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1.  Introduction 

Simulation is a formidable tool to aid and complement real 

experimentation. It presupposes the availability of a “simulator”, i.e. a 

computer code that can be run to imitate the behaviour of the system of 

interest. Simulators make it possible to explore complex relationships 

between input and output variables and can be used in settings where 

physical experimentation is impossible, such as rare event risk 

assessment. They are also invaluable when only a few physical runs can 

be made due to their high cost. For these reasons the practice of 

complementing laboratory experiments or field observations with 

simulated ones has been steadily growing in recent years, and a large 

number of scientific problems in the aerospace industry and other 

engineering set-ups, as well as in finance, marketing and several other 

disciplines, nowadays are explored with the aid of computer simulators. 

The books by Santner, Williams and Notz (2003) or Fang, Li and 

Sudjianto (2005) provide a useful introduction. In a recent conference 

dedicated to computer experiments Steinberg (2009), starting from 

applications, reviews some of the main ideas that have been proposed for 

the statistical analysis and design of studies that use computer simulators, 

including a brief mention of validation of the simulator by means of real 

data. 

In this paper we intend to take a look at computer simulation in 

the context of clinical trials, paying special attention to the design aspects. 

One of the characteristic features of clinical trials is the well-known 

“individual-versus-collective ethics” dilemma. Potential harm to the 

subjects must be minimized, especially when they are patients presently 

under care and at the same time the trial must maximize the experimental 

information for the sake of future patients. As well as the ethical 

considerations, time and costs are also important. According to the Phrma 

2009 Annual Report (2009), the complex process of researching and 

developing new medicines takes an average of 10 to 15 years and can cost 

$1.2 to $1.3 billion. Besides, only an average of 1 in 5 new drugs gets 

approved for general use. The burden of paying for all necessary people 

and services is usually borne by the pharmaceutical or biotechnology 

company that wants to develop the agent under study. Over the last decade 
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the pharmaceutical industry has encountered a vast number of failures of 

trials for drug development due to inadequate trial design, wrong 

statistical analysis, mistakes in the chosen dosages etc. Thus, to  bring 

down the costs, prevent possible failures in future trials, reduce the trial 

time frame and avoid possible side effects in humans, researchers and 

drug companies have started to perform virtual experiments. Clinical trial 

simulation is asserting itself as an emerging technique, thanks also to the 

advent of new powerful software tools. The U.S. Food and Drug 

Administration have recommended that the industry expand and 

accelerate development of simulated clinical trials (FDA, U.S. 

Department of Health and Human Services, 2004). An important 

contribution is the collective volume edited by Kimko and Duffull (2003) 

which gives a general overview of simulation for clinical trials presenting 

a large number of case studies (see also Taylor and Bosch, 1990 and 

Holford et al., 2000). 

Despite understandable misgivings in non-experts, the idea that 

the functioning of the human body can be mathematically modelled and 

analyzed has been widely accepted in the scientific community at least 

since the second half of last century. Mathematical models and numerical 

methods are used to approximate physiological functioning, disease 

progress and drug behaviour in the human body, thus making computer 

simulation possible in the pharmaceutical/biomedical field too. However, 

simulation studies require proper protocols just like real trials, but at 

present a theory of simulated experimental design seems to be lacking. It 

is up to the medical statisticians to meet this challenge, and develop 

appropriate methodological tools.  

This paper is mainly of a review character and is entirely based 

on recently published research. The statistical issues involved in a 

simulated trial that we present are  

 planning the simulation,  

 modelling,  

 experimental design,  

 validation of the simulator.  

We begin in Section 2 with a selection of simulated trials from the 

medical literature. In Section 3 we examine the potential aims of a 
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simulation experiment. Simulation models used in the clinical context are 

examined in Section 4. In Section 5 we discuss the ensuing experimental 

design problems. Section 6 contains a brief introduction to the use of 

metamodels in medicine. Section 7 is dedicated to the issue of validating 

the simulator of a virtual trial, and the final section contains our 

comments.  

 

2. Applications of Simulated Trials 

The goal of this section is to show by means of examples the variety of 

purposes for which simulated trials have actually been employed in 

medical research in recent years with the aim of illustrating a broad 

spectrum of applications. 
  

2.1 Dosage optimization 

In a recent study (Ozawa et al., 2009) the authors perform trial simulations 

in order to evaluate the dose reduction strategy in patients with liver 

dysfunction of a clinically well established medication - called docetaxel - 

used to treat breast, ovarian, non-small cell lung and other types of cancer. 

