

 BIND (get_sib_time() AS ?real_time)

 }

Updating a sensor value with its time stamp: the BIND clause retrieves the current time value from the SEB with the
get_sib_time() function

LampActuator KP
This KP is the interface between the SEB and the actuator reacting to events. The actuator KP just needs to

subscribe to its context of interest. In this example the KP subscribes to the variations of the lamp

properties in the SEB (both the value and the timestamp). This is done with a SPARQL subscription. Once

the subscription is performed the SEB will notify the KP of all changes. Based on the notifications the KP will

then interact with the physical world via its legacy interface (i.e. the lamp can be properly switched on or

off according to the notification).

PREFIX unibo:<http://www.UniboExample/LampExampleOntology.owl#>

SELECT ?value ?timestamp_lamp

WHERE {

 unibo:LampActuator_1 unibo:HasValue ?value .

 unibo:LampActuator_1 unibo:HasSIBTimestamp ?timestamp_lamp .

 }

Subscribing to two variables: ?value and ?timestamp_lamp

22

LampManager KP

This KP is an aggregator which means that it just modifies information in the SEB (i.e. it does not have any

direct interaction with the physical world). It reacts to the sensors changes, applies some intelligence

(taking decisions), and manages the lamp property values by publishing new information into the SEB. The

programming model reflects these functionalities. The KP needs to subscribe to the context of interest and

to manage the corresponding notifications in the appropriate code section (called callback), eventually

updating the SEB semantic store with new information. In this example, the LampManager needs to react

as follows:

 performing action_1 when the presence sensor detects a presence (event_1)

 performing action_2 when the presence is not detected anymore (event_2)

Two subscriptions may be issued in order to have separate callback sections for event_1 and event_2. In

this way the requested actions can be managed separately.

The following SPARQL subscription specifies event_1 context.

PREFIX unibo:<http://www.UniboExample/LampExampleOntology.owl#>

SELECT ?value

WHERE {

 unibo:PresenceSensor_1 rdf:type unibo:Sensor .

 unibo:PresenceSensor_1 unibo:HasValue ?value .

 FILTER (?value = "True")

 }

SPARQL Subscription to detect when PresenceSensor_1 changes to “True” (event_1)

Whenever Presence Sensor_1 value is changed in the SEB to share the information that a presence was

detected (Presence Sensor_1,HasValue, “True”) the KP is notified and in the callback the lamp can be

turned on (action_1) with the delayed SPARQL update underneath.

23

PREFIX unibo:<http://www.UniboExample/LampExampleOntology.owl#>

INSERT {

 unibo:LampActuator_1 unibo:HasValue "True" .

 unibo:LampActuator_1 unibo:HasSIBTimestamp ?time_turning_on .

 }

DELETE {

 unibo:LampActuator_1 unibo:HasValue "False" .

 unibo:LampActuator_1 unibo:HasSIBTimestamp ?timestamp_lamp .

 }

WHERE {

 unibo:LampActuator_1 unibo:HasValue "False" .

 unibo:LampActuator_1 unibo:HasSIBTimestamp ?timestamp_lamp .

 BIND (get_sib_time() AS ?time_turning_on)

 }

SPARQL update to perform action_1

The above delayed SPARQL update updates the lamp sub-graph: it sets to on the lamp actuator instance in

the SEB and updates its timestamp; the function get_sib_time() within the BIND sentence synchronizes

action 1 with the SEB time.

The following SPARQL subscription triggers a notification when the sensor instance in the SEB changes from

a presence to a no-presence value (event_2):

PREFIX unibo:<http://www.UniboExample/LampExampleOntology.owl#>

SELECT ?value ?timestamp

WHERE {

 unibo:PresenceSensor_1 rdf:type unibo:Sensor .

 unibo:PresenceSensor_1 unibo:HasValue ?value .

 unibo:PresenceSensor_1 unibo:HasSIBTimestamp ?timestamp .

 FILTER (?value = "False")

 }

SPARQL Subscribe to detect when PresenceSensor_1 changes to “False” (event_2)

24

In the callback associated to event_2 the lamp manager logic requires to switch off the lamp after 10

seconds if no presence is detected during these 10 seconds (action_2). The subscription notification

delivers the time of the last presence detection (?timestamp) so that the update can be scheduled at the

time + 10. For example if the SEB returns the last timestamp with value 1378659583.435882, the delayed

SPARQL update will be scheduled at 1378659593.435882.

PREFIX scheduled_time:< 1378659593.435882>

PREFIX unibo:<http://www.UniboExample/LampExampleOntology.owl#>

INSERT {

 unibo:LampActuator_1 unibo:HasValue "False" .

 unibo:LampActuator_1 unibo:HasSIBTimestamp ?time_turning_off .

 }

DELETE {

 unibo:LampActuator_1 unibo:HasValue "True" .

 unibo:LampActuator_1 unibo:HasSIBTimestamp ?timestamp_lamp .

 }

WHERE {

 unibo:PresenceSensor_1 unibo:HasValue "False" .

 unibo:PresenceSensor_1 unibo:HasSIBTimestamp "1378659583.435882" .

 unibo:LampActuator_1 unibo:HasValue "True" .

 unibo:LampActuator_1 unibo:HasSIBTimestamp ?timestamp_lamp .

 BIND (get_sib_time() AS ?time_turning_off)

 }

Delayed SPARQL update to perform action_2

In order to ensure consistency to the Delayed SPARQL update results, the WHERE pattern checks that:

 neither the presence sensor timestamp nor its value were changed in the time window between

the update delivery time and the update scheduled time (first two clauses of the WHERE pattern)

 the lamp is on at the scheduled time (third clause of the WHERE pattern)

25

Hands on

Downloading, installing and running the Semantic Event Broker

Downloading

SMART-M3 SourceForge website is http://sourceforge.net/projects/smart-m3/. Here, in the files section,

please download Smart-M3-RedSIB_0.9.

