Provided by AMS Acta

RATE OF CONVERGENCE FOR PREDICTIVE DISTRIBUTIONS OF EXCHANGEABLE INDICATORS

PATRIZIA BERTI, IRENE CRIMALDI, LUCA PRATELLI, AND PIETRO RIGO

ABSTRACT. Let (X_n) be an exchangeable sequence of indicators and π the probability distribution of $\limsup_n \overline{X}_n$, where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then,

$$C_n = \sqrt{n} \left\{ \overline{X}_n - E(X_{n+1} \mid X_1, \dots, X_n) \right\}$$

converges stably (in particular, in distribution) provided π does not have a singular continuous part. Moreover, $C_n \stackrel{P}{\to} 0$ in case π is absolutely continuous with respect to Lebesgue measure, and $\sqrt{n}\,C_n$ converges a.s. under a mild Lipschitz condition on the density of π . Results of this type are useful in Bayesian statistics where π is the prior distribution. Related results are also obtained for the case where the X_n take values in an arbitrary measurable space.

1. Introduction and motivations

A number of real problems reduce to predict the next outcome for a sequence of events, that is, to evaluate

$$E(X_{n+1} | X_1, \dots, X_n) = P(X_{n+1} = 1 | X_1, \dots, X_n)$$

where X_1, X_2, \ldots are the indicators of such events.

Here, we focus on those situations where $E(X_{n+1} \mid X_1, ..., X_n)$ can not be calculated in closed form, and one decides to estimate it basing on the available data $X_1, ..., X_n$. Related references are [1], [2], [3], [4], [5], [11].

In case (X_n) is an *exchangeable* sequence, as assumed throughout, a reasonable approximation for $E(X_{n+1} | X_1, \ldots, X_n)$ is the observed frequency

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

In line with de Finetti [9], the choice of \overline{X}_n can be defended as follows. Suppose (Z_n) is an exchangeable sequence of random variables, with values in a Polish space S, and \mathcal{D} a class of Borel subsets of S. Then,

$$\sup_{B \in \mathcal{D}} \left| \frac{1}{n} \sum_{i=1}^{n} I_{\{Z_i \in B\}} - P(Z_{n+1} \in B \mid Z_1, \dots, Z_n) \right| \stackrel{a.s.}{\to} 0$$
 (1)

provided \mathcal{D} is a Glivenko-Cantelli class in the i.i.d. case (that is, provided (1) holds in the particular case where (Z_n) is i.i.d.); see [4]. Roughly speaking, thus, the empirical distribution $\frac{1}{n} \sum_{i=1}^{n} \delta_{Z_i}$ is a consistent estimate of the *predictive distribution* $P(Z_{n+1} \in \cdot \mid Z_1, \ldots, Z_n)$ for exchangeable data.

²⁰⁰⁰ Mathematics Subject Classification. 60G09, 60B10, 60A10, 62F15.

Key words and phrases. Bayesian predictive inference – Central limit theorem – Empirical distribution – Exchangeability – Predictive distribution – Stable convergence.

Taking (1) as a starting point, the next step is to investigate the rate of convergence. If $S = \{0, 1\}$ and $Z_n = X_n$, this means to investigate whether

$$C(a_n) = a_n \left\{ \overline{X}_n - E(X_{n+1} \mid X_1, \dots, X_n) \right\}$$

approaches a limit (in some sense) for suitable constants $a_n > 0$.

This is just the purpose of this paper. Letting $V = \limsup_n \overline{X}_n$ and $W(a_n) = a_n(\overline{X}_n - V)$, exchangeability of (X_n) yields

$$E(X_{n+1} | X_1, \dots, X_n) = E(V | X_1, \dots, X_n)$$
 a.s..

Hence, $C(a_n) = E(W(a_n) \mid X_1, \dots, X_n)$ a.s.. Also, $\sup_n E|W(\sqrt{n})|^r < \infty$ for all r > 0, as it is not hard to prove (see the proof of Theorem 2). If $\frac{a_n}{\sqrt{n}} \to 0$, it follows that

$$(E|C(a_n)|^r)^{\frac{1+r}{r}} \le E|C(a_n)|^{1+r} \le E|W(a_n)|^{1+r}$$

$$\le \sup_m E|W(\sqrt{m})|^{1+r} \left(\frac{a_n}{\sqrt{n}}\right)^{1+r} \to 0, \quad \text{as } n \to \infty, \text{ for all } r > 0.$$

And what about $a_n = \sqrt{n}$? The answer to this (natural) question depends on the law π of V.

Our main result (Theorems 2 and 4) is that $E|C(\sqrt{n})|^r \to 0$, for all r > 0, whenever π is absolutely continuous with respect to Lebesgue measure. One consequence is

$$E(X_{n+1} \mid X_1, \dots, X_n) = \overline{X}_n + o_P(\frac{1}{\sqrt{n}}).$$
 (2)

Under a mild Lipschitz condition on the density of π , one also obtains

$$E(X_{n+1} | X_1, \dots, X_n) = \overline{X}_n + \frac{D}{n} + o(\frac{1}{n})$$
 a.s. (2*)

for some real random variable D. In addition, if π does not have a singular continuous part, $C(\sqrt{n})$ converges stably in the sense of Renyi; cf. Section 2. In particular, $C(\sqrt{n})$ converges in distribution to the probability measure

$$P(V \notin \Delta) \delta_0 + \sum_{v \in \Delta} P(V = v) \mathcal{N}(0, v - v^2),$$

where $\Delta = \{v : P(V = v) > 0\}$ and $\mathcal{N}(0, \sigma^2)$ denotes the centered Gaussian law with variance σ^2 (with $\mathcal{N}(0, 0) = \delta_0$).

