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Abstract

Two parties bargaining over a pie, the size of which is determined by
their previous investment decisions. Investment costs are heterogeneous.
The bargaining rule is sensitive to investment behavior. Two games are
studied which di¤er for the considered sociopolitical structure: communal
property in one case and private property in the other. We hereby show
that in both games when a unique stochastically stable outcome exists a
norm of investment and a norm of surplus division must coevolve. While
the investment norm always supports the e¢ cient investment pro�le, the
surplus division norm may di¤er among these games depending on the
size of investment cost gap. Under private property only the egalitarian
surplus division evolves. Under communal property instead two di¤erent
surplus division norms may evolve: the egalitarian one and an inegali-
tarian norm. We show that no cap to payo¤s inequality emerges under
private property while an inequality payo¤ cap endogenously evolves un-
der communal property. The games have been proposed to explain the
social norms used in modern hunter-gatherer societies.

Key Words: evolution; social norms; stochastically stable equilib-
rium; egalitarianism; inequality; Rawlsian division; modern hunter-gatherer
societies.

JEL Codes. C78, D83, L14, Z13.

1 Introduction

There is consensus among anthropologists that, despite some observed di¤er-
ences, the strong central tendency across contemporary hunter-gatherer societies
is to cooperate in the hunt and to share the game. A telling example can be
found among the Ache of Paraguay which seem to have developed a rule of
thumb for hunted resources of the kind "cooperate frequently and share fully"
(Hill, 2002). In some cases the egalitarian distribution of hunted resources is
found even when di¤erences in ability are observed (Kaplan and Hill, 1985)
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meaning that the more skilled hunters are taxed to create a common pool of
resources that feeds everyone about equally (Bohem, 2004). The widespread
observation of cooperation and sharing led some social scientists to suggest that
they must be part of the ruling social norms that must have been evolving over
time, probably as a way to regulate large-game hunting (Bohem, 2004).

Although egalitarianism seem to characterize these small scale societies, Lee
(1990) recommends not to take egalitarianism as synonymous of perfect equality:

"(...) perfect equality doesn�t exist anywhere. It is a fact of life
that human beings di¤er in their abilities (...). What is signi�cant
is that some societies take these di¤erences and minimize them, to
the point of making them disappear, while other societies take the
same basic material and magnify it" (Lee, 1990; 236).

According to Lee (1990) the watershed line between egalitarian and not
egalitarian societies seems to lay in the role of property: societies based on
communal property are egalitarian since they have developed a leveling device;
societies in which property is secured do not have such a device and therefore
are not egalitarian.

The goal of this paper is twofold. On one hand we want to explore whether
and under what conditions social norms supporting both an e¢ cient outcome
and neat distributional rule can endogenously arise through an evolutionary
process in societies characterized by skill heterogeneity. On the other hand we
want to test whether these evolved social norms support the idea that inequality
in societies based on common property is smaller than in societies in which
property is secured.

In order to do this we study a two-stage game with two risk-neutral players
(A and B). In stage one, the production stage, both players have to simultane-
ously decide whether to invest or not; in stage two, the bargaining stage, after
observing the gross surplus produced, they have to decide how to divide it. We
assume that the investment is costly and that the cost incurred by A is greater
than the cost incurred by B: This di¤erence among costs can be seen as the
result of skill heterogeneity with A being the less e¢ cient agent. The surplus
depends on the investment pro�le; we further assume that when nobody invests
no surplus is produced and both agents receive nothing. Thus, a bargaining
stage only occurs when at least one agent has invested in the �rst stage.

Two di¤erent extensive games, corresponding to two di¤erent structures of
political and social organization, are considered. In both extensive games we
assume that when the two players have chosen to invest the bargaining stage
follows the rule of the Nash Demand Game (NDG). When, on the other hand,
an asymmetric investment pro�le is observed two simple alternatives are con-
sidered. Each of these speci�es how the unique investing agent can reap the
rewards of her own action.
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In the �rst alternative we assume that the sociopolitical organization pro-
motes full right of possession. As a consequence all the bargaining power is
assigned to the player who has decided to invest; by allowing her to behave as
a dictator, the bargaining stage then collapses into a Dictator Game (DG). In
this framework if a sharing occurs it only depends on the free will of the unique
investing agent. The anthropological literature suggests that this game can be
appropriate in a society in which production is a collective venture and property
rights are secured, as it seems to happen among the Mbuti pygmies (Ichikawa,
1983).
In the second alternative we assume that, since the sociopolitical organiza-

tion promotes communal property, in order to gather the surplus, an agreement
has to emerge. However, despite nobody can be excluded from receiving a fair
share, this agreement has to emerge in a situation in which only the unique
investing player has the right to make a proposal. This suggests that bargaining
can take the form of an Ultimatum Game (UG) in which the player who has
chosen to invest proposes a distribution which is only realized if the opponent
accepts it otherwise the surplus is lost due to con�ict. The anthropological liter-
ature suggests that this game can be suitable for a society in which production
is an individual activity but in which full right of possession is not supported,
as it seems to be the case for the !Kung (Woodburn, 1982).

By �DG (resp. �UG), we denote the whole game in which an NDG occurs
when a symmetric investment pro�le is observed, and a DG (resp. UG) occurs
when an asymmetric investment pro�le is observed. Both games (i.e. �UG and
�DG) have a multiplicity of equilibria; nevertheless the equilibrium selection
problem may be solved if adequate social norms are in place (Binmore, 1998,
2007; Binmore and Shaked, 2010). Since in our model agents strategically inter-
act in each stage of the game, the social norm of interest is twofold: it is a norm
of cooperation, which dictates how to play the production stage, and a norm
of distribution, which dictates how to divide the surplus produced. In order
to identify the evolved social norms we use the concept of stochastic stability
and we apply the evolutionary framework for extensive games put forward by
Noldeke and Samuelson (1993). We claim that a social norm has evolved when
the stochastically stable set only supports an homogeneous behavior for at least
one population.

Our main result states that in both games when a social norm evolves then
not only do we observe an homogeneous behavior along the whole path of play
but the prescribed actions are uniform across populations. We can thus claim
that in both games norms coevolve.
When a coevolution of norms is observed, the investment norm supports

full cooperation in the production stage (meaning that both agents choose to
invest), regardless of the sociopolitical organization considered. However the
two games di¤er depending on both the condition needed for the two norms to
evolve and the kind of evolved bargaining norm.

3



When property is secured (i.e �DG) we show that norms always coevolve and
the bargaining norm supports an equal surplus division. In this case a higher
cost gap raises payo¤s inequality and no endogenous inequality cap exists. When
communal property is considered (i.e �UG) we show that norms coevolve only if
is the total investment cost su¢ ciently limited; in this case the evolved bargain-
ing norm depends on the parameters con�guration. In particular equal sharing
continues to be the observed norm when it gives to both agents the incentive
to invest. When instead equal sharing gives the incentive to invest to the most
e¢ cient agent only we show that an unequal surplus division norm arises grant-
ing to the less e¢ cient agent a larger surplus share. As a consequence payo¤s
inequality now turns out to be a decreasing function of the cost gap. Given
that the size of the cost gap matters in determining which kind of bargaining
norm evolves, we claim that an inequality cap now springs from evolution. In
addition, for some parameters con�guration the unequal bargaining norm gives
to each agent a share equals to her investment cost plus half of the remaining
net surplus, as predicted by Equity Theory; when this occurs payo¤s equality
is observed.
For whatever sociopolitical organization considered, the agent with smaller

investment cost is the advantaged one. However we claim that the unequal
surplus division norm emerging under communal property has a Rawlsian taste:
by providing to the disadvantaged agent the largest share of the surplus, it
ensures to the advantaged agent the cooperation of the disadvantaged one.
The paper is organized as follows. In Section 2 we present the model. The

evolutionary dynamics are studied in Section 3 and the main results presented
in Section 4. Section 5 is devoted to the discussion of our results together with
the analysis of inequality. In the last Section we compare our results with those
of the related existing literature.

2 The model

Two risk neutral players (A and B) are engaged in a two-stage game. In stage
one both have to simultaneously decide whether to invest (action H) or not
(action L); when a player chooses H she incurs in a cost. We denote by cA and
cB the cost supported by agent A and B respectively. A surplus is produced
and observed at the end of stage one; each player can then correctly estimate
his opponent�s investment. We denote the surplus arising when both choose H
by VH ; the surplus accruing when only one chooses H by VM ; and lastly, when
both choose L, by VL = 0. Obviously, VH > VM > 0:
In stage two, they bargain over the available surplus. The bargaining rule

depends on the investment pro�le. If both have chosen H, they are engaged in
a Nash Demand Game (NDG). If they have chosen di¤erent investments, two
alternatives are conceivable: an Ultimatum Game (UG) and a Dictator Game
(DG). We denote �UG the whole extensive game in which a NDG occurs when
both players have invested while a UG occurs when only one player has invested.
Analogously we denote �DG the whole extensive game in which a DG occurs
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when only one agent has invested. Let D (Vj) = f�; 2�; :::; Vj � �g ; j 2 fH;Mg
denotes the set of feasible claims.

Throughout the paper we make the following assumptions:

Assumption 1 (a) VH=2; cA and cB are all divisible by �;
(b) cA � cB > �;
(c) the maximum payo¤ attainable by playing H when the opponent chooses

L is not negative, i.e.
cA < VM � �; (1)

(d) the e¢ cient net surplus arises when both players choose H; i.e.

VH � cA � cB > max f0; VM � cA; VM � cBg : (2)

(e) the population is su¢ ciently large, i.e.

VH
N

< �: (3)

When � is negligible, Points (b), (c) and (d) of Assumption 1 are satis�ed
for cA � cB ; cA � VM and cA < VH�VM : In turn, these conditions are satis�ed
when:

cB � cA < VM if VM � VH
2

cB � cA < VH � VM if VM � VH
2 :

(4)

Figure 1 summarizes the parameters con�guration compatible with Points
(b), (c) and (d) of Assumption 1.

In NDG players A andB simultaneously make demands y and x; respectively.
If these demands are compatible, each receives what she claimed; otherwise they
receive nothing. The payo¤s are

�A =

8<: y � cA if y + x � VH

�cA if y + x > VH

and

�B =

8<: x� cB if y + x � VH

�cB if y + x > VH :

In UG the player who has chosen H makes a proposal which the opponent
can either accept or reject. Let�s suppose HL is observed and A proposes the
division (y; VM � y). If B accepts, the payo¤s are y�cA for A and VM�y for B;
otherwise A gets �cA and B nothing. An analogous situation occurs when LH
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-VM

cA

cB

Figure 1: Parameter region compatible with Points (b), (c) and (d) of Assump-
tion 1.

is observed and B proposes the division (VM � x; x). If A accepts, the payo¤s
are VM � x for A and x� cB for B; otherwise B gets �cB and A nothing.
In DG the division continues to be advanced by the player who has chosen

H; however her opponent now has no choice but to accept. Suppose HL is
observed and A demands y: The payo¤s are y � cA for A and VM � y for B.
It is worth noticing that, under previous Assumption 1, both �UG and �DG

admit a subgame perfect equilibrium which supports investment pro�le HH.
Note, however, that the games admit a great number of subgame perfect equi-
libria, some of which are ine¢ cient.

3 Evolutionary dynamics

In this Section, we apply to our model the evolutionary dynamics put forward
by Noldeke and Samuelson (1993). To this end we postulate a �nite population
of size N agents for each player, A and B. In each period, every possible
match between agents occurs meaning that each agent belonging to population
A interacts with each agent of population B, one at a time. An agent is described
by a characteristic which consists of a detailed plan of action and a set of beliefs
about the opponent�s behavior.
In �UG, the plan of actions for player A must specify: (i) the type of invest-

ment; (ii) the demand when both players choose H (the action at HH); (iii) the
demand when A chooses H and B chooses L (the action at HL); (iv) whether
to accept or reject any demands made by B, when in the �rst stage B chooses
H and A chooses L. Analogously for player B.
In �DG, the plan of actions for player A must specify: (i) the type of invest-
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ment; (ii) the demand when both players choose H (the action at HH); (iii)
the division of the surplus when A chooses H and B chooses L (the action at
HL). Analogously for player B.
A state, �; is a pro�le of characteristics of the overall population and z (�)

is the probability distribution over terminal nodes generated by �. The set of
possible states, �; is �nite.

