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ABSTRACT. Reeb graphs provide a method for studying the shape of a manifold by en-
coding the evolution and arrangement of level sets of a simple Morse function defined on
the manifold. Since their introduction in computer graphics they have been gaining pop-
ularity as an effective tool for shape analysis and matching.In this context one question
deserving attention is whether Reeb graphs are robust against function perturbations. Fo-
cusing on 1-dimensional manifolds, we define an editing distance between Reeb graphs of
curves, in terms of the cost necessary to transform one graph into another. Our main result
is that changes in Morse functions induce smaller changes in the editing distance between
Reeb graphs of curves, implying stability of Reeb graphs under function perturbations.

INTRODUCTION

The shape similarity problem has since long been studied by the computer vision com-
munity for dealing with shape classification and retrieval tasks. It is now attracting more
and more attention also in the computer graphics community where recent improvements
in object acquisition and construction of digital models are leading to an increasing ac-
cumulation of models in large databases of shapes. Comparison of 2D images is often
dealt with considering just the silhouette or contour curveof the studied object, encoding
shape properties, such as curvature, in compact representations of shapes, namely, shape
descriptors, for the comparison. The same approach is more and more used also in com-
puter graphics where there has been a gradual shift of research interests from methods of
representing shapes toward methods of describing shapes of3D models.

Since [24], Reeb graphs have been gaining popularity as an effective tool for shape anal-
ysis and description tasks as a consequence of their abilityto extract high-level features
from 3D models. Reeb graphs were originally defined by Georges Reeb in 1946 as topo-
logical constructs [22]. Given a manifoldM and a generic enough real-valued function
f defined onM , the simplicial complex defined by Reeb, conventionally called the Reeb
graph of(M , f ), is the quotient space defined by the equivalence relation that identifies the
points ofM belonging to the same connected component of level sets off . Reeb graphs
effectively code shapes, both from a topological and a geometrical perspective. While the
topology is described by the connectivity of the graph, the geometry can be coded in a va-
riety of different ways, according to the type of applications the Reeb graph is devised for,
simply by changing the functionf . Different choices of the function yield insights into the
manifold from different perspectives. The compactness of the one-dimensional structure,
the natural link between the function and the shape, and the possibility of adopting differ-
ent functions for describing different aspects of shapes and imposing the desired invariance
properties, have led to a great interest in the use of Reeb graphs for similarity evaluation. In
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[15], Hilagaet al. use Multiresolution Reeb Graphs based on the distribution of geodesic
distance between two points as a search key for 3D objects, and the similarity measure
constructed in this setting is found to be resistant to noise. In this approach resistance to
changes caused by noise essentially relies on the choice of the geodesic distance to build
the Reeb graph. In [4], Biasottiet al. base the comparison of Extended Reeb Graphs on
a relaxed version of the notion of best common subgraph. Thisapproach gives a method
for partial shape-matching able to recognize sub-parts of objects, and can be adapted to the
context of applications since there is no requirement on thechoice of the functionf . Both
[15] and [4] present algorithms for similarity evaluation.

To the best of our knowledge, mathematical assessment of stability against function
perturbations is still an open issue as far as Reeb graphs areconcerned. This question
deserves attention since it is clear that any data acquisition is subject to perturbations, noise
and approximation errors and, if Reeb graphs were not stable, then distinct computational
investigations of the same object could produce completelydifferent results. This paper
aims to be possibly the first positive answer to this question.

We confine ourselves to consider Reeb graphs of curves. In this setting Reeb graphs
are simply cycle graphs with an even number of vertices corresponding alternatively to the
maxima and minima of the function. We also equip vertices of Reeb graphs with the value
taken by the function at the corresponding critical points.

Our main contribution is the construction of a distance between Reeb graphs of curves
such that changes in functions imply smaller changes in the distance. Our distance is based
on an adaptation of the well-known notion of editing distance between graphs [25]. We
introduce three basic types of editing operations, represented in Table 1, corresponding to
the insertion (birth) of a new pair of adjacent points of maximum and minimum, the dele-
tion (death) of such a pair, and the relabelling of the vertices. A cost is associated with
each of these operations and our distance is given by the infimum of the costs necessary
to transform a graph into another by using these editing operations. Our main result is the
global stability of labelled Reeb graphs under function perturbations (Theorem 6.3):

MAIN RESULT. Let f,g : S1 →R be two simple Morse functions. Then the editing distance
between the labelled Reeb graph of(S1, f ) and that of(S1,g) is always smaller or equal to
the C2-norm of f−g.

The main idea of the proof is to read editing operations in terms of degenerate strata
crossings of the space of smooth functions stratified as in [6]. We also obtain a lower
bound for our editing distance. Indeed, we find that it can be estimated from below by the
natural pseudo-distance between closed curves studied in [13].

The paper is organized as follows. In Section 1, we review some of the standard facts
about Morse functions, theCr topology, the theory of stratification of smooth real valued
functions, and Reeb graphs. Section 2 deals with basic properties of labelled Reeb graphs
of closed curves. Section 3 is devoted to the definition of theadmissible deformations
transforming a Reeb graph into another, the cost associatedwith each kind of deformation,
and the definition of an editing distance in terms of this cost. Section 4 is intended to
provide a suitable lower bound for our distance, the naturalpseudo-distance; this represents
a useful tool both to show the well-definiteness of our distance and to compute it in some
simple cases. In Sections 5 and 6 it is shown that our distanceis both locally and globally
upper bounded by the difference, measured in theC2-norm, between the functions defined
onS1. Eventually, a brief discussion on the results obtained concludes the paper.
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1. PRELIMINARY NOTIONS

In this section we recall some basic definitions and results about Morse functions and
Reeb graphs. Moreover, with the aim of proving stability of Reeb graphs under function
perturbations in mind, we recall some concepts concerning the space of smooth real valued
functions on a smooth manifold: theCr topology and the theory of the natural stratification.

Throughout the paper,M denotes a smooth (i.e. differentiable of classC∞) compact
n-manifold without boundary, andF (M ,R) the set of smooth real functions onM .

1.1. Simple Morse functions. Let us recall the following concepts from [19].
Let f ∈ F (M ,R). A point p ∈ M is called acritical point of f if, choosing a local

coordinate system(x1, . . . ,xn) in a neighborhoodU of p, it holds that

∂ f
∂x1

(p) = . . . =
∂ f
∂xn

(p) = 0,

and it is called aregular point, otherwise. Throughout the paper, we setK( f ) = {p∈ M :
p is a critical point of f}.

If p∈ K( f ), then the real numberf (p) is called acritical valueof f , and the set{q∈
M : q ∈ f−1( f (p))} is called acritical level of f . Otherwise, ifp /∈ K( f ), then f (p) is
called aregular value. Moreover, a critical pointp is callednon-degenerateif and only if
the second derivative matrix (

∂ 2 f
∂xi∂x j

(p)

)

is non-singular, i.e. its determinant is not zero.
By the well-known Morse Lemma, in a neighborhood of a non-degenerate critical point

p, it is possible to choose a local coordinate system(x1, . . . ,xn) such that

f = f (p)−x2
1− . . .−x2

k +x2
k+1 + . . .+x2

n.

The numberk is uniquely defined for each critical pointp and is called theindexof p. Such
an index completely describes the behavior off at p. For example,k = 0 means that the
correspondingp is a minimum forf ; k = n means thatp is a maximum; 0< k < n means
that p is a saddle point forf .

Definition 1.1. A function f ∈F (M ,R) is called aMorse functionif all its critical points
are non-degenerate. Moreover, a Morse function is said to besimpleif each critical level
contains exactly one critical point.

It is well-known that every Morse function has only finitely many critical points (which
are therefore certainly isolated points). The importance of non-degeneracy is that it is
the common situation; indeed, in a sense that will be explained in Subsection 1.3, the
occurrence of degenerate critical points is really quite rare.

1.2. The Cr topology on the space of real valued functions.To topologizeF (M ,R),
let us recall the definition ofCr -norm, with 0≤ r < ∞ (see, e. g., [20, 21]). Let{Uα}
be a finite coordinate covering ofM , with coordinate mapshα : Uα → Rn, and consider
a compact refinement{Cα} of {Uα} (i.e. Cα ⊆ Uα for eachα, and

⋃
Cα = M ). For

f ∈ F (M ,R), let us setfα = f ◦h−1
α : hα(Cα) → R. Then theCr -normof f is defined as

‖ f‖Cr = max
α





max
u∈hα (Cα )

| fα(u)| , max
u∈hα (Cα )

j∈{1,...,n}

∣∣∣∣
∂ fα
∂u j

(u)

∣∣∣∣ , . . . , max
u∈hα (Cα )

j1,..., jr∈{1,...,n}

∣∣∣∣
∂ r fα

∂u j1 · · ·∂u jr
(u)

∣∣∣∣





.



