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Abstract. Despite the World Wide Web recent architectural formaliza-
tion in terms of Representational State Transfer (REST) architectural
style and Resource-Oriented Architecture (ROA), current languages and
tools for Web programming generally suffer from a lack of understand-
ing of its design constraints and from an abstraction mismatch that
makes it difficult to fully exploit the Web potential. Based on the in-
sights gained by REST and ROA, we claim that logic languages are
well-suited for promoting the Web architecture and principles: in partic-
ular, the straightforward mapping of REST and ROA abstractions onto
elements of Contextual Logic Programming allows for directly executable
logic-based resource representations, as well as dynamic modification of
resource behaviour at runtime. Along this line, in this paper we present
Web Logic Programming as a Prolog-based language for the World Wide
Web embedding the core REST and ROA principles, intended to work as
the basis of a framework for the rapid prototyping of Web applications.
We define the language operational semantics and discuss some simple
but significant programming examples.
Keywords: World Wide Web, Representational State Transfer, Resource-
Oriented Architecture, Contextual Logic Programming, Prolog, Web Logic
Programming.

1 Introduction

The field of Web application programming has always been dominated by the
imperative paradigm, from the early years of procedural CGI scripts, to the
modern days of object-oriented frameworks and platforms. In this landscape,
the declarative paradigm was represented by few cases: functional and logic
languages were never stably accepted into the Web mainstream.

In particular, research on the significance of logic declarative languages in
the specific application domain of the World Wide Web focussed on three main
themes: (i) the provision of libraries, such as PiLLoW [1], to manipulate HTML
and XML documents and to operate with the HTTP protocol; (ii) the merge
between agent- and Web-based technologies resulting in so-called Internet agents
[2]; and (iii) the representation of information in the form of logic pages, as
promoted, for instance, by the LogicWeb [3] language and system. Unfortunately,
the issue of the relationship between logic programming and the Web pretty
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much staled across these research lines before entering the new millennium.
However, in the latest years, substantial achievements have been obtained in the
description and understanding of the architectural principles and design criteria
underlying the WWW. The insights gained from those achievements pave a new
way toward the exploitation of declarative technologies.

First, Fielding introduced and elaborated the novel Representational State
Transfer (REST) architectural style for distributed hypermedia systems [4].
Then, based on the formalization of REST, Richardson and Ruby [5] recently
presented the Resource-Oriented Architecture (ROA) as a set of guidelines and
best practices for implementing applications that follow the design principles of
the Web. REST provides a set of architectural constraints that, when applied as
a whole, emphasizes properties such as scalability, uniformity, modifiability, and
interoperability. The resource is the main REST and ROA data abstraction, de-
fined as any conceptual target of a hypertext reference; communication amongst
resources, and between the client-side and the server-side of a Web application,
occurs through a uniform interface by transferring a representation of a resource
current state. Yet, languages and tools currently used for Web programming
still focus on different abstractions such as page, controller, and more recently
service, thus suffering from a mismatch that has made it difficult to fulfill the
whole potential of the Web architectural properties.

When confronted with novel insights provided by REST and ROA, also
known research on logic programming and the Web shows significant short-
comings. Libraries providing APIs for HTTP and markup languages are limited
in scope, just interfacing logic technologies with the Web instead of promoting
a wider and deeper integration. Internet agents superimpose the agent-oriented
paradigm on the resource-oriented web architecture, without both a clear under-
standing of the principles underlying the WWW, and a deep treatment of the
relationship between the two fundamental abstractions of agent and resource.
Despite logic pages [3] being similar to resources, they are conceptually nar-
rower, in the sense that a logic page could be viewed as a resource with one and
only one representation. Besides, in spite of dealing with server-side entities and
their relationships, logic pages are exclusively carved as a technology to be fully
exploited on the client side, thus losing the benefits of a proper use of the Web
architectural features. However, the REST focus on resource representations as
the main driver of interaction, and the corresponding Web computational model,
suggest that declarative languages could play a significant role in the construc-
tion of server-side resource-oriented Web applications.