Finally, we make four brief remarks.

- (i) To our knowledge, there is no general representation for the predictive distributions $P(Z_{n+1} \in \cdot \mid Z_1, \ldots, Z_n)$ of an exchangeable sequence (Z_n) . Such a representation would be very useful. Results like (2) and (2*) contribute to fill the gap for indicators. The general case, where the Z_n take values in an arbitrary measurable space, is dealt with in Subsection 4.2.
- (ii) In Bayesian statistics, π is the *prior* distribution. And priors are typically assumed absolutely continuous with respect to Lebesgue measure (possibly, with smooth densities). The results mentioned above, thus, apply to most Bayesian problems.
- (iii) Let p > 1 and c > 0. Those π which are absolutely continuous with respect to Lebesgue measure, with a density f such that $\left(\int_0^1 f(x)^p dx\right)^{\frac{1}{p}} \leq c$ (or such that

 $f \leq c$), can be characterized via their moments

$$\int x^{j} \pi(dx) = EV^{j} = P(X_{1} = \dots = X_{j} = 1).$$

This is the "Markov moment problem". We refer to [10] for more on this topic.

(iv) The results mentioned above straightforwardly extend to k-step predictions. Let $a_1, \ldots, a_k \in \{0, 1\}$. Then, $P(X_{n+1} = a_1, \ldots, X_{n+k} = a_k \mid X_1, \ldots, X_n)$ can be approximated by $\overline{X}_n^{\sum_i a_i} \left(1 - \overline{X}_n\right)^{k - \sum_i a_i}$ (where the possible indeterminate form 0^0 should be meant as $0^0 = 1$). Moreover, the error

$$\overline{X}_n^{\sum_i a_i} (1 - \overline{X}_n)^{k - \sum_i a_i} - P(X_{n+1} = a_1, \dots, X_{n+k} = a_k \mid X_1, \dots, X_n)$$

behaves asymptotically as $(\overline{X}_n - E(X_{n+1} \mid X_1, \dots, X_n))$; see Subsection 4.1.

2. Stable convergence

Let (Ω, \mathcal{A}, P) be a probability space and S a metric space. We write \mathcal{B} for the Borel σ -field of S and $C_b(S)$ for the set of real bounded continuous functions on S. A random probability measure on S, defined on (Ω, \mathcal{A}, P) , is a mapping N on $\Omega \times \mathcal{B}$ such that: (i) $N(\omega, \cdot)$ is a probability measure on \mathcal{B} for $\omega \in \Omega$; (ii) $N(\cdot, B)$ is \mathcal{A} -measurable for $B \in \mathcal{B}$. The real random variable $N(\omega, f) = \int f(x) N(\omega, dx)$, where f is a bounded \mathcal{B} -measurable function on S, is denoted by N(f).

Let us turn to stable convergence. Let (Z_n) be a sequence of S-valued random variables and N a random probability measure on S. Both (Z_n) and N are defined on (Ω, \mathcal{A}, P) . Say that Z_n converges stably to N in case

$$E(f(Z_n) \mid H) \to E(N(f) \mid H)$$
 for all $f \in C_b(S)$ and $H \in A$ with $P(H) > 0$.

If $Z_n \to N$ stably, then Z_n converges in distribution to the probability measure $B \mapsto EN(B)$ on \mathcal{B} (just let $H = \Omega$). Stable convergence has been introduced by Renyi in [13] and subsequently investigated by various authors. A detailed treatment, including some strengthened forms of stable convergence, is in [8].

3. Main results

In the sequel, as in Section 1, $(X_n : n \ge 1)$ is an exchangeable sequence of indicators on the probability space (Ω, \mathcal{A}, P) . We let

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad V = \limsup_n \overline{X}_n, \quad \Delta = \{v : P(V = v) > 0\}.$$

Also,

$$\pi = P \circ V^{-1}$$

is the probability distribution of V, λ the Lebesgue measure on (0,1), and $\mathcal{N}(a,b)$ the Gaussian law with mean a and variance $b \geq 0$ (with $\mathcal{N}(a,0) = \delta_a$).

We first investigate stable convergence of $E(f(W_n) \mid \mathcal{G}_n)$, where $f \in C_b(\mathbb{R})$ and

$$W_n = W(\sqrt{n}) = \sqrt{n} (\overline{X}_n - V), \quad \mathcal{G}_n = \sigma(X_1, \dots, X_n).$$

To this end, we begin with two introductory examples.

If (X_n) is i.i.d., then V = v a.s. for some $v \in [0,1]$ and a result of Renyi [13] yields $\sqrt{n}(\overline{X}_n - v) \to \mathcal{N}(0, v - v^2)$ stably. Since $\sqrt{n}(\overline{X}_n - v)$ is \mathcal{G}_n -measurable,

$$E(f(W_n) \mid \mathcal{G}_n) = f(W_n) \to \mathcal{N}(0, v - v^2) \circ f^{-1}$$
 stably for all $f \in C_b(\mathbb{R})$.

Note that π is discrete in the i.i.d. case (in fact, $\pi = \delta_v$).

Suppose now that (X_n) is a *Polya sequence*, that is, $P(X_1 = 1) = \frac{u}{u+v}$ and

$$E(X_{n+1} \mid \mathcal{G}_n) = \frac{u + \sum_{i=1}^n X_i}{u + v + n}$$
 a.s.

for some reals u, v > 0. When u, v are rationals, this probability assessment describes a well known urn scheme. In any case, π is a beta distribution with parameters u, v and

$$E(f(W_n) \mid \mathcal{G}_n) \stackrel{a.s.}{\to} \mathcal{N}(0, V - V^2)(f)$$
 for all $f \in C_b(\mathbb{R})$. (3)

Condition (3) has been first proved in Example 6 of [8] (with convergence in probability in the place of a.s. convergence) and then in Corollary 4.2 of [7].