4 B. DI FABIO AND C. LANDI

The above norm defines a topology onF (M ,R), known as theCr topology(or weak
topology), with 0≤ r < ∞ (cf. [16, chap. 2]). In the following, we will denote byBr( f ,δ ),
0≤ r < ∞, the open ball with centerf and radiusδ in theCr topology, i.e.,g∈ Br( f ,δ )
if and only if ‖ f −g‖Cr < δ . TheC∞ topologyis simply the union of theCr topologies on
F (M ,R) for every 0≤ r < ∞.

1.3. Natural stratification of the space of real valued functions. Let us endowF (M ,R)
with theC∞ topology, and consider thenatural stratificationof such a space, as exposed
by Cerf in [6] (see also [23]). The natural stratification is defined as a sequence of sub-
manifolds ofF (M ,R), F 0,F 1, . . . ,F j , . . ., of co-dimension 0,1, . . . , j, . . ., respectively,
that constitute a partition ofF (M ,R), and such that the disjoint unionF 0∪F 1∪ . . .∪F j

is open for everyj.
Before providing a brief description of the strata, let us recall the following equivalence

relation that can be defined onF (M ,R).

Definition 1.2. Two functionsf ,g∈F (M ,R) are calledtopologically equivalentif there
exists a diffeomorphismξ : M → M and an orientation preserving diffeomorphismη :
R → R such thatg(ξ (p)) = η( f (p)) for everyp∈ M .

The above relation is also known asisotopyin [6], andleft-right equivalencein [3].
Let us describeF 0 andF 1, pointing out their main properties that allow us to leave

aside the remaining strata.

• The stratumF 0 is the set of simple Morse functions.
• The stratumF 1 is the disjoint union of two setsF 1

α andF 1
β open inF 1, where

– F 1
α is the set of functions whose critical levels contain exactly one critical

point, and the critical points are all non-degenerate, except exactly one. In
a neighborhood of such a point, sayp, a local coordinate system(x1, . . . ,xn)
can be chosen such that

f = f (p)−x2
1− . . .−x2

k +x2
k+1 + . . .+x2

n−1 +x3
n.

– F 1
β is the set of Morse functions whose critical levels contain at most one

critical point, except for one level containing exactly twocritical points.

F 0 is dense in the spaceF (M ,R) endowed with theCr topology, 2≤ r ≤ ∞ (cf.
[16, chap. 6, Thm. 1.2]). Therefore, any smooth function canbe turned into a simple
Morse function by arbitrarily small perturbations. Degenerate critical points can be split
into several non-degenerate singularities, with all different critical values (Figure 1(a)).
Moreover, when more than one critical points occur at the same level, they can be moved
to close but different levels (Figure 1(b)).

It is well-known that two simple Morse functions are topologically equivalent if and
only if they belong to the same arcwise connected component (or co-cellule) of F 0 [6, p.
25].

F 1 is a sub-manifold of co-dimension 1 ofF 0∪F 1, and the complement ofF 0∪F 1

in F is of co-dimension greater than 1. Consequently, given two functionsf ,g∈ F 0, we
can always find̂f , ĝ ∈ F (M ,R) arbitrarily near tof ,g, respectively, for which the path
h(λ ) = (1−λ ) f̂ +λ ĝ, with λ ∈ [0,1], is such that

(1) f̂ , ĝ∈ F 0, and f̂ , ĝ are topologically equivalent tof , g, respectively;
(2) h(λ ) belongs toF 0∪F 1 for everyλ ∈ [0,1];
(3) h(λ ) is transversal toF 1.



STABILITY OF REEB GRAPHS UNDER FUNCTION PERTURBATIONS: THE CASEOF CLOSED CURVES 5

ff̃1 f̃2

p′

p′′

p

(a)

f

p′

p′′

p qq q

f̃1 f̃2

c′′

c′
cc c

(b)

FIGURE 1. (a) A function f ∈ F 1
α admitting a degenerate critical pointp (center)

can be perturbed into a simple Morse functionf̃1 with two non-degenerate critical points
p′, p′′ (left), or into a simple Morse functioñf2 without critical points aroundp (right); (b)

a function f ∈ F 1
β (center) can be turned into two simple Morse functionsf̃1, f̃2, that are

not topologically equivalent (left-right).

As a consequence,h(λ ) belongs toF 1 for at most a finite collection of valuesλ , and does
not traverse strata of co-dimension greater than 1 (see, e.g., [14]).

1.4. Reeb graph of a manifold. In this subsection we restate the main results concerning
Reeb graphs, starting from the following one shown by Reeb in[22]. Here we consider
pairs(M , f ), with M connected andf ∈ F 0 ⊂ F (M ,R).

Theorem 1.3. The quotient space ofM under the equivalence relation “p and q belong
to the same connected component of the same level set of f ” is afinite and connected
simplicial complex of dimension 1.

This simplicial complex, denoted byΓ f , is called theReeb graphassociated with the
pair (M , f ). Its vertex set will be denoted byV(Γ f ), and its edge set byE(Γ f ). Moreover,
if v1,v2 ∈V(Γ f ) are adjacent vertices, i.e., connected by an edge, we will write e(v1,v2) ∈
E(Γ f ). Since the vertices of a Reeb graph correspond in a one to one manner to critical
points of f on the manifoldM (see, e.g., [5, Lemma 2.1]), we will often identify each
v∈V(Γ f ) with the correspondingp∈ K( f ).

Given two topologically equivalent functionsf ,g∈ F 0, it is well-known that the asso-
ciated Reeb graphs,Γ f andΓg, are isomorphic graphs, i.e., there exists an edge-preserving
bijectionΦ : V(Γ f ) →V(Γg). Beyond that, an even stronger result holds. Two functions
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f ,g∈ F 0 are topologically equivalent if and only if such a bijectionΦ also preserves the
vertices order, i.e., for everyv,w∈V(Γ f ), f (v) < f (w) if and only if g(Φ(v)) < g(Φ(w)).

The preceding result has been used by Arnold in [2] to classify simple Morse functions
up to the topological equivalence relation.

2. LABELLED REEB GRAPHS OF CLOSED CURVES

This paper focuses onReeb graphsof closed curves. Hence, the manifoldM that will
be considered from now on isS1, and the functionf will be taken inF 0 ⊂ F (S1,R).
The Reeb graphΓ f associated with(S1, f ) is a cycle graph on an even number of vertices,
corresponding, alternatively, to the minima and maxima off on S1 [21] (see, for example,
Figure 2(a)− (b)). Furthermore, we label the vertices ofΓ f , by equipping each of them
with the value off at the corresponding critical point. We denote such a labelled graph by
(Γ f , f

|
), where f

|
: V(Γ f ) → R is the restriction off : S1 → R to K( f ). A simple example

is displayed in Figure 2(a)− (c). To facilitate the reader, in all figures of this paper we
shall adopt the convention of representingf as the height function, so thatf

|
(va) < f

|
(vb)

if and only if va is lower thanvb in the picture.

(S1, f ) Γ f (Γ f , f
|
)

v1
v1

v2

v2
v3

v3

v4 v4

v5

v5

v6

v6

v7

v7
v8

v8

f

(a) (b) (c)

FIGURE 2. (a) A pair (S1, f ), with f the height function;(b) the Reeb graphΓ f associ-
ated with(S1, f ); (c) the labelled Reeb graph(Γ f , f

|
) associated with(S1, f ). Here labels

are represented by the heights of the vertices.

The natural definition of isomorphism between labelled Reebgraphs is the following
one.

Definition 2.1. We shall say that two labelled Reeb graphs(Γ f , f
|
),(Γg,g|

) areisomorphic
if there exists an edge-preserving bijectionΦ : V(Γ f ) →V(Γg) such thatf

|
(v) = g

|
(Φ(v))

for everyv∈V(Γ f ).

The following Proposition 2.4 provides a necessary and sufficient condition in order
that two labelled Reeb graphs are isomorphic. It is based on the next definition of re-
parameterization equivalent functions.

Definition 2.2. Let H (S1) be the set of homeomorphisms onS1. We shall say that two
functions f ,g ∈ F 0 ⊂ F (S1,R) are re-parameterization equivalentif there existsτ ∈
H (S1) such thatf (p) = g(τ(p)) for everyp∈ S1.

Lemma 2.3. Let (Γ f , f
|
) and(Γg,g|

) be labelled Reeb graphs associated with(S1, f ) and

(S1,g), respectively. If an edge-preserving bijectionΦ : V(Γ f ) →V(Γg) exists, then there
also exists a piecewise linearτ ∈ H (S1) such thatτ|V(Γ f )

= Φ. If moreover f
|
= g

|
◦Φ,

then f= g◦ τ.
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Proof. The proof of the first statement is inspired by [13, Lemma 4.2]. Let us construct
τ by extendingΦ to S1 as follows. Let us recall thatV(Γ f ) = K( f ) andV(Γg) = K(g),
and, by abuse of notation, for every pair of adjacent vertices p′, p′′ ∈ V(Γ f ), let us iden-
tify the edgee(p′, p′′) ∈ E(Γ f ) with the arc ofS1 having endpointsp′ and p′′, and not
containing any other critical point off . For everyp ∈ K( f ), let τ(p) = Φ(p). Now,
let us defineτ(p) for every p ∈ S1 \K( f ). Given p ∈ S1 \K( f ), we observe that there
always existp′, p′′ ∈V(Γ f ) such thatp∈ e(p′, p′′). SinceΦ is edge-preserving, there ex-
istse(Φ(p′),Φ(p′′)) = e(τ(p′),τ(p′′)) ∈ E(Γg). Hence, we can defineτ(p) as the unique
point ofe(τ(p′),τ(p′′)) such that, iff (p) = (1−λp) f (p′)+λp f (p′′), with λp ∈ [0,1], then
g(τ(p)) = (1−λp)g(τ(p′))+ λpg(τ(p′′)). Clearly,τ belongs toH (S1) and is piecewise
linear.