The purpose of our research is to build a logic framework for engineering
applications on the World Wide Web, designed so as to promote the architectural
principles and constraints described by Fielding, Richardson, and Ruby, and
aimed at easing rapid prototyping, also allowing the prototype to evolve while
supporting properties such as scalability and modifiability. In this paper, we first
show how to map Web concepts onto elements of Contextual Logic Programming
[6] according to REST and ROA principles; then, based on that mapping, and on
the programming model introduced in [7], we present Web Logic Programming



as the fundamental brick of our logic framework in terms of a Prolog-based logic
language specific to the domain of Web applications, by defining its operational
semantics and discussing some simple but significant programming examples.

2 The Concepts and Properties of REST and ROA

The Representational State Transfer style [4] is an abstraction of the architec-
tural elements within a distributed hypermedia system. The principal data ele-
ment and key abstraction of information is defined as a resource: any conceptual
target of a hypertext reference, identified by a unique name. Any information
that can be named can be a resource, including a document, an image, a tem-
poral service, a collection of other resources, and a non-virtual object (e.g. a
person). When applied to the World Wide Web, the REST style only deals with
the abstract definitions of a resource and its external representations, imposing
constraints on the uniform interface of resources while leaving the implementa-
tion of information sources free for the Web application developer to design.

Building upon REST recommendations, ROA [5] newly proposes that a re-
source and its Uniform Resource Identifier [8] ought to have an intuitive corre-
spondence; in other words, that URIs should be descriptive. According to ROA
best practices, identifiers should also have a definite structure, and that structure
should vary in predictable ways. This addressability property of Web applications
is accompanied by the connectedness property, that is the quality of resources to
be linked to each other in meaningful ways, so as to follow REST prescription
to exploit hypermedia as the engine of the application state [4]. Also in the case
of ROA, as it has been noted for REST before, the architectural guidelines do
not impose any sort of constraint on the engineering of resource systems.

According to REST and ROA, the World Wide Web computation model
revolves around transactions in the HyperText Transfer Protocol (HTTP), a
document-oriented protocol aimed at transferring representations of a resource
current state [9]. Each transaction, such as the one depicted in Fig. 1 (left), starts
with a request, containing the two key elements of Web computations: the method
information, that indicates how the sender expects the receiver to process the
request, and the scope information, that indicates on which part of the data
set the receiver should operate the method [5]. On systems respectful of REST
principles, the method information is contained in the HTTP request method
(e.g. GET, POST, PUT, DELETE), and the scope information is the URI of
the resource to which the request is directed. Computations, then, occur on the
receiving side of the HTTP transaction, where the resource that is the request
target needs to perform the operation represented by the method information.
The result of a Web computation is a response, telling whether the request has
been successful or not, and optionally carrying the representation of the new
state of the target resource.



Fig. 1. (Left) A client starts a HTTP transaction asking the /users resource to create
a new user in the Web application; the resource returns a HTTP response with the
identifier of the jdoe user just created. (Right) The information I (data and behavior)
of a resource representing sales for the fourth quarter of 2004 can be identified by two
different names and therefore live in two different contexts.

3 Resources and Contexts

Starting from the abstract definitions described in Sect. 2, the main properties of
resources can be immediately identified: resources have a name, which in the case
of the Web is a unique1 identifier as defined by the URI standard [8]; resources
have data representing their state; and, finally, resources have behavior, to be
used, for instance, to change their state, to build up their representations, or
to manage interaction with other resources. In particular, when resource names
are carefully designed following the ROA best practices about structure and
predictability, they feature an interesting property on their own: any path can
be interpreted as including a set of resource names. More precisely, we say that
resource names such as the following:

http://example.com/sales/2004/Q4

encompass the names of other resources and ultimately the name of the resource
associated with the domain at the root of the URI:

http://example.com/sales/2004
http://example.com/sales
http://example.com

This naming structure suggests that each resource does not exist in isolation,
but lives in an information context composed by the resources associated to the
names encompassed by that resource name, as shown in Fig. 1 (right). Since
more than one name can identify the same resource, the context of a resource

1 The uniqueness is to be intended in the sense that the same identifier cannot be
associated to two or more resources at the same time; however, more than one
name can identify the same resource at any point in time. For example [5], the sales
numbers available at http://example.com/sales/2004/Q4 might also be available
at http://example.com/sales/Q42004.



is associated with its name rather than directly with the resource itself. Thus,
a resource may live in different contexts at the same time, and feature different
behavior according to the context where the interaction with other elements of
the system takes place.