One conjecture is that (3) holds whenever $\pi \ll \lambda$ (and not only in the Polya case). Provided this is true, further, the discrete and absolutely continuous cases could be unified. Next result realizes this programme.

Theorem 1. Let $f \in C_b(\mathbb{R})$. If π does not have a singular continuous part, then $E(f(W_n) \mid \mathcal{G}_n)$ converges stably to the random probability measure

$$M_f = I_{\{V \notin \Delta\}} \delta_{\mathcal{N}(0, V - V^2)(f)} + I_{\{V \in \Delta\}} \mathcal{N}(0, V - V^2) \circ f^{-1}.$$

Moreover, condition (3) holds whenever $\pi \ll \lambda$.

Proof. Let N denote the random probability measure $N = \mathcal{N}(0, V - V^2)$.

First, suppose $\pi \ll \lambda$. In order to prove (3), it can be assumed $\Omega = \{0,1\}^{\infty}$, \mathcal{A} the Borel σ -field and X_n the canonical projections. In this case, (X_n) is a Polya sequence under some probability measure P_0 on \mathcal{A} . Let π_0 be the distribution of V under P_0 (recall that π_0 is a beta distribution). Since $\pi \ll \lambda$ and λ is equivalent to π_0 , then $\pi \ll \pi_0$ and de Finetti's representation theorem implies $P \ll P_0$. Thus,

$$\sup_{A_{\in}\mathcal{A}} |P((X_{n+1},\ldots) \in A \mid \mathcal{G}_n) - P_0((X_{n+1},\ldots) \in A \mid \mathcal{G}_n)| \to 0, \quad P\text{-a.s.},$$

by Blackwell-Dubins result on merging [6]. Given $f \in C_b(\mathbb{R})$, define

$$U_n = |E_{P_0}(f(W_n) | \mathcal{G}_n) - N(f)|, \quad V_n = |E(f(W_n) | \mathcal{G}_n) - E_{P_0}(f(W_n) | \mathcal{G}_n)|.$$

By [7], since (X_n) is Polya under P_0 , then $U_n \to 0$, P_0 -a.s.. By Blackwell-Dubins result on merging, $V_n \to 0$, P-a.s.. Since $P \ll P_0$, one obtains

$$|E(f(W_n) | \mathcal{G}_n) - N(f)| \le U_n + V_n \to 0$$
, P-a.s..

Thus, condition (3) holds whenever $\pi \ll \lambda$.

Next, suppose π does not have a singular continuous part. Fix $f \in C_b(\mathbb{R})$, $-1 \le f \le 1$, and let $A = \{V \in \Delta\}$. Since $W_n \to N$ stably (see [5], Theorem 3.1),

$$E\big(M_f(g)\mid A\cap H\big)=E\big(N(g\circ f)\mid A\cap H\big)=\lim_n E\big(g\circ f(W_n)\mid A\cap H\big)$$

provided $g \in C_b(\mathbb{R}), H \in \mathcal{A}$ and $P(A \cap H) > 0$. It follows that

$$I_A f(W_n) + I_{A^c} N(f) \to M_f$$
 stably.

In order to prove $E(f(W_n) | \mathcal{G}_n) \to M_f$ stably, thus, it suffices showing that

$$E\Big|E\Big(f(W_n)\mid \mathcal{G}_n\Big)-I_Af(W_n)-I_{A^c}N(f)\Big| o 0.$$

Write $\Delta = \{v_1, v_2, \ldots\}$. Since $|f| \leq 1$, one obtains

$$E \Big| E \big(I_A f(W_n) \mid \mathcal{G}_n \big) - I_A f(W_n) \Big|$$

$$= E \Big| \sum_j f \left(\sqrt{n} (\overline{X}_n - v_j) \right) \left(P(V = v_j \mid \mathcal{G}_n) - I_{\{V = v_j\}} \right) \Big|$$

$$\leq \sum_j E \Big| P(V = v_j \mid \mathcal{G}_n) - I_{\{V = v_j\}} \Big|$$

$$\leq \sum_{j=1}^m E \Big| P(V = v_j \mid \mathcal{G}_n) - I_{\{V = v_j\}} \Big| + 2 \sum_{j > m} P(V = v_j) \quad \text{for all } m.$$

By martingale convergence, $E|P(V=v_j\mid\mathcal{G}_n)-I_{\{V=v_j\}}|\to 0$ for fixed j, and thus

$$\limsup_{n} E \Big| E \big(I_A f(W_n) \mid \mathcal{G}_n \big) - I_A f(W_n) \Big| \le 2 \limsup_{m} \sum_{j>m} P(V = v_j) = 0.$$

It remains to see that

$$E \Big| E \Big(I_{A^c} f(W_n) \mid \mathcal{G}_n \Big) - I_{A^c} N(f) \Big| \to 0.$$