As for the second statement, it is sufficient to observe that,if f
|
= g

|
◦Φ, sinceτ(p) =

Φ(p) for everyp∈ K( f ), then clearlyf
|
(p) = g

|
(τ(p)) for everyp∈ K( f ). Moreover, for

everyp∈ S1 \K( f ), by the construction ofτ, it holds thatg(τ(p)) = (1−λp)g(Φ(p′))+
λpg(Φ(p′′)) = (1−λp) f (p′)+λp f (p′′) = f (p). In conclusion,f (p) = g(τ(p)) for every
p∈ S1, and, hence,f ,g are re-parameterization equivalent.

�

Proposition 2.4(Uniqueness theorem). Let (Γ f , f
|
), (Γg,g|

) be labelled Reeb graphs as-

sociated with(S1, f ) and(S1,g), respectively. Then(Γ f , f
|
) is isomorphic to(Γg,g|

) if and
only if f and g are re-parameterization equivalent.

Proof. The direct statement is a trivial consequence of Lemma 2.3.
As for the converse statement, it is sufficient to observe that anyτ ∈ H (S1) such that

f = g◦ τ, as well as its inverseτ−1, takes the minima off to the minima ofg and the
maxima of f to the maxima ofg. Hence,Φ : V(Γ f ) →V(Γg), with Φ = τ|V(Γ f )

, is an edge

preserving bijection such thatf
|
= g

|
◦Φ. �

As a consequence of Proposition 2.4, two labelled Reeb graphs isomorphic in the sense
of Definition 2.1 will always be identified, and in such case wewill simply write (Γ f , f

|
) =

(Γg,g|
).

The following Proposition 2.5 ensures that, for every cyclegraph with an appropriate
vertices labelling, there exists a unique (up to re-parameterization) pair(S1, f ), with f ∈
F 0, having such a graph as the associated labelled Reeb graph.

Proposition 2.5(Realization theorem). Let (G, ℓ) be a labelled graph, where G is a cycle
graph on an even number of vertices, andℓ : V(G) → R is an injective function such that,
for any vertex v2 adjacent (that is connected by an edge) to the vertices v1 and v3, either
bothℓ(v1) andℓ(v3) are smaller thanℓ(v2), or bothℓ(v1) andℓ(v3) are greater thanℓ(v2).
Then there exists a simple Morse function f: S1 → R such that(Γ f , f

|K( f )
) = (G, ℓ).

Proof. It is evident. �

By virtue of the above Uniqueness and Realization theorems (Propositions 2.4 and 2.5),
for conciseness, when a labelled Reeb graph will be introduced in the sequel, the associated
pair will be often omitted.

3. EDITING DISTANCE BETWEEN LABELLED REEB GRAPHS

We now define the editing deformations admissible to transform a labelled Reeb graph
of a closed curve into another. We introduce at first elementary deformations and then the
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deformations obtained by their composition. Next, we associate a cost with each type of
deformation, and define a distance between labelled Reeb graphs in terms of such a cost.

Definition 3.1. Let (Γ f , f
|
) be a labelled Reeb graph with 2n vertices,n≥ 1. We call an

elementary deformationof (Γ f , f
|
) any of the following transformations:

(B) (Birth): Assumee(v1,v2) ∈ E(Γ f ) with f
|
(v1) < f

|
(v2). Then(Γ f , f

|
) is trans-

formed into a labelled graph(G, ℓ) according to the following rule:G is the new
graph on 2n+2 vertices, obtained deleting the edgee(v1,v2) and inserting two new
verticesu1, u2 and the edgese(v1,u1),e(u1,u2),e(u2,v2); moreover,ℓ : V(G)→R
is defined by extendingf

|
from V(Γ f ) to V(G) = V(Γ f )∪{u1,u2} in such a way

thatℓ|V(Γ f ) ≡ f
|
, and f

|
(v1) < ℓ(u2) < ℓ(u1) < f

|
(v2).

(D) (Death): Assumen ≥ 2, ande(v1,u1),e(u1,u2),e(u2,v2) ∈ E(Γ f ), with f
|
(v1) <

f
|
(u2) < f

|
(u1) < f

|
(v2). Then(Γ f , f

|
) is transformed into a labelled graph(G, ℓ)

according to the following rule:G is the new graph on 2n−2 vertices, obtained
deletingu1, u2 and the edgese(v1,u1), e(u1,u2), e(u2,v2), and inserting an edge
e(v1,v2); moreover,ℓ : V(G) → R is defined as the restriction off

|
to V(Γ f ) \

{u1,u2}.
(R) (Relabelling):(Γ f , f

|
) is transformed into a labelled graph(G, ℓ) according to the

following rule: G = Γ f , and for any vertexv2 adjacent to the verticesv1 andv3

(possiblyv1 ≡ v3 for n = 1), if both f
|
(v1) and f

|
(v3) are smaller (greater, respec-

tively) than f
|
(v2), then bothℓ(v1) and ℓ(v3) are smaller (greater, respectively)

thanℓ(v2); moreover, for everyv 6= w, ℓ(v) 6= ℓ(w).

We shall denote byT(Γ f , f
|
) the result of the elementary deformationT applied to(Γ f , f

|
).

Table 1 schematically illustrates the elementary deformations described in Definition
3.1.

Proposition 3.2. Let T be an elementary deformation of(Γ f , f
|
), and let(G, ℓ) = T(Γ f , f

|
).

Then(G, ℓ) is a Reeb graph(Γg,g|
) associated with a pair(S1,g), and g∈ F 0 is unique

up to re-parameterization equivalence.

Proof. The claim follows from Propositions 2.5 and 2.4. �

As a consequence of the above result, from now on, we will directly write T(Γ f , f
|
) =

(Γg,g|
).

Moreover, since the previous Proposition 3.2 shows that an elementary deformation
of a labelled Reeb graph is still a labelled Reeb graph, we canalso apply elementary
deformations iteratively. This fact is used in the next Definition 3.3.

Given an elementary deformationT of (Γ f , f
|
) and an elementary deformationS of

T(Γ f , f
|
), the juxtapositionST means applying firstT and thenS.

Definition 3.3. We shall calldeformationof (Γ f , f
|
) any finite ordered sequenceT =

(T1,T2, . . . ,Tr) of elementary deformations such thatT1 is an elementary deformation of
(Γ f , f

|
), T2 is an elementary deformation ofT1(Γ f , f

|
), ...,Tr is an elementary deformation

of Tr−1Tr−2 · · ·T1(Γ f , f
|
). We shall denote byT(Γ f , f

|
) the result of the deformationT

applied to(Γ f , f
|
).

Let us define the cost of a deformation.

Definition 3.4. Let T be an elementary deformation transforming(Γ f , f
|
) into (Γg,g|

).
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v1 v1

u1

u2

v2 v2

(B)

v1v1

u1

u2

v2v2

(D)

v1
v1

v2
v2

v3

v3
v4

v4

v5

v5

v6
v6

v7

v7

v8v8

(R)

TABLE 1. The upper two figures schematically show the elementary deformations of
type (B) and (D), respectively; the third figure shows an example of elementary deforma-
tion of type (R).

• If T is of type (B) inserting the verticesu1,u2 ∈V(Γg), then we define the associ-
ated cost as

c(T) =
|g

|
(u1)−g

|
(u2)|

2
;

• If T is of type (D) deleting the verticesu1,u2 ∈V(Γ f ), then we define the associ-
ated cost as

c(T) =
| f

|
(u1)− f

|
(u2)|

2
;

• If T is of type (R) relabelling the verticesv∈V(Γ f ) = V(Γg), then we define the
associated cost as

c(T) = max
v∈V(Γ f )

| f
|
(v)−g

|
(v)|.
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Moreover, if T = (T1, . . . ,Tr) is a deformation such thatTr · · ·T1(Γ f , f
|
) = (Γg,g|

), we

define the associated cost asc(T) =
r
∑

i=1
c(Ti).

We now introduce the concept of inverse deformation.

Definition 3.5. Let T be a deformation such thatT(Γ f , f
|
) = (Γg,g|

). Then we denote by

T−1, and call it theinverseof T, the deformation such thatT−1(Γg,g|
) = (Γ f , f

|
) defined

as follows:

• If T is elementary of type (B) inserting two vertices, thenT−1 is of type (D)
deleting the same vertices;

• If T is elementary of type (D) deleting two vertices, thenT−1 is of type (B) insert-
ing the same vertices, with the same labels;

• If T is elementary of type (R) relabelling vertices ofV(Γ f ), thenT−1 is again of
type (R) relabelling these vertices in the inverse way;

• If T = (T1, . . . ,Tr), thenT−1 = (T−1
r , . . . ,T−1

1 ).

Proposition 3.6. For every deformation T such that T(Γ f , f
|
) = (Γg,g|

), c(T−1) = c(T).

Proof. Trivial. �

We prove that, for every two labelled Reeb graphs, a finite number of elementary de-
formations always allows us to transform any of them into theother one. We recall that
we identify labelled Reeb graphs that are isomorphic according to Definition 2.1. We first
need a lemma, stating that in any labelled Reeb graph with at least four vertices we can
find two adjacent vertices that can be deleted.

Lemma 3.7. Let (Γ f , f
|
) be a labelled Reeb graph with at least four vertices. Then there

exist e(v1,u1),e(u1,u2),e(u2,v2) ∈ E(Γ f ), with f
|
(v1) < f

|
(u2) < f

|
(u1) < f

|
(v2).

Proof. Let V(Γ f ) = {a0,b0,a1,b1, . . .am−1,bm−1}, m≥ 2. In the following, we convene
that, fork ∈ Z, ak andbk are equal toa(k modm) andb(k modm), respectively. We assume
thatE(Γ f ) = {e(ai ,bi) : i ≥ 0}∪{e(bi ,ai+1) : i ≥ 0}, and f

|
(ai) < f

|
(bi) for everyi. From

the definition of labelled Reeb graph associated with a pair(S1, f ), it follows that f
|
(bi) >

f
|
(ai+1), f

|
(ai) 6= f

|
(ai+1), f

|
(bi) 6= f

|
(bi+1), for everyi.

The claim can be restated saying that there is at least one index i such that either(I)
f
|
(ai) < f

|
(ai+1) and f

|
(bi) < f

|
(bi+1) or (II ) f

|
(ai+1) < f

|
(ai) and f

|
(bi) < f

|
(bi−1) hold.

We prove this statement by contradiction, assuming that forevery i ≥ 0 neither(I) nor
(II ) hold. Since(I) does not hold, eitherf

|
(a0) > f

|
(a1) or f

|
(b0) > f

|
(b1) or both. Let

us consider the case whenf
|
(b0) > f

|
(b1). Since(II ) does not hold either, it follows that

f
|
(a2) > f

|
(a1). Recalling that(I) does not hold, we obtainf

|
(b1) > f

|
(b2). Iterating the

same argument, we deduce thatf
|
(bi) > f

|
(bi + 1) for every i ≥ 0, contradicting the fact

thatbm = b0. An analogous proof works when we consider the casef
|
(a0) > f

|
(a1). �

Proposition 3.8. Let (Γ f , f
|
) and(Γg,g|

) be two labelled Reeb graphs. Then the set of all
the deformations T such that T(Γ f , f

|
) = (Γg,g|

) is non-empty. This set of deformations
will be denoted byT ((Γ f , f

|
),(Γg,g|

)).

Proof. If (Γ f , f
|
) = (Γg,g|

), then it is sufficient to take the elementary deformationT of
type (R) transforming(Γ f , f

|
) into itself. Otherwise, if(Γ f , f

|
) 6= (Γg,g|

) andΓ f has at least
four vertices, by Lemma 3.7, we can apply a finite sequence of elementary deformations
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of type (D) to(Γ f , f
|
), so that in the resulting labelled Reeb graph(Γh,h|

), Γh has only two
vertices, sayu,v, with h

|
(u) < h

|
(v). If (Γg,g|

) has also at least four vertices, by Lemma
3.7, there exists a finite sequence of elementary deformations of type (D) to(Γg,g|

), say
S= (S1, . . . ,Sp), so that in the resulting labelled Reeb graph(Γh′ ,h

′
|
), Γh′ has only two

vertices, sayu′,v′, with h′
|
(u′) < h′

|
(v′). So, we can apply to(Γh,h|

) an elementary defor-

mation of type (R) so to obtain(Γh′ ,h
′
|
). Finally, by Definition 3.5, we can apply to(Γh′ ,h

′
|
)

the finite sequence of elementary inverse deformations of type (B),S−1 = (S−1
p , . . . ,S−1

1 ),
in order to obtain(Γg,g|

). For (Γ f , f
|
) or (Γg,g|

) with only two vertices, the same proof
applies without need of deformations of type (D) or (B), respectively. �

A simple example explaining the above proof is given in Figure 3.

v1v1v1v1

v2 v3

v4v4v4v4

v5v5

v6v6

v7v7v7

v8v8v8

u1 u1 u1

u2
u3

u4 u4 u4

u5 u5

u6 u6

(B)(B)

(D) (D)

(D)(D)(D) (R)

FIGURE 3. The leftmost labelled Reeb graph is transformed into the rightmost one
applying first three elementary deformations of type (D), thenone elementary deformation
of type (R), and finally two elementary deformations of type (B).

We point out that the deformation constructed in the proof ofProposition 3.8 is not
necessarily the cheapest one, as can be seen in Example 2.

We now introduce an editing distance between labelled Reeb graphs, in terms of the
cost necessary to transform one graph into another.

Theorem 3.9. For every two labelled Reeb graphs(Γ f , f
|
) and(Γg,g|

), we set

d((Γ f , f
|
),(Γg,g|

)) = inf
T∈T ((Γ f , f| ),(Γg,g| ))

c(T).

Then d is a distance.

The proof of the above theorem will be postponed to the end of the following section.
Indeed, even if the properties of symmetry and triangular inequality can be easily verified,
the property of the positive definiteness ofd is not straightforward because the set of all
possible deformations transforming(Γ f , f

|
) to (Γg,g|

) is not finite. In order to prove the
positive definiteness ofd, we will need a further result concerning the connection between
the editing distance between two labelled Reeb graphs,(Γ f , f

|
), (Γg,g|

), and the natural

pseudo-distance between the associated pairs(S1, f ), (S1,g).

4. A LOWER BOUND FOR THE EDITING DISTANCE

Now we provide a suitable lower bound for our editing distance by means of thenatural
pseudo-distance.

The natural pseudo-distance is a measure of the dissimilarity between two pairs(X,ϕ),
(Y,ψ), with X andY compact, homeomorphic topological spaces andϕ : X → R, ψ : Y →
R continuous functions. Roughly speaking, it is defined as theinfimum of the variation
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of the values ofϕ and ψ, when we move fromX to Y through homeomorphisms (see
[11, 12, 13] for more details).

Such a lower bound is useful for achieving two different results. The first result, as
mentioned in the preceding section, concerns the proof of Theorem 3.9, i.e., thatd is a
distance (see Corollary 4.2). The second one is related to animmediate question that
can arise looking at the definition ofd: Is it always possible to effectively compute the
cheapest deformation transforming a labelled Reeb graph into another, since the number
of such deformations is not finite? By using the natural pseudo-distance, we can estimate
from below the value ofd, and, in certain simple cases, knowing the value of the natural
pseudo-distance allows us to determine the value ofd (see, e.g., Examples 1–2).

The following Theorem 4.1 states that the natural pseudo-distance computed between
the pairs(S1, f ) and(S1,g) is a lower bound for the editing distance between the associated
labelled Reeb graphs.

Theorem 4.1. Let (Γ f , f
|
), (Γg,g|

) be labelled Reeb graphs associated with(S1, f ) and

(S1,g), respectively. Then d((Γ f , f
|
),(Γg,g|

)) ≥ inf
τ∈H (S1)

‖ f −g◦ τ‖C0.

Proof. Let us prove that, for everyT ∈T ((Γ f , f
|
),(Γg,g|

)), c(T)≥ inf
τ∈H (S1)

‖ f −g◦τ‖C0.

First of all, assume thatT is an elementary deformation transforming(Γ f , f
|
) into

(Γg,g|
). For conciseness, slightly abusing notations, we will identify arcs of S1 having

as endpoints two critical pointsp′, p′′ ∈V(Γ f ), and not containing other critical points of
f , with the edgese(p′, p′′) ∈ E(Γ f ).

(1) Let T be of type (R) relabelling vertices ofV(Γ f ). Since, by Definition 3.1 (R),
Γ f = Γg, we can always apply Lemma 2.3, consideringΦ as the identity map, to
obtain a piecewise linearτ ∈ H (S1) such thatτ(p) = p for every p∈ K( f ). As
far as non-critical points are concerned, following the proof of Lemma 2.3, for
everyp∈ S1\K( f ), τ(p) is defined as that point onS1 such that, ifp∈ e(p′, p′′)∈
E(Γ f ), with f (p) = (1− λp) f (p′) + λp f (p′′), λp ∈ [0,1], thenτ(p) ∈ e(p′, p′′)
with g(τ(p)) = (1−λp)g(p′)+ λpg(p′′). Therefore, by substituting tof (p) and
g(τ(p)) the above expressions, we see that max

p∈S1
| f (p)−g(τ(p))|= max

p∈V(Γ f )
| f

|
(p)−

g
|
(p)| = c(T).