From the point of view of logic programming, the properties of Web resources
can be easily mapped onto elements of well-known languages such as Prolog [10].
For each resource R we specify its name N(R) as the single quoted atom con-
taining the resource URI identifier; data and behavior can be further recognized
as facts and rules, respectively, in a logic theory T (R) containing the knowledge
base associated to the resource. The advantage of using logic programming el-
ements lies in the representational foundations of the Web computation model.
The declarative representation of resource data and behavior as logic axioms can
be directly executed by an inferential interpreter when a resource is involved in
a computation, given the procedural interpretation of Prolog clauses.

To account for the possible complexity of Web computations that may involve
more information than it is enclosed in a single isolated resource, we introduce
the context C(R) as the locus of computation associated with each resource.
Following the suggestions given by ROA best practices with respect to resources
naming structure, a resource context is defined by the composition of the theories
associated with the resources linked to names which are encompassed by the
name of that resource, including the theory associated with the resource itself.
Given a resource R with a name N(R) for which it holds that:

N(R) ⊆ N(R1) ⊆ . . . ⊆ N(Rn)

where the inclusion operator follows the encompassment semantics previously
defined, then the associated context C(R) is generated by the composition:

C(R) = T (R) · T (R1) · . . . · T (Rn) (1)

where the theories T (Ri) could be imagined as occupying the slots of a stack
structure, with T (R) at the top and T (Rn) at the bottom.

Alongside resources associated with a URI, we have identified four particular
resources corresponding to recurring concepts in the domain of Web applica-
tions development. We define these four resources as implicit resources, in the
sense that they are part of the context of any application resource even if their
names are not included in the set of names that are encompassed by the name
of that resource. The four implicit resources are: (i) the environment resource
RE (identified by the special atom environment) representing the environment
where the Web application lives, that can entail the operating system and Web
server/container where the application has been deployed; (ii) the application
resource RA (identified by the special atom application) representing the ap-
plication itself, and containing knowledge that can be applied to every resource
belonging to the application; (iii) the user resource RU (identified by the special
atom user) representing a user of the application; (iv) the session resource RS

(identified by the special atom session) representing an interaction session of a



user with the Web application. The generation of the context associated to the
generic resource R described in (1) has thus to be augmented as:

C(R) = T (R) · T (R1) · . . . · T (Rn) · T (RS) · T (RU ) · T (RA) · T (RE) (2)

The context of implicit resources is constructed by composing their theories in
the same order as (2); that is, for instance, the context for the user resource is
built using the following composition:

C(RU ) = T (RU ) · T (RA) · T (RE)

and the context for the session resource can be constructed by augmenting the
user context C(RU ) with the session theory T (RS) in the following way:

C(RS) = T (RS) · C(RU )

Note that, as far as the environment resource RE is concerned, the information
contained in its C(RE) context is the same as the information contained in the
corresponding T (RE) theory.

4 Web Logic Programming

Web Logic Programming (WebLP) is a language to program resources, as the
key abstraction of the World Wide Web, and their interaction, in application
systems following the Resource-Oriented Architecture. After the characterization
of the structure of our main data type offered in Sect. 3, we now need to define
the resource computation model underlying the language, while maintaining
compatibility with the constraints of the REST architectural style [4]. To this
aim, it must be noted that the REST style prescribes every resource to be
accessed through a uniform interface, composed by the set of methods defined
in the HTTP specification [9]. The advantage of interface uniformity lies in the
fact that the semantics of each operation can be defined on a per application
basis, instead of being dictated by the architecture once and for all. Besides,
REST only deals with resource access from the outside of a Web application,
leaving space for languages such as WebLP to define their own computation
model within the boundaries of the application.