At the end of every period each agent has a probability � to observe the
distribution of outcomes z(�) and may change her characteristics. In particular
this stream of information allows agents to correctly update their beliefs on op-
ponent�s choices at the reached information sets. Given their new beliefs they
also update their action pro�le by choosing a best reply1 at each information
set. With probability 1�� the single agent does not observe z (�) and her char-
acteristics do not change. This learning mechanism engenders an (unperturbed)
Markov process (�; P ) where P is the transition matrix on �.

By 
 we denote a generic limit set2 of the unperturbed process; this is a
minimal subset of states such that, when the process enters, it does not exit.
By � we denote the union of limit sets of the unperturbed process. Lastly by
� (
) we denote the set of outcomes that can be observed.

Besides being updated, agents�beliefs and actions can also change by mu-
tation. In every period each agent has a probability � of mutating. When
mutating, agents change their characteristics according to a probability distri-
bution assigning positive probability on each possible characteristic. Mutations
are independently distributed across agents. Assume that the process is in some
limit set 
 and that a single mutation occurs which alters the characteristics of a
single agent (the mutant). If this mutation does not alter the action prescribed
and/or the beliefs held by the mutant, then the mutation is called drift. Since
the expected payo¤ of the others does not change, their characteristics do not
change; we then move from one limit set 
 to another limit set 
0 by drift.

Mutations generate a new (perturbed) Markov process (�; P (�)) ; which is
ergodic. It is well known that, for any �xed � > 0; the perturbed process
has a unique invariant distribution ��. Let �� = lim�!0 �� denote the limit
distribution: A state � is stochastically stable if �� (�) > 0: We denote the
set of stochastically stable states by �S ; this is the set of states which has a
positive probability in limit distribution. Noldeke and Samuelson (1993) proved
that the stochastically stable set is contained in the union of the limit sets
of the unperturbed process. Only when the set of stochastically stable states
(�S) contains equilibria supporting the same unique outcome can we speak of

1However, if the learning agent has already played a best reply, her action does not change.
Moreover when the best reply contains more than one action, then one of these can be chosen
randomly, according to a distribution with full support.

2A set 
 � � is called a !�limit set of the process (�; P ) if: (a) 8� 2 
;
P rob f�t+1 2 
 j �t = �g = 1; (b) 8 (�; �0) 2 
2; 9s > 0 s.t. Prob f�t+s = �0 j �t = �g > 0:
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a stochastically stable outcome rather than a stochastically stable set. In order
to detect the stochastically stable set, we have �rst to characterize the limit sets
of our model; this is the aim of the following two Propositions.

Proposition 2 In �UG, all the limits sets have one of the following structures:
(a) they contain one state only and this is a self-con�rming equilibrium of the
game; (b) they contain more than one state and all investment pro�les are ob-
served. Moreover, only one outcome is realized for each investment pro�le in
which the claims exhaust the surplus.

Proof. See the Appendix3 .

Proposition 3 In �DG, all the limits sets contain one state only and this is
a self-con�rming equilibrium. Moreover, at least one agent chooses to invest in
every equilibrium.

Proof. See the Appendix.

From now on when we speak of equilibrium we refer to self-con�rming equi-
librium.4

Propositions 2 and 3 state that the considered evolutionary dynamic gives
rise to a large multiplicity of limit sets. However, this dynamic admits limit sets
in which both investment and bargaining behavior is uniform in each population.
It is thus likely that homogeneous behavior in one or both populations could
be molded by evolution. When this happens we say that a norm has evolved.
Accordingly, an investment norm has evolved if all agents belonging to the same
population make the same investment and the investment behavior is anticipated
correctly. Analogously, a bargaining norm has evolved if a pair of demands (y; x)
exists at some reached information set which exhausts the gross surplus and the
bargaining behavior is anticipated correctly.
Despite the fact that Propositions 2 and 3 do not help to pin down which

behavior is more likely to become the conventional one, in the next Section we
shall show that a unique stochastically stable outcome can exist in both games.

4 Main results

In this Section we show that when a unique stochastically stable outcome exists
it always supports the e¢ cient investment pro�le and a well-de�ned distribution
rule which is not always the egalitarian one. First and foremost, we provide a
characterization of the stochastically stable set for �UG. We then brie�y consider
�DG.

3Careful reading of the Proposition proof shows that the claims must satisfy a well-de�ned
set of constraints.

4According to Noldeke and Samuelson (1993) a state is a self-con�rming equilibrium if
each agent�s strategy is a best response to that agent�s conjecture and if each agent�s conjec-
ture about opponent�s strategies matches the opponent�s choices at information sets that are
reached in the play of some matches.
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4.1 Communal property

Consider �UG: By xUB (resp. VH � xUA) we denote the share going to player B
(resp. A), such that she receives an equilibrium payo¤ equal to (VM � �) when
both agents have invested:

xUB = VM � � + cB

xUA = VH + � � cA � VM :
(5)

Since cA and cB are divisible by � and cB > �; then xUB ; x
U
A 2 D� (VH) : LetbxUA = max�x 2 D� (VH)j (VH � x) N�1N � cA � VM � �

	
bxUB = min�x 2 D� (VH)jxN�1N � cB � VM � �

	
:

(6)

In other terms bxUA is the largest demand agent B can make at HH such that A
does not have any incentive to change action by playing L when she knows that:
(i) N�1 agents B playH and claim bxUA; (ii) one agent B claims a larger demand.
Analogously for bxUB . Point (e) of Assumption 1 implies that bxUA = xUA � � andbxUB = xUB + �: Therefore bxUB � bxUA if5

cA + cB � VH � 2VM : (7)

When this condition holds, then we can de�ne the following set

�UIH =
�
� 2 �H j x 2

�bxUB ; bxUA�	
where �H is the set of equilibria in which both agents choose to invest and the
surplus division rule assigns a share VH � x to player A and x to player B: By
de�nition when � 2 �UIH each agent receives an equilibrium payo¤ not smaller
than the maximum payo¤ attainable when she deviates by playing L. Then any
equilibrium in �UIH dominates all the equilibria supporting other investment
pro�les. Hence even if at an equilibrium � 2 �UIH the beliefs on the outcome in
high-low matches drift, allowing some agents to expect to get almost the whole
surplus if they do not invest, this drift does not push the process away from the
basin of attraction of �:
We can always partition the set �H into �UIH and �UCH = �H��UIH where

the latter denotes the set of equilibria in which both agents choose to invest but
x =2

�bxUB ; bxUA� : Obviously when condition (7) does not hold then �UIH is empty
and �H = �UCH .

Condition (7) is compatible with Assumption 1 only when6

5Condition (7) implies that the average total cost of investment is limited, i.e. cA+cB
2

<
VH
2
� VM : This condition can be satis�ed only when VM < VH

2
.

6To see this observe that condition (7) is compatible with point (b) of Assumption 1 only
when cB � cA � VH � 2VM � cB ; this, in turn, requires cB � VH

2
� VM : On the other hand

points (b) and (c) of Assumption 1 imply that cB < VM :
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cB � min
�
VH
2
� VM ; VM

�
: (8)

It is easy to see that condition (7) is never satis�ed when cB � VH
4 ; in this case

the set �UIH is empty. Condition (7) can be rewritten as:

�B + �A � 0

where �i =
VH
2 �ci�VM and i 2 fA;Bg : Notice that VH2 �ci denotes the payo¤

i gets under equal sharing and full cooperation in the production stage; VM
denotes instead the maximum (when � is negligible) payo¤ i could hope to get
should she play L and all opponents continue to play H: Broadly speaking �i
denotes the minimum payo¤gain that has to be granted to agent i to provide her
the incentive to stick to the rule "cooperate in the production and equally share
the surplus", on condition that all opponents population adheres too. Indeed if
�i < 0 agent i has the incentive to deviate from the rule by choosing L: Since
�B � �A; condition (7) always requires �B > 0; by contrast, under condition
(7) ; �A can take both positive and negative values.
The fact that, under condition (7) ; �B > 0 implies bxUB < VH

2 . Therefore,
under condition (7) ; the set �UIH is compatible with two di¤erent setting: (a)bxUB < VH

2 � bxUA and (b) bxUB � bxUA < VH
2 : The �rst case occurs when, in addition

to (7) ; we have �A � 0 i.e.

cA �
VH
2
� VM ; (9)

the second one occurs when, in addition to (7) ; we have �A < 0 i.e.

VH
2
� VM < cA � VH � 2VM � cB : (10)

Therefore two are the possible bargaining norms we can expect to arise from
the considered evolutionary dynamic: the egalitarian surplus division norm in
case (a) and an unequal surplus division norm in case (b). The next Proposition
states our main result for �UG. In order to derive this Proposition, we make
use of both the su¢ cient condition developed by Ellison (2000) and some of the
results for the NDG proved by Young (1993).

Proposition 4 Consider �UG and let Assumption 1 be satis�ed. When � is
su¢ ciently small the following cases are possible:
(a) if condition (7) holds then �s � �UIH and a stochastically stable outcome

exists. This supports the e¢ cient investment and a bargaining norm which is
either (VH=2; VH=2) if cA � VH

2 �VM or (VM + cA; VH � VM � cA) if VH2 �VM �
cA � VH � 2VM � cB.
(b) if condition (7) does not hold then no norm evolves for whatever values

of cA and cB.
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Proof. See the Appendix

Proposition 4 says that social norms supporting full cooperation at the pro-
duction stage (i.e. the e¢ cient investment pro�le) and a neat division rule at the
bargaining stage coevolve provided that the total investment cost is limited and
investment are complementary. Investments are complementary if the marginal
e¤ect of action H when the opponent plays H is greater than the marginal e¤ect
of action H when the opponent plays L; condition satis�ed when VM < VH=2.
When the investments are not complementary our result states that no norm
evolves; analogously no norms evolve when investment are complementary but
total investment cost is too high.
When total investment cost is limited and investments are complementary,

Proposition 4 says that the speci�c division rule observed depends on the in-
vestment cost incurred by the less e¢ cient agent. When condition (9) holds,
this cost is su¢ ciently limited and agents A do not have any incentive to deviate
from the rule "cooperate in the production and equally share the surplus"; in
this case the egalitarian surplus division rule evolves. When instead the invest-
ment cost incurred by the less e¢ cient agent is high enough, this agent may
be induced to break the above rule. However when rooms of manoeuvre to a
di¤erent bargaining norm still exist (i.e. when condition (10) holds in lieu of
condition (9)) a not egalitarian surplus division rule evolves which still supports
full cooperation in the production stage. Lastly when the total cost is such that
no e¢ cient bargaining norm can emerge (i.e. when condition 7 does not hold)
no norm arises.
It is straightforward to see that all the results stemming from Proposition 4

can be rewritten in terms of cost gap. Indeed, conditions (9) can be translated
into cA�cB � �B and condition (10) can be translated into �B < cA�cB � 2�B :
Hence what really matters in triggering a coevolution of norms and in specifying
the division rule is the cost gap size. In particular norms evolve only when the
cost gap is not higher than the two-fold minimum payo¤gain of the most e¢ cient
agent. When this condition is satis�ed, we can observe two di¤erent bargaining
norms: (i) the egalitarian surplus division when the cost gap is not higher than
�B ; (ii) an unequal division when �B is smaller than the cost gap.

Proposition 4 is illustrated in Figure 2. In this Figure the parameters space
compatible with Assumption 1 is divided into three regions. In region HHe the
unique stochastically stable state supports full cooperation in the production
stage and the egalitarian division of the surplus; in region HHne the unique
stochastically stable state still supports full cooperation in the production stage
but a not egalitarian surplus division; lastly region NN corresponds to the
parameter con�gurations in which no norm evolves since several outcomes are
stochastically stable and no uniform behavior emerges.
Figure 2 has been drawn for a given cB : Figure 3 shows that when cB in-

creases both regions HHe and HHne shrinks. When cB = 0; region HHne is
the largest possible and it coincides with the triangle PSS0. When cB = VH=12
(resp. VH=6); region HHne shrinks to the triangle PRR0 (resp. PQQ0) since
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Figure 2: game �UG. Parameter regions supporting the unique stochastically
stable outcome (HH) compared with the region (NN) where no norm evolves.
HHe is the region in which an equal surplus division norm is observed; HHne
is the region in which an unequal surplus division norm is observed.

only values of cA > cB are allowed:When identical investment costs are consid-
ered (i.e. cA = cB), it is easy to check that region HHne disappears and its
place is taken over by region NN .

4.2 Private property

We now turn to the case in which a Dictator Game (instead of an Ultimatum
Game) is played when an asymmetric investment pro�le is reached. In this case
we denote by xDB (resp. VH � xDA ) the share going to player B (resp. player A)
such that she receives an equilibrium payo¤ equal to � when both agents have
invested:

xDB = cB + �

xDA = VH � cA � �:
(11)

Since cA, cB and VH are divisible by �; then xDB ; x
D
A 2 D� (VH) : Let

bxDA = max�x 2 D� (VH)j (VH � x) N�1N � cA � �
	

bxDB = min�x 2 D� (VH)jxN�1N � cB � �
	
:
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Figure 3: game �UG. As cB decreases the region HHne enlarges. The Figure
shows the cases cB = VH

6 , cB =
VH
12 and cB = 0. For cB >

VH
4 social norms do

not evolve.

By keeping in mind Point (e) of Assumption 1 we obtain bxDA = xDA � � andbxDB = xDB + �; i.e. bxDB = cB + 2�

bxDA = VH � cA � 2�:

It is easy to see that bxDB � bxDA provided:
cA + cB � VH � 4�: (12)

When this condition holds, we can de�ne the following set

�DIH =
�
� 2 �H j x 2

�bxDB ; bxDA�	 :
Also for �DG we can always partition the set �H into �DIH and �DCH where

�DCH = �H��DIH ; the latter denotes the set of equilibria in which both agents
choose to invest but x =2

�bxDB ; bxDA� : However in this case the set �DIH is always
well-de�ned and �DCH = �Hn�DIH only supports

�
xDB ; x

D
A

�
as distributional rule.

Indeed when � is su¢ ciently small Point (d) of Assumption 1 ensures that the
total cost is always smaller than VH . The following Proposition summarizes our
�nding concerning �DG.

Proposition 5 Consider �DG and let Assumption 1 be satis�ed. When � is
su¢ ciently small, i.e. � < VH�2cA

4 ; then �S � �DIH and a stochastically stable
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Figure 4: game �DG. Parameter regions supporting the unique stochastically
stable outcome. HHe is the region in which an egalitarian norm is observed.

outcome always exist. This supports the e¢ cient investment and the egalitarian
rule as bargaining norm, i.e. (VH=2; VH=2).

Proof. See the Appendix

Proposition 5 is illustrated in Figure 4. By comparing Figure 4 with Figure
2 we see that when the rules of the game give all the bargaining power to the
unique investing agent, under Assumption 1 norms of cooperation and norms of
division always coevolve without any further conditions: Moreover, since norms
are now insensitive to the degree of heterogeneity among agents (i.e. cost gap),
these norms do not change when the investment costs are identical; the only
consequence of cost heterogeneity is that region HHe shrinks as cB increases.
Lastly, while an unique stochastically outcome can arise in �UG only if invest-
ments are complementary, this is not required in �DG : norms coevolve even
when investments are not complementary, i.e. when VM � VH

2 :

5 Discussion

In order to o¤er an interpretation of the results so far derived, let us consider
again Proposition 4. This suggests that under communal property social norms
supporting cooperation in the production stage are compatible with two di¤erent
distributional rules.
The �rst is observed in region HHe and it supports the egalitarian division

of the surplus or, in other terms, equality of resources. Equality of resources
implies equality of welfare only when cA = cB . When instead cA > cB ; equality
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of resources generates inequality of welfare: in this case agent A (the less e¢ cient
one) is disadvantaged. All this holds true also for �DG:
The second distributional rule is observed in region HHne and, since it

is no longer the egalitarian division, it allows for inequality of resources. In
particular, given that in this region cA > VH

2 � VM , the share of the surplus
going to agent A (i.e. the agent with higher investment cost) is greater than
the share going to agent B (i.e. the agent with smaller investment cost), i.e.
VM + cA > VH � VM � cA. Nevertheless in this region the payo¤ granted to A
continues to be not greater than that granted to B meaning that agent A is still
the disadvantaged one. Indeed, A�s payo¤ is �A = (VM + cA) � cA = VM and
B�s payo¤ is �B = (VH � VM � cA)�cB and �B � �A for cA � VH�2VM �cB .
Therefore this distributional norm ensures to player A a payo¤ which is slightly
greater than the maximum payo¤ this agent can hope to get should she decide
not to cooperate in the production stage (i.e. VM � �). In this sense we can say
that in HHne the observed norm has a Rawlsian taste: by providing to the less
e¢ cient agent the incentive to invest, it ensures to the advantaged agent B the
cooperation of the less e¢ cient and disadvantaged A: This inegalitarian surplus
division thus represents the maximal inequality compatible with the cooperation
in the production stage7 .

Lastly, it is worth noticing that, though this division rule is not egalitarian,
it supports equality of payo¤s if cA = VH � 2VM � cB . In this particular case
the evolved division norm is compatible with a rule suggested by the so-called
Equity Theory8 in which each player gets her investment cost plus an equal
share of the remaining surplus9 :

y = cA +
VH � cA � cB

2
=

VH
2
+
cA � cB
2

x = cB +
VH � cA � cB

2
=

VH
2
+
cB � cA
2

:

(13)

Few computations shows that VM + cA =
VH
2 + cA�cB

2 and VH � VM � cA =
VH
2 + cB�cA

2 when cA = VH � 2VM � cB : However when cA < VH � 2VM � cB
agent A (resp. B) gets a share smaller (resp. larger) than the share predicted
by Equity Theory.

5.1 Inequality

What we have just said has obvious consequences for the inequality observed in
the two games. Figure 5 shows payo¤ as function of cA:

7A somehow smilar result has been derived by Barling and von Siemens (2010) in the
framework of incentivating contracts. They show that equal sharing is the optimal solution to
incentive problems in partnership provided partners are inequity averse. This because equal
sharing maximizes the incentives of the partner who has the weakest incentive to exert e¤ort.
In our case equal sharing provides an adequate incentive to invest to the less e¢ cient agent
in region HHe but not in region HHne.

8Homas (1961).
9This rule is known in bargaining literature as "split the di¤erence".
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Figure 5: Payo¤ inequality as functions of cA. The Figure is drawn for � negli-
gible.

Consider �UG �rst. We are in region HHe for cA � VH
2 � VM and in region

HHne for VH2 �VM < cA � VH � 2VM � cB : In the �rst region payo¤ inequality
increases with cA and it reaches its maximum level when cA = VH

2 � VM and
VM = VH

4 (i.e. at point A of Figure 2; in Figure 5 the maximal payo¤ inequality
corresponds to segment BC); in the second region payo¤ inequality decreases
with cA and, as shown in Figure 5, the less e¢ cient agent A receives a constant
payo¤ VM (i.e. the line CD of Figure 5). We get payo¤ equality when cA =
VH � 2VM � cB (i.e. at point D of Figure 5 and along the line CR of Figure 2).
Consider now �DG: In this case, since only region HHe exists, payo¤ in-

equality increases with cA: The maximum observable inequality is found when
cA =

VH
2 :

Two are the conclusions drawing from the above analysis. First the two
games admit a parameters con�guration giving rise to the same inequality; this
occurs for the parameters con�guration for which region HHe of �UG exists.
Second the parameter con�guration giving rise to region HHne has the main
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e¤ect to set a cap to the observable inequality in �UG. Since no inequality cap
endogenously arises in �DG we may conclude that our analysis supports Lee�s
conjecture (Lee, 1990), namely that only societies based on communal property
are egalitarian since only these have developed a leveling device. In terms of our
model the leveling device is represented by region HHne; however our analysis
suggests that this leveling device only matters when the investment cost of the
less e¢ cient agent is high enough.

Why an upper limit to inequality evolve in �UG but no in �DG ? We believe
this is due to the fact that the considered sociopolitical organizations, giving rise
to two di¤erent games, accord to the less e¢ cient agent A di¤erent incentives
to cooperate. Consider �UG: In region HHe we observe VM < 1

2VH � cA:When
� is negligible the left hand side denotes the maximum payo¤ A can hope to
get, should she decide not to cooperate (i.e. in node LH); the right hand side
denotes instead the payo¤ she gets under full cooperation given the evolved
distributional rule. The inequality means that in region HHe agent A has
always the incentive to cooperate in the production stage so that no further
incentive is needed. In region HHne we observe instead VM > 1

2VH � cA so
that, under the egalitarian distribution of the surplus, A is better o¤ by not
cooperating (in terms of Figure 5 the payo¤ accruing to A under the egalitarian
surplus division is found along the line CG): Since all agents B might deem
that A will only accept a distribution granting her almost the whole pie at LH
pro�le, then B must grant to A a larger share of the surplus (i.e. VM + cA) in
order to induce this agent to cooperate. This, in turn, implies that A�s payo¤ is
equal to VM ; the larger share granted to A reduces payo¤ inequality as well.10

One may wonder why in �DG we do not observe an upper limit to inequality.
When VM < 1

2VH � cA; the same argument used above holds: agent A is better
o¤ by cooperating in the production stage so that no further incentive is needed.
When instead VM > 1

2VH�cA agent A should be incentivated to invest; however
this is no longer e¤ective in �DG. The reason is that when a node LH is reached
(and this occurs when A does not invest), the investing agent B is now a dictator.
Therefore even if A can hope to get VM > 1

2VH � cA; this belief soon turns out
to be a mistake since the dictator B shall only be willing to o¤er �. By realizing
that, A is better o¤ by cooperating in the production stage being 1

2VH�cA > �:
This, in turns, poses no limit to payo¤ inequality as cA increases:

The main di¤erence between game �UG and game �DG is that only the
former has a collective action problem at its core. Indeed, by postulating an
Ultimatum Game at nodesHL and LH; we have implicitly assumed that nobody
can be easily excluded from consuming the produced good even when someone
has not cooperated in the production stage. When one agent makes some bread

10This is what allows us to qualify region HHne as Rawlsian: given the rule of play the
inequality observed in this region is the maximal inequality needed to give to the less e¢ cient
agent A the incentive to invest. As a consequence, the observed surplus division norm ensures
to B the cooperation of the less e¢ cient and disadvantaged A. By contrast HHe is not
Rawlsian since B can always count on the cooperation of A:
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and the cost of refusing a slice to another is too high to be worth paying, then the
bread is not a perfectly private good (Hawkes, 1993). In contrast, by postulating
a Dictator Game at nodes LH and HL we have swept aside this collective
action problem since the social structure now guarantees full protection to the
unique investing agent. Our results suggest that a Rawlsian region evolves under
two conditions: (a) the social structure must not o¤er full cover to the unique
investing agent and (b) the investment cost supported by the less e¢ cient agent
must be large enough but not too high, i.e. �B < cA� cB � 2�B . When one of
these two conditions does not hold, our result suggest that either an egalitarian
surplus division evolves or no norms evolve.

6 Further discussion

Evolutionary dynamics in models with advance production and successive bar-
gaining have been studied by Troger (2002), Ellingsen and Robles (2002) as
well as Dawid and MacLeod (2001, 2008). Broadly speaking this literature
has shown that evolution (i.e. stochastic stability) may or may not support
an e¢ cient investment pro�le depending on whether only one (Troger, 2002;
Ellingsen and Robles, 2002) or both parties (Dawid and MacLeod, 2001, 2008)
make a relation-speci�c investment in the project, respectively11 . Despite the
di¤erences, all these studies share the same homogeneity assumption since the
investment costs are assumed to be the same for all investing agents.

The consequences of investment cost heterogeneity is investigated by An-
dreozzi (2010, 2011). He retains the same basic structure as in Troger (2002)
and Ellingsen and Robles (2002) so that, in each period, the size of the pie is
determined by the investment decisions of one agent only (A). However, de-
pending on the investment cost, the population of investing agents can be split
into two sub-populations: the more e¢ cient agents AL (i.e those with a low
investment cost, cL) and the less e¢ cient agents AH (i.e. those with a high
investment, cH). In any case, all the investing agents get the same share of
the resulting surplus. This has an important consequence. In fact, when the
evolved bargaining norm gives to the less e¢ cient investing agents AH the in-
centive to invest, a fortiori it gives the incentive to invest also to the more
e¢ cient agent AL; when this occurs the resulting equilibrium is e¢ cient. When
instead the evolved bargaining norm grants the incentive to invest to the more
e¢ cient agents only, then the less e¢ cient ones do not invest and the resulting
equilibrium is ine¢ cient.12

11This literature is concerned with (one-sided or two-sided) relation-speci�c investment; by
contrast our main interest is to study a generic setting in which people are not dependent
on speci�c other people for access to basic requirements and in which individuals are not
bound to �xed assets or �xed resources. This makes our model more apt for describing simple
societies as modern hunter-gatherers (Woodburn, 1982), for instance.
12By contrast in our case all the stochastically stable outcomes are supported by e¢ cient

equilibria of the considered games.
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By comparing payo¤s inequality at the e¢ cient equilibrium with payo¤ in-
equality at the ine¢ cient equilibrium, Andreozzi (2011) concludes that e¢ ciency
calls for greater inequality. This has an obvious explanation: a convention is
e¢ cient only if it gives the incentive to invest to the least e¢ cient agent; since
all the investing agents receive the same share of the surplus, the more e¢ -
cient agents get an higher payo¤ because they bear a smaller investment cost.
However, as Andreozzi (2011) correctly suggests, this does not necessarily lend
support to the conclusion that, in economies with production, social justice has
to be less egalitarian.

Our results support this view. In fact, also in our case at the stochastically
stable equilibrium the more e¢ cient agent is granted a larger payo¤. In �DG the
resulting inequality follows from the same mechanism described by Andreozzi
(2011), namely the fact that all investing agents receive the same share of the
surplus; given the sociopolitical organization considered, this equal share gives
to the less e¢ cient agent adequate incentives to invest. In �UG the mechanism
responsible for the resulting inequality is more subtle. In region HHe it still
follows the same mechanism since the investment cost of the less e¢ cient agent is
limited, i.e.cA � 1

2VH�VM ; and both investing agents receives the same surplus
share. However the mechanism which is responsible for the observed inequality
is di¤erent in region HHne since the investment cost of the less e¢ cient agent
is su¢ ciently large, i.e. 12VH �VM < cA � VH � 2VM � cB : In this case, in fact,
in order to provide to the less e¢ cient agent the incentive to invest, the evolved
bargaining norm grants to these agents a share of the surplus which is larger
than the share going to the more e¢ cient ones (still preserving for the latter
the incentive to invest). As a consequence, although the more e¢ cient agents
are still the advantaged ones, the evolved bargaining norm has now the e¤ect
of reducing payo¤s inequality. For some parameters con�guration we have also
identi�ed a region in which not only does e¢ cient investment occurs but even
payo¤ equality arises.

The role of fairness in bargaining games with advance production has also
received some attention by experimental economics. However, only few of them
are concerned with the case in which social output is determined by the invest-
ment decisions of all the subjects involved; here we brie�y discuss Gantner et al.
(2001) and Cappelen et al. (2007) which are the most relevant for our model.
These papers are both concerned with a two-stage game involving two agents.

In the �rst stage agents simultaneously have to choose their investment level;
investment is costly and an investment qi imposes a cost of qi. Social output
is a weighted sum of the individual investment levels where each weight re�ects
the marginal productivity of the investment chosen by the speci�c agent; in-
vestments are thus perfect substitute. In the second stage, after social output
is observed, agents must divide it.
In Gantner et al. (2001) two di¤erent games are proposed to study this

division; in the �rst agents play an Ultimatum Game where the proposer is
randomly selected (after choosing the bargaining vectors); in the second agents

19



play a Nash Demand Game. In Cappelen et al. (2007) instead the distribution
stage is modeled as a Dictator Game; speci�cally, given informations about both
the marginal productivity of opponent�s investment and her investment level,
each agent decides how to distribute the social output as if it were a dictator;
in this case each subject�s total earnings is the �nal outcome plus the amount
of the initial endowment not invested.
The purpose of these papers is to test the concepts of fairness which are

supported by the experimental evidence.13 Both Gantner et al. (2001) and
Cappelen et al. (2007) show that subjects choose the e¢ cient production in
most cases and that, although several concepts of fairness are observed, the
best predictor for the bargaining phase is equal shares.14

Although there are several important di¤erences between our own models
and these aforementioned papers15 , we believe our results do not overtly con-
trast with the quoted experimental evidence. A point of agreement lies in the
importance of equal sharing. In addition this experimental evidence gives some
weight to the idea of accountability, i.e. on the notion that a fair distribution
of joint output demands that this be allocated in proportion with individual
contribution. Accountability also receives some weight in our model, albeit in
a loose form. This occurs in region HHne of �UG where in order to give to the
less e¢ cient agent the incentive to invest, he must be granted a larger share of
the surplus. If investment cost is measured by e¤ort, the condition cA > cB ;
coupled with the fact that (in our case) marginal productivity of investment
are identical for the two agents, means that in order to provide the same ad-

13For both Gantner et al. (2001) and Cappelen et al. (2007), the excercise boils down to
�nd which of the di¤erent fairness concepts a priori postulated receives suppport from the
experimental results, given the possible distributional situations faced. The distributional
situation, in turns, depends on the distribution of marginal productivities (high and low) and
of investment decisions (identical or di¤erent investment). Cappelen et al. (2007) assume the
existence of three "types" of individuals in the population, each with a di¤erent idea of fair
distribution: the strict egalitarian (who considers fair a distribution in which each receives
an equal share of the gross social product), the libertarian (who considers fair a distribution
in which each receives an amount equal to her contribution) and the liberal egalitarian (who
considers fair a distribution in which each receives a share proportional to her contribution).
With some variants, the same list is also studied by Gantner et al. (2001).
14This holds true for both games considered by Gantner et al. (2001) for the second stage

of the game. The estimates provided by Cappelen et al. (2007) show that 43.5% of subjects
are egalitarian, 38.1% are liberal egalitarian and 18.4% are libertarian. Using the same data
as Cappelen et al. (2007) but a di¤erent econometric technique, Conte and Mo¤att (2009)
claim that strict egalitarianism is chosen by 51.6% of participants, liberal egalitarianism by
46% and libertarianism by 2.4% only.
15 In particular, while in our case agents can choose either to invest or not, in Gantner et al.

(2001) and Cappelen et al. (2007) the investment set includes more options. Moreover, in our
case the marginal productivities of investment are the same across agents and heterogeneity
is entirely due to di¤erent investment costs; in the quoted papers instead heterogeneity is
due to marginal productivities of the investment and investment costs are the same only if
agents choose the same investment levels. We also suggest that the bargaining protocol should
be sensitive to the observed investment pro�le; this, coupled with the consideration of two
di¤erent structures of socio-political organizations, lead us to propose two di¤erent games. By
contrast, in Gantner et al. (2001) and Cappelen et al. (2007) the same bargaining protocol
applies for wathever observed investment pro�le.
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ditional output agent A has to provide more e¤ort than agent B: This more
e¤ort is rewarded by a larger share. One may interpret this reward as stemming
from responsibility considerations; however, since responsibility does not enter
explicitly into our model, we prefer to explain the larger share received by the
less e¢ cient agent in Rawlsian terms, i.e. as representing the condition needed
to ensure to the more e¢ cient and advantaged B the cooperation of the less
e¢ cient and disadvantaged A: Nevertheless this interpretation leads exactly to
a form of accountability, as expressed by Equity Theory (Gantner et al., 2001),
for the speci�c parameters con�guration giving rise to the distribution speci�ed
by (13) ; i.e. along the line CR of Figure 1: However our results suggest that
this concept of fairness can only evolve under quite strict conditions.
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7 Appendix

First of all we introduce some notations. We denote by bse the least integer
number greater than s when s is not an integer and (s+ 1) is otherwise. Con-
sider a state � and suppose that all agents observe z (�). Consider �UG; for an
agent i 2 A; action L is not preferred to action H if

pB (�)
�eyiHH (�)� eyiLH (�)� cA�+ (1� pB (�)) �eyiHL (�)� cA� � 0;

for an agent i 2 B action L is not preferred to action H if

pA (�)
�exiHH (�)� exiHL (�)� cB�+ (1� pA (�)) �exiLH (�)� cB� � 0:

Here we denote by pA (�) (resp. pB (�)) the frequency of agent A (resp. B) who
played H in �, and by eyiHH (�) (resp. exiHH (�)) the expected payo¤s of agent
i 2 A (resp. i 2 B) at the information set HH, given z (�). Similar conditions
hold for �DG. The following result will be used afterwards.

Lemma 6 Let xHH;1 < xHH;2 < ::: < xHH;k be the demands made by B at
HH for some state �. Then the set of best behavioral demands following HH
for agents A is a subset of fVH � xHH;lgkl=1.

Proof. See Lemma A.1 in Ellingsen and Robles (2002)).

Lemma 7 Consider �UG and let 
 be a limit set of (�; P ) : If (HL; yHL; xHL) 2
� (
) [resp. (LH; yLH ; xLH) 2 � (
)] then:
(i) xHL = VM � yHL [resp. yLH = VM � xLH ] ;
(ii) (HL; yHL; xHL) [resp. (LH; yLH ; xLH)] is the only outcome which sup-

ports investment pro�le HL [resp. LH] in � (
) :

Proof. We only consider pro�le HL; the same holds true for LH.
Point (i). Let � be a state such that: (a) � 2 
; (b) (HL; yHL; xHL) belongs

to the support of z (�) and xHL 6= VM�yHL. Let us suppose that only B agents
update their characteristics: they will all accept yHL. For whatever belief on
opponents�behavior, this action is always a best reply. It is then impossible to
return to the original state �. This contradicts the assumption that � 2 
.
Point (ii). First we show that 
 cannot include a state � in which multiple

demands are made at HL. Subsequently, we show that 
 cannot include two
di¤erent states supporting di¤erent outcomes following HL.
Let � be a state such that: (a) � 2 
 and (b) multiple demands are made

by agents A at HL. We already know from point (i) that at � agents B accept
all the demands made by their opponents. Suppose only agents A revise their
characteristics; then any agent A will make the maximum demand observed at
HL. Hence, it is impossible to return to the original state �. This contradicts
the assumption that � 2 
.
Now let � and �0 be two states such that: (a) both states belong to 
 and

(b) HL is observed. A single demand is made by A but yHL
�
�0
�
> yHL (�).

Since it is impossible to return to � then assumption � 2 
 is contradicted. �
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Lemma 8 Let 
 be a limit set of (�; P ) : If f(HH; y; x) ; (HH; y0; x0)g 2 � (
)
and either x 6= x0or y 6= y; then 
 is a singleton and a self-con�rming equilibrium:

Proof. Consider a set 
 and let � 2 
 be a state in which at least two
demands have been observed in one population (i.e. B). Suppose that at least
one of these demands (x�) is not a best reply to z (�). Suppose also that,
after observing z (�) ; all agents who demanded x� revise; as a consequence x�

disappears. A new state � 2 
 is then reached in which pro�le HH is still
observed. Suppose now that all A update; then, by Lemma 6, nobody will
make demand fVH � x�g. These two demands have thus disappeared and it is
impossible to return to the original state �. This contradicts the assumption
that � 2 
. Therefore, if multiple demands are made, each must be a best reply
to z (�) :
Now consider an agent belonging to population A who has played H in �

and suppose this agent has the incentive to change her investment should she
know z (�). When this agent updates, the distribution of the demands made by
population A in subgameHH di¤ers from the original. This implies that at least
one demand made by some opponents (i.e. B) is no longer a best reply when B
updates. By applying the argument made in the above paragraph, we conclude
that at least one pair of demands has disappeared and cannot reappear. This
contradicts the assumption that � 2 
 .
By Lemma 7, since the set � (
) can include at most one outcome following

the pro�le HL or LH, then state � must be a self-con�rming equilibrium. �

Proof of Proposition 2. Assume that 
 is not a singleton. We know
from Lemmas 7 and 8 that, if a bargaining subgame is reached, only one of its
terminal nodes is observed.
First we show that � (
) must contain one outcome for every bargaining

subgame. Of course � (
) must di¤er from f(HH; yHH ; VH � yHH) ; (LL; 0; 0)g :
Suppose � (
) includes the following outcomes: (a) (HH; yHH ; xHH) with yHH+
xHH = VH ; (b) (HL; yHL; xHL) with yHL+xHL = VM : In 
 a state � in which
both outcomes are observed must exist and it cannot be an equilibrium. We
show that, from �; it is possible to reach either the basin of attraction of one
equilibrium or a state in which all bargaining nodes are observed. Suppose some
agents B update; if xHH � cB > xHL they will choose H so that, at the new
state �0, the frequency of this action in population B will increase:
Suppose now that at least one agent A has beliefs eyiLH leading her not to

prefer H to L when all agents B play H; then, starting from �; it is possible to
reach a state in which all investment pro�les are realized. To see this suppose
yHH � eyi�LH � cA < 0 but yHL � cA > 0: Let pi�B be:

pi
�

B =

$
cA � yHL�

yHH � eyi�LH � cA�
'
:

Consider now the case in which pi
�

B agents B have revised at � and only agent
i� 2 A observes the distribution of outcomes z(�0). Since the speci�c agent i� 2
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A will play L; then all investment pro�les are realized afterwards. Therefore this
contradicts the assumption that � (
) = f(HH; yHH ; xHH) ; (HL; yHL; xHL)g.
Otherwise, by letting all agents B to update, from � it is likely to reach the
basin of attraction of one equilibrium of the game supporting the outcome
(HH; yHH ; xHH). If xHH � cB � xHL the same conclusion obtains by a similar
argument. It is simple to see that the same conclusion holds when � (
) includes
any two di¤erent outcomes. Therefore if 
 is not a singleton, all the bargaining
nodes are visited meaning that � (
) includes four outcomes, each of which is a
subgame equilibrium.

We now have to show that the payo¤s must satisfy a well-de�ned set of
constraints. Notice that a state � 2 
 in which all the investment pro�les are
observed must exist. Moreover when we allow all agents to update, all agents
A will choose H if

pB (�) (yHH � yLH � cA) + (1� pB (�)) (yHL � cA) > 0;

and all agents B will choose H if

pA (�) (xHH � xHL � cB) + (1� pA (�)) (xLH � cB) > 0:

We can rewrite these conditions as

pB (�)A1 + (1� pB (�))A2 > 0

pA (�)B1 + (1� pA (�))B2 > 0:

First of all notice that all Ai and Bi can not be null since this would imply
that � is an equilibrium and 
 a singleton. Furthermore, when � for some
population � both expressions are either not negative or not positive, and at
least one is not null, then the process can reach a new state which is a self-
con�rming equilibrium.
Consider the case in which both expressions are null for population A only.

WhenB1 is strictly positive andB2 is strictly negative allBs preferH if pA (�) >
p�A where:

p�A =
cB � xLH

xHH � xHL � xLH
: (14)

Otherwise when B1 is strictly negative and B2 is strictly positive all Bs prefer
H if pA (�) < p�A: In both cases, when all B agents update they will choose H.
Hence a state which is an equilibrium of the game can be reached.

When both expressions B1 and B2 are null, we get a similar conclusion where
the threshold value of pB (�) is:

p�B =
cA � yHL

yHH � yLH � yHL
: (15)

We are left with the case in which the product of the corresponding two
expressions is strictly negative for each population. However, when A1 and B1
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have the same sign, a similar argument allows us to reach the same conclusion.
Indeed, suppose that both A1 and B1 are strictly positive. This implies that
all Bs prefer H if pA (�) > p�A and all As prefer H if pB (�) > p�B . Hence, for
whatever values of pA (�) and pB (�) ; starting from � the process can reach an
equilibrium when one population revises at a time. The remaining possible case
occurs when B1B2 < 0 and A1A2 < 0 but A1B1 < 0.�

Proof of Proposition 3. It follows by applying the same arguments used
in the proof of Proposition 2 above and taking into account that yHL = xLH =
VM � � holds at any limit set. In this case the conditions B1B2 < 0, A1A2 < 0
and A1B1 < 0 can not be simultaneously met because both A2 and B2 are
strictly positive. Consequently all limit sets are singleton. In addition an equi-
librium of the game can only support outcome (LL; 0; 0) if it also supports at
least one outcome following each investment pro�le. �

Several intermediate results are needed before turning to the proof of Propo-
sitions 4 and 5. From now on by slightly abusing notation, by (HH; yHH ; xHH)
we denote a terminal node in which both agents have chosen H, agent A makes
a demand yHH and agent B makes a demand xHH . This applies for the other
terminal nodes, too.

De�nition 9 Consider a union of limit sets X. This set is mutation connected
if for all pairs 
, 
0 2 X exists a sequence of limit sets (
1 = 
;
2; :::;
n = 
0)
such that (a) for any k 2 f1; :::; n� 1g ; 
k 2 X and (b) every transition from

k to 
k+1 needs no more than one mutation.

Consider a limit set 
 which does not support all information sets and sup-
pose a single mutation occurs. If this mutation is a drift then the process reaches
a new limit set 
0 which di¤ers from 
 only for some beliefs and/or actions at
some unreached information sets. Let � (
) be the set of equilibria which only
di¤er from 
 for some beliefs (and/or actions) held in some unreached informa-
tion set. Sure enough the set � (
) is mutation connected. When 
 is singleton,
namely 
 = f�g, we use � (�) instead of � (
) :
The next Lemma states our �rst preliminary result which holds true for both

extensive games considered.

Lemma 10 Consider a limit set 
 such that � (
) is not a singleton. An equi-
librium supporting one outcome only can be reached from 
 by a sequence of
single-mutation transitions.

Proof. We give the detailed proof for �UG; we then suggest how to adapt it
to �DG:When multiple demands are observed atHH, we denote by fxHH;l (�)gkl=1
the ordered sets of demands made by B and by fyHH;l (�)gkl=1 the ordered
sets of demands made by A. By iterative applications of Lemma 6 we get
fyHH;lgkl=1 = fVH � xHH;lg

1
l=k. Since � is an equilibrium, the expected payo¤s

at HH are
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eyiHH (�) = yHH;1 = VH � xHH;k; 8i 2 A
exiHH (�) = xHH;1 = VH � yHH;k; 8i 2 B

where yHH;1 = yHH;k�B1 and xHH;1 = xHH;k�
A
1 and where �

B
1 (resp. �

A
1 ) is the

fraction of B (resp. A) who claim xHH;1(resp. yHH;1) under �.

I) Consider an equilibrium � in which only the investment pro�le HH is
observed and multiple demands are made. Let a single agent B switch from
xHH;k (�) to xHH;1 (�). When agents A update they will make a demand
yHH;k (�) = VH � xHH;1 (�). Hence, we reach a new equilibrium �0 in which
only HH is observed and only the two demands (VH � xHH;1 (�) ; xHH;1 (�))
occur.

II) Suppose now that two investment pro�les are observed at the equilibrium
�. We give the proof only when both HH and HL are observed. The other
remaining cases are similar.

II.1) Consider the case in which multiple demands are made following HH.
Since � is an equilibrium, the following conditions must always be met:

pB (�)
�
yHH;1 � eyiLH (�)� cA�+ (1� pB (�)) (yHL � cA) � 0; 8i 2 A

(VH � yHH;k)� cB = VM � yHL; 8i 2 B:

Consider an equilibrium �1 2 � (�). When yHH;1 � cA > �; by a sequence
of single mutations the population can get from � to �1 2 � (�) where yHH;1 �eyiLH (�1)� cA > 0 for all As. At �1 let a single agent A mutate from yHH;k (�1)
to yHH;1 (�1) and let all agents B revise; as a consequence they will all choose H
and ask VH � yHH;1. Therefore, the process reaches a new equilibrium �0 where
�
�
�0
�
= fHH; yHH;1 (�) ; VH � yHH;1 (�)g. When instead yHH;1 � cA � �, the

inequality yHL � cA � 0 must hold for all A: Suppose a single A mutates
from yHH;k (�1) to y where y > yHH;k (�1) and let all agents B update: as
a consequence they will all choose L. Therefore, the process reaches a new
equilibrium �0 where �

�
�0
�
= fHL; yHL; VM � yHLg.

II.2) Consider now the case in which a single demand is made following
HH. Suppose yHL � cA � 0; the process can reach a new equilibrium �0 where
�
�
�0
�
= fHL; yHL; VM � yHLg when a single agent A mutates from yHH;1 (�1)

to y �with y > yHH;1 �and all B revise. Suppose instead yHL � cA < 0; then:
(a) Point (c) of Assumption 1 implies that the subgame (HL; VM � �) at � is
not reached; (b) yHH;1 � eyiLH (�1)� cA � 0 for every A. By drifting, all agents
B are led to accept the maximum feasible demand made by A in HL so that a
new equilibrium �1 is reached. Sure enough, �1 2 � (�). Suppose now a single
agent A changes her demand from yHL to (VM � �). When all agents A update,
they observe that all B have accepted the demand (VM � �) ; therefore, in HL
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their best response is yHL = VM � �. When all agents B update, they will
choose H being xHL = �: Hence, the process reaches an equilibrium �0 where
�
�
�0
�
= fHH; yHH;1; VH � yH;1g.

III) Suppose now that all investment pro�les are observed at �. Since � is
an equilibrium, the following conditions must be satis�ed:

pB (�) (yHH;1 � yLH � cA) + (1� pB (�)) (yHL � cA) = 0

pA (�) (xHH;1 � xHL � cB) + (1� pA (�)) (xLH � cB) = 0:

where yHH;1 = VH � xHH;k, yHL = VM � xHL and yLH = VM � xLH . We may
rewrite these conditions as

pB (�)A
0
1 + (1� pB (�))A02 = 0

pA (�)B
0
1 + (1� pA (�))B02 = 0:

We argue that when the second expression (A02 or B
0
2) is not positive for at

least one population then the process, through a sequence of single mutations,
can reach an equilibrium supporting a smaller number of investment pro�les.
In order to see this suppose, for instance, A02 < 0. In this case Point (c) of
Assumption 1 assures that the subgame (HL; VM � �) is not reached at �. A
drift can lead all agents B to accept the opponent�s maximum feasible demand
at HL. A new �1 2 � (�) is then reached. Suppose now that at this new
equilibrium a single agent A mutates her demand from yHL to VM � �. When
all agents A revise, they will play H and will make a demand yHL = VM � �.
Let all agents B update. Since each agent B knows that xHL = � and that all
A have played H; then her best reply depends on the sign of (xHH;1 � � � c).
However, it is simple to see that whatever the value of xHH;1���c is, the process
can reach a new equilibrium in which a smaller number of investment pro�les
is realized. If, at this new equilibrium, two investment pro�les are realized,
then the process can reach an equilibrium which supports a single outcome by
a further sequence of single transitions (see point II.2 above).

When both A02 and B
0
2 are positive, a single mutation occurring in population

A is enough to move the process from � to a new equilibrium �0 where �
�
�0
�
=

fLH; yLH ; VM � yLHg : The mutation needed depends on how many demands
are observed at HH. In particular:
(i) when multiple demands are made at HH; one mutation from yHH;k (�)

to yHH;1 is enough;
(ii) when only one demand is made at HH; one mutation from H to L is

enough:

IV) The remaining case occurs when 
 is not a singleton. Under Point (c)
of Assumption 1; at least one of the following two subgames (LH; VM � �) and
(HL; VM � �) is never reached. The same argument used above implies that the
population can get from 
 to �0 through a sequence of single-mutations.
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Let us consider now game �DG. The above-mentioned arguments continue to
work with minor modi�cations. In particular notice that, since yHL = xLH =
VM � �; then: (a) in case II) the set of investment pro�les supported by an
equilibrium can be either fHH;HLg or fHH;LHg; (b) in case III) both A02
and B02 are positive; (c) case IV) does not arise. �

Lemma 10 tells us that if a limit set underpins several outcomes, then the
process can reach an equilibrium sustaining only one outcome by a sequence
of single mutations. We now turn our attention to the set of equilibria sup-
porting one outcome only. According to the investment pro�le observed, we
can partition this set of equilibria into four subsets denoted respectively �H ;
�L;�HL and �LH : Of course, �H includes all the equilibria supporting the out-
come fHH;VH � xHH ; xHHg where xHH 2 D� (VH) : The same applies for the
other subsets. The following Lemma highlights that in both games the process
can move from any single-outcome equilibrium outside �H to a new equilibrium
� 2 �H through a sequence of single-mutation transitions.

Lemma 11 Consider an equilibrium �; then:
(a) if � 2 �L an equilibrium �0 2 �H can be reached from � by a sequence of

single-mutation transitions provided that cB + � < xHH < VH � cA � �;
(b) if � 2 �HL (resp. �LH) an equilibrium �0 2 �H can be reached from �

by a sequence of of single-mutation transitions provided that cB + � < xHH <
VH � cA � �.

Proof. Since in �DG the set �L is empty, the �rst point of the Lemma
holds for �UG only.
(a) Let � be an equilibrium belonging to �L. From �; by a sequence of single

mutations, the process reaches a new equilibrium �� 2 � (�) in which, for every
agent A and B; it is true that: (i) eyiHH (��) = VH�xHH and VH�xHH > cA+�;
(ii) at subgame (LH; VM � �) each agent A accepts (i.e. she chooses �); (iii)exiHL (��) = �; exiHH (��) = xHH and xHH � � � cB�0. Suppose now an agent
B mutates by playing H and making a demand VM � � in LH. When agents
B update they will choose H since all agents A have accepted VM � �: When
agents A revise they will all play H since VH�xHH > cA+�. Hence the process
reaches a new equilibrium �0 2 �H where �

�
�0
�
= fHH; (VH � xHH) ; xHHg :

(b) Consider �UG and let � be an equilibrium belonging to �HL. At �
the pair of demands (yHL; VM � yHL) is observed. Suppose yHL < VM � �. By
drifting, all agents B are led to accept the maximum feasible demand made by A
inHL and deem that all Amake a demand larger than VH�cB+� atHH: A new
equilibrium �1 2 � (�) is thus reached. Suppose now a single agent A changes
her demand from yHL to VM � �. When agents A update, they observe that all
Bs have accepted VM � �; therefore in HL their best response is yHL = VM � �.
When agents B update they continue to play L since exiHH (�1) < cB + � holds
for all Bs. Hence, the process reaches a new equilibrium �0 2 �HL where
�
�
�0
�
= fHL; (VM � �) ; �g. From �0; by a sequence of single mutations, the

process can reach an equilibrium �� 2 �
�
�0
�
in which all agents A have beliefs:
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(i) eyiHH (��) = yHH ; (ii) eyiLH (��) = �; (iii) �+cA < yHH < VH�cB��. Suppose
now an agent B mutates by playing H and making a demand VH�yHH in HH.
Let all agents B revise; they will choose H and ask VH � yHH . When agents
A update, the process reaches a new equilibrium �0 2 �H in which the pair of
demands is (yHH ; VM � yHH). Of course only the last sequence of mutations is
required when yHL = VM � �.
The case in which � is an equilibrium belonging to �LH is similar. Moreover

the same argument holds true also for �DG with the caveat that any equilibrium
belonging to �HL now supports the outcome (VM � �; �) only. �

Lemma 12 Consider �UG: Let � 2 �L be an equilibrium: An equilibrium �0 2
�LH [ �HL can be reached from � by a sequence of single-mutation transitions
provided that at �0 the agent who has chosen H is better o¤;

Proof. Let � 2 �L be an equilibrium. From �; by a sequence of single
mutations, the process can reach a new equilibrium �� 2 � (�) in which: at
subgame (LH; VM � yLH) each agent A accepts (i.e. she chooses yLH); for
every A, eyiHH (��)�yLH�cA < 0 but VM �yLH�cB > 0 for every B. Suppose
an agent B mutates by playing H and making a demand VM � yLH in LH.
When all agents B update, they will choose H since population A has accepted
demand VM � yLH . When agents A revise they will continue to play L sinceeyiHH (��)�yLH�cA < 0. Hence the process reaches a new equilibrium �0 2 �LH
in which the pair of demands is (yLH ; VM � yLH) : The case in which �0 is an
equilibrium belonging to �HL is similar. �

Lemma 10 and Lemma 11 together asset that, in both games, the adaptive
process can lead to an equilibrium � 2 �H by a sequence of single mutations,
starting from any limit set 
 =2 �H . Therefore, according to Proposition 1 of
Noldeke and Samuelson (1993), if �S is a strictly subset of � then �S � �H .

Both Proposition 4 and Proposition 5 in the main text stem from a direct
application of Theorem 2 of Ellison (2000) which we now brie�y recall. Let �
be a union of limit sets; these sets can be either mutation connected or not. The
Radius R (�) is the minimum number of mutations needed to escape from the
basin of attraction of � and enter into another one with positive probability.
Consider an arbitrary state � =2 � and let (m1;m2; ::;mT ) be a path from � to
� where 
1;
2; ::
r is the sequence of limit sets through which the path passes
consecutively. Obviously 
i =2 � for i < r and 
r � �. Furthermore, notice
that a limit set can appear several times in this sequence but not consecutively.
The modi�ed cost of this path is de�ned by:

c� (m1; :::;mT ) = c (m1; ::;mT )�
r�1X
i=2

R (
i)
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where c (m1; ::;mT ) is the total number of mutations over the path (�;m1;m2; ::;mT ).
Let c� (�;�) be the minimal modi�ed cost among all paths from � to �. The
Modi�ed Coradius of the basin of attraction of � is then:

CR� (�) = max
�=2�

c� (�;�) :

Theorem 2 of Ellison (2000) shows that every union of limit sets � with R (�) >
CR� (�) encompasses all the stochastically stable states. In order to compute
the minimum number of mutations needed to escape from an equilibrium be-
longing to �H ; both Propositions 4 and 5 make use of the result stated in Lemma
13 below. In what follows we write �x as shorthand for an equilibrium belonging
to �H with (VH � x; x) as the distributional rule.

Lemma 13 For � su¢ ciently small, the minimum number of mutations needed
to get from � (�x) to an equilibrium with the same investment pro�le but di¤erent
demands is:

r+B (x) =
j
N
�

�
VH�x

�m
if x < VH

2

r�A (x) =
�
N
�
�
x

��
if x > VH

2

(16)

where r+B (x) is the number of mutations needed for the transition from �x to
�x+� whereas r

�
A (x) is the number of mutations needed for the transition from

�x to �x��. Moreover, r
+
B (x) is a strictly increasing function of x and r

�
A (x) is

a strictly decreasing function of x.

Proof: By a direct application of Young (1993). �

Before giving the proof of Proposition 4 two further preliminary results are
needed. These are provided by Lemma 14 and Lemma 15 below. The �rst allows
us to argue that a norm of cooperation supporting the e¢ cient investment pro�le
evolves in the long run when condition (7) holds. Given this, the second result
allows us to argue that norms of distribution arise when the stochastically stable
outcome support the e¢ cient investment pro�le.

Lemma 14 Consider �UG. Then:
(a) an equilibrium �0 2 �L can be reached from � 2 �UCH by a sequence of

single-mutation transitions;
(b) under condition (7) ; CR�

�
�UIH

�
= 1;

(c) under condition (7) ; R
�
�UIH

�
> 1 and, consequently, �S � �UIH .

Proof. Point (a). Consider some � 2 �UCH and let fVH � x; xg be the
observed pair of demands. We show that starting from �UCH it may be possible
to enter into the basin of attraction of an equilibrium �0 2 �L through a sequence
of single-mutation transitions. In order to describe this transition four cases have
to be taken into account: (1) x > xUA; (2) x = x

U
A; (3) x < x

U
B ; (4) x = x

U
B . We

give the proof for cases (1) and (2) only; the remaining cases are symmetric.
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Case (1): let x > xUA: At � the following inequality must hold:

Population A : Population B :

(VH � x� cA)� eyiLH (�) � 0 x� cB � exiHL (�) � 0
VH � x� cA < VM � � x� cB > VM � �:

(17)

From � the process can reach a new equilibrium �1 2 � (�) by a sequence of
single mutations in which the following is true for every agent: (i) exiLH (�1) = �
and (ii) eyiHL (�1) � cA < 0. Suppose an agent A mutates by playing L and
accepting her opponent�s demand at LH. Let all agents A update. Since the
mutant receives VM � �; all As imitate and play L. When agents B revise they
will play L. The process then reaches a new equilibrium �0 2 �L.

Case (2): let x = xUA: At �; for any agent A it must be true that VH � xUA �
cA = VM � �: From � the process can reach a new equilibrium �1 2 � (�) by
a sequence of single mutations in which the following is true for every agent:
(i) exiLH (�1) = xLH ; (ii) xLH � cB < 0; (iii) eyiLH (�1) = (VM � �) and (iv)eyiHL (�1)� cA < 0: Suppose an agent B mutates by demanding x0 > xUA at HH.
When agents A update they will all choose L since, for whatever best action at
HH, the expected payo¤ by playing H is now smaller than VM � �. When all
agents B revise they will play L . The process then reaches a new equilibrium
�0 2 �L.

Point (b). Under condition (7) �UIH is well de�ned. By a direct application
of previous point (b), along with point (a) of Lemma 11, it follows that from
� 2 �UCH it is possible to reach b� 2 �UIH through a sequence of single mutations.
Therefore CR�

�
�UIH

�
= 1 for any � 2 �UCH :

Besides, from Lemmas 10 and 11, we can deduce that for any 
 =2 �H the
minimal modi�ed cost for all paths from � to �IH , is equal to one, whatever
the number of limit sets the path goes through may be. Therefore, by putting
together these results, we get:

CR�
�
�UIH

�
= max


=2�UIH
c�
�

;�UIH

�
= 1

Point (c). We show that, under condition (7), more than one mutation
is needed to leave the basin of attraction of �UIH even when the worst-case
equilibrium scenario is considered as starting state.

I) First we show that a single mutation from H to L does not enable the
process to leave the set �UIH even if at �x 2 �UIH each agent expects to receive:
(i) the maximum payo¤ when she plays L but the opponent still plays H; (ii)
the minimum payo¤ when she plays H but the opponent shifts to L.
Let us consider this scenario and suppose that an agent B had switched from

H to L and all agents A revised. This updating does not cause agents A to play
L if
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N � 1
N

[(VH � x� cA)� (VM � �)] + 1

N
(� � cA) > 0 (18)

which can be rewritten as

N � 1
N

(VH � x)� cA >
N � 1
N

VM � �: (19)

Since x 2
�bxUB ; bxUA� ; condition (19) holds by de�nition. Therefore no agent A

will change her action after the revision. Similar argument can be applied to
population B: Since as soon as the mutant revises the process returns to �UIH ;
then a single mutation from H to L is not enough to leave the basin of attraction
of �UIH .

II) We now show that a single mutation from x to x0 (resp. VH � x to y0)
does not enable the process to run away from the basin of attraction of �UIH
even if at �x 2 �UIH each agent expects to get the maximum payo¤ when she
plays L and the opponent chooses H. Let one agent B only change her demand
to x0. Obviously, no agents B imitate the mutant when revising. When As
update we know from Lemma (6) that their best response is either VH � x or
VH � x0.
If x0 > x, agent A expects to receive (VH � x) N�1N � cA when she demands

VH � x and VH � x0 � cA when she demands VH � x0: Under Point (e) of
Assumption 1, the former payo¤ is greater than the latter. Hence agents A will
not change their demands when updating. Moreover, since (VH � x) N�1N �cA �
VM � �, then updating will not cause agents A to play action L.
If x0 < x, agent A expects to get VH �x� cA when she demands VH �x and

1
N (VH � x

0) � cA when she demands VH � x0. Under Point (e) of Assumption
1 the former payo¤ is greater than the latter. Hence, agents A will not change
their demands when updating. Moreover, since VH � x � cA > VM � �; then
updating will not cause agents A to play action L. The case in which an agent
A mutates from VH � x to y0 is symmetric. Since as soon as the mutant revises
the process returns to �UIH ; then a single mutation from x to x0(resp. from
VH � x to y0) is not enough to escape from the basin of attraction of �UIH .

Points I) and II) taken together say that more than one mutation is needed
in order to escape from the basin of attraction of �UIH , i.e. R

�
�UIH

�
> 1: Given

that CR�
�
�UIH

�
= 1; by Theorem 2 of Ellison (2000) we get �S � �UIH . �

We have now to derive the norms of distribution supporting �UIH : In order to
do this we have: (i) to compute the radius of � (�), i.e. the minimum number of
mutations required to destabilize the outcome supported by �; 8� 2 �UIH ; (ii) to
�nd an equilibrium belonging to �UIH such that R (� (�)) > CR

� (� (�)). Lemma
13 provides the minimum number of mutations required to make a transition
from �x 2 �UIH to another equilibrium supporting the same investment pro�le
HH, but a di¤erent distributional rule. Lemma 15 below completes all the
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required details by giving the minimum number of mutations required to make
a transition from �x 2 �UIH to �0 =2 �UIH :

Lemma 15 Consider �UG. The minimum number of mutations required to get
from �x 2 �UIH to an equilibrium which supports a di¤erent investment pro�le
is:

rA (x) =
�
N
�
1� VM��+cB

x

��
if x < VH

2

rB (x) =
j
N
�
1� VM��+cA

VH�x

�m
if x > VH

2 :
(20)

Proof. Consider �x 2 �UIH : Suppose p1 agents B mutate by playing L and
p2 agents B mutate by claiming x0 > xUA. For a given pair (p1; p2), agents A
have the largest incentive to change into L if their beliefs are such that: (i) they
expect to get the maximum payo¤ in an LH match; (ii) they expect to obtain
the minimum payo¤ in an HL match. Consider equilibrium �x 2 �UIH in which
the following holds for all agents: (i); eyiLH = VM � � and eyiHL = �; (ii) exiLH = �
and in the subgame fHL; �g all agents B accept. At �x; when some agents B
mutate and these mutations induce all agents A to play L, the process enters
into the basin of attraction of equilibrium �0 2 �L with positive probability.
Sure enough, after updating, all agents A decide to play L if

N � p1
N

(VM � �) > �H
�e�x; p1; p2� (21)

where LHS is the expected payo¤ by playing L and RHS is the expected payo¤
by playing H. However, �H (�x; p1; p2) depends on what the best demand in a
match HH is. In particular

�H (:) =

8><>:
N�p2�p1

N (VH � x) + p1
N � � cA if N�p2�p1

N�p1 (VH � x) � VH � x0

N�p1
N (VH � x0) + p1

N � � cA if N�p2�p1
N�p1 (VH � x) < VH � x0:

(22)
The minimum number of mutations in populationB comes from the compari-

son between the solutions of two constraint minimization problems (M1 and M2).
In both problems the objective function is p1 + p2: In the �rst (resp. second)
problem we contemplate the case in which the best action in HH is VH � x0
(resp. VH � x). Both problems require p1 = 0 as a solution. Moreover pM1

2 =

N
�
x0�x
VH�x

�
is the solution to the �rst problem and pM2

2 = N
�
1� VM��+cA

VH�x

�
is

the solution to the second. Since pM1
2 > pM2

2 ; the minimum number of mutations
in population B involves that: (i) mutating agents only change their demands
in the HH pro�le; (ii) these mutations cause agent A to shift to action L when
the best action in HH continues to be VH � x. Hence:

rB (x) =

�
N

�
1� VM � � + cA

VH � x

��
(23)

33



and
rB = min

x
rB (x) = rB

�bxUA� : (24)

Suppose now some agents A mutate. As before, two kinds of mutations must
be considered: p1 agents A mutate by playing L and p2 agents A mutate by
demanding VH � x0 where x0 < xUB . In this case we look for an equilibrium
�x 2 �UIH in which for all agents: (i) exiLH = � and exiHL = VM � �; (ii) eyiHL = �
and in the subgame fLH; �g all agents A accept. It is easy to see that if some
mutations of agents A occurs at �x and these mutations induce all agents B
to play L; then with positive probability the process enters into the basin of
attraction of equilibrium �0 2 �L. After updating all agents B decide to play L
if

N � p1
N

(VM � �) > �H
�b�x; p1; p2� (25)

where

�H (:) =

8><>:
N�p2�p1

N x+ p1
N � � cB if N�p2�p1

N�p1 x � x0

N�p1
N x0 + p1

N � � cB if N�p2�p1
N�p1 x < x0:

Proceeding as before, the minimum number of mutations in population A is

rA (x) =

�
N

�
1� VM � � + cB

x

��
(26)

and

rA = min
x
rA (x) = rA

�bxUB� (27)

By comparing (23) and (26) we obtain rB (x) < rA (x) if x > VH
2 : �

Proof of Proposition 4. Point (a). Consider �UG: From Point (c) of
Lemma 14 we know that �S � �UIH when condition (7) holds. Therefore, we
are only left with the task of deriving the distributional norm supporting the
equilibria belonging to �UIH :
To detect R (� (�x)) for any �x 2 �UIH we compare the results coming from

Lemma 13 with those coming from Lemma 15. Notice that r+B (x) � rB (x) if
VM � � � VH � (x+ �)� cA and r�A (x) � rA (x) if VM � � � x� � � cB ; since
these conditions are always satis�ed for any x 2

�bxUB ; bxUA� we conclude that
R (� (�x)) =

8<: r+B (x) if x < VH
2

r�A (x) if x > VH
2 :

In order to derive CR� (� (�x)) ; two cases must be considered, both compatible
with condition (7).
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In the �rst case bxUA � VH
2 ; this occurs when cA �

VH
2 � VM : Let x � VH

2
and consider the set of equilibria � (�x) ; let �x 2 �UIH be an equilibrium with
x 6= x. From Lemma 13 we know that

c� (�x;� (�x)) =

8<: r+B (x) if x < VH
2

r�A (x) if x > VH
2 :

By the monotonicity of r+B (x) and r
�
A (x) we obtain

CR� (� (�x)) = max
�
r+B (x� �) ; r

�
A (x+ �)

�
:

Of course, when x = x � VH
2 ; then R (� (�x)) = r

+
B (x) = r

�
A (x) : Since

R (� (�x)) = r
+
B (x) = r

�
A (x) > CR

� (� (�x)) ;

it follows from Theorem 2 of Ellison (2000) that �S = �(�x) ; the only sto-
chastically stable outcome is thus

�
HH; VH2 ;

VH
2

	
and the distributional norm

is
�
VH
2 ;

VH
2

�
:

In the second case bxUA < VH
2 ; this occurs when

VH
2 � VM < cA � VH �

2VM � cB : Let ex � bxUA and consider the set of equilibria � (�ex). Let �x 2
�UIH be an equilibrium with x 6= ex. For any x 2

�bxUB ; bxUA� we know from
Lemma 13 that c� (�x;� (�ex)) = r+B (x) : The monotonicity of r+B (x) implies that
CR� (� (�ex)) = r+B (ex� �) : Since R (� (�ex)) = r+B (ex) > CR� (� (�ex)) ; it follows
from Ellison (2000) that �S = �(�ex) ; the only stochastically stable outcome is�
HH;VH � bxUA; bxUA� and the distributional norm is (VM + cA; VH � VM � cA).

Point (b). Recall that when condition (7) does not hold then �H = �UCH ;
hence one mutation is enough to exit from the basin of attraction of �H (Point
(a) of Lemma 14). In what follow we shall apply Theorem 3 of Ellison (2000).
It is noticing that R (
) = 1 for any limit set 
. Indeed let 
0 be a limit set;
then it is always possible to reach 
� 2 � (
) with one mutation by letting one
agent to drift at some unreached information set. Hence, if for limit sets 
 and

0 we have CR� (
0) = 1; then �� (
) > 0 implies that �� (


0) > 0. Concerning
the minimal modi�ed cost among all paths from a generic limit 
 set we already
know that:
(i) if � (
) is not a singleton, at least one 
0 exists with � (
0) singleton,

such that CR� (
0) = 1 (Lemma 10);
(ii) if 
 2 �L, at least two limit sets 
0 and 
� exist, with di¤erent distri-

butional rules but both belonging to either �H or (�HL [ �LH) and such that
CR� (
0) = CR� (
�) = 1 (Point (a) of Lemma 11 and Lemma 12);
(iii) if 
 2 �HL (resp. �LH), at least two limit set 
0 and 
� exist, with

di¤erent distributional rules but both belonging to �H and such that CR� (
0) =
CR� (
�) = 1 (Point (b) of Lemma 11);
(iv) if 
 2 �H , at least one limit set 
0 2 �L exists such that CR� (
0) = 1

(Point (a) of Lemma 14).
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Let 
 be a limit set such that �� (
) > 0: By collecting previous information
and using Theorem 3 of Ellison (2000) we conclude that: (i) if � (
) is not a
singleton, then �� (


0) > 0 where � (
0) is a singleton; (ii) if 
 2 �L; then
�� (


0) > 0 and �� (

�) > 0 where 
0 and 
� both belong to either �H or

�HL [ �LH ; (iii) if 
 2 �HL (resp. �LH) then �� (
0) > 0 and �� (

�) > 0

where both 
0 and 
� belong to �H ; (iv) if 
 2 �H then �� (

0) > 0 where


0 2 �L. Hence in this case an investment norm and a bargaining norm cannot
evolve in the long run. �

We now turn our attention to game �DG and to the proof of Proposition
5. As for game �UG; also in this case two preliminary results are needed. In
Lemma 16 below we show that �S � �DIH :

Lemma 16 Consider �DG: Then:
(a) CR�

�
�DIH

�
= 1;

(b) R
�
�DIH

�
> 1 and, consequently, �S � �DIH .