To this end, it can be assumed $P(A^c) > 0$. Denote $Q(\cdot) = P(\cdot \mid A^c)$. On noting that $|f| \le 1$ and

$$E_Q(f(W_n) \mid \mathcal{G}_n) = \frac{E(I_{A^c}f(W_n) \mid \mathcal{G}_n)}{P(A^c \mid \mathcal{G}_n)}, \quad Q\text{-a.s.},$$

one obtains

$$E \Big| E \big(I_{A^c} f(W_n) \mid \mathcal{G}_n \big) - I_{A^c} N(f) \Big|$$

$$\leq E \Big| I_A E \big(I_{A^c} f(W_n) \mid \mathcal{G}_n \big) \Big| + E_Q \Big| E \big(I_{A^c} f(W_n) \mid \mathcal{G}_n \big) - N(f) \Big|$$

$$\leq E \big(I_A P(A^c \mid \mathcal{G}_n) \big) + E_Q \Big| P(A^c \mid \mathcal{G}_n) E_Q \big(f(W_n) \mid \mathcal{G}_n \big) - N(f) \Big|$$

$$\leq E \big(I_A P(A^c \mid \mathcal{G}_n) \big) + E_Q \Big| P(A \mid \mathcal{G}_n) \Big| + E_Q \Big| E_Q \big(f(W_n) \mid \mathcal{G}_n \big) - N(f) \Big|$$

By martingale convergence,

$$E(I_A P(A^c \mid \mathcal{G}_n)) + E_Q |P(A \mid \mathcal{G}_n)| = E(I_A P(A^c \mid \mathcal{G}_n)) + \frac{E(I_{A^c} P(A \mid \mathcal{G}_n))}{P(A^c)} \to 0.$$

Finally, since π does not have a singular continuous part, the distribution of V under Q is absolutely continuous with respect to λ . Also, (X_n) is still exchangeable under Q. Hence, the first part of this proof yields

$$E_Q \Big| E_Q \big(f(W_n) \mid \mathcal{G}_n \big) - N(f) \Big| \to 0.$$

Incidentally, the previous proof shows that condition (3) holds, even if (X_n) is not exchangeable, provided the law of (X_n) is absolutely continuous with respect to the law of a Polya sequence. For proving (3), in fact, we only used $P \ll P_0$.

Theorem 1 also sheds light on the rate of convergence of $\{\overline{X}_n - E(X_{n+1} \mid \mathcal{G}_n)\}$, which is our main purpose. Recall that $E(X_{n+1} \mid \mathcal{G}_n) = E(V \mid \mathcal{G}_n)$ a.s. and define

$$C_n = C(\sqrt{n}) = \sqrt{n} \left\{ \overline{X}_n - E(X_{n+1} \mid \mathcal{G}_n) \right\} = E(W_n \mid \mathcal{G}_n)$$
 a.s..

Theorem 2. If π does not have a singular continuous part, then C_n converges stably to the random probability measure

$$M = I_{\{V \notin \Delta\}} \delta_0 + I_{\{V \in \Delta\}} \mathcal{N}(0, V - V^2).$$

Moreover $E|C_n|^r \to 0$, for all r > 0, whenever $\pi \ll \lambda$.

The following lemma, needed for proving Theorem 2, is certainly known. Since we do not know of any reference, however, we give it a proof.

Lemma 3. Let (Y_n) be a sequence of real i.i.d. random variables on a common probability space, with $EY_1^{2k} < \infty$ and $EY_1 = 0$, $k = 1, 2, \ldots$ Then,

$$\sup_{n} E\left\{ \left(\frac{\sum_{i=1}^{n} Y_{i}}{\sqrt{n}} \right)^{2k} \right\} \le \gamma_{k} E Y_{1}^{2k}$$

for some constant γ_k depending on k only.

Proof. Let $S_0=0$ and $S_n=\sum_{i=1}^n Y_i$. Then, S_n is a martingale with quadratic variation $[S]_0=0$ and $[S]_n=\sum_{i=1}^n (S_i-S_{i-1})^2=\sum_{i=1}^n Y_i^2$. By the well known Burkholder-Davis-Gundy inequality, there is a universal constant γ_k such that $E\left(\max_{0\leq j\leq n}S_j^{2k}\right)\leq \gamma_k\,E\left([S]_n^k\right)$. For such a γ_k and any integer n, one obtains

$$E\left\{\left(\frac{S_n}{\sqrt{n}}\right)^{2k}\right\} \le \frac{\gamma_k}{n^k} E\left\{\left(\sum_{i=1}^n Y_i^2\right)^k\right\} = \frac{\gamma_k}{n^k} \sum_{i_1=1}^n \dots \sum_{i_k=1}^n E\left(Y_{i_1}^2 \dots Y_{i_k}^2\right) \le \gamma_k EY_1^{2k}.$$

Proof of Theorem 2. Let \mathcal{T} denote the tail σ -field of (X_n) . By exchangeability of (X_n) and Lemma 3, for each integer $k \geq 1$ there is a constant γ_k satisfying

$$\sup_{n} EW_n^{2k} = \sup_{n} E\left(E(W_n^{2k} \mid \mathcal{T})\right) \le \gamma_k E\left(E(X_1^{2k} \mid \mathcal{T})\right) = \gamma_k EX_1^{2k} < \infty.$$

Further, $EC_n^{2k} \leq EW_n^{2k}$ since $C_n = E(W_n \mid \mathcal{G}_n)$ a.s.. Hence, both the sequences $(|W_n|^r)$ and $(|C_n|^r)$ are uniformly integrable for all real r > 0.