Docetaxel clearance is decreasing in patients with liver dysfunction 

therefore it may be indispensable to reduce the dose for this kind of 

patients and a reduction strategy linked to the gravity of liver dysfunction 

has been proposed (Minami et al., 2009). Since it is difficult to have a 

sufficiently large number of these patients for a real clinical trial, because 

of the typical exclusion criteria, the authors of this paper use a number of 

dose-response models and a pharmacokinetic model of docetaxel in order 

to simulate drug exposure. “Survival” and “number of patients who had a 

particular side effect (febrile neutropenia)” were the two chosen 

endpoints. A Weibull model was used to express the time to drop-out and 

the patients‟ characteristics were simulated according to previous Phase II 

studies. The model was validated with Phase II data provided by Kunitoh 

et al. (1996) by comparing the predicted trial results obtained by the 

medians of simulation with the real data. The results of the clinical trial 

simulations suggested that it is possible to decrease toxicity via a reduced 

amount of docetaxel without loss of efficacy. 
 

http://en.wikipedia.org/wiki/Cancer
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2.2 Dosage scheduling 

Albers et al. (2007) conducted a simulation study aimed at developing an 

age-suitable carvedilol dosing strategy for paediatric patients, since the 

well established dosing scheduling was uniform for all age groups of this 

kind of patients at the time of the study. Carvedilol is a non-selective beta 

blocker used for the treatment of hypertension and congestive heart 

failure. For this purpose, a pharmacokinetic model was developed based 

on data from a prospective, nonplacebo-controlled study. The model was 

used for simulations of different dosing strategies. Covariates were 

included via stepwise forward inclusion procedure. In order to evaluate 

the pharmacokinetic model the authors compared simulated and measured 

carvedilol concentrations. The findings of the paper suggest that, in 

general, higher doses of the carvedilol are probably required for younger 

patients with respect to body weight. However, it is worth underlining the 

authors‟ words: “Further randomized controlled trials are necessary to 

establish a safe and effective use of carvedilol in paediatric patients with 

congestive heart failure”. 
 

2.3 Understanding treatment effects in population 

studies 

Lee et al. (2010) have tried to gain a better understanding of the possible 

effects of vaccinating employees with the new H1N1 influenza vaccine 

through the development of a simulation model. In particular, they 

develop an agent-based computer model “consisting of a virtual 

population of computer commuter agents, each having a set of 

sociodemographic characteristics and behaviours, and which, like virtual 

people, moved among virtual households, workplaces, schools, and other 

locations every day and interacted with each other through simulated 

social networks” (Lee et al., 2010). The model outcomes were daily 

disease incidence, prevalence, clinic visits, work absenteeism, 

hospitalizations and deaths. The study shows the way in which several 

actions regarding vaccination may have an important impact during an 

epidemic especially in terms of the labour force. 
 

 

http://en.wikipedia.org/wiki/Beta_blocker
http://en.wikipedia.org/wiki/Beta_blocker
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2.4 Determining an efficient screening protocol 

Since a randomized controlled trial to assess the efficacy of screening for 

ovarian cancer is costly because ovarian cancer is a rare disease and its 

diagnosis requires surgery, Urban et al. (1997) simulated the effects of 

offering screening to a given population, i.e. a virtual cohort of women of 

age 50 (at the beginning of the 30-year screening period) in order to 

identify an efficient protocol. A stochastic model was developed with the 

aim of evaluating the cost-effectiveness, namely the ratio that measures 

the cost per year of life saved attributable to the screening strategy, of 

several alternative protocols involving transvaginal sonography and/or a 

cancer antigen/biomarker called CA 125. The model simulates the 

natural progression of disease, then considers a screening program and 

evaluates how the screening strategy used alters longevity and costs. 

Assumptions and inputs for the model (cohort characteristics, disease, 

detection, survival and cost components) were based on previous data 

and literature reports. The aim of the simulation model was to rank 

possible strategies of screening in terms of benefits regarding health and 

cost advantages. The study suggests that screening once a year by 

transvaginal sonography conditional on high (or rising) values of CA 125 

is more efficient than screening once a year by transvaginal sonography 

without considering CA 125. 

 The use of simulation models can be very fruitful as regards 

identifying questions to be addressed by a screening trial, as well as for 

suggesting screening strategies. 
 