(2) LetT be of type (D) deletingq1,q2∈V(Γ f ), the edgese(p1,q1), e(q1,q2), e(q2, p2),
and inserting the edgee(p1, p2). Thus, for everyp ∈ K( f )\{q1,q2}, f (p) =
g(p). It is not restrictive to assume thatf (p1) < f (q2) < f (q1) < f (p2). Then
we can define a sequence(τn) of piecewise linear homeomorphisms onS1 ap-
proximating this elementary deformation. Letτn(p) = p for every everyp ∈
V(Γ f )\{q1,q2} = V(Γg) andn ∈ N. Moreover, letq be the point ofe(p1, p2) ∈

E(Γg) such thatg(q) = f (q1)+ f (q2)
2 (such a pointq exists becauseg(p1) = f (p1) <

f (q2) < f (q1) < f (p2) = g(p2) and it is unique because we are assuming that
no critical points ofg occur in the considered arc). Let us fix a positive real
numberc < min{g(p2)− g(q),g(q)− g(p1)}. For everyn ∈ N, let us define
τn(q1) (resp.τn(q2)) as the only point onS1 belonging to the arc with endpoints
p1,q (resp. q, p2) contained ine(p1, p2), such thatg(τn(q1)) = g(q)− c

n (resp.
g(τn(q2)) = g(q) + c

n) as shown in Figure 4. Now, let us linearly extendτn to
all S1 in the following way. For everyp ∈ S1 \K( f ), if p belongs to the arc
with endpointsp′, p′′ ∈ K( f ) not containing any other critical point, and is such
that f (p) = (1− λp) f (p′) + λp f (p′′), λp ∈ [0,1], thenτn(p) belongs to the arc
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with endpointsτn(p′),τn(p′′) not containing any other critical point, and is such
that g(τn(p)) = (1− λp)g(τn(p′)) + λpg(τn(p′′)). Hence,τn is piecewise linear
for everyn∈ N, and lim

n→∞
max
p∈S1

| f (p)−g(τn(p))| = lim
n→∞

max
p∈V(Γ f )

| f (p)−g(τn(p))| =

lim
n→∞

max{ f (q1)−g(τn(q1)), f (q2)−g(τn(q2))}= | f (q1)−g(q)|=
f
|
(q1)− f

|
(q2)

2 =

c(T).

p1

p2

q1

q2

τn(q1)

τn(q2)

q

τn(p1) = p1

τn(p2) = p2

f (q1)+ f (q2)
2

(S1, f ) (S1,g)

FIGURE 4. The construction of the homomorphismτn as described in step (2) of the
proof of Theorem 4.1. The arce(p1,q1) (e(q1,q2), ande(q2, p2), respectively) is piecewise
linearly taken to the arc havingτn(p1),τn(q1) (τn(q1),τn(q2) andτn(q2),τn(p2), respec-
tively) as endpoints.

(3) Let T be of type (B) deletinge(p1, p2) ∈ E(Γ f ), and inserting two verticesq1,q2

and the edgese(p1,q1), e(q1,q2), e(q2, p2). Then we can apply the same proof as
(2), by considering the inverse deformationT−1 that, by Definition 3.5, is of type
(D) and, by Proposition 3.6, has the same cost ofT.

Therefore, observing that in (1), the piecewise linearτ can be clearly replaced by a se-
quence(τn), with τn = τ for everyn∈ N, we can assert that, for every elementary defor-
mationT, there exists a sequence of piecewise linear homeomorphisms onS1, (τn), such
thatc(T) = lim

n→∞
‖ f −g◦ τn‖C0 ≥ inf

τ∈H (S1)
‖ f −g◦ τ‖C0.

Now, let T = (T1, . . . ,Tr) ∈ T ((Γ f , f
|
),(Γg,g|

)) and prove that, also in this case,c(T) ≥

inf
τ∈H (S1)

‖ f − g◦ τ‖C0. Let us setTi · · ·T1(Γ f , f
|
) = (Γ f (i) , f (i)

|
), f = f (0), g = f (r). For

i = 1, . . . , r, let (τ(i)
n )n be a sequence of piecewise linear homeomorphisms onS1 for which

it holds thatc(Ti) = lim
n→∞

‖ f (i−1)− f (i) ◦ τ(i)
n ‖C0, and let(τ(0)

n )n be the constant sequence
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such thatτ(0)
n = Id for everyn∈ N. Then

c(T) =
r

∑
i=1

c(Ti) = lim
n→∞

‖ f (0)− f (1) ◦ τ(1)
n ‖C0 +

r−1

∑
i=1

lim
n→∞

‖ f (i)− f (i+1) ◦ τ(i+1)
n ‖C0

= lim
n→∞

‖ f (0) − f (1) ◦ τ(1)
n ‖C0

+
r−1

∑
i=1

lim
n→∞

‖ f (i) ◦ τ(i)
n ◦ . . .◦ τ(0)

n − f (i+1) ◦ τ(i+1)
n ◦ τ(i)

n ◦ · · · ◦ τ(0)
n ‖C0

≥ lim
r→∞

‖ f (0)− f (r) ◦ τ(r)
n ◦ τ(r−1)

n ◦ · · · ◦ τ(0)
n ‖C0 ≥ inf

τ∈H (S1)
‖ f −g◦ τ‖C0,

where the third equality is obtained by observing that

f (i) ◦τ(i)
n ◦ · · ·◦τ(0)

n − f (i+1) ◦τ(i+1)
n ◦τ(i)

n ◦ · · ·◦τ(0)
n = ( f (i)− f (i+1) ◦τ(i+1)

n )◦τ(i)
n ◦ · · ·◦τ(0)

n

for everyi ∈ {1, . . . , r −1}, and that‖ · ‖C0 is invariant under re-parameterization; the first
inequality is consequent to the triangular inequality. �

Corollary 4.2. If d((Γ f , f
|
),(Γg,g|

)) = 0 then(Γ f , f
|
) = (Γg,g|

).

Proof. From Theorem 4.1,d((Γ f , f
|
),(Γg,g|

)) = 0 implies that inf
τ∈H (S1)

‖ f −g◦ τ‖C0 = 0.

In [7] it has been proved that when inf
τ∈H (X,Y)

‖ f −g◦τ‖C0 = 0, withX, Y two closed curves

of class at leastC2, a homeomorphismτ ∈ H (X,Y) exists such thatf = g◦ τ . Therefore,
the claim follows from Proposition 2.4. �

Proof of Theorem 3.9.The positive definiteness ofd has been proved in Corollary 4.2;
the symmetry is a consequence of Proposition 3.6; the triangular inequality can be easily
verified in the standard way. �

Now we describe two simple examples showing how it is possible to compute the editing
distance between two labelled Reeb graphs,(Γ f , f

|
),(Γg,g|

), by exploiting the knowledge

of the natural pseudo-distance value between the associated pairs(S1, f ),(S1,g). In partic-
ular, Example 1 provides a situation in which the infimum costover all the deformations
transforming(Γ f , f

|
) into (Γg,g|

) is actually a minimum. In Example 2 this infimum is
obtained by applying a passage to the limit.

Example 1. Let us consider the two pairs(S1, f ),(S1,g) depicted in Figure 5, withf ,g∈
F 0. We now show thatd((Γ f , f

|
),(Γg,g|

)) = 1
2( f (q1)− f (p1)). Indeed, in this case, the

natural pseudo-distance between(S1, f ) and(S1,g) is equal to1
2( f (q1)− f (p1)) (cf. [13]).

Therefore, by Theorem 4.1, it follows thatd((Γ f , f
|
),(Γg,g|

))≥ 1
2( f (q1)− f (p1)). On the

other hand, the deformationT of type (D) that deletes the verticesp1,q1 ∈V(Γ f ), the edges
e(p,q1),e(q1, p1),e(p1,q) and inserts the edgee(p,q) transforms(Γ f , f

|
) into (Γg,g|

) with

costc(T) = 1
2( f (q1)− f (p1)). Henced((Γ f , f

|
),(Γg,g|

)) = 1
2( f (q1)− f (p1)).

Example 2. Let us consider now the two pairs(S1, f ),(S1,g) illustrated in Figure 6. Let
f (q1)− f (p1) = f (q2)− f (p2) = a. Then, clearly, inf

τ∈H (S1)
‖ f −g◦τ‖C0 = a

2. Let us show

that the editing distance between(Γ f , f
|
) and(Γg,g|

) is a
2, too. For every 0< ε < a

2, we
can apply to(Γ f , f

|
) a deformation of type (R), that relabelsp1, p2,q1,q2 in such a way

that f (pi) is increased ofa2 − ε, and f (qi) is decreased ofa2 − ε for i = 1,2, composed
with two deformations of type (D) that deletepi with qi , i = 1,2. Thus, since the total
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q1

p1

q q′

p p′

(S1, f ) (S1,g)

FIGURE 5. The pairs considered in Example 1. In this cased((Γ f , f
|
),(Γg,g|

)) =

inf
τ∈H (S1)

‖ f −g◦ τ‖C0 = 1
2( f (q1)− f (p1))

q1

p1

q2

p2

q q′

p p′

(S1, f ) (S1,g)

FIGURE 6. The pairs considered in Example 2. Even in this cased((Γ f , f
|
),(Γg,g|

)) =

inf
τ∈H (S1)

‖ f −g◦ τ‖C0 = 1
2( f (q1)− f (p1))

cost is equal toa
2 − ε +2ε, by the arbitrariness ofε, it holds thatd((Γ f , f

|
),(Γg,g|

)) ≤ a
2.