Next, suppose π does not have a singular continuous part. Let $g: \mathbb{R} \to \mathbb{R}$ be a function satisfying $|g(x) - g(y)| \leq |x - y|$ and $|g(x)| \leq 1$ for all x, y, and let $H \in \mathcal{A}$ with P(H) > 0. To prove $C_n \to M$ stably, it is enough to see that $E(g(C_n) \mid H) \to E(M(g) \mid H)$. Since (W_n) is uniformly integrable, given $\epsilon > 0$, there is c > 0 such that

$$\sup_{n} E\left(|W_n| I_{\{|W_n| > c\}}\right) < \frac{\epsilon P(H)}{4} \quad \text{and} \quad c^2 > \frac{1}{\epsilon}.$$

Define f(x) = x for $|x| \le c$, f(x) = c for x > c, and f(x) = -c for x < -c, and let $U_n = E(f(W_n) \mid \mathcal{G}_n)$. Since g is Lipschitz continuous and $C_n = E(W_n \mid \mathcal{G}_n)$ a.s.,

$$|g(C_n) - g(U_n)| \le |C_n - U_n| \le 2 E(|W_n| I_{\{|W_n| > c\}} | \mathcal{G}_n)$$
 a.s.,

and this implies

$$E(|g(C_n) - g(U_n)| \mid H) \le \frac{2}{P(H)} E(|W_n| I_{\{|W_n| > c\}}) < \frac{\epsilon}{2} \quad \text{for all } n.$$

Since $\mathcal{N}(0, V - V^2)(f) = 0$, then $M_f = \delta_0 = M$ on $\{V \notin \Delta\}$, where M_f is the random probability measure appearing in Theorem 1. Further, since $|g| \leq 1$,

 $0 \le V \le 1$ and $c^2 > \frac{1}{\epsilon}$, one obtains

$$\begin{split} |\,\mathcal{N}(0,V-V^2)(g\circ f) - \mathcal{N}(0,V-V^2)(g)\,| &\leq \mathcal{N}(0,V-V^2)(|g\circ f - g|) \\ &\leq 2\,\mathcal{N}(0,V-V^2)(\{x:|x|>c\}) \leq \frac{2(V-V^2)}{c^2} \leq \frac{2}{c^2}\frac{1}{4} < \frac{\epsilon}{2}. \end{split}$$

To sum up, one can estimate as follows

$$|E(g(C_{n}) | H) - E(M(g) | H)| - |E(g(U_{n}) | H) - E(M_{f}(g) | H)|$$

$$\leq |E(g(C_{n}) | H) - E(g(U_{n}) | H)| + |E(M_{f}(g) | H) - E(M(g) | H)|$$

$$< \frac{\epsilon}{2} + E(I_{\{V \in \Delta\}} |M_{f}(g) - M(g)| | H)$$

$$= \frac{\epsilon}{2} + E(I_{\{V \in \Delta\}} |\mathcal{N}(0, V - V^{2})(g \circ f) - \mathcal{N}(0, V - V^{2})(g)| | H)$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} P(V \in \Delta | H) \leq \epsilon.$$

Since Theorem 1 yields $E(g(U_n) \mid H) \to E(M_f(g) \mid H)$, one obtains

$$\limsup_{n} |E(g(C_n) \mid H) - E(M(g) \mid H)| \le \epsilon.$$

Therefore, $C_n \to M$ stably. In particular, if $\pi \ll \lambda$, then $C_n \to M = \delta_0$ stably, that is, $C_n \stackrel{P}{\to} 0$. Hence $E|C_n|^r \to 0$, because of uniform integrability of $(|C_n|^r)$, for all r > 0. This concludes the proof.

At least two remarks on Theorem 2 are in order.

First, if π has a singular continuous part, we suspect that C_n converges stably to a non null limit. But we have not a proof.

Second,

$$\sqrt{n} C_n = n \left\{ \overline{X}_n - E(X_{n+1} \mid \mathcal{G}_n) \right\}$$

converges a.s. in case (X_n) is a Polya sequence. A conjecture is that $\sqrt{n} C_n$ converges a.s. whenever $\pi \ll \lambda$. This is actually true, as we now prove, under some conditions on the density. Say that a real function f on (0,1) is almost Lipschitz in case $x \mapsto f(x)x^a(1-x)^b$ is Lipschitz on (0,1) for some reals a, b < 1.

Theorem 4. If π admits an almost Lipschitz density with respect to λ , then $\sqrt{n} C_n \stackrel{a.s.}{\to} D$ for some real random variable D.

A few technical facts, needed for proving Theorem 4, are collected in the following lemma.

Lemma 5. Let $\Omega = \{0,1\}^{\infty}$, \mathcal{A} the Borel σ -field on Ω and X_n the canonical projections. Let P_0 be the probability on \mathcal{A} which makes (X_n) a Polya sequence (for some u, v > 0). If $\pi \ll \lambda$, there is a nonnegative Borel function h on [0,1] such that h(V) is a density of P with respect to P_0 . Moreover,

$$P(V \in B) = c \int_{B} h(x) x^{u-1} (1-x)^{v-1} dx$$

for each Borel set $B \subset [0,1]$, where c > 0 is a constant.

Proof. Let $\mathcal{N}_0 = \{A \in \mathcal{A} : P_0(A) = 0\}$ and \mathcal{S} the symmetric σ -field on $\Omega = \{0, 1\}^{\infty}$. Since $\pi \ll \lambda$, then $P \ll P_0$. Fix a version f of $\frac{dP}{dP_0}$ and a finite permutation ϕ of

 Ω . Let φ be the finite permutation such that $\varphi \circ \phi(\omega) = \omega$ for all $\omega \in \Omega$. By exchangeability of both P and P_0 , one obtains

$$\int_{A} f \, dP_{0} = P(A) = P(\varphi^{-1}A) = \int (I_{A} \circ \varphi) \, f \, dP_{0} = \int_{A} (f \circ \phi) \, dP_{0}$$

for all $A \in \mathcal{A}$. Hence, $\{f \neq f \circ \phi\} \in \mathcal{N}_0$. Since finite permutations are countably many, there is a nonnegative \mathcal{S} -measurable function f_1 on Ω satisfying $\{f \neq f_1\} \in \mathcal{N}_0$. Since f_1 is \mathcal{S} -measurable and P_0 exchangeable,

$$\sigma(f_1) \subset \mathcal{S} \subset \sigma(\sigma(V) \cup \mathcal{N}_0).$$

Hence, $\{f_1 \neq f_2\} \in \mathcal{N}_0$ for some nonnegative $\sigma(V)$ -measurable function f_2 on Ω . Such f_2 is a version of $\frac{dP}{dP_0}$ and $f_2 = h(V)$ for some nonnegative Borel function h. Finally, it suffices noting that the distribution of V under P_0 is beta with parameters u, v.

Proof of Theorem 4. Since $\sqrt{n} C_n$ is a \mathcal{G}_n -martingale, it suffices proving that $\sup_n \sqrt{n} E|C_n| < \infty$. To this end, it can be assumed $\Omega = \{0,1\}^{\infty}$, \mathcal{A} the Borel σ -field and X_n the canonical projections.

Since π has an almost Lipschitz density, there is a version g of $\frac{d\pi}{d\lambda}$ such that $x \mapsto g(x)x^a(1-x)^b$ is Lipschitz on (0,1) for some a, b < 1. Let P_0 be the probability on \mathcal{A} which makes (X_n) a Polya sequence with u = 1 - a and v = 1 - b. By Lemma 5, some version of $\frac{dP}{dP_0}$ is of the form h(V) where h is a nonnegative Lipschitz function on (0,1).

Using such version, C_n can be written as

$$C_n = E(W_n \mid \mathcal{G}_n) = \frac{E_0(h(V) W_n \mid \mathcal{G}_n)}{E_0(h(V) \mid \mathcal{G}_n)}, \quad P\text{-a.s.},$$

where E_0 denotes expectation under P_0 . Thus,

$$E|C_n| = E_0 \{ h(V) \frac{|E_0(h(V) W_n | \mathcal{G}_n)|}{E_0(h(V) | \mathcal{G}_n)} \} = E_0 | E_0(h(V) W_n | \mathcal{G}_n) |.$$

Let

$$V_n = E_0(V \mid \mathcal{G}_n) = E_0(X_{n+1} \mid \mathcal{G}_n) = \frac{u + \sum_{i=1}^n X_i}{u + v + n}.$$

Then, $\sqrt{n} |E_0(W_n | \mathcal{G}_n)| = n |\overline{X}_n - V_n| \le u + v$, P_0 -a.s.. Since h is Lipschitz (and thus bounded) on (0,1) and $P_0(0 < V_n < 1, 0 < V < 1) = 1$ for all n, it follows that

$$E|C_{n}| \leq E_{0} |h(V_{n}) E_{0}(W_{n} | \mathcal{G}_{n})| + E_{0} |E_{0}((h(V) - h(V_{n})) W_{n} | \mathcal{G}_{n})|$$

$$\leq \frac{(u + v) \sup h}{\sqrt{n}} + c E_{0} \{ E_{0}(|(V - V_{n}) W_{n}| | \mathcal{G}_{n}) \}$$

where c is the Lipschitz constant of h. Letting $U_n = \sqrt{n} (V - V_n)$, one also obtains $\sqrt{n} E|C_n| \le (u+v) \sup h + c E_0 \{E_0(|U_nW_n| \mid \mathcal{G}_n)\} = (u+v) \sup h + c E_0|U_nW_n|$.

As noted in the proof of Theorem 2, $E_0C_n^2 \leq E_0W_n^2 \leq d$ for all n and some constant

d. Since $U_n = C_n - W_n$, it follows that $E_0 U_n^2 \le 2 \left(E_0 C_n^2 + E_0 W_n^2 \right) \le 4 d$ and

$$\sqrt{n} E|C_n| \le (u+v) \sup h + c \sqrt{E_0 U_n^2 E_0 W_n^2} \le (u+v) \sup h + 2 c d$$

for all n. This concludes the proof.

4. Miscellaneous results

The results obtained so far admit some generalizations.

4.1. k-step predictions. Let $a_1, \ldots, a_k \in \{0,1\}$ and $a = \sum_{i=1}^k a_i$. Then,

$$P(X_{n+1} = a_1, ..., X_{n+k} = a_k \mid \mathcal{G}_n) = E(V^a (1 - V)^{k-a} \mid \mathcal{G}_n)$$

is well approximated by $\overline{X}_n^a \left(1 - \overline{X}_n\right)^{k-a}$ (where the possible indeterminate form 0^0 is meant as $0^0 = 1$). In addition, the asymptotic behaviour of

$$T_n = \sqrt{n} \left\{ \overline{X}_n^a \left(1 - \overline{X}_n \right)^{k-a} - E(V^a (1 - V)^{k-a} \mid \mathcal{G}_n) \right\}$$

is quite similar to that of C_n .

Corollary 6. If π does not have a singular continuous part, then T_n converges stably to the random probability measure

$$M(\sigma^2) = I_{\{V \notin \Delta\}} \delta_0 + I_{\{V \in \Delta\}} \mathcal{N}(0, \sigma^2) = \mathcal{N}(0, I_{\{V \in \Delta\}} \sigma^2),$$

where
$$\sigma^2 = k^2 V^{2k-1} (1-V)$$
 if $a = k$, $\sigma^2 = k^2 V (1-V)^{2k-1}$ if $a = 0$, and

$$\sigma^2 = (a - kV)^2 V^{2a-1} (1 - V)^{2(k-a)-1} \quad \text{if } 0 < a < k.$$

In particular, $T_n \stackrel{P}{\to} 0$ in case $\pi \ll \lambda$.