2.5 Comparison of trial designs  

Simulation can be used to compare the properties of various experimental 

designs. Lockwood et al. (2006) used clinical trial simulation to select a 

robust design in order to test the hypothesis that a novel treatment was 

effective for Alzheimer's disease and therefore the primary aim of the 

study was to compare the power of several experimental designs to detect 

a treatment effect. Basing themselves on literature reports and previous 

Phase I data, the authors developed a  family of reasonable disease and 

drug models (as the true effect for the new treatment was not known at 

the time of the study) describing the time course of the Alzheimer's 
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disease assessment scale (i.e. a test that evaluates language, memory, 

attention, reasoning etc). The models included pharmacokinetic, 

pharmacodynamic, disease progression, and placebo components. An 

execution model expressing the expected percentage of patients 

remaining in the trial was used based on past experience of 1% weekly 

dropout. The simulation results allowed the research team to compare 

eight trial designs and one of those proved to be more efficient than the 

traditional one, leading to savings in time and costs. This design was 

implemented later in a real trial.  
 

2.6 Sample size determination 

Simulations are frequently used to explore the impact of sample size on 

the study results. For instance, Chabaud et al. (2002) have simulated 

several clinical trials to investigate the best compromise between safety, 

efficacy, drug regimen, and number of patients to include in a Phase III 

study of a bradycardic agent called ivabradine developed for the treatment 

of stable angina pectoris. The authors examined the use of a physiological 

model aimed at transforming a biomarker (heart rate) into a clinical binary 

outcome (“absent” or “at least one chest pain”). Moreover, they developed 

a therapeutic model which assumed that the reduction in heart rate 

decreased the risk of angina attacks in patients with coronary artery 

disease. They also developed a pharmacokinetic–pharmacodynamic model 

that governed the decrease in heart rate based on the data of a Phase I 

randomized study with twelve healthy volunteers and different doses of 

ivabradine. The peculiarity of this paper lies in the fact that the authors 

use an epidemiologic database in order to obtain real heart rate profiles 

instead of a simulated model, i.e. they resample patients from a patient 

database rather than creating virtual patients. 

The findings of the paper suggest that it is necessary to include 200 

patients per group (control placebo and treated group) under an alpha of 

5% and a power of 90% in order to detect a reduction of the risk of at 

least one chest pain in 15% of the treated patients. 
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3. Purposes of a simulated trial  

In the light of the applications, we overview some possible types of 

simulated clinical trials, according to their purpose. It goes without 

saying that similar remarks extend to simulation in areas other than 

clinical research.  

A virtual experiment may either be a complement to or take the 

place of a physical one. Let us first look at the most common case, in 

which simulation is an aid to real-life experimentation. Simulations may 

be run for 

  pre-trial purposes  

When run before a trial, simulation usually involves 

 testing several scenarios to evaluate the implications of the 

assumptions and / or testing various models for model selection. 

For instance Abbas et al. (2006) develop five simulation models of a 

clinical trial for evaluating the changes in cholesterol as a surrogate 

marker for lipodystrophy in HIV patients treated with different drugs. 

The models are based on different assumptions on treatment 

variability and cholesterol reduction over time. The primary aim of 

the paper is to validate and select the “best” model. Selection of the 

best model is based on the principle of parsimony and specific 

validation criteria proposed by the authors. 

 choosing the experimental design  

This typically means running simulations to assess the power of the 

test that we intend to perform once we observe the data, in order to 

recommend a given sample size when analytical calculations are not 

feasible. The common assumption is that there are no dropouts leads 

to underestimating the number or patients who need to be recruited to 

achieve a desirable statistical power. 

But simulations may also be of help in improving the very design of 

the experiment, for instance by exploring its convergence properties 

in the case of a sequential one, studying the impact of possible 

protocol violations that may occur in the actual trial, and also 
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changing the inclusion / exclusion criteria.  

Improvement of the experimental design can also be viewed as a post-

trial purpose in order to prospectively optimize the design of future 

physical trials. In Skolnik et al. (2008) the authors performed a trial 

simulation comparing the so-called 3+3 patients per cohort design to 

the novel “rolling six” design with the aim of reducing the execution 

time of paediatric Phase I oncology trials, which is long with respect 

to the completion time related to adult cancer. Clinical trial 

simulations and virtual patients characteristics were based on 

historical data from 14 completed Phase I oncology trials conducted 

by the Children‟s Oncology Group and Pilot Consortium between 

2000 and 2006. Of the 14 above-mentioned studies, 12 were judged 

suitable for investigating characteristics and timeline data for analysis. 