Applying Theorem 4.1, we deduce thatd((Γ f , f
|
),(Γg,g|

)) = a
2.

5. LOCAL STABILITY

This section is intended to show that labelled Reeb graphs ofclosed curves are stable
under small function perturbations with respect to our editing distance (see Theorem 5.5).
The main tool we will use is provided by Theorem 5.3, that ensures the stability of sim-
ple Morse function critical values. This latter result can be deduced by the homological
properties of the lower level sets of a simple Morse functionf on a manifoldM , and
its validity does not depend on the dimension ofM . Therefore, it will be given for any
smooth compact manifold without boundary.

For every f ∈ F (M ,R), and for everya ∈ R, let us denote byf a the lower level set
f−1(−∞,a] = {p∈M : f (p)≤ a}. Let us recall the existing link between the topology of
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a pair of lower level sets( f b, f a), with a,b∈ R, a < b, regular values off , and the critical
points of f lying betweena andb. The following statements hold (cf. [19]):

(St. 1) If the interval f−1([a,b]) contains no critical points, thenf a is a deformation re-
tract of f b, so that the inclusion mapf a → f b is a homotopy equivalence.

(St. 2) If f−1([a,b]) contains exactly one critical point of indexk, then, denoting byG
the homology coefficient group, it holds that

Hk( f b, f a) =

{
G, if k = k
0, otherwise.

In the remainder of this section we requiref to be a simple Morse function. Accordingly,
it makes sense to use the terminologycritical value of index kto indicate a critical value
that is the image of a critical point of indexk.

Lemma 5.1. Let f ∈ F 0 ⊂ F (M ,R), and let a,b∈ R, a < b, be regular values of f . If
there existsk ∈ Z such that Hk( f b, f a) 6= 0, then[a,b] contains at least one critical value
of indexk.

Proof. From(St. 1), the absence of critical values in[a,b] implies that the homomorphism
induced by inclusionιk : Hk( f a) → Hk( f b) is an isomorphism for eachk ∈ Z. Conse-
quently, by using the long exact sequence of the pair:

· · · −→ Hk( f a)
ik−→ Hk( f b)

jk−→ Hk( f b, f a)
∂k−→ Hk−1( f a)

ik−1
−→ Hk−1( f b) −→ ·· · ,

it is easily seen that, for everyk∈ Z, the surjectivity ofik and the injectivity ofik−1 imply
the triviality of Hk( f b, f a). This proves that if there existsk ∈ Z such thatHk( f b, f a) 6=
0, then[a,b] contains at least one critical value off . That the index of at least one of
the critical values off contained in[a,b] is exactlyk is consequent to the sub-additivity
property of the rank of the relative homology groups and to(St. 2). In fact, letc1, . . . ,cm be
the critical values off belonging to[a,b], and lets0, . . . ,sm bem+ 1 regular values such
thata= s0 < c1 < s1 < c2 < .. . < sm−1 < cm < sm = b. Since it holds that rankHk( f b, f a)≤
m
∑

i=1
rankHk( f si , f si−1), and by hypothesis rankHk( f b, f a) ≥ 1, there exists at least one index

i ∈ {1, . . . ,m} such thatHk( f si , f si−1) 6= 0. Now, applying(St. 2)with a replaced bysi−1

andb replaced bysi , we deduce thatci is a critical value off of indexk. �

The above statements(St. 1-2), Lemma 5.1, together with the following lemma, that is
a reformulation of Lemma 4.1 in [17], provide the tools for proving the stability of critical
values under small function perturbations (Theorem 5.3).

Lemma 5.2. Let X1,X2,X3,X′
1,X

′
2,X

′
3 be topological spaces such that X1 ⊆X2 ⊆X3 ⊆X′

1 ⊆
X′

2 ⊆ X′
3. Let Hk(X3,X1) = 0, Hk(X′

3,X
′
1) = 0 for every k∈ Z. Then the homomorphism

induced by inclusion Hk(X′
1,X1) → Hk(X′

2,X2) is injective for every k∈ Z.

Theorem 5.3(Stability of critical values). Let f ∈ F 0 ⊂ F (M ,R) and let c be a critical
value of indexk of f . Then there exists a real numberδ ( f ,c) > 0 such that each g∈ F 0

verifying‖ f −g‖C0 ≤ δ , 0≤ δ ≤ δ ( f ,c), admits at least one critical value of indexk in
[c−δ ,c+δ ].

Proof. Since f is Morse, we can choose a real numberδ ( f ,c) > 0 such that[c− 3 ·
δ ( f ,c),c+ 3 · δ ( f ,c)] does not contain any critical value off besidesc. Let 0≤ δ ≤
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δ ( f ,c), and letg be a simple Morse function such that‖ f −g‖C0 ≤ δ . If δ = 0, then the
claim immediately follows. Letδ > 0. Then, for everyn∈ N,

f c−δ · 2n+1
n ⊆ gc−δ · n+1

n ⊆ f c−δ/n ⊆ f c+δ/n ⊆ gc+δ · n+1
n ⊆ f c+δ · 2n+1

n .

Since[c− δ · 2n+1
n ,c− δ/n] and [c+ δ/n,c+ δ · 2n+1

n ] do not contain any critical value

of f for everyn∈ N, bothHk( f c−δ/n, f c−δ · 2n+1
n ) andHk( f c+δ · 2n+1

n , f c+δ/n) are trivial for
every k ∈ Z, andn ∈ N. Consequently, from Lemma 5.2, the homomorphism induced
by inclusionHk( f c+δ/n, f c−δ · 2n+1

n ) → Hk(gc+δ · n+1
n ,gc−δ · n+1

n ) is injective for eachk ∈ Z,
andn ∈ N. Moreover, since, for everyn ∈ N, [c− δ · 2n+1

n ,c+ δ/n] containsc, that is

a critical value of indexk of f , from (St. 2), it holds thatHk( f c+δ/n, f c−δ · 2n+1
n ) 6= 0 for

everyn ∈ N. This fact, together with the injectivity of the above map, implies that also
Hk(g

c+δ · n+1
n ,gc−δ · n+1

n ) 6= 0 for everyn ∈ N. So, by Lemma 5.1, for everyn ∈ N, there
exists at least one critical valuec′n of indexk of g with c′n ∈ (c− δ · n+1

n ,c+ δ · n+1
n ). By

contradiction, let us suppose that[c− δ ,c+ δ ] contains no critical values of indexk of
g. Then, sinceg is Morse, there would exist a sufficiently small real numberε > 0 such
that(c−δ − ε,c+δ + ε) does not contain critical values of indexk of g either, giving an
absurd. �

We now prove the local stability of labelled Reeb graphs of closed curves. We need a
lemma that holds for manifolds of arbitrary dimension. The global stability will be exposed
in the next section.

Lemma 5.4. Let f ∈ F 0 ⊂ F (M ,R). Then there exists a positive real numberδ ( f )
such that, for everyδ , 0≤ δ ≤ δ ( f ), and for every g∈ F 0, with ‖ f −g‖C2 ≤ δ , an edge
and vertices order preserving bijectionΦ : V(Γ f )→V(Γg) exists for which max

v∈V(Γ f )
| f

|
(v)−

g
|
(Φ(v))| ≤ δ .

Proof. Let p1, . . . , pn be the critical points off , andc1, . . . ,cn the respective critical values,
with ci < ci+1 for i = 1. . . ,n− 1. SinceF 0 is open inF (M ,R), endowed with the
C2 topology, there always exists a sufficiently smallδ ( f ) > 0, such that the closed ball
with center f and radiusδ ( f ), B2( f ,δ ( f )), is contained inF 0. Moreover,δ ( f ) can be
chosen so small that, for everyi = 1, . . . ,n− 1, the intervals[ci − δ ( f ),ci + δ ( f )] and
[ci+1−δ ( f ),ci+1 +δ ( f )] are disjoint.

Fixed such aδ ( f ), for every real numberδ , with 0≤ δ ≤ δ ( f ), and for everyg∈ F 0

such that‖ f −g‖C2 ≤ δ , f and g belong to the same arcwise connected component of
F 0 endowed with theC∞ topology, and, therefore, are topologically equivalent functions.
Consequently, there exists an edge and vertices order preserving bijectionΦ : V(Γ f ) →
V(Γg) (see Subsection 1.4). Let us prove thatΦ is such that max

v∈V(Γ f )
| f

|
(v)−g

|
(Φ(v))| ≤ δ .

Since f andg are topologically equivalent, it follows thatg has exactlyn critical points,
p′1, . . . , p′n. Let c′1 = g(p′1), . . . ,c

′
n = g(p′n). We can assumec′i < c′i+1, for i = 1, . . . ,n−1.

The assumption‖ f −g‖C2 ≤ δ implies that‖ f −g‖C0 ≤ δ . Therefore, by the previous
Theorem 5.3, for every critical valueci of f , there exists at least one critical value ofg
of the same index ofci belonging to[ci − δ ,ci + δ ]. Moreover, since[ci − δ ,ci + δ ]∩
[ci+1 − δ ,ci+1 + δ ] = /0 for everyi = 1, . . . ,n− 1, it follows thatc′i ∈ [ci − δ ,ci + δ ] for
everyi = 1, . . . ,n. Hence, sinceΦ preserves the order of the vertices, necessarilyΦ(pi) =
p′i , yielding that max

v∈V(Γ f )
| f

|
(v)−g

|
(Φ(v))| = max

pi∈K( f )
| f

|
(pi)−g

|
(Φ(pi))| = max

1≤i≤n
|ci − c′i | ≤

δ . �
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Theorem 5.5(Local stability). Let f ∈ F 0 ⊂ F (S1,R). Then there exists a positive real
numberδ ( f ) such that, for everyδ , 0≤ δ ≤ δ ( f ), and for every g∈F 0, with‖ f −g‖C2 ≤
δ , it holds that d((Γ f , f

|
),(Γg,g|

)) ≤ δ .

Proof. By Lemma 5.4, an edge and vertices order preserving bijection Φ : V(Γ f )→V(Γg)
exists for which max

v∈V(Γ f )
| f

|
(v)−g

|
(Φ(v))| ≤ δ . NecessarilyΦ takes minima into minima

and maxima into maxima. Therefore,(Γ f ,g|
◦Φ) = T(Γ f , f

|
), with T an elementary de-

formation of type (R), relabelling vertices ofV(Γ f ), having costc(T) = max
v∈V(Γ f )

| f
|
(v)−

g
|
(Φ(v))| ≤ δ . Moreover, let us observe that(Γ f ,g|

◦Φ) is isomorphic to(Γg,g|
) as la-

belled Reeb graph (see Definition 2.1). Thus,d((Γ f , f
|
),(Γg,g|

)) = d((Γ f , f
|
),(Γ f ,g|

◦

Φ)) = inf
T∈T ((Γ f , f| ),(Γg,g| ))

c(T) ≤ δ . �

6. GLOBAL STABILITY

This section is devoted to proving that Reeb graphs of closedcurves are stable under
arbitrary function perturbations. More precisely, it willbe shown that arbitrary changes
in simple Morse functions imply smaller changes in the editing distance between Reeb
graphs. The proof is by steps: the following Proposition 6.1shows such a stability property
when the functions defined onS1 belong to the same arcwise connected component ofF 0;
Proposition 6.2 proves the same result in the case that the linear convex combination of
two simple Morse functions traverses the stratumF 1 at most in one point; Theorem 6.3
extends the result to two arbitrary functions inF 0.

Proposition 6.1. Let f,g∈ F 0 and let us consider the path h: [0,1] → F (S1,R) defined
by h(λ ) = (1−λ ) f + λg. If h(λ ) ∈ F 0 for everyλ ∈ [0,1], then d((Γ f , f

|
),(Γg,g|

)) ≤

‖ f −g‖C2.

Proof. Let δ (h(λ )) > 0 be the fixed real number playing the same role ofδ ( f ) in Theorem
5.5, after replacingf by h(λ ). For conciseness, let us denote it byδ (λ ), and‖ f −g‖C2

by a. If a = 0, the claim trivially follows. Ifa > 0, letC be the open covering of[0,1]

constituted of open intervalsIλ =
(

λ − δ (λ )
2a ,λ + δ (λ )

2a

)
. Let C′ be a finite minimal (i.e.

such that, for everyi, Iλi
*

⋃
j 6=i

Iλ j
) sub-covering ofC, with λ1 < λ2 < .. . < λn the middle

points of its intervals. SinceC′ is minimal, for everyi ∈ {1, . . . ,n−1}, Iλi
∩ Iλi+1

is non-
empty. This implies that

λi+1−λi <
δ (λi)

2a
+

δ (λi+1)

2a
≤

max{δ (λi),δ (λi+1)}

a
.(6.1)

Moreover, by the definition ofh and the linearity of derivatives, it can be deduced that

‖h(λi+1)−h(λi)‖C2 = (λi+1−λi) · ‖ f −g‖C2.(6.2)

Now, substituting (6.1) in (6.2), we obtain

‖h(λi+1)−h(λi)‖C2 <
max{δ (λi),δ (λi+1)}

a
· ‖ f −g‖C2 = max{δ (λi),δ (λi+1)}.

Let (Γh(λ j ),h(λ j)|) be the labelled Reeb graphs associated with(S1,h(λ j)), j = 1, . . . ,n.
Let i ∈ {1, . . . ,n−1}. If max{δ (λi),δ (λi+1)} = δ (λi), then using Theorem 5.5, withf
replaced byh(λi), g by h(λi+1) andδ by ‖h(λi+1)−h(λi)‖C2, it holds that

d((Γh(λi),h(λi)|),(Γh(λi+1),h(λi+1)|)) ≤ ‖h(λi+1)−h(λi)‖C2.(6.3)
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The same inequality holds when max{δ (λi),δ (λi+1)} = δ (λi+1), as can be analogously
checked.

Now, settingλ0 = 0, λn+1 = 1, it can be verified that (6.3) also holds fori = 0,n.
Consequently, sinceΓ f = Γh(λ0), andΓg = Γh(λn+1), we have

d((Γ f , f
|
),(Γg,g|

)) ≤
n

∑
i=0

d((Γh(λi),h(λi)|),(Γh(λi+1),h(λi+1)|)) ≤
n

∑
i=0

‖h(λi+1)−h(λi)‖C2

=
n

∑
i=0

(λi+1−λi) · ‖ f −g‖C2 = ‖ f −g‖C2,

where the first inequality is due to the triangular inequality, the second one to (6.3), the

first equality holds because of (6.2), the second one because
n
∑

i=0
(λi+1−λi) = 1. �

Proposition 6.2. Let f,g∈ F 0 and let us consider the path h: [0,1] → F (S1,R) defined
by h(λ ) = (1−λ ) f +λg. If h(λ ) ∈ F 0 for everyλ ∈ [0,1]\{λ}, with 0 < λ < 1, and h
transversely intersectsF 1 at λ , then d((Γ f , f

|
),(Γg,g|

)) ≤ ‖ f −g‖C2.

Proof. We begin proving the following claim.
Claim. For everyδ > 0 there exist two real numbersλ ′,λ ′′ ∈ [0,1], with λ ′ < λ < λ ′′,
such thatd((Γh(λ ′),h(λ ′)

|
),(Γh(λ ′′),h(λ ′′)

|
)) ≤ δ .

To prove this claim, let us first assume thath(λ ) belongs toF 1
α . To simplify the no-

tation, we denoteh(λ ) simply by h. Let p be the sole degenerate critical point forh. It
is well known that there exists a suitable local coordinate systemx aroundp in which the
canonical expression ofh is h = h(p) + x3 (see Subsection 1.3 and Figure 1(a) with h
replaced byf ).

Let us take a smooth functionω : S1 → R whose support is contained in the coordinate
chart aroundp in which h = h(p)+ x3; moreover, let us assume thatω is equal to 1 in a
neighborhood ofp, and decreases moving fromp. Let us consider the family of smooth
functionsht obtained by locally modifyingh nearp as follows: ht = h+ t ·ω · x. There
existst > 0 sufficiently small such that(i) for 0 < t ≤ t, ht has no critical points in the
support ofω and is equal toh everywhere else (see Figure 1(a) with ht replaced byf̃2),
and(ii) for −t ≤ t < 0, ht has exactly two critical points in the support ofω whose values
difference tends to vanish ast tends to 0, andht is equal toh everywhere else (see [6] and
Figure 1(a) with ht replaced bỹf1).