Installing

On Ubuntu (tested on v.12.04) please execute the install.sh script. The script automatically installs the SEB

and a customized Virtuoso RDF store. During the installation process a user interface asks for a password

(and for its confirmation): this password (to be selected by the user) is required only to run the SEB with

Virtuoso.

To install from the SEB folder please issue the following command from the terminal:

$ sh install.sh

Running

Once the installation is completed please run the SEB. This requires two terminals.

From the first terminal please enter:

 $ redsibd

From the other terminal please enter:

$ sib-tcp

To get more information on how to configure the SEB please add --help to both commands. As an example

the SEB can be run with its RDF store on ram rather than on Virtuoso (Virtuoso is recommended for a large

amount of triples or when a persistent triple store is required). The SEB can also be run by setting a

customized port (for the RDF store). On the readme.txt file you can find more detail about the current SEB

release and about the installation process.

Examples
The folder named SEB_examples includes two application examples. Both of them are coded in Python.

The presence-lamp folder contains the example enlightened in the previous section. Here the file

UNIBOLampExample.owl is the simple ontology proposed for the application. It was created with Protégé

[5] and it includes the initialization time description of the system actors (as shown in fig. 4).

To run this demo please run from your terminal the following python KPs:

1. SEB_initilize.py is the KP responsible to load the shared ontology (UNIBOLampExample.owl)

2. SEP_Gateway_Sensor.py is the KP that simulates the presence sensor: sensor events (i.e. presence /

no-presence detection) are simulated from the keyboard: when “t” or ”f” key is pressed (i.e. true or

false) the KP updates the SEB accordingly.

http://sourceforge.net/projects/smart-m3/

26

3. SEP_Gateway_Actuator.py is the actuator KP(i.e. it is a consumer). It is notified when the lamp has

to be turned on or off. During the simulation a message reporting the lamp status is displayed on

the terminal.

4. SEP_Processing_LampManager.py is the aggregator KP. It consumes (i.e. it is notified when

information originated by the sensor is stored in the RDF store) and in turn it produces information

to feed the actuator.

27

References

1. SMART-M3 on SourceForge website, http://sourceforge.net/projects/smart-m3/
2. F. MORANDI, L. ROFFIA, A. D’ELIA, F. VERGARI, T. SALMON CINOTTI. (2012). RedSib: a Smart-M3 Semantic Information

Broker Implementation, Proceedings of the 12th Conference of Open Innovations Association FRUCT, Eds Sergey
Balandin and Andrei Ovchinnikov, Oulu, Finland, November 5-9, 2012,SUAI SAINT-PETERSBURG, (pp. 86-98) ISSN
2305-7254.

3. SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/][]
4. SPARQL 1.1 Update, http://www.w3.org/TR/sparql11-update/
5. Protégé Ontology Editor, http://protege.stanford.edu/
6. L. ROFFIA, A. D’ELIA, F. VERGARI, D. MANZAROLI, S. BARTOLINI, G. ZAMAGNI, T. SALMON CINOTTI, J. HONKOLA. (2010). A Smart-

M3 lab course: approach and design style to support student projects. Invited paper, 8th Conference of Finnish-
Russian University Cooperation in Telecommunications (FRUCT).Lappeenranta (Finlandia). 9-12 Nov 2010. (pp.
142 - 153). ISBN: 978-5-8088-0567-5. SAINT-PETERSBURG: SUAI.

7. E. OVASKA, T. SALMON CINOTTI, A. TONINELLI. (2012). The Design Principles and Practices of Interoperable Smart
Spaces. In Advanced Design Approaches to Emerging Software Systems: Principles, Methodology and Tools.
(pages 18-47) Liu Xiaodong, Li Yang Eds., IGI Global, 2012, doi:10.4018/978-1-60960-735-7.ch002 ISBN:
9781609607357 -http://www.igi-global.com/Bookstore/TitleDetails.aspx?TitleId=49573. Hershey – PA U.S.A.

8. A D’ELIA, J.HONKOLA, D.MANZAROLI, T.SALMON CINOTTI. (2011). Access Control at Triple Level: Specification and
Enforcement of a Simple RDF Model to Support Concurrent Applications in Smart Environments. In Smart Spaces
and Next Generation Wired/Wireless Networking. (pp. 63 - 74) a cura di Sergey Balandin, Yevgeni Koucheryavy,
Honglin Hu. ISBN: 978-3-642-22874-2. LNCS 6869, presented at ruSMART11 (4th Conference on Smart Spaces, St.
Petersburg, August 2011). Heidelberg: Springer

.

http://sourceforge.net/projects/smart-m3/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/sparql11-update/
http://protege.stanford.edu/
http://www.igi-global.com/Bookstore/TitleDetails.aspx?TitleId=49573

SMART-M3 v.0.9:

A semantic event processing engine

supporting information level interoperability

in ambient intelligence

A quick start tutorial

This tutorial is addressed to all post-graduate students in Electronic Engineering and

Information Engineering at the Scuola di Ingegneria e Architettura of the University

of Bologna attending the following courses: Laboratory of Interoperability of

Embedded Systems, Calcolatori Elettronici M and Attività Progettuale di Calcolatori

Elettronici M.

This tutorial is about the Semantic Event Processing infrastructure deployed in the

School Lab named LAB2. It includes the guidelines to build distributed applications

where clients interact through an event broker. Clients may interact also with the

physical space and inter-client information interoperability is based on a shared

knowledge representation model named ontology. This tutorial is focused on client

design and on the primitives that provide the means for client-event broker

interaction.

