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Unit root tests under time-varying variances

Giuseppe Cavaliere
Dipartimento di Scienze Statistiche

Università di Bologna

Abstract

The paper provides a general framework for investigating
the effects of permanent changes in the variance of the errors of
an autoregressive process on unit root tests. Such a framework
— which is based on a novel asymptotic theory for integrated
and near integrated processes with heteroskedastic errors — al-
lows to evaluate how the variance dynamics affect the size and
the power function of unit root tests. Contrary to previous
studies, it is shown that under permanent variance shifts, the
conventional critical values can lead both to oversized and un-
dersized tests. The paper concludes by showing that the power
function of the unit root tests is affected by non-constant vari-
ances as well.
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1 Introduction

In the recent literature on integrated processes increasing attention
has been paid to the effect of structural breaks on size and power of
unit root tests. In his seminal papers, Perron (1989, 1990) has shown
that the presence of structural breaks in the deterministic trend can
reduce the power of unit root tests dramatically. These results have
been extended by Leybourne and Newbold (2000a, 2000b) and by
Leybourne et al. (1998), who show that the size of unit root tests
is seriously affected by the presence of relatively early breaks in the
slope of the deterministic trend. Further studies, e.g. on the effects
of level breaks (Harvey et al., 2001) and of changes in the persistence
(Kim, 2000), have been carried out.

This work extends the existing literature by focusing on the ef-
fect of permanent breaks in the variance of the errors in a linear
(I(1) or I(0)) data generating process both on the size and the power
of unit root tests. Although the existence of significant volatility
breaks in the main macroeconomic variables across most countries
has been documented in a number of papers (see van Dijk et al.,
2002, and references therein), this topic has not been deeply inves-
tigated yet. Nelson et al. (2001) and Cavaliere (2003) examine the
effect of variance breaks following a Markov switching process and
find little evidence on size distortions. Similarly, it is well known that
time-varying conditional variances (e.g. ARCH) do not have a serious
impact on unit root tests, see e.g. Hansen and Rahbek (1998), Kim
and Schmidt (1993). Both Markov-changing and ARCH variances,
however, are not generally characterized by permanent changes. Con-
versely, Hamori and Tokihisa (1997) show that a permanent positive
(negative) variance shift increases (decreases) the size of Dickey-Fuller
(DF) type tests when no deterministic correction is employed. Their
paper, however, contains an error and the conclusion is not correct.
The effect of a single variance break on the (constant-corrected) DF
t-type test is also analyzed by Kim, Leybourne and Newbold (2002),
who report the presence of over-rejections when a (relatively early)
negative variance shift occurs under the null hypothesis of a unit root
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— a result which is the contrary of what has been reported by Hamori
and Tokihisa (1997).

In this paper the effect of permanent variance changes on unit root
tests is investigated in a very general framework. Instead of assuming
a specific pattern for the variance of the errors, the reference data
generating process (d.g.p.) only requires that the variance dynamics
have bounded, square integrable sample paths. The commonly used
models of structural breaks or (smooth/abrupt) parameter changes,
e.g. the single-break models of Hamori and Tokihisa (1997) and Kim
et al. (2002), fall within the class of models considered here.

The paper improves the existing literature at least in three further
directions. First, the analysis of the impact of variance changes in
the framework of unit root tests does not cover the size of the tests
only. The effect of variance changes on the power functions is also
inspected.

Second, instead of considering DF type tests only (as e.g. in
Hamori and Tokihisa, 1997, and Kim et al., 2002), we extend the
analysis to other unit root tests. Specifically, attention is paid to the
class of unit root tests introduced by Sargan and Bhargava (1983)
and later generalized by Stock (1990), and to the locally best invari-
ant (LBI) tests, see e.g. Tanaