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Model selection in hidden Markov models: a
simulation study

Michele Costa, Luca De Angelis

Abstract A review of model selection procedures in hidden Markov models reveals
contrasting evidence about the reliability and the accuracy of the most commonly
used methods. In order to evaluate and compare existing proposals, we develop a
Monte Carlo experiment which allows a powerful insight on the behaviour of the
most widespread model selection methods. We find that the number of observations,
the conditional state-dependent probabilities, and the latent transition matrix are the
main factors influencing information criteria and likelihood ratio test results. We
also find evidence that, for shorter univariate time series, AIC strongly outperforms
BIC.

Key words: Model selection procedure, Hidden Markov model, Monte Carlo ex-
periment, information criteria, likelihood ratio test.

1 Introduction

Model selection procedures are a challenging topic in statistical literature and rep-
resent an essential step in hidden Markov model estimation. In the framework of
hidden Markov models (HMM), model selection plays a prominent role since it
corresponds to the choice of the number of latent states, denoted as m, of the un-
observed Markov chain underlying the observed data. The number of states should
be chosen in order to enable the model to account for the dynamic pattern and the
covariance structure of the observed time series. In particular, when using HMM for
exploratory purposes, the choice of m is crucial, since in many empirical develop-
ments of HMM no clue about its value is available.
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Although model selection has been deeply analyzed for both HMM and other
mixture model types, this topic is still an unresolved methodological issue. At the
moment, there is not one commonly accepted statistical indicator for deciding the
number of latent states of the unobserved Markov chain. Furthermore, the exist-
ing studies on this topic provide contrasting findings about the reliability and the
accuracy of model selection instruments for HMM.

In the context of finite mixture models, different studies show that Bayesian in-
formation criterion (BIC) has a satisfactory behaviour (Fraley and Raftery, 2002;
Nylund et al., 2007). However, Fonseca (2008) shows that its performance is not
significantly different from the one of other criteria. On the contrary, Akaike in-
formation criterion (AIC) is found to have an adequate behaviour for more com-
plex models (Lin and Dayton, 1997) or when the sample size is small (Lukociene
and Vermunt, 2010). Furthermore, some authors suggest other criteria for dealing
with the model selection issue. For example, Chen and Kalbfleisch (1996) develop
a penalized minimum-distance method that provides, under certain conditions, a
consistent estimate of the number of components. Moreover, Dias (2006) indicates
the AIC3 as the best information criterion for defining the number of classes in la-
tent class analysis. Finally, consistent Akaike information criterion (CAIC) has been
proved to have a similar performance with respect to BIC (Lin and Dayton, 1997;
Lukociene and Vermunt, 2010).

In HMM framework, the literature dedicated to the issue of model selection is
also quite extensive. The consistent identification of the number of latent states, i.e.
the order of the unobserved Markov chain, is a fundamental prerequisite for model
parameter estimation (Cappé et al., 2005). However, the statement by MacDonald
and Zucchini (1997) that ’in the case of HMM, the problem of model selection (and
in particular the choice of the number of states in the Markov chain component
model) has yet to be satisfactorily solved’ is still valid.

Among the works related to this topic, Kerébin (2000) and Csiszár and Shields
(2000) demonstrate that BIC is a consistent estimator of the HMM order. MacKay
(2002) extends to HMM the approach of Chen and Kalbfleisch (1996) and shows
that, in many cases, the penalized minimum-distance method provides a consis-
tent estimate of the number of hidden states in a stationary HMM. Gassiat and
Boucheron (2003) prove almost sure consistency of the penalized maximum likeli-
hood estimator with penalties increasing as a power of the order. Moreover, Celeux
and Durand (2008) show that cross-validated likelihood criteria can be easily ap-
plied when data consists of several independent sequences but become impractical
when dealing with univariate time series.

The major aim of this paper is the analysis of model selection procedures in
HMM. In order to evaluate and compare existing proposals, we provide a Monte
Carlo study which allows a powerful insight on the behavior of the most widespread
information criteria.

Information criteria are developed on a two terms structure. The first term, which
can be interpreted as a goodness of fit measure, is based on the likelihood function,
which is increasing by m, since adding more latent states always improves the fit
of the model. The second term is a penalty which has to be traded off against the
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quadratic increase in the number p of parameters that have to be estimated. The
penalty is usually specified as a function of p only or as a function of both p and the
number of observations T .

The order of a HMM is usually chosen considering one (or more) information
criterion: in the following we refer to the Bayesian information criterion (BIC),
the Akaike information criterion (AIC) and four variants of the latter, the AIC3,
the consistent AIC (CAIC), the corrected AIC (AICc) and the AICu. Furthermore,
we also evaluate the Hannan-Quinn criterion (HQC) which is usually used as an
alternative to AIC and BIC in time series analysis.

Although the asymptotic theory of likelihood ratio tests (LRT) is problematic
in both the frameworks of mixture modeling (Titterington et al., 1985) and HMM
(Gassiat and Kérebin, 2000), it might be interesting to evaluate their performance
according to changes in the HMM specification. The main issue about LRT is due
to the fact that the null hypothesis is defined on the boundary of the parameter space
and consequently the regularity condition of Cramer on the asymptotic properties of
the maximum likelihood estimator is not valid. As consequence, the LRT statistic
is not asymptotically distributed as a chi-square. However, likelihood ratio tests are
found to be consistent if computed via bootstrap (Nylund et al., 2007) and can be
used for dependence structure restrictions of an HMM (Giudici et al., 2000). Fur-
thermore, the approach followed by Gassiat and Boucheron (2003) turns out to be
somewhat equivalent to generalized likelihood ratio tests. For these reasons, we pro-
pose to investigate the capability of LRT of identifying the true order of an HMM
by including also this model selection procedure in our experimental analysis.

There exist many factors which could affect the behavior of different model se-
lection procedures. Obviously, it is very complicated, or even unfeasible, to evalu-
ate in a Monte Carlo experiment all possible factors of perturbation and all different
model specifications. Thus, in this paper we focus on univariate HMM with homoge-
nous Markov chain and discrete ’state-dependent’ processes, firstly by analyzing the
effects related to the number of observations. Furthermore, we also try to evaluate
the differences related to the level of uncertainty which characterizes the allocation
of the observed data to the latent states. Finally, we take into account the degree
of complexity of the latent stochastic process underlying the data by analyzing and
comparing more and less complex alternatives for the latent transition matrix.

In Section 2, we introduce hidden Markov models and the different model selec-
tion procedures we investigate in our simulation study. In Section 3, we describe the
Monte Carlo experiment protocol we used and highlight the design factors we eval-
uate in our analysis. In Section 4, we summarize the results obtained in the Monte
Carlo experiments by comparing the behaviour of different model selection meth-
ods and their capability of identifying the true HMM order. Finally, in Section 5 we
conclude.
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2 Model selection in HMM

Hidden Markov models are used for investigating the dynamic pattern of an ob-
served time series {Xt}t∈T by means of one discrete latent process {Yt}t∈T governed
by a first-order Markov chain.

HMMs have many areas of applications. For instance, they have been widely
used for speech recognition (Levinson et al., 1983), in biostatistics (Leroux and
Puterman, 1992), for modeling weather conditions (Hughes and Guttorp, 1994), for
analyzing longitudinal data (Maruotti and Rydén, 2009) or in other fields such as
finance (Rydén et al., 1998), and marketing (Paas et al., 2007).

A univariate HMM with m latent states and homogenous Markov chain is speci-
fied as

Pr(Xt = x) =
m

∑
i, j=1

Pr(Y1 = i)
T

∏
t=2

Pr(Yt = i|Yt−1 = j)
T

∏
t=1

Pr(Xt = x|Yt = i) =

=
m

∑
i, j=1

ui(1)γi j pi(x) (1)

where ui(1) denotes the prior initial-state probability, γi j is the generic element of
the m×m matrix Γ and denotes the latent transition probability of switching from
state j at time t − 1 to state i at time t, and pi(x) indicates the conditional state-
dependent probability.

The order of an HMM is the minimum size of the latent state space Y that can
generate the observed series Xt . Thus, we are looking for the smallest integer m such
that the distribution {Xt}t∈T belongs to Mm with parameter space θ m (Cappé et al.,
2005).

In order to define the value of m, we usually resort to some sort of criterion. A
model selection criterion is an estimator of the expected discrepancy between the
unknown operating model, f , and the fitted model, g

θ̂
, where θ̂ is an estimate of the

parameter vector θ (Linhart and Zucchini, 1986):

E∆( f ,g
θ̂
) = 2E

[
log f (X)− logg(X |θ̂)

]
. (2)

One of the most widespread and used measure based on maximum likelihood
estimation is the Kullback-Leibler discrepancy which focuses on the expected log-
likelihood:

∆KL( f ,gθ ) =−E loggθ (X) =−
∫

loggθ (X) f (X)dX . (3)

A traditional approach to the model selection problem based on maximum like-
lihood consists of penalizing the fit a model by a measure of its complexity. The
penalizing term can depend on the number of parameters of the model and/or the
number of observations:
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m̂ = argmax
m

[
sup

g∈Mm
logg(X |θ̂)− pen(T, p)

]
. (4)

In the case of univariate probability distribution and time series, it is possible to
derive an expression for the asymptotic value of the expected discrepancy and also
to find an asymptotically unbiased estimator of that value, called asymptotic crite-
rion. Under some regularity conditions (see Linhart and Zucchini, 1996, Appendix
A1), the asymptotic criterion is obtained from the empirical discrepancy ∆T (θ̂), the
sample size T , and a trace term K:

C = Ê∆( f ,g
θ̂
) = ∆T (θ̂)+K/T (5)

for T → ∞. The term K can assume a complicated expression. However, in the
case of the Kullback-Leibler discrepancy (Equation 3), K reduces to the number of
parameter p and the asymptotic (simple) criterion is then

CKL = ∆T (θ̂)+ p/T. (6)

This expression is strictly equivalent to the well-known Akaike information cri-
terion (Akaike, 1974):

CKL = AIC/2T (7)

where

AIC =−2logLT (θ)+2p (8)

and LT denotes the estimated value of the likelihood function.
Since Akaike’s seminal work, many authors have proposed different versions of

the AIC. Bozdogan (1994) introduced a more penalized version by replacing the 2
in the penalizing term of Equation 8 with 3:

AIC3 =−2logLT (θ)+3p. (9)

Hurvich and Tsai (1989) added to the traditional AIC a further quantity which is
function of both the number of parameters p and the sample size T :

AICc = AIC +[2p(p+1)]/(T − p−1). (10)

McQuarrie et al. (1997) changed the AICc in Equation 10 by summing a further
addendum:

AICu = AICc+T log [T/(T − p−1)] . (11)

Bozdogan (1987) proposed to refer to the traditional AIC in Equation 8 with a
penalizing term, which considers also the sample size T :

CAIC =−2logLT (θ)+ p(1+ logT ). (12)
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Besides the Akaike information criterion and the family of information criteria
which directly derive from the AIC original version, in our analysis we also consider
a further criterion, the BIC (Schwarz, 1978), which is frequently used within the
HMM framework. BIC is achieved in the Bayesian framework with the following
expression:

BIC =−2logLT (θ)+ p logT. (13)

Finally, we also include the criterion proposed by Hannan and Quinn (1979)
which is usually used in time series analysis as an alternative to AIC and BIC:

HQC =−2logLT (θ)+2p log(logT ). (14)

As illustrated in section 1, the traditional model selection approach using like-
lihood ratio tests is problematic in the context of HMM. However, our aim is to
assess the capability of LRT to retrieve the true HMM order and compare its be-
haviour with respect to the information criteria listed above. Therefore, we evaluate
the traditional LRT approach, where we compare the null hyphotesis H0 : θ = θ0
against the alternative H1 : θ = θ1 through the following test:

LRT =−2 [logLT (θ0)− logLT (θ1)] . (15)

Likelihood ratio tests and information criteria define the set of methods mainly
used for determining the order of an HMM and our aim is to analyze their behaviour
in the simulation study presented in the following section.

3 Monte Carlo experiment

We propose to assess the performance of the methods described in section 2 through
a Monte Carlo experiment in order to evaluate the effect of different design factors.

Since the Monte Carlo experiment allows the a priori knowledge of the true num-
ber of latent states m∗, we are interested in comparing m∗ with the number of latent
states m suggested by the model selection procedures under investigation.

As the first step of our analysis, we simulate different data sets for one discrete
random variable Xt with 3 categories, for t = 1, ...,T . Each data set is generated by
imposing the length of the time series. We propose the values T = 100, 500, 1000
and simulate 1000 different data sets for each combination. Furthermore, we also
consider T = 5000 and 10000 in order to assess the property of consistency of the
model selection methods.

Furthermore, we define the probability functions which characterize the HMM.
First, we set the number of latent states m∗ = 2 which denotes the true order of
the latent Markov process. Second, we set the conditional probabilities pi(x), for
i = 1, ...,m∗, which indicate the probability of observing the particular value x of
variable Xt , given the membership of the observation to the latent state i. Third, we
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define the latent transition matrix Γ . We also set the initial state probabilities ui(1)
in order to achieve a stationary HMM (see, Zucchini and MacDonald, 2009)1.

Once we simulated the different data sets with the features specified above, as
the second step of our analysis, we estimate HMMs with different number of latent
states h = 1, ...,m, ...,C. Then, we compute the information criteria in Equations 8-
14 and test whether the model with h states is non-significantly different from the
model with h + 1 states using the LRT in Equation 15. Hence, for each simulated
data set, we compare the values of these model selection methods and evaluate their
power of detecting the correct number of states.

Among the many factors which could influence HMM selection procedures, in
our analysis we evaluate the performance of the different methods first of all with
respect to changes in the number of observations, T , which is crucial for the inves-
tigation of the asymptotic properties as well as for the most frequent small sample
sizes available in many empirical analyses. Furthermore, we pay a particular at-
tention to the conditional probabilities, pi(x), which reflect the level of uncertainty
characterizing the model classification procedure of the time observations to the
latent states. Finally, we consider the latent transition probabilities, γi j, included
in matrix Γ which denote different conditions of persistency in the latent Markov
chain.

We are well aware that all simulation results are to be carefully treated and that
they do not represent a monolithic one-faced truth. In our framework, for example,
even though our simulated models are always identified, we could have more alter-
native models leading to the same results. However, Monte Carlo experiments can
be a precious tool able to enlighten on the behaviour of model selection procedures,
which is our purpose.

4 Results

In the following, we summarize the main results of the Monte Carlo experiment
which show in detail the behaviour of model selection procedures. We take into
consideration three design factors, namely the ’state-dependent’ conditional proba-
bilities, the latent transition probabilities, and the number of observations.

4.1 The role of the state-dependent probabilities

In the first analysis, we assess changes in the state-dependent conditional probabil-
ities pi(x) in Equation 1, by considering an HMM with m∗ = 2 latent states, prior

1 Setting the initial state probabilities which allow the HMM to have a stationary distribution is
not really necessary in our analysis. Since we consider quite large values of T , the effect of initial
probabilities is negligible. This is known as the ’forgetting property’ (Cappé et al., 2005).
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initial-state probabilities ui(1) = (0.75,0.25), and the following latent transition ma-
trix:

Γ =
(

0.9 0.1
0.3 0.7

)
.

In particular, we consider four different HMMs characterized by the following
conditional probabilities pi(x), for i = 1,2 latent states and x = 0,1,2 categories of
the random variable Xt :

i / x 0 1 2

HMM I: 1 0.9 0.1 0.0
2 0.0 0.1 0.9

HMM II: 1 0.8 0.2 0.0
2 0.0 0.2 0.8

HMM III: 1 0.7 0.2 0.1
2 0.1 0.2 0.7

HMM IV: 1 0.6 0.2 0.2
2 0.2 0.2 0.6

Table 1 shows the percentage of correct order identification for the information
criteria and the likelihood ratio test in the case of different time series length and the
four models characterized by the different conditional probabilities pi(x) described
above. For each combination of the four models and T = 100, 500, 1000, 5000, we
generate 1000 data sets for a total of 16000 simulations. From Table 1, it arises that
both the state-dependent probabilities and the number of observations play an im-
portant role in the order identification problem. A higher level of uncertainty in the
allocation of the observations to the latent states implies a worst performance for the
seven information criteria and the likelihood ratio test. When T is low, the perfor-
mance of the model selection procedures declines very fast. In the case of T = 100,
the best selection method, the AIC, correctly identifies the order 93.1% and 90.1%
of the times, for models HMM I and HMM II, respectively. However, the percent-
age drops to 37.1 for model HMM III and to only 7.2 if we consider HMM IV. This
sharp decline gradually disappers by increasing the number of observations.

Furthermore, Table 1 shows that the performances of the different criteria are
quite heterogenous. When T is low, CAIC and BIC are often unable to detect the true
number of states which characterize the latent Markov process. On the contrary, AIC
and AICc perform much better, followed by AIC3, AICu, and HQC. On the other
hand, when the value of T is large, BIC, CAIC, AIC3, AICu, and HQC perform
slightly better than AIC and AICc (see e.g., the case of model HMM III with T =
5000 in Table 1).

Despite the well-known problematic issues about its asymptotic distribution, the
LRT statistic shows somewhat satisfactory results which are comparable to the per-
centages related to AICc.
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Table 1 Percentage of correct HMM order identification for different values of T and different
conditional probabilities pi(x)

Model AIC AIC3 AICc AICu CAIC BIC HQC LRT

HMM I 93.1 84.3 91.7 81.1 46.2 62.8 83.8 91.2
T = 100 HMM II 90.1 75.3 87.7 71.0 29.2 46.5 74.5 87.6

HMM III 37.1 14.7 30.2 11.8 1.0 2.6 14.2 30.3
HMM IV 7.2 1.8 5.6 1.1 0.0 0.0 1.6 5.6

HMM I 99.1 100 99.1 100 100 100 100 99.1
T = 500 HMM II 98.7 99.9 99.0 99.9 100 100 100 98.8

HMM III 97.4 94.6 97.7 94.3 43.7 58.2 90.5 96.7
HMM IV 43.7 19.5 42.5 18.2 0.2 0.5 10.2 36.6

HMM I 99.1 100 99.1 100 100 100 100 97.9
T = 1000 HMM II 98.6 100 99.0 100 100 100 100 98.7

HMM III 98.1 99.8 98.5 99.8 94.0 97.1 100 98.2
HMM IV 74.8 49.9 74.8 48.8 1.1 3.2 29.9 69.9

HMM I 98.1 100 98.2 100 100 100 100 98.2
T = 5000 HMM II 97.9 99.8 98.0 99.8 100 100 100 98.2

HMM III 98.6 100 98.6 100 100 100 100 98.7
HMM IV 98.6 99.9 98.6 99.9 88.4 93.3 99.9 98.8

4.2 The role of the latent transition probabilities

The second design factor we believe it is worth to evaluate consists in changes in
the latent transition probabilities γi j collected in matrix Γ . In particular, we consider
five HMMs with m∗ = 2 latent states and the state-dependent probabilities specified
as in previous model HMM II: p1(0) = 0.8, p1(1) = 0.2, p1(2) = 0, and p2(0) = 0,
p2(1) = 0.2, p2(2) = 0.8. The five models are characterized by the following latent
transition matrices and the initial-state probabilities required in order that HMMs
have stationary distributions:

HMM A: ui(1) = (0.50,0.50) and Γ =
(

0.9 0.1
0.1 0.9

)
;

HMM B: ui(1) = (0.75,0.25) and Γ =
(

0.9 0.1
0.3 0.7

)
;

HMM C: ui(1) = (0.50,0.50) and Γ =
(

0.7 0.3
0.3 0.7

)
;

HMM D: ui(1) = (0.5714,0.4286) and Γ =
(

0.7 0.3
0.4 0.6

)
;

HMM E: ui(1) = (0.50,0.50) and Γ =
(

0.6 0.4
0.4 0.6

)
.

For each combination of the five models and T = 100, 500, 1000, we generate
1000 data sets for a total of 15000 simulations.
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In Table 2 we compare the behaviour of the information criteria and the LRT
statistic for the five models specified above and different number of observations.
On the basis of the results reported in Table 2, we can affirm that changes in the
latent transition probabilities affect the performance of the model selection pro-
cedures under investigation. A transition matrix characterized by lower values of
state persistence probabilities γii, i.e. the probabilities of remaining in the same state
from time t−1 to time t, reported on the main diagonal of matrices Γ , complicates
the task of model selection procedures. In the case of T = 100, the percentage of
correct order identification for the best selection method, the AIC, computed for
model HMM A is 99.8% in Table 2. This percentage slightly decreases to 90.1%
for HMM B, declines to 60.5% for HMM C, and drops to 29.5% and 10.2% for
models HMM D and HMM E, respectively.

The number of observations plays a fundamental role also in this analysis. In-
creasing the sample size from 100 to 1000 time observations improves the method’s
capability of detecting the true HMM order. For example, the percentage of BIC in
model HMM D increases from 0.7% in the case of T = 100 to 47.1% when T = 500
and to 97.7% for T = 1000.

Table 2 shows that the information criteria perform quite differently with respect
to alternative structures in the latent transition matrix. When T = 100, AIC provides
the best results, followed by AICc, AIC3, HQC, and AICu, respectively. Also in this
analysis, the performance of BIC and CAIC is unsatisfactory for all models except
for HMM A, i.e. the model characterized by the highest persistence. However, a
number of observations equals to 500 and 1000 improves the percentage of correct
order identification of these two criteria in all the models we considered. From Ta-
ble 2, it can be noted that the percentage of BIC and CAIC for models HMM A,
HMM B, and HMM C reaches 100% in the case of 1000 observations. However,
these two criteria identify the true number of latent states only the 26% and 14%
of the times, respectively, for model HMM E when T = 1000, thus showing results
which are much worse than the other criteria.

Finally, we stress the fact that performance of LRT is comparable to the one of
AICc.

4.3 The role of the number of observations

With the third step of our analysis, we aim to assess the consistency property of both
information criteria and likelihood ratio test by estimating an HMM characterized
by a moderately complicated structure. The consistent estimation of the HMM or-
der is achieved when the model selection method identifies (almost surely) the true
number of latent states, for T → ∞.

We analyze model HMM III specified above by taking into consideration a dif-
ferent number of observations. In particular, we evaluate the behaviour of model
selection procedures when the sample size T is equal to 100, 500, 1000, 5000, and
10000 observations. We generate 1000 data sets for each combination for a total of
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Table 2 Percentage of correct HMM order identification for different values of T and different
latent transition probabilities γi j

Model AIC AIC3 AICc AICu CAIC BIC HQC LRT

HMM A 99.8 99.7 99.8 99.7 96.0 98.2 99.7 99.7
HMM B 90.1 75.3 87.7 71.0 29.2 46.5 74.5 87.6

T = 100 HMM C 60.5 28.9 52.7 23.1 1.7 7.0 28.0 52.7
HMM D 29.5 9.9 23.7 7.3 0.1 0.7 9.3 23.3
HMM E 10.2 0.7 7.0 1.1 0.0 0.0 1.5 6.9

HMM A 99.1 100 99.4 100 100 100 100 99.1
HMM B 98.7 99.9 99.0 99.9 100 100 100 98.8

T = 500 HMM C 98.9 100 99.1 100 92.3 96.1 100 99.0
HMM D 98.1 95.9 98.3 95.4 32.1 47.1 89.4 97.7
HMM E 74.7 45.9 74.0 44.5 1.0 3.2 30.2 69.3

HMM A 99.1 100 99.4 100 100 100 100 99.1
HMM B 98.6 100 99.0 100 100 100 100 98.7

T = 1000 HMM C 97.4 99.9 97.8 99.9 100 100 100 97.4
HMM D 98.1 100 98.4 100 92.9 97.7 100 98.2
HMM E 96.3 91.0 96.3 90.9 14.1 26.0 79.9 95.1

5000 simulations. We favour model HMM III as its specification is neither too sim-
ple nor too complicated, thus we believe that this model is able to highlight method’s
consistency.

The results reported in Table 3 show that all the criteria increase their percent-
age of correct order identification for larger values of T . However, the only criteria
which reach and stabilize at 100% are BIC, CAIC, and HQC, thus suggesting con-
sistency. It is worth noting that also AIC3 and AICu reach 100% when the sample
size is T = 5000, however, for T = 10000, their percentages slightly decrease to
99.8%. This could be an evidence of a non-consistent behaviour of both AIC3 and
AICu. On the other hand, AIC, AICc, and LRT show an excellent performance for
T = 500 by exceeding 95% of correct order identification, but, when T increases,
they tend to stabilize just below 99%.

Table 3 Percentage of correct HMM order identification for different values of T

AIC AIC3 AICc AICu CAIC BIC HQC LRT

T = 100 37.1 14.1 30.2 11.8 1.0 2.6 14.2 30.3
T = 500 97.4 94.6 97.7 94.3 43.7 58.2 90.5 96.7
T = 1000 98.1 99.8 98.5 99.8 94.0 97.1 100 98.2
T = 5000 98.6 100 98.6 100 100 100 100 98.7
T = 10000 98.7 99.8 98.7 99.8 100 100 100 98.9

The consistency of the model selection procedures is further analyzed in Table 4
which reports the mean value of the number of latent states indicated in 1000 sim-
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ulated data sets for each value of T . Table 4 also allows us to evaluate the tendency
of the different methods to under- or over-estimate the true number of latent states,
m∗ = 2. The consistent behaviour of BIC, CAIC and HQC is also confirmed by the
results reported in Table 4: these information criteria provide a correct estimation
of the HMM order for large sample sizes. Moreover, Table 4 shows that the HMM
order estimation using AIC, AICc, and LRT is affected by an error, albeit mini-
mal, of overestimation and that also AIC3 and AICu have a tendency to slightly
overestimate the number of latent state when the sample size is 1000 and 10000
observations.

Finally, from Tables 3 and 4, it is possible to observe that the correct estimation
of m∗ for the Hannan-Quinn criterion is achieved with a smaller sample size than
the other criteria: when T = 1000, HQC correctly estimates the order of the HMM
100% of the times.

Table 4 Mean value of the number of latent states m for data sets simulated from model HMM III

AIC AIC3 AICc AICu CAIC BIC HQC LRT

T = 100 1.373 1.149 1.304 1.118 1.010 1.026 1.142 1.305
T = 500 2.000 1.946 1.997 1.943 1.437 1.582 1.905 1.993
T = 1000 2.019 2.002 2.015 2.002 1.940 1.971 2.000 2.018
T = 5000 2.014 2.000 2.014 2.000 2.000 2.000 2.000 2.013
T = 10000 2.013 2.002 2.013 2.002 2.000 2.000 2.000 2.011

On the whole, we generated 36000 simulated data sets and analyzed the be-
haviour of LRT and seven information criteria. By comparing the number of latent
states suggested by the different methods with m∗ we are able to observe and eval-
uate the accuracy of the model selection procedures, their robustness with respect
to changes in the main design factors and, for increasing values of T , also their
consistency.

5 Conclusions

We contribute to the debate on HMM selection procedures by developing a Monte
Carlo experiment where the true number of latent states is known a priori. We in-
vestigate the reliability and the accuracy of the most widespread model selection
methods with respect to some relevant features of HMMs. Among the possible de-
sign factors, we focus on the effects of the length of the analyzed time series, the
conditional state-dependent probabilities, and the latent transition probabilities.

Our simulation study provides interesting insights about the behaviour of differ-
ent model selection procedures and their capability of detecting the true order of an
hidden Markov model.
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First of all, our results show how the time-series length, i.e. the number of obser-
vations, the conditional ’state-dependent’ probabilities, and the latent transition ma-
trix clearly affect the performance of information criteria and likelihood ratio tests.
Our results partially clash with the findings reported in previous studies which show
that HMM is considerably more sensitive to changes in the conditional probabilities
than in perturbations in the transition probability matrix and the initial distribution
of the latent Markov chain (Mitrophanov et al., 2005).

On the whole, AIC seems to outperform the other information criteria, followed
by AICc. However, these two criteria are affected by an estimation error, albeit
minimal, and tend to overestimate the number of latent states also for large sample
sizes.

On the other hand, BIC and CAIC provide the worst performances when the
number of observations is limited and the HMM is characterized by a higher level
of uncertainty or a lower persistence, strongly underestimating the number of latent
states. However, if we increase the sample sizes, these criteria improve their perfor-
mance and, for large sample sizes, they always identify the order of the HMM.

Furthermore, we also evaluate the criteria behaviour for very large values of T .
From our results, it emerges that, besides the BIC, whose consistency is already
known in literature, also CAIC and HQC show a consistent behavior. Interestingly,
the criterion proposed by Hannan and Quinn needs a more limited number of ob-
servations in order to reach and stabilize at 100% of correct order identification and
also shows a better overall performance than BIC and CAIC.

Among our results, we find an original contribution to the discussion about se-
lection procedures in HMM. Usually, BIC represents one of the preferred methods
but, on the basis of our study, we suggest some caution in the use of this criterion
when the number of observations in low.

Moreover, despite its well-known asymptotic theoretical issues, the traditional
likelihood ratio test shows a behaviour similar to AICc, thus providing a somewhat
surprising satisfactory performance in detecting the true order of the HMM.

The simulation study we propose in this paper provides a simple but rigorous
framework able to cover all the possible interesting features of HMMs and to eval-
uate the performance of the most widespread and used model selection methods.
Further studies should consider other design factors and other possible model spec-
ifications in order to assess whether our results can be extended to different sit-
uations. However, our feeling is that together time series length, latent transition
probabilities, and uncertainty level represented by conditional probabilities span a
wide set of alternatives in HMMs.
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