The study suggests that the new proposed design might decrease the 

duration of pediatric phase I oncology trials without increasing the 

risk of toxicity and, at the end of the paper, the authors state that they 

plan to prospectively evaluate the “rolling six” design in the upcoming 

generation of paediatric Phase I trials. 

 assessing what might happen in a trial yet to be conducted e.g. 

predicting the outcome of Phase (k+1) using data from Phase k. 

De Ridder (2005) illustrated a case study where the aim was to predict 

the outcome of a Phase III trial through data from two Phase II trials 

with five different doses. In particular the real data were related to 

two placebo-controlled double-blind Phase II dose ranging trials with 

patients treated for 4 weeks. Simulations were used in order to: 

 obtain the outcomes of the Phase III trial; 

 assess the robustness of an ongoing Phase III trial in the same 

context (patient variability, dose-response, drug-response); 

 assess the chance of achieving a clinically relevant response with 

a reduced dose as compared with those included in the trial. 

 extrapolation purposes  

As M. Sale states (in Bonate and Howard Eds, 2004), the dimensions 

across which one may extrapolate include: different species (e.g. 

mouse/rat/dog to human), time (from a trial to demonstrate clinical 

http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Danny%20R.%20Howard
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efficacy with a small number of strictly selected patients to a full 

clinical study), endpoint (from a surrogate to a clinical endpoint, 

namely a characteristic that reflects how a patient feels, functions, or 

survives), population (e.g. healthy to patients, adults to paediatric), 

dose/dosing regimen. In all these cases, the domain of these 

simulated trials is outside what has been investigated so far. 

 An alternative scenario is when the virtual experiment is run 

instead of a physical one or interactively. Therefore, the simulated trial 

can be conducted: 

 in replacement of a real trial, to provide direct knowledge about the 

drug(s) under investigation. (Most of the trials of Section 2 seem to 

belong to this category.)  

 interactively with a real trial, to build knowledge about the “true” 

state of nature, while dynamically modifying the computer code to get 

closer and closer approximations to the real phenomenon under study. 

We shall discuss this case in the final Section of the paper. 
 

 

4. Simulation models 

Computer experiment models simulate scenarios that might arise in real 

situations. In a clinical situation, a simulation model will include at least 

three submodels: 

 an input-output (IO) model 

 a covariate distribution model 

 an execution model 

Input-output models  These are the models that describe the patient‟s 

response to the treatment in mathematical terms. They include 

pharmacokinetic, pharmacodynamic, disease progression models or a 

combination of these, and should incorporate all the available information 

about the treatment and/or the disease derived from biological 

considerations, previous trials and other reliable sources. 

Pharmacokinetics models describe how the body processes the drug 

(absorption, distribution, metabolism and elimination), while 
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pharmacodynamics specifies how the drug works in the body. The time 

course of drug action in the body can be understood in terms of 

pharmacokinetics and pharmacodynamics (both in the absence or the 

presence of a disease). Disease progression models account for the time 

course of the disease in treated and untreated conditions. In particular, 

these models include a baseline disease status, a placebo response, a 

natural history component, namely in the absence of treatment the model 

should define the history of the disease, while in the presence of a 

particular treatment the disease status is modified and therefore the 

disease model should also take into account an active effect (for a 

thorough discussion see Chan and Holford, 2001).  

Examples of input-output models can be found in Duffull et al. 

(2000), Pillai et al. (2004), Gruwez et al. (2007), Zierhut et al. (2008), 

Habtemariam et al. (2009). However, other types of simulation models 

can be used such as agent-based models, which are based on simulating 

the behaviour of individuals and the overall consequences of their local 

interactions (see for example Lee et al. 2010), physiology models (see 

Chabaud et al. 2002) etc.  

 A word of warning: features of a model that are not relevant to the 

questions that have been posed from the simulation team should not be 

considered. For instance, even though “weight” could be a covariate of 

primary importance for a real trial, if the virtual experiment we want to 

conduct regards the same weight group, we should not include “weight” in 

the model. This may seem a fairly obvious statement, but in real life it is 

frequently violated. 