Adopting a logic programming view of the Web computation model described
in Sect. 2, for each HTTP transaction the request gets translated to represent
a deduction by retaining the request’s scope information to indicate the target
set of facts and rules, and by mapping the request’s method information onto a
logic goal (e.g. get/3). Then, the computation takes place on the receiving side
of the HTTP transaction, in the context associated to the resource target of the
request; finally, the information resulting from goal solution is translated again
to a suitable representation, in order to be sent back in the HTTP response.
Therefore, to invoke a computation represented by a goal G on a resource R, we
adopt the syntax N(R):G, which, ultimately, means C(R) ` G.



Let C(R) be the composition of a number of theories, the query G is asked
in turn to each theory. The goal succeeds as soon as it is solved using the knowl-
edge base contained in a theory T (Ri), by exploiting context search to locate
the unifying predicate; otherwise, the goal fails if no solution is found in any
theory. Furthermore, when the goal G gets substituted by the subgoals Sj(G)
of the matching rule in the theory, the computation proceeds from the context
of the resource Ri rather than being restarted from the original context. The
computation steps can be roughly expressed as follows:

T (Ri) ` G

C(Ri) ` S1(G) ∧ . . . ∧ Sn(G)

The structure of identifiers and resources in the Web architecture simplifies com-
putations in that no need for a dynamic context augmentation is envisioned.
When a resource Ri needs to ask a goal on a resource Ri−1 on the same path, it
has to invoke that computation directly on the Ri−1 resource. As a consequence,
computations are self-contained in the context where they are resolved rather
than invoked, making every goal callable from every resource in the application
space, without performing artificial inclusion of (or extension to) the knowl-
edge base of other resources. The order in the composition of theories forming
a context imposes the direction of computations within the context: from the
outermost theory (associated with the resource on which the computation has
been invoked) to the innermost, finally involving the theories from the implicit
resources, that is session, user, application, and environment, in this order.

However, a computation may need to be performed onto a group of different
resources: think, for example, to a comparison of search results for similar queries,
or to a filtering from two (or more) distinct sets of photographs. Those are the
cases when the context of a computation needs to be composed of more than one
resource context; but, since that composed context could play only a part in a
broader computation, the requirement to encapsulate the knowledge it contains
by keeping it separate from other contexts still retains its validity.

Extending the syntax for invoking a computation, we may express the com-
position of contexts and the invocation of a computation on it by using the
syntax [N(R1), ..., N(Rn)]:G, which, ultimately, has the following meaning:

CC(R1, . . . , Rn) = C(R1) ∪ . . . ∪ C(Rn)

CC(R1, . . . , Rn) ` G

The semantics of this computation is given by an aggregated view where the list
of contexts can be thought as representing a context composition that behaves
as the union of the component contexts. This semantics roughly corresponds to
the union operator in Modular Logic Programming [11], also included in the
LogicWeb system [3]. The goal G succeeds as soon as it is solved on at least a
context C(Ri), or it fails when no solution is found in any context. Furthermore,
when the goal gets substituted by the Sm subgoals of the matching rule in one
of the theories of the context C(Ri), the computation restarts from the original



context union, rather than proceeding from the isolated C(Ri) context. These
computation steps can be approximately expressed as follows:

C(Ri) ` G

CC(R1, . . . , Rn) ` S1(G) ∧ . . . ∧ Sm(G)

This sequential approach can be better understood and best illustrated by an
example. Suppose to have a context C(R1) where the rule p:-q is contained, a
context C(R2) containing the q fact, and query [N(R1), N(R2)]:p asked. By the
aggregated semantics, the goal is asked in turn to each context corresponding
to the resource names involved in the computation. It immediately unifies in
C(R1), leaving the subgoal q to be resolved. Then, q is asked in turn to each
context again: it first fails on C(R1), since this context contains clauses for the
predicate p only; but it succeeds in C(R2), thanks to the presence of the q fact;
therefore, the overall query succeeds.

4.1 Operational Semantics

The previous subsections contain a sketch of the computation model of the pro-
posed multi-theory logic language, illustrated by means of short examples and
informal explanations. We now specify the operational semantics of Web Logic
Programming in the classical form of a set of inference rules, with the aim of
further aiding the precise comprehension of the mechanisms and the abstrac-
tions already introduced. We start by premising some definitions that will come
handy when describing the inference rules.

A logic theory T is defined as a 2-tuple < LT ,KT > containing the identifier
LT for the theory, also called the label, and the knowledge base KT , comprising
the logic predicates specified in the theory. Formally, we define LT as

LT = {a | a ∈ atom, a ∈ urispace}

that is, a label is a particular atom belonging to the space of URI identifiers [8].
The knowledge base KT is defined as the following set of clauses

KT = {h← B | h ∈ atom,B ∈ goal}

where the clauses have the form h ← B, the clause head h is an atom, and the
clause body B is a goal. A goal can be a basic goal (e.g. goal) or a labeled goal
(e.g. label:goal, with label ∈ LT ) or a set of basic and labeled goals.

We also explicitly specify the predicates defined in a theory T by the set

defined(T ) = {p̂ | ∃ p← Q ∈ KT }

where the p̂ notation is used to represent the principal symbol of the predicate
p. For the WebLP language, it also holds that available(T ) ≡ defined(T ), that
is, the set of available predicates in a theory T corresponds to the set of defined
predicates in T .



Directly borrowing from Contextual Logic Programming [6], we intend to
define derivations in a declarative style, by considering a derivation relation
and introducing a set of inference rules for it. We write a tuple in a derivation
relation as C ` G[θ], where C is a context, G is a goal, and θ is a set of equalities
representing a substitution. We also write an inference rule in the following form

Antecedents

Consequent
{Conditions}

where the Consequent is a derivation tuple, the Antecedents are zero, one, or
two derivation tuples, and the Conditions are a (possibly empty) set of arbitrary
prepositions. Declaratively, the Consequent holds if the Conditions are true
and the Antecedents hold. Procedurally, to establish the Consequent, if the
Conditions are true, the Antecedents need to be established.

The notion of derivation is then formalized as a tree such that: (i) any node
is labeled with a derivation tuple; (ii) all leaves are labeled by an empty goal;
and (iii) the relation between any node and its children is the one between the
consequent and antecedents of an instance of an inference rule whose conditions
are true. We also characterize the operation of the WebLP system as follows:
given a context C and a goal G, the system will try to construct a derivation
whose root is labeled by the C ` G[θ] tuple, giving θ as the computed answer
substitution result if the derivation succeeds.

The Inference Rules The first three rules are similar to the rules for the
Prolog programming language, typically reified in the form of the three clauses
in the vanilla meta-interpreter [10]. The first rule is the Null Rule, stating that
the null goal is derivable in any context, with the empty substitution ε.

C ` ∅[ε]
(N )

The second rule deals with goal conjunctions, and it is appropriately called
Conjunction Rule.

C ` G1[θ] ∧ C ` G2θ[σ]
C ` G1, G2[θσdvariables(G1, G2)]

(C )

This rule dictates that, to derive a conjunction of goals2 in a context, you need to
derive the first conjunct, and then the other conjunct in the very same context
(with updated substitutions). So, even if the context may change during the
derivation of the first goal, the derivation of the second goal must start from the
original context, and not from the context where the derivation of the first goal
may have possibly ended.

The third rule is called Reduction Rule.

T · C ` Bθ[σ]
T · C ` g[θσdvariables(g)]

{
h← B ∈ variant(KT )

θ = mgu(g, h)

}
(R)

2 The notation ρdV means the restriction of the substitution ρ to the variables in V .



This rule describes how goals are reduced: if the predicate of an atomic goal is
defined in the current theory, that is, a corresponding clause is found, the goal
is reduced by using a variant of the clause. As usual in logic programming, in
order to reduce goals in derivations we have to use clause variants to respect the
local quantification of bound variables.

A second set of three inference rules describes how to navigate contexts during
the derivation of a goal, and how it is possible to explicitly switch to a specific
context instead of relying on the navigational mechanisms of the language. The
first rule of this second set, similar to the context search rule in Contextual Logic
Programming, is called Implicit Up Rule.

Tb · C ` g[θ]
Ta · Tb · C ` g[θ]

{ĝ /∈ available(Ta)} (iU )

This is perhaps the most important rule in the second set, since it describes
how a predicate not available in a theory can be derived by using the context,
and therefore accounts for the dynamic binding of the WebLP language. When
a predicate g is not available in the current theory (here represented as Ta)
the derivation process moves up to the next available theory in the context.
It must be noted that the moving direction strictly follows the path in the
URI identifying the resource context where the derivation has started. Given a
resource and its URI, the resource ancestors in the URI path are always known,
because of an architectural constraint in the naming system of the Web; on
the contrary, the resource descendants are unknown, unless it is the resource
itself that stores those data, because of a specific requirement of a particular
Web application. Therefore, the only moving direction between theories within
the same context that makes sense to enforce at the language level is the one
coherent with the Web architecture, that is the direction following a resource
ancestors up to the root of its path.

The behavior of resources can be regarded as dynamic under two independent
aspects. First, two or more URIs can be associated to the same resource at any
point in time: the names N1(R), . . . , Ni(R) may identify the same resource R,
thus the same knowledge base contained in the theory T (R) associated to the
resource. However, each different name also identifies a different context that the
same resource may live within; therefore, predicates that are used in T (R), but
are not defined there, may behave in different ways following the definition given
by the context where the resource is called to perform a computation. The second
dynamic aspect of a resource sprouts from the ability to express behavioral rules
as first-class abstractions in a logic programming language: on one hand, it is
thus possible to exploit well-known stateful mechanisms to change the knowledge
base associated to a resource; on the other hand, the HTTP protocol itself allows
changing a resource by means of the PUT method, wherein the content should
be considered as a modified version of the target resource that has to replace (or
be merged with) the original version residing on the server.



The next inference rule describes an explicit Context Switch, where a goal is
asked to be derived in a specific context, different from the current one.

CR ` G[θ]
C ` nR : G[θ]

{nR ∈ LT } (cS )

To derive a goal G labeled with a resource identifier, the system switches from
the current context to the context associated with that identifier, then starts
the derivation of G in the new context. This is the preferred method to invoke
a computation on a resource external to the path associated with the current
context. Switching context instead of merging preserves the encapsulation of
information that the representation of resources as separated logic theories en-
courages. The assumption underlying both the Web and the WebLP system is
that resources encompassed by a single path form a set of entities so strictly
related that they get composed in a new entity called context, where knowledge
sharing and behavioral influence are favored.

The last inference rule belonging to the second set is called Explicit Up, and
describes a convenient shortcut to invoke a derivation of a goal directly on the
immediate ancestor of a resource.

Tb · C ` g[θ]
Ta · Tb · C ` parent : g[θ]

(eU )

The WebLP language offers the special parent identifier to let programmers refer
to the current theory’s parent in the composition representing a context. When
compared with the Implicit Up inference rule (iU ), the only difference is that, in
the Explicit Up case, the check for ĝ to belong to the set of available predicates
in the current theory (represented as Ta in the rule) is entirely missing. So, even
if Ta contains a definition for ĝ, the Explicit Up rule completely disregards it,
and force the system to use whatever definition of ĝ is contained in the parent
theory Tb to derive the goal.

Another inference rule completes the operational semantics of the WebLP
language. The Context Composition rule accounts for dynamic context compo-
sition by exploiting the union operator from Modular Logic Programming [11].

C1 ∪ C2 ` Bθ[σ]
C1 ∪ C2 ` g[θσdvariables(g)]

{
h← B ∈ variant(KT ) ∃ T ∈ C1

θ = mgu(g, h)

}
(cC1 )

C1 ∪ C2 ` Bθ[σ]
C1 ∪ C2 ` g[θσdvariables(g)]

{
h← B ∈ variant(KT ) ∃ T ∈ C2

θ = mgu(g, h)

}
(cC2 )

This couple of rules, quite similar to the reduction rule (R), describes indeed
that a goal to be derived on a composition of context C1 and context C2 is
reduced by using a clause either from C1 or from C2.

4.2 Programming Examples

We now consider examples making use of some language features, to show how
Web systems can be decomposed in resources, how resources can be imple-
mented, and how to perform computations and dynamic behavioral changes.