Proof. Point (a). Firstly notice that the set �DIH is always well-de�ned
since we can always �nd a sequence of f�ig converging to zero compatible with
condition (12). Indeed it is enough to consider �i < �IH where 0 < �IH �
VH�cA�cB

4 : Secondly observe that �DCH only supports two distributional rules,
namely, xDB and x

D
A . Consider an equilibrium � 2 �DCH with xDB as distributional

rule and suppose a single mutation from VH �xDB to VH �x0 > VH �xDB occurs
in population A. Suppose all Bs revise. Notice that whatever the best reply at
HH is, the expected payo¤ by playing H is now smaller than �. Hence updating
will now cause agents B to change investment action and to play L. Therefore
when �x 2 �DCH one mutation is enough to enter into the basin of attraction
of �0 2 (�HL [ �LH). A similar conclusion holds also when we consider xDA as
distributional rule. Hence, from Lemma 11 point (b) we can deduce that, for
any � =2 �DIH , the minimal modi�ed cost for across all paths from �x 2 �DCH to
�DIH is equal to one, whatever the number of limit sets the path goes through.
In addition, from Lemma 10 and from Point (b) of Lemma 11, we can deduce

that, for any 
 =2 �H ; the minimal modi�ed cost for all paths from � to �DIH is
equal to one, whatever the number of limit sets the path goes through may be.
Therefore

CR�
�
�DIH

�
= max


=2�UIH
c�
�

;�DIH

�
= 1:

Point (b). Let �x 2 �DIH and consider the worst-case equilibrium scenario
in which eyiLH (�x) = VH � x � cA and exiHL (�x) = x � cB : Suppose a single
mutation from H to L occurs in population B: This implies that pro�le HL is
reached in which agents A behave as dictators and claim VM � �. When agents
B revise, their updated beliefs become exiHL = �; as a consequence they choose
H. The process then returns to an equilibrium �0 2 � (�). The same occurs also
when a single mutation from H to L occurs in population A:
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Suppose now a single agent B mutates her demand from x to x0. Obviously
no agent B imitates the mutant when updating. When agents A revise, we
know from Lemma 6 that their best response is either VH � x or VH � x0.
When x0 > x; agent A expects to receive (VH � x) N�1N � cA by claiming

VH � x and expect to receive VH � x0 � cA by asking VH � x0. When instead
x0 < x; agent A expects to receive VH � x� cA by claiming VH � x and expect
to receive (VH � x0) 1N �cA by asking VH�x

0. It is simple to see that, whatever
the relation between x and x0 is, Point (e) of Assumption 1 implies that the
best response is always VH � x. Hence, updating will not cause agents A to
change both claim and investment action. This result allow us to assert that
R
�
�DIH

�
> 1: Therefore, given that CR�

�
�DIH

�
= 1; by using Theorem 2 of

Ellison (2000) we get �S � �DIH . �

We have now to derive the norms of distribution supporting �DIH : As for
�UG; we have to compute the radius of � 2 �DIH (i.e. the minimum number of
mutations required to destabilize the outcome supported by �; 8� 2 �DIH), and
to �nd an equilibrium belonging to �DIH such that R (� (�)) > CR�� (�). The
relevant informations are provided by Lemma 13, which continues to be true,
and by Lemma 17 below.

Lemma 17 Consider the game �DG. The minimum number of mutations re-
quired to get from � (�x) to an equilibrium which supports a di¤erent investment
pro�le is:

rA (x) =
�
N
�
1� �+cB

x

��
rB (x) =

j
N
�
1� �+cA

VH�x

�m
:

Proof. We give the proof for rB (x) only; a similar argument can be used
for rA (x). Consider �x 2 �DIH . Suppose p1 agents B mutate by playing L
and p2 agents B mutate by claiming x0 > xDA . Let e�x be the resulting state.
Suppose these mutations induce all agents A to play L. Suppose all A believe
to receive at LH a payo¤ eyLH ; this belief is compatible with the fact that �x is
an equilibrium only if eyLH � VH �x� c. Sure enough, at e�x all agents A decide
to play L if, after updating,

N � p1
N

eyLH > �H �e�x; p1; p2�
where the LHS is the expected payo¤ by playing L and the RHS is the expected

payo¤ by playing H. However, �H
�e�x; p1; p2� depends on the best demand in

an HH match. In particular

�H (:) =

8><>:
(N�p2�p1)(VH�x)

N + p1(VM��)
N � cA if (N�p2�p1)(VH�x)

N�p1 � (VH � x0)

(N�p1)(VH�x0)
N + p1(VM��)

N � cA if (N�p2�p1)(VH�x)
N�p1 < (VH � x0) :

37



Given eyLH ; the minimum number of mutations in population B are ob-
tained by solving two constrained minimization problems (M1 and M2). In
both problems, the objective function is p1 + p2: In M1 (resp. M2), we con-
template the case in which the best action at HH is VH � x0 (resp. VH � x).
Both problems require p1 = 0 as a solution. Moreover, pM1

2 = N
�
x0�x
VH�x

�
is the solution of the �rst minimization problem for whatever value of eyLH ;
pM2
2 (eyLH) = N �1� eyLH+cA

VH�x

�
is the solution of the second minimization prob-

lem. Notice that pM2
2 depends on eyLH : Suppose pM2

2 (eyLH) agents B claim
x0 > x. By updating, all agents A play L so that only pro�le LH is observed.
Since all agents B claim VM � � then, after updating, all agents A learn thateyLH = �. This implies that no agent A has the incentive to play H if

N � pM2
2 (eyLH)
N

(VH � x)� cA � �;

condition weakly satis�ed when eyLH = �:Therefore, in the second minimization
problem the minimum number of mutations (concerning B agents) needed to
enter into the basin of attraction of �0 from �x is

pM2
2 = N

�
1� � + cA

VH � x

�
:

Since pM1
2 > pM2

2 ; the minimum number of mutations involves that: (i) mutat-
ing agents only change their demands in the HH pro�le; (ii) these mutations
cause agent A to shift to action L when at HH the best action continues to
be (VH � x) ;(iii) all agents A correctly anticipate the distribution occurring at
LH: Hence:

rB (x) =

�
N

�
1� � + cA

VH � x

��
:

�

Proof of Proposition 5. Consider �DG: From Lemma 16 we know that
�S � �DIH : Thus, we are only left with the task of deriving the distributional
norm supporting the equilibria belonging to �DIH :

To detect R (� (�x)) for any �x 2 �DIH we compare the results coming from
Lemma 13 with those coming from Lemma 17. Notice that r+B (x) � rB (x) if
2� � VH � x� cA and r�A (x) � rA (x) if 2� � x� cB ; since these conditions are
always satis�ed for any x 2

�bxDB ; bxDA� we conclude that
R (� (�x)) =

8<: r+B (x) if x < VH
2

r�A (x) if x > VH
2 :

Before deriving CR� (� (�x)) ; we observe that: (i) bxDB < VH
2 if � � �B �

VH�2cB
4 condition always satis�ed when � � �IH ; (ii) VH

2 � bxDA if � � �A �
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VH�2cA
4 < �IH . Since under Assumption 1 cA < VH

2 ; then �A > 0. Therefore,
for given VH , VM and cA compatible with Assumption 1, it is always possible
to detect a sequence of f�ig converging to zero such that �i < �A. In this case
not only �DIH is well de�ned but we also have bxDB < VH

2 < bxDA : Let x � VH
2 and

consider the set of equilibria � (�x) ; let �x 2 �DIH be an equilibrium with x 6= x.
From Lemma 13 we know that

c� (�x;� (�x)) =

8<: r+B (x) if x < VH
2

r�A (x) if x > VH
2 :

By the monotonicity of r+B (x) and r
�
A (x) we obtain

CR� (� (�x)) = max
�
r+B (x� �) ; r

�
A (x+ �)

�
:

Of course, when x = x � VH
2 ; then R (� (�x)) = r

+
B (x) = r

�
A (x) : Since

R (� (�x)) = r
+
B (x) = r

�
A (x) > CR

� (� (�x))

it follows from Theorem 2 of Ellison (2000) that �S = �(�x) ; the only sto-
chastically stable outcome is thus

�
HH; VH2 ;

VH
2

	
and the distributional norm is�

VH
2 ;

VH
2

�
: �

39



References

[1] Andreozzi L., 2010. An evolutionary theory of social justice: choosing the
right game. European Journal of Political Economy 26, 320-329.

[2] Andreozzi L., 2011.Property rights and investment: an evolutionary ap-
proach. Games and Economic Behavior, ???

[3] Barling B., von Siemens F., 2010. Equal sharing rules in partnership. Jour-
nal of Institutional and Theoretical Economics 166, 299-320.

[4] Binmore K., 1998. The evolution of fairness norms. Rationality and Society
10, 275-301.

[5] Binmore K., 2007. Economic man or straw man ?. ELSE working paper
262.

[6] Binmore K., Shaked A., 2010. Experimental economics: where next ?. Jour-
nal of Economic Behavior and Organization 73, 87-100.

[7] Bohem C., 2004. What makes human economically distinctive ? A three-
species evolutionary comparison and historical analysis. Journal of Bioeco-
nomics, 6, 109-135.

[8] Cappelen A., Hole A. D., Sorensen E., Tungodden B., 2007. The pluralism
of fairness ideals: an experimental approach. American Economic Review
97, 818-827.

[9] Conte A., Mo¤att P., G., 2009. "The pluralism of fairness ideals": a com-
ment. Quaderni DEF 162, Luiss University, Rome.

[10] Dawid H., MacLeod B., 2001. Hold up and the evolution of bargaining
conventions. European Journal of Economic and Social Systems 15, 139-
169.

[11] Dawid H., MacLeod B., 2008. Hold-up and the evolution of investment and
bargaining norms. Games and Economic Behavior 62, 26-52.

[12] Ellingsen T., Robles J., 2002. Does evolution solve the hold-up problem ?.
Games and Economic Behavior 39, 28-53.

[13] Ellison G., 2000. Basin of attraction, long-run stochastic stability, and the
speed of step-by-step evolution. Review of Economic Studies, 67, 17-45.

[14] Gantner A., Guth W., Konistein M., 2001. Equitable choices in bargaining
games with joint production. Journal of Economic Behavior and Organiza-
tion 46, 209-225.

[15] Hill K., 2002. Altruistic cooperation during foraging by the Ache, and the
evolved human predisposition to cooperate. Human Nature 13, 105-128.

40



[16] Homas G. C., 1961. Social Behavior: Its Elementary Forms. New York:
Harcourt, Brace and World.

[17] Hawkes K., 1993. Why hunter-gatherers work. Current Anthropology, 34,
341-361.

[18] Ichikawa M., 1983. An examination of the hunting-dependent life of the
Mbuti Pygmies, eastern Zaire. African Study Monographs 5, 55-76.

[19] Kaplan H., Hill K., 1985. Food sharing among the Ache: tests of explana-
tory hypotheses. Current Anthropology 26, 223-246.

[20] Lee R. B., 1990. Primitive communism and the origin of social inequality.
In: Upham S. (Ed.), The Evolution of Political Systems: Sociopolitics in
Small-Scale Sedentary Societies, Cambridge University Press, 225-246.

[21] Noldeke G., Samuelson L., 1993. An evolutionary analysis of backward and
forward induction. Games and Economic Behavior 5, 425-454.

[22] Troger T., 2002. Why sunk costs matter for bargaining outcomes: an evo-
lutionary approach. Journal of Economic Theory 102, 375-402.

[23] Woodburn J., 1982. Egalitarian Societies. Man 17, 431-451.

[24] Young P., 1993. An evolutionary model of bargaining. Journal of Economic
Theory 59, 145-168.

[25] Young P., 1993a. The evolution of conventions. Econometrica 61, 57-84.

41



 