Covariate distribution models:   Input-output models usually include 

terms for covariate effects (prognostic factors), as models used for 

simulation studies must deal with the variability from individual to 

individual. Covariate distribution models describe in a probabilistic way, 

on the basis of previous trials or clinical experience, the variability of 

patients‟ demographic and physiological characteristics in the population 

of interest that might affect the response. Given an input-output model, 

the covariate distribution may be changed to reflect different 

characteristics in another population. Therefore, the impact of the 

different covariate distribution(s) on the expected outcome of a simulated 
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trial can be assessed, thus making it possible to explore conditions that 

have been ruled out in the inclusion/exclusion procedures of the actual 

trial. 

Execution or drop out models:  Although the protocol of a clinical trial is 

a binding document, it is well-known that some deviations from protocol 

are inevitable, due to patients dropping out, patients‟ non-compliance, 

patients lost to follow-up etc. (but also due to acquiring subsequent 

information which was not available when the study protocol was 

written). In simulation, execution models describe uncontrollable factors 

leading to deviations from protocol and therefore can be extensively used 

as a tool for anticipating weaknesses and limitations in a proposed study. 

Indeed, consequences of protocol deviations such as insufficient statistical 

power and patients‟ discontinuation can be studied via modelling and 

simulation techniques. A simple example is a dropout model in Lockwood 

et al. (2003) describing a random 3% weekly dropout rate derived from 

previous studies. Girard et al. (1998) develop a Markov execution model 

for patients‟ non-compliance assuming that the probability of taking a 

wrong dose (or not taking any dose at all) at a given time depends on the 

number of doses taken at the previous dose timing. Wang, Husan and 

Chow (1996) propose statistical models in the case of multiple dose 

regimen trials aimed at studying the impact of two different non-

compliance scenarios: patients who do not take the prescribe dosage or 

patients who do not adhere to the dosing schedule. 

 For a discussion of execution models see also Girard (2005). 
 

5. Experimental designs for simulation  

In the Western world and the major developing countries, guidelines for 

the correct conduct of a clinical study have been issued by authoritative 

regulatory agencies. In drug development studies, a joint regulatory-

industry initiative is the Technical Requirements for Registration of 

Pharmaceuticals for Human Use by the International Conference on 

Harmonization (ICH). A protocol is demanded for every trial, aimed at 

assuring safety and health of the trial subjects, and also adherence to the 

same standards by all study investigators, since most trials are multicentre 
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ones. In particular, the most important design decisions of the protocol 

may involve: 

- the choice of the treatments, which for most trials include one or 

more controls. 

- the eligibility criteria (inclusion/esclusion of potential subjects) 

and the sampling rule. 

- the sample size. When the design is carried out sequentially, this 

is replaced by the stopping rule.  

- the allocation rule of the subjects to the treatment arms. Very 

often this rule has a randomization component in it. 

- the use of blinding or double blinding i.e. masking the treatments 

to the subjects and often to the investigators as well. 

 One can safely assume that there are no ethical problems involved 

in simulated trials, and the costs are often a minute fraction of those of a 

real trial, so is a “protocol” for virtual trials still necessary? We maintain 

that it is, for instance in all the cases described in Section 3, a simulation 

plan approved by the research team would be needed, although it might be 

different from what a real experiment would require. The document 

should specify, for instance: 

- questions that have to be answered via the simulation  

- assumptions 

- description of the virtual experiment 

- statistical methods and analyses  

- suitable data to support the simulation model 

- techniques for model validation  

- extrapolation questions. 

The primary focus in the preparation of a simulation plan is to identify the 

question(s) that the project team wants to answer by the simulation 

experiment, but there are further advantages, as Kimko and Duffull (2003) 

state: 

 A simulation plan may work as a communication tool, especially 

in the model-building procedures where many assumptions should 

be listed in the plan.  

 It should convey a level of transparency that allows any or all of 

the work to be reproduced or continued by newly added persons 
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to the simulation team.  

 In addition, the simulation plan can provide a pro forma for the 

development of similar drugs or similar types of trial designs.  

 Approved simulation plan adds credibility and acceptance of the 

clinical trial simulation process.  

In simulation too there is scope for designing the experiment 

efficiently so as to gather information in the best possible way, so we 

now move on to discuss the experimental plan itself. The design and 

analysis of deterministic computer experiments has a vast literature (see 

for instance Santner, Williams, and Notz, 2003 or Fang, Li and 

Sudjianto, 2006). The design consists in choosing the settings of the 

input variables, with the proviso that a deterministic simulator provides 

“observations” without error, so replication is pointless. Space-filling, 

Latin Hypercubes, Minimax and Maximin Distance criteria, Uniform 

designs are used in a non-model based approach, and special analysis 

procedures such as the Kriging methodology are employed (Santner, 

Williams, and Notz, 2003). 

However, the simulator of a clinical trial – the input-output model, 

as well as the covariate model and the execution model – will very likely 

include a stochastic component and the rationale for using standard 

statistical tools, in particular, standard experimental design theory, is 

restored.  This includes traditional design techniques going back to 

Fisher, based on replication, randomization and blocking, and/or design 

optimality criteria (see for instance Atkinson, Donev and Tobias, 2007). 

Here it is worth mentioning that several papers address the problem of 

determining optimal experimental designs for pharmacokinetic-

pharmacodynamic models: (see for instance Duffull et al., 2005, 

Ogungbenro et al., 2007, McGree, Eccleston and Duffull, 2009). 

In addition, if simulating is cheap, we can expand the range and 

possibilities of the trial design. For a start, the choice of the covariate 

levels is under the experimenter‟s control and this allows for exploring 

conditions that have been ruled out in the inclusion/exclusion procedures 

of the actual trial exploring in depth all possible levels of the 

concomitant variables. The full strength of simulation lies in being able 

to treat prognostic factors as random noise in the simulated experiment, 

and letting them vary according to a prescribed probability law, whereas 
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in an actual trial we would have to content ourselves with just a few set 

levels, either chosen by the experimenter or occurring by pure chance.  

As regards factors of interest, we can experiment on a wider 

design space and/or increase the number of factors that are 

simultaneously tried and their levels. When simulating, we would 

normally not confine ourselves to fractional factorials but use full 

factorials instead. An important point is that the usual rules of factorial 

experiments apply, namely we should not vary the factor levels one-at-a-

time, to avoid masking possible interactions, not just possible 

interactions among the experimental factors (e.g. dosage and dose timing 

of the drug) but also possible interactions between treatments and 

prognostic factors. In actual practice often only a subset of factors proves 

to be responsible for most of the output variation, but not much use is 

made by clinical triallists of the literature on screening experiments, i.e. 

experiments for choosing a few relevant factors out of a potentially very 

large number (see Dean and Lewis, 2006). It is also sensible to use 

simulation for detecting possible side effects, and for accounting for 

possible protocol deviations. 

 Sequential design deserves special attention. Most real clinical trials 

are extremely lengthy.  Recruitment is typically sequential – patients join 

the trial one by one – and very slow. Results too become available 

serially. Thus in general trials are conducted sequentially on groups of 

patients and interim analyses of the data are performed. Adaptive designs 

have come into use: adaptation of the study protocol involves changes in 

sample size, changing doses, dropping treatment arms, changing the 

timing and number of interim analyses, etc. Clearly the crucial inferential 

problem is to assess the impact of such changes on the statistical analysis 

(Bauer and Köhne, 1994, Posch, Bauer and Brannath, 2003, Cui, Hung 

and Wang, 1999). Going from real to virtual, it makes sense to ask 

ourselves whether a simulated trial in clinical research should or should 

not be carried out sequentially, since the above mentioned issues (slow 

patient recruitment to the trial, side effects, ethical demand of early 

stopping, etc.) do not apply to computer experiments. One possible 

answer is that sometimes the sequential nature of the experiment is 

dictated by inferential aspects, e.g. recursive estimation of unknown 

parameters of the model in binary response comparative trials (see for 
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instance Hu and Rosenberger, 2006) or non-parametric convergence to 

the unknown MTD in the Up-And-Down experiments for Phase I (see 

Bortot and Giovagnoli, 2005). The severe handicap of the generally slow 

convergence of the algorithms is no longer a problem when the 

experiment is a simulated one. 

 As a final thought, we like to add that often the choice of the 

simulator itself is the output of a trial-and-error process that can be 

regarded as a virtual experiment. In other words, maybe we should also be 

looking into techniques of experimental design for choosing the simulator 

as well, and use, for example, designs for model-selection (as in Atkinson, 

Donev and Tobias, 2007). 