Fig. 2. (Left) The /jdoe/shelf/biology resource responds to a HTTP GET re-
quest by eventually invoking the pick biology book/1 predicate, which in turn calls
pick books/3; the context is traversed until a proper definition for it is found in the /

resource. (Right) Predicates on which pick books/3 depends are further searched start-
ing from the current context rather than where the computation originally started.

Weather Service The first case study is a weather Web application: the main
resource R, representing the home page, needs to show: (i) an image of the
current weather condition in a specific area (e.g. as a still photograph taken from
a webcam), updated on each request; (ii) the time at which the photograph has
been shot; and (iii) the current temperature as measured by an external sensor.
When a GET request is received, it is translated to a get/3 goal, to be solved in
the context associated with the name N(R) identifying the home page resource.
The theory T (R) contains clauses for the get/3 predicate: to solve that goal,
information is dynamically retrieved from the webcam and the sensor, and a
logic in-memory representation of those data is built. The time of the shot is
taken by invoking a suitable time/1 predicate, defined in the knowledge base
associated to the environment resource RE . Afterwards, all the data are made
available to a template engine that builds a proper representation of the state
of R, and finally that representation is sent back in the HTTP response.

Bookshelf Sharing As a second example, imagine a bookshelf sharing Web
application. When the user jdoe is logged in, her shelf is represented by the S
resource, identified by the URI http://example.com/jdoe/shelf. Each book
is filed under one of more category subjects. The resource B for biology books,
for instance, lives at /jdoe/shelf/biology. When B receives a GET request,
a predicate to pick the list of biology books is ultimately invoked on it:

pick_biology_books(Books) :-
parent_id(Shelf),
pick_books(Books, category(biology), Shelf).

where parent id/1 is a predefined predicate returning the identifier of the parent
resource. The pick books/3 predicate is defined neither in B nor in S, since it
has a wider scope. As illustrated in Fig. 2 (left), the theory chain in the context
for B is then traversed backwards up to the / resource, where a suitable definition
for pick books/3 is found:

pick_books(Books, category(C), Shelf) :-
findall(B, Shelf : book(B), AllBooks),
filter(AllBooks, C, Books).



Fig. 3. (Left) POST-ing a new book in the reading wish list triggers an availability
check first on local libraries then on online bookstores. (Right) The wish list resource
behavior may be dynamically changed by a PUT request carrying new logic rules;
afterwards, new books in the list are first checked on Amazon, then only on libraries.

Definitions for other predicates invoked by pick books/3 are then searched
starting from the current context, rather than C(B) where the computation
originally started, as shown in Fig. 2 (right). The final representation of the bi-
ology books in the shelf may further depend on some information to be found
in the user resource RU (in this case, mapped on both user and the URI
http://example.com/jdoe): for example, a setting to decide how the book view
is organized (e.g. ordered by book insertion time).

Dynamic Reading Wish List As an example of dynamic resource behav-
ior, imagine a reading wish list placed alongside a bookshelf in the previously
discussed application. Under usual circumstances, when a book is added, the re-
source representing the wish list could check local libraries for book availability,
and possibly borrow it on user’s behalf; if no book can be found, the resource
could check its availability in online bookstores, reporting its price to the user
for future purchase. This behavior, depicted in Fig. 3 (left) may be codified by
the following rules:

check(Book) :- library(L), available(Book, L), borrow(Book, L), !.
check(Book) :- bookstore(S), available(S, Book, Price).

Now imagine an online bookstore (e.g. Amazon) offering discounts for a specific
period of time. During that period, the wish list resource should react to the
insertion of new books so as to check that store first instead of libraries, directly
placing an order if the possibly discounted price is inferior to a certain threshold,
and to avoid checking other online stores. The new behavior, relative to the store
offering discounted prices, is represented by the following rule:

check(Book) :- available(amazon, Book, Price),
threshold(T), Price < T, order(amazon, Book), !.



The Web application could then be instructed to change the behavior of wish
list resources on a per user basis3 by sending HTTP PUT requests that modify
the computational representation of those resources. As shown in Fig. 3 (right),
those PUT requests would carry as their content the new rule and the rule
dealing with libraries, so that wish list resources would accordingly modify their
check/1 predicate by adopting that new definition. The Web application could
then programmatically restore the old behavior at the end of the discount period,
by sending another PUT request for each wish list, with a payload adequately
set up to the previous check/1 rule set.

5 Discussion

Starting from the logic programming model for Web resources introduced in [7],
we have extended it toward resource contexts composition, and have rigorously
defined WebLP as a Prolog-based logic language for Web programming on top of
the extended model, by fully describing its operational semantics. Our primary
concern has been to follow the principles and capture the key abstractions of
the Web as described by REST [4] and ROA [5]. We have mapped the resource
abstraction to a logic theory, and maintained the addressability property by
using URIs [8] with the purpose of identifying theories and labeling queries to
be asked to specific resources. We have respected the uniform interface and
let it access logic theories by triggering deductions as a means of exchanging
information. Finally, we have embraced the connectedness property by tightly
binding together, in the notion of context, all resources along a single URI path.

By using contexts as its primary computation metaphor, the WebLP language
is heavily indebted with previous treatments on the topic, especially Contextual
Logic Programming (CtxLP) [6]. Despite being a well-known abstraction, logic
programming contexts on the World Wide Web are a complete novelty when
built on resources encompassing URIs as in WebLP fashion. Their use in this
fashion would have not been possible without the insights and best practices
gathered by ROA. The constraints of REST allowed several simplifications of
contexts with respect to their original definition. For example, there is no need
for dynamic context augmentation, because the structure of resource identifiers
is fixed, as per an architectural constraint in the naming system of the Web.
Moreover, asking a query by using a relative URI to extend the current context
of a resource would have the same computational effect as invoking the goal
by directly using the resulting absolute URI. Thus, also for reasons of syntax
uniformity, CtxLP context augmentation has been abandoned altogether.

The requirement for context isolation lets WebLP also drop much of the
characteristics related to logic modules [12, 11, 13], which were extensively used
by CtxLP. The need for a restriction to forbid arbitrary imports from a resource
to any other resources (perhaps external to its living context) led us to decide
that the subdivision of the application in logic theories corresponding to web
3 By using a proper hierarchy of identifiers and relying on the WebLP computation

model, the behavioral changes could also be issued in an application-wide fashion.



resources, and the navigation mechanisms offered by our notion of context, were
good enough as modularization features for the WebLP language.

Indeed, resources are an abstraction simple enough to consider WebLP as a
radical simplification of CtxLP applied to the domain of the Web rather than
an extension, such as languages adding features from concurrency [14] or object-
orientation [15]. In particular, resources are not objects in the object-oriented
sense, no more than object method calls follow message passing in the distributed
systems sense. For instance, the resource abstraction does not carry any notion
of inheritance: accounting for polymorphism, or adding explicit lazy and eager
binding operators, would have meant to forcibly superimpose other programming
metaphors on a Web-oriented language. As an example of such a kind of lan-
guage, in fact, LogicWeb [3] predates the simpler Modular Logic Programming
model [11] without dealing with more complex software engineering paradigms.

LogicWeb is also the Web-oriented logic language most resembling WebLP.
However, it is designed to be exploited on the client side: instead of resources,
it models HTML documents, which are but just one possible representation of
a resource; besides, it lacks the insight on the intrinsic relationship amongst
resources encompassed by a single URI that has been only achieved so recently,
and that have been nonetheless included in modeling the WebLP language.

6 Conclusions and Future Work

We presented a multi-theory logic programming language called Web Logic Pro-
gramming, designed to model resources, as the key abstraction of the World Wide
Web, and their interaction. WebLP is the first Web-oriented logic language to
benefit from the architectural specification of hypermedia distributed systems
as described by REST [4], and from the insights and guidelines of ROA [5].

The WebLP language is intended to represent the foundation of a logic pro-
gramming framework for prototyping and engineering applications on the Web so
as to follow its architectural principles and design criteria. To fulfill this broader
aim, ongoing work is devoted on the one hand to achieve a clear integration
between the WebLP language and Prolog, of which WebLP has been designed
as an extension, and especially to deal with explicit state issues; on the other
hand, to explore possible refinements of the programming model. In the future,
more complex Web applications will be constructed, in order to iterate on the
framework building process and to showcase its full potential.
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