Proof. Letting $f(x) = x^a(1-x)^{k-a}$, Lagrange theorem yields

$$T_{n} = \sqrt{n} E(f(\overline{X}_{n}) - f(V) \mid \mathcal{G}_{n}) = \sqrt{n} E(f'(V_{n}) (\overline{X}_{n} - V) \mid \mathcal{G}_{n})$$

= $f'(\overline{X}_{n}) E(W_{n} \mid \mathcal{G}_{n}) + E((f'(V_{n}) - f'(\overline{X}_{n})) W_{n} \mid \mathcal{G}_{n})$ a.s.

where V_n is between \overline{X}_n and V. Let $M = \mathcal{N}(0, I_{\{V \in \Delta\}}V(1-V))$. Since $C_n \to M$ stably (by Theorem 2), f' is continuous and $\overline{X}_n \overset{a.s.}{\longrightarrow} V$, one obtains

$$f'(\overline{X}_n) E(W_n \mid \mathcal{G}_n) = f'(\overline{X}_n) C_n \to \mathcal{N}(0, I_{\{V \in \Delta\}} f'(V)^2 V(1-V)) = M(\sigma^2)$$
 stably.

Thus, it remains only to see that $E((f'(V_n) - f'(\overline{X}_n)) W_n \mid \mathcal{G}_n) \xrightarrow{P} 0$. Let $R_n = f'(V_n) - f'(\overline{X}_n)$. Then, $R_n \xrightarrow{a.s.} 0$ and $R_n^2 \le 4 \max_{0 \le x \le 1} f'(x)^2$ for all n. Since $\sup_n EW_n^2 < \infty$, it follows that

$$E|E(R_n W_n \mid \mathcal{G}_n)| \le E|R_n W_n| \le \sqrt{EW_n^2 ER_n^2} \rightarrow 0.$$

4.2. **General state space.** Let (Z_n) be an exchangeable sequence of random variables, defined on (Ω, \mathcal{A}, P) and taking values in the measurable space (S, \mathcal{B}) . Let $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{Z_i}$ denote the empirical measure and

$$\mathcal{G}_n = \sigma(Z_1, \dots, Z_n).$$

Given $B \in \mathcal{B}$, let us consider

$$C_n^* = \sqrt{n} \{ \mu_n(B) - E(I_{\{Z_{n+1} \in B\}} \mid \mathcal{G}_n) \}.$$

After Section 3, we know something about $\sqrt{n} \{ \mu_n(B) - E(I_{\{Z_{n+1} \in B\}} \mid \mathcal{G}_n^B) \}$ where $\mathcal{G}_n^B = \sigma(I_{\{Z_1 \in B\}}, \dots, I_{\{Z_n \in B\}})$. But this is not enough for C_n^* , since the asymptotic behaviour of

$$\sqrt{n}\left\{E\left(I_{\{Z_{n+1}\in B\}}\mid\mathcal{G}_{n}^{B}\right)-E\left(I_{\{Z_{n+1}\in B\}}\mid\mathcal{G}_{n}\right)\right\}$$

is unknown (to us). The arguments of Section 3, however, give some help.

Let $Z = (Z_1, Z_2, ...)$ and ν a probability measure on \mathcal{B}^{∞} such that

$$C_n^* \xrightarrow{P} 0$$
 whenever $Z \sim \nu$. (4)

Theorem 7. Suppose $P(Z \in \cdot) \ll \nu$, where $Z = (Z_1, Z_2, ...)$ and ν is a probability on \mathcal{B}^{∞} satisfying (4). Then, $E|C_n^*|^r \to 0$ for all r > 0. In particular,

$$E(I_{\{Z_{n+1}\in B\}}\mid \mathcal{G}_n) = \mu_n(B) + o_P(\frac{1}{\sqrt{n}}).$$

To avoid repetitions, we just give a sketch of the proof.

Proof of Theorem 7. Define $V_B = \limsup_n \mu_n(B)$, $W_n^* = \sqrt{n}(\mu_n(B) - V_B)$ and note that $C_n^* = E\left(W_n^* \mid \mathcal{G}_n\right)$ a.s.. As in the proof of Theorem 2, the sequences $(|W_n^*|^r)$ and $(|C_n^*|^r)$ can be shown to be uniformly integrable for all r>0. Thus, it suffices proving that $E|C_n^*| \to 0$. It can be assumed $(\Omega, \mathcal{A}) = (S^\infty, \mathcal{B}^\infty)$ and Z_n the canonical projections. Let $P_0 = \nu$ and f a version of $\frac{dP}{dP_0}$. As in the proof of Theorem 4, $E|C_n^*| = E_0 \mid E_0\left(f W_n^* \mid \mathcal{G}_n\right) \mid$ where E_0 denotes expectation under P_0 . Since (W_n^*) is uniformly integrable, given $\epsilon>0$, there is c>0 such that

$$E_0 | E_0(f I_{\{f>c\}} W_n^* | \mathcal{G}_n) | \le E_0(f I_{\{f>c\}} | W_n^* |) = E(I_{\{f>c\}} | W_n^* |) < \epsilon$$
 for all n .