 

 

6.  Metamodels 

The requirement for the input-output model to be accurate in describing 

the problem under investigation means that the simulator may be rather 

complex. In some instances the simulator consists of the simultaneous 

solution of a large number of linear or non-linear, ordinary and/or 

differential equations and, consequently, running it does take up an 

appreciable amount of computer time or other resources. A possible 

solution consists in employing so-called emulators or surrogates, i.e. 

simpler models which represent a valid approximation of the original 

simulator. Since emulators imitate the original simulator, which is itself a 

model of reality, they are often called metamodels. One of the 

fundamental characteristics of these surrogate models is computational 

speed.  

   Furthermore, the case where data cannot support estimating all of the 

parameters in a complicated simulation model is not rare. Therefore, 

models with fewer parameters should be fitted to the data. In a study by 

Pillai et al. (2004), the authors state that “Although the complex 

physiological PK-PD model described the data well, its major 

disadvantages were the long computer run-times […] and the numerical 

difficulties associated with solving a rather stiff problem”. In order to 

reduce the computer run-times associated with the simulator, the authors 
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have constructed a „kinetics of drug action‟ (K-PD model) and its 

performance was assessed by fitting data simulated with the PK-PD model 

under various scenarios. The authors observe that the simplified model 

was virtually indistinguishable from the complex one.  

   Another use of metamodels in clinical research is to be found in 

Kowalski and Hutmacher (2001), who decided to adopt a one-

compartment model instead of a two-compartment one to face the 

problems arising from a sampling design that, due to logistic reasons and 

clinical convenience, was inadequate for the more complex model.  
 

 

7. Validating simulated trials: some examples 

Especially in the context of clinical trials we need to make sure that the 

simulators i.e. the models we use are “reasonable”. The key issue is 

whether a particular simulator is an adequate representation for the real 

system it is trying to represent, and consequently the question of its ability 

to accurately predict real situations. This concern is related to model 

verification and validation (e.g. see Sargent, 2008).  Model verification is 

concerned with mistakes that may occur in the computer program of the 

model and its implementation, while model validation is usually defined 

to mean “substantiation that a computerized model within its domain of 

applicability possesses a satisfactory range of accuracy consistent with the 

intended application of the model” (Schlesinger et al., 1979). Thus, the 

primary aim of validation is to make the model useful in the sense that it 

addresses the right problem and provides accurate information about the 

trial of interest. It goes without saying that to a certain extent this question 

arises in real experiments too, since real data too are subject to error, but 

in most cases we are inclined to believe that a real experiment has 

“empirical validity”, whereas a simulated one is fictitious and therefore 

far away from reality. When real data provided by physical experiments 

are taken to be the “gold standard” of the true relationship between factors 

and outputs, they should be used to confirm the computer model and the 

results obtained by simulation. In some cases, experimental data may not 

be available and data derived from observational studies or surrogate data 

(e.g. derived from experiments on animals or prototypes) may be used. 
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We can distinguish between retrospective and prospective 

validation. The so-called prospective validation is the one that uses data 

from simultaneous or subsequent clinical trials in the same context (e.g. 

same disease). Retrospective external validation uses the data of earlier 

trials to validate the model and, if necessary, modify it in order to present 

higher degree of credibility and confidence. Sometimes it is even 

possible to collect a new dataset for validation. If not (e.g. studies of rare 

diseases), an internal validation is used, which is based on “cheap” 

methods such as data-splitting, where data utilized in order to build the 

simulator are compared with data generated by the model. The validation 

problem is tackled with the aid of a family of resampling methods, at the 

expense of further computations. 

 Concordance of simulated with real data under the same study 

design can be performed via: 

 the use of graphs (or descriptive statistics), e.g. predicted 

versus observed dependent variable, residuals versus  

predicted values of the dependent variable; 

 metrics (e.g. standardized distances); 

 a posterior predictive check; 

 statistical check methods (e.g. chi-squared or 

Kolmogorov–Smirnov tests). 

In what follows we describe the validating methodology applied in some 

simulation projects taken from the literature.  

 In the carvedilol dosing strategy study described earlier (see 

§2.2), Albers et al. (2007) make use of a visual predictive check in order 

to evaluate the proposed simulation model: plasma concentrations 

(dependent variable) from 17 real patients were observed and compared 

with the simulation data. The authors observe that about 90% of the real 

data are within the 90th percentile of the simulated concentrations. The 

precision of the unknown parameter estimates of the pharmacokinetic 

model was assessed by establishing 95% confidence intervals using a 

bootstrap analysis. 