Sinceht is a universal deformation ofh = h(λ ), andh intersectF 1 transversely at
λ , either the mapsh(λ ) with λ < λ are topologically equivalent toht with t > 0 or to
ht with t < 0 (cf. [6, 18, 23]). Analogously for the mapsh(λ ) with λ > λ . Let us
assume thath(λ ) is topologically equivalent toht with t < 0 whenλ < λ , while h(λ ) is
topologically equivalent toht with t > 0 whenλ > λ . Hence, for everyδ > 0, there exist
λ ′, with 0≤ λ ′ < λ , andλ ′′, with λ < λ ′′ ≤ 1, such thath(λ ′) andh(λ ′′) have the same
critical points, with the same values, except for two critical points ofh(λ ′), whose values
difference is smaller thanδ , that are non-critical forh(λ ′′). Therefore,(Γh(λ ′),h(λ ′)

|
) can

be transformed into(Γh(λ ′′),h(λ ′′)
|
) by an elementary deformation of type (D) whose cost

is not greater thanδ . In the case whenh(λ ) is topologically equivalent toht with t > 0
whenλ < λ , whileh(λ ) is topologically equivalent toht with t < 0 whenλ > λ , the claim
can be proved similarly, applying an elementary deformation of type (B).
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Let us now prove the claim whenh = h(λ ) belongs toF 1
β . Let us denote byp and

q the critical points ofh such thath(p) = h(q). Sincep is non-degenerate there exists
a suitable local coordinate systemx aroundp in which the canonical expression ofh is
h = h(p) + x2 (see Figure 1(b) with h replaced byf ). Let us takeω as before, whose
support is contained in such a coordinate chart. Let us locally modify h nearp as follows:
ht = h+ t ·ω. There existst > 0 sufficiently small such that for|t| ≤ t, ht has exactly
the same critical points ash. As for critical values, they are the same as well, apart from
the value taken atp: ht(p) < h(p), for −t ≤ t < 0 (see Figure 1(b) with ht replaced by
f̃1), while ht(p) > h(p), for 0< t ≤ t (see Figure 1(b) with ht replaced bỹf2), andht(p)

tends toh(p) as t tends to 0 (cf. [6]). Sinceht is a universal deformation ofh = h(λ ),
andh intersectF 1 transversely atλ , we deduce that for everyδ > 0 there existλ ′, with
0 ≤ λ ′ < λ andλ ′′, with λ < λ ′′ ≤ 1, such that(Γh(λ ′),h(λ ′)

|
) can be transformed into

(Γh(λ ′′),h(λ ′′)
|
) by an elementary deformation of type (R) whose cost is not greater than

δ . Therefore the initial claim is proved.
Let us now estimated((Γ f , f

|
),(Γg,g|

)). By the claim, for everyδ > 0, there exist
0 < λ ′ < λ ′′ < 1 such that, applying the triangular inequality,

d((Γ f , f
|
),(Γg,g|

)) ≤ d((Γ f , f
|
),(Γh(λ ′),h(λ ′)

|
))+d((Γh(λ ′),h(λ ′)

|
),(Γh(λ ′′),h(λ ′′)

|
))

+d((Γh(λ ′′),h(λ ′′)
|
),(Γg,g|

))

≤ d((Γ f , f
|
),(Γh(λ ′),h(λ ′)

|
))+d((Γh(λ ′′),h(λ ′′)

|
),(Γg,g|

))+δ .

By Proposition 6.1,

d((Γ f , f
|
),(Γh(λ ′),h(λ ′)

|
)) ≤ ‖ f −h(λ ′)‖C2 = λ ′ · ‖ f −g‖C2,

and
d((Γh(λ ′′),h(λ ′′)

|
),(Γg,g|

)) ≤ ‖h(λ ′′)−g‖C2 = (1−λ ′′) · ‖ f −g‖C2.

Hence,d((Γ f , f
|
),(Γg,g|

)) ≤ ‖ f −g‖C2 + δ , yielding the conclusion by the arbitrariness
of δ . �

Theorem 6.3(Global stability). Let f,g∈ F 0. Then d((Γ f , f
|
),(Γg,g|

)) ≤ ‖ f −g‖C2.

Proof. For every sufficiently smallδ > 0 such thatB2( f ,δ ),B2(g,δ ) ⊂ F 0, there exist
f̂ ∈ B2( f ,δ ) andĝ∈ B2(g,δ ) such that the pathh : [0,1] → F (S1,R), with h(λ ) = (1−
λ ) f̂ + λ ĝ, belongs toF 0 for every λ ∈ [0,1], except for at most a finite numbern of
values 0< µ1 < µ2 < .. . < µn < 1 at whichh transversely intersectsF 1. If n = 0 (n = 1,
respectively), then the claim immediately follows from Proposition 6.1 (Proposition 6.2,
respectively). Ifn > 1, let 0< λ1 < λ2 < .. . < λ2n−1 < 1, with λ2i−1 = µi for i = 1, . . . ,n.
Thenh(λ2i−1) ∈ F 1 for i = 1, . . . ,n, h(λ2i) ∈ F 0 for i = 1, . . . ,n−1. Setλ0 = 0 so that
f̂ = h(λ0), andλ2n = 1 so that̂g = h(λ2n) (a schematization of this path can be visualized
in Figure 7). Then, by Proposition 6.2, we have

d((Γh(λ2i),h(λ2i)|),(Γh(λ2i+2),h(λ2i+2)|)) ≤ ‖h(λ2i)−h(λ2i+2)‖C2

for everyi = 0, . . . ,n−1. Therefore

d((Γ f̂ , f̂
|
),(Γĝ, ĝ|

)) ≤
n−1

∑
i=0

d((Γh(λ2i),h(λ2i)|),(Γh(λ2i+2),h(λ2i+2)|))

≤
n−1

∑
i=0

‖h(λ2i)−h(λ2i+2)‖C2 ≤ ‖ f̂ − ĝ‖C2.
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Then, recalling that̂f ∈ B2( f ,δ ) means‖ f̂ − f‖C2 ≤ δ , and B2( f ,δ ) ⊂ F 0 implies
that (1−λ ) f + λ f̂ ∈ F 0 for everyλ ∈ [0,1], we can apply Proposition 6.1 to state that
d((Γ f , f

|
),(Γ f̂ , f̂

|
)) ≤ δ . It is analogous forg andĝ. Thus, from the triangular inequality,

we have

d((Γ f , f
|
),(Γg,g|

)) ≤ d((Γ f , f
|
),(Γ f̂ , f̂

|
))+d((Γ f̂ , f̂

|
),(Γĝ, ĝ|

))+d((Γĝ, ĝ|
),(Γg,g|

))

≤ 2δ +‖ f̂ − ĝ‖C2.

Now, since by the triangular inequality,‖ f̂ − ĝ‖C2 ≤ ‖ f̂ − f‖C2 +‖ f −g‖C2 +‖g− ĝ‖C2,
with ‖ f̂ − f‖C2 ≤ δ , and‖g− ĝ‖C2 ≤ δ , it follows thatd((Γ f , f

|
),(Γg,g|

))≤4δ +‖ f −g‖C2.
Finally, because of the arbitrariness ofδ , we can letδ tend to zero and obtain the claim.�

f̂ = h(λ0) h(λ2n) = ĝ

∈ ∈ ∈ ∈∈
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F 1F 1F 1F 1F 1
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h(µn−1) h(µn)

FIGURE 7. The linear path used in the proof of Theorem 6.3.

7. DISCUSSION

In this paper, we have considered Reeb graphs of curves and have shown that they stably
represent topological properties of smooth functions. Precisely, we have constructed an
editing distance between Reeb graphs of closed curves endowed with smooth functions
f andg, that is bounded from below by the natural pseudo-distance between(S1, f ) and
(S1,g), and from above by theC2-norm of f −g.

This paper is meant as a first step toward the study of stability of Reeb graphs of sur-
faces. While the general technique we use to prove our main result, as well as many
intermediate results, could be easily generalized to surfaces, the definition of the editing
distance would need to be appropriately modified. This requires us to classify the possible
degeneracies of Reeb graphs of surfaces. Moreover, our proof of the metric properties of
the editing distance exploits some particular properties of curves that are no longer valid
for surfaces.

Furthermore, other shape descriptors consisting of graphsconstructed out of Morse
theory, such as the Morse Connection Graph introduced in [9]and further developed in
[1], could possibly benefit of some of the results proved in this paper.

However, some questions remain unanswered also in the case of curves. In the examples
shown in this paper, the editing distance coincides with thenatural pseudo-distance. Is this
always the case? Moreover, looking at the analogous resultsproved in [8, 10] about the
stability of persistent homology groups, another shape descriptor used both in computer
vision and computer graphics for shape comparison, we may notice that theC0-norm rather
than theC2-norm is used to evaluate function changes. So another open question, strictly
related to the previous one, is whether it would be possible to improve our result in this
sense. Other open questions are concerned with applications of the Main Result (Theorem
6.3) to measure shape dissimilarity coping well with noisy data. On one hand, the result
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ensures the stability of Reeb graphs against noise, while, on the other, we may wonder
how likely it is that noise encountered in real data is small with respect to theC2-norm.
Indeed, it is easy to conceive examples where perturbationsthat could be seen as noise do
not correspond to a small value of theC2-norm. For example, the functions represented in
Figure 8 belong to a sequence of functions( fn) all having the sameC2-norm although they
tend to 0 with respect to theC0-norm. However, one could argue that in a discrete setting,
at a fixed resolution, sequences of functions as in Figure 8 cannot be found. Moreover,
this problem would be overcome if the editing distance coincides with the natural pseudo-
distance.

f1

f2

f3

1

1

0 21/2

1/2

1/3

3/4

FIGURE 8. The graphs of three functions having the sameC2-norm.
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ARCES, UNIVERSITÀ DI BOLOGNA, VIA TOFFANO 2/2, I-40135 BOLOGNA, ITALIA

E-mail address: difabio@dm.unibo.it

DIPARTIMENTO DI SCIENZE EMETODI DELL’I NGEGNERIA, UNIVERSITÀ DI MODENA E REGGIOEMILIA ,
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