Using such c, define $U_n = f I_{\{f \leq c\}} - E_0(f I_{\{f \leq c\}} \mid \mathcal{G}_n)$. Then,

$$E|C_{n}^{*}| < \epsilon + E_{0} | E_{0}(f I_{\{f \leq c\}} W_{n}^{*} | \mathcal{G}_{n}) |$$

$$\leq \epsilon + E_{0} | E_{0}(f I_{\{f \leq c\}} | \mathcal{G}_{n}) E_{0}(W_{n}^{*} | \mathcal{G}_{n}) | + E_{0} | E_{0}(U_{n} W_{n}^{*} | \mathcal{G}_{n}) |$$

$$\leq \epsilon + c E_{0} | E_{0}(W_{n}^{*} | \mathcal{G}_{n}) | + \sqrt{E_{0} U_{n}^{2} E_{0} W_{n}^{*2}}.$$

By (4), $E_0(W_n^* \mid \mathcal{G}_n) \stackrel{P_0}{\to} 0$. Since the sequence $(E_0(W_n^* \mid \mathcal{G}_n))$ is uniformly integrable under P_0 , then $E_0|E_0(W_n^* \mid \mathcal{G}_n)| \to 0$. Thus, to conclude the proof, it suffices noting that $\sup_n E_0 W_n^{*2} < \infty$ and

$$\lim_{n} E_0 U_n^2 = \lim_{n} E_0 \{ (f I_{\{f \le c\}} - E_0 (f I_{\{f \le c\}} \mid \mathcal{G}_n))^2 \} = 0$$

by martingale convergence.

Various examples of ν satisfying (4) are available in the *Bayesian nonparametrics* framework; see e.g. [12] and references therein. One of the most popular is the law of a Ferguson-Dirichlet sequence. If Z is such a sequence,

$$E(I_{\{Z_{n+1}\in B\}} \mid \mathcal{G}_n) = \frac{a P(Z_1 \in B) + n \mu_n(B)}{a+n}$$
 a.s.

for some a > 0, and thus $|C_n^*| \le \frac{a}{\sqrt{n}}$. Note that Ferguson-Dirichlet sequences reduce to Polya's for $S = \{0, 1\}$.

Let ν denote the law of a Ferguson-Dirichlet sequence. Characterizing those Z such that $P(Z \in \cdot) \ll \nu$ is quite easy in case S is finite (and \mathcal{B} the power set of S). Suppose in fact $S = \{x_1, \ldots, x_k, x_{k+1}\}$ and $P(Z_1 = x) > 0$ for all $x \in S$. Define $V_x = \limsup_n \mu_n\{x\}$. Then, $P(Z \in \cdot) \ll \nu$ if and only if $(V_{x_1}, \ldots, V_{x_k})$ has an absolutely continuous distribution, with respect to Lebesgue measure, on the set $\{(u_1, \ldots, u_k) : u_i > 0 \text{ for all } i \text{ and } \sum_{i=1}^k u_i < 1\}$. Note that, in case of indicators $(S = \{0, 1\} \text{ and } 0 < P(Z_1 = 1) < 1)$, one obtains $P(Z \in \cdot) \ll \nu$ if and only if $V = V_1$ has an absolutely continuous distribution with respect to Lebesgue measure on (0, 1).

For general state spaces, instead, we do not know of reasonably simple characterizations of $P(Z \in \cdot) \ll \nu$.

References

- [1] Algoet P.H. (1992) Universal schemes for prediction, gambling and portfolio selection, Ann. Probab., 20, 901-941.
- [2] Algoet P.H. (1995) Universal prediction schemes (Correction), Ann. Probab., 23, 474-478.
- [3] Berti P. and Rigo P. (2002) A uniform limit theorem for predictive distributions, *Statist. Probab. Letters*, 56, 113-120.
- [4] Berti P., Mattei A. and Rigo P. (2002) Uniform convergence of empirical and predictive measures, *Atti Sem. Mat. Fis. Univ. Modena*, L, 465-477.
- [5] Berti P., Pratelli L. and Rigo P. (2004) Limit theorems for a class of identically distributed random variables, *Ann. Probab.*, 32, 2029-2052.
- [6] Blackwell D. and Dubins L.E.(1962) Merging of opinions with increasing information, *Ann. Math. Statist.*, 33, 882-886.
- [7] Crimaldi I. (2007) Almost sure conditional convergence for a generalized Polya urn, *submitted*, currently available at: http://www.dm.unibo.it/~crimaldi/articoli-inviati.html
- [8] Crimaldi I., Letta G. and Pratelli L. (2007) A strong form of stable convergence, Seminaire de Probabilites XL, Lect. Notes in Math., 1899, 203-225.
- [9] de Finetti B. (1937) La prevision: ses lois logiques, ses sources subjectives, *Annales Instit. Poincare*, 7, 1-68.
- [10] Diaconis P. and Freedman D. (2004) The Markov moment problem and de Finetti's theorem, Parts I and II, *Math. Zeitschrift*, 247, 183-199 and 201-212.
- [11] Morvai G. and Weiss B. (2005) Forward estimation for ergodic time series, Ann. Inst. H. Poincare Probab. Statist., 41, 859-870.
- [12] Pitman J. (1996) Some developments of the Blackwell-MacQueen urn scheme, In: Statistics, Probability and Game Theory (Ferguson, Shapley and MacQueen Eds.), IMS Lecture Notes Monogr. Ser., 30, 245-267.
- [13] Renyi A. (1963) On stable sequences of events, Sankhya A, 25, 293-302.

Patrizia Berti, Dipartimento di Matematica Pura ed Applicata "G. Vitali", Universita' di Modena e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy

 $E ext{-}mail\ address:$ patrizia.berti@unimore.it

Irene Crimaldi, Dipartimento di Matematica, Universita' di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

 $E ext{-}mail\ address: crimaldi@dm.unibo.it}$

Luca Pratelli, Accademia Navale, viale Italia 72, 57100 Livorno, Italy E-mail address: pratel@mail.dm.unipi.it

Pietro Rigo (corresponding author), Dipartimento di Economia Politica e Metodi Quantitativi, Universita' di Pavia, via S. Felice 5, 27100 Pavia, Italy

E-mail address: prigo@eco.unipv.it