 Eddy and Schlessinger (2003) validate the so-called Archimedes 

diabetes model, namely a representation of the anatomy, treatments and 

outcomes related to diabetes, by comparing Kaplan-Meier curves of real 
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and virtual data. In particular, they examine whether the difference 

between the outcome of the actual trial and the model is statistically 

significant by using the corrected chi-squared and the correlation 

coefficient between the outcomes calculated by the model and the 

outcomes of the real trial.  

Duffull et al. (2000) develop a pharmacokinetic model for 

ivabradine and they use two different kinds of datasets in order to test its 

ability to describe the real data: all the observations used for the 

construction of the model and data were collected from a different study 

regarding 12 subjects. The authors state “The posterior predictive 

performance is a test of the degree of similarity between the system 

model and the system itself. It is performed by simulating data from the 

model under the same experimental design that the original data was 

obtained. Ideally, the simulated data should exactly represent the 

observed data. […] We have assessed the predictive performance by 

inspection of the prediction plots visually and comparing the cumulative 

density functions of the simulated and observed using a Kolmogorov–

Smirnov test for two samples”.  

Abbas et al. (2006) propose an innovative approach for the 

validation and selection of a simulation model based on the standardized 

distance, in mean and variance, between real and simulated data.  

In engineering problems, several papers address the problem of validating 

the computer model via Bayesian techniques. For instance Bayarri et al. 

(2007) introduce a fully Bayesian approach for modelling the bias 

between the computer model and the physical data. See also Wang, Chen 

and Tsui (2009) and Kennedy and O'Hagan (2000) among others, but in 

the clinical context a Bayesian approach for validation does not appear to 

be as widely used.  

There may also be alternative ways for validation that have never 

been explored so far, e.g. tests for agreement (2004).  
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8. Some challenges 

Undoubtedly the successful execution of a simulation project requires a 

multi-disciplinary approach: interaction and cooperation are needed 

among scientists from various disciplines (clinicians, statisticians, 

computer scientists) and institutions (e.g. regulatory agencies and 

industry). The recent interest shown by pharmaceutical companies in 

clinical trial simulation poses several challenging questions: 

 Scientificity: Is this new discipline rigorous enough? Can results 

obtained by computer experiments be trusted?  

 Efficacy: Is it true that simulated clinical trials can speed the 

drug development process? After all, the model development 

procedure too is associated with time and high costs.  

 Ethics: Is it safe for the patients? Is it to their best advantage? Or 

do these efforts only help the pharmaceutical companies to 

reduce costs without any benefit for the patient community? 

We stress that this method of investigation is not aimed at replacing real 

life trials; rather, physical and computer experiments are two 

complementary sources of information with distinct roles and different 

degrees of cost, speed, and reliability. Simulation is usually cheaper and 

faster, and, what is more important, avoids the major ethical problems 

involved in clinical research, but in order to be of use, simulation must be 

fairly close to the physical set-up. What is the best way of integrating real 

and simulated trials to build actual knowledge while dynamically 

modifying the computer code to get closer and closer approximations to 

the reality? A virtual experiment may be part of a sequence in which 

simulations and physical observations play a part with alternating roles. 

The fundamental steps in designing such a mixed trial would consist of  

 designing  actual (small) trials that provide the physical data; 

 designing the simulated ones, to be run in groups, one after 

another, to improve our knowledge of the process; 

 choosing a “switching rule”: when do we change over from a 

virtual experiment to a real one to acquire more data, and vice-

versa? 
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 choosing a final stopping rule. 

To the best of our knowledge, this type of strategy has not yet been the 

object of theoretical investigation in a clinical research context. We are 

convinced that much work lies ahead. 

Last but not least, it is worth pointing out that although in the 

majority of cases the aim of a clinical trial is drug development, as shown 

in Section 2 there is a wide variety of additional areas of investigation that 

require trials on humans: in particular, new approaches to surgical and 

radiation therapies, physiotherapeutic treatments, new vaccines, new 

medical devices and test kits, new diagnostic tools and procedures, new 

methods of population screening, not to mention improving the quality of 

life: healthy eating, lifestyle changes, comfort for chronic illnesses, old 

age, etc. In all of them the practice of simulating experiments, wholly or 

partially, will sooner or later gather momentum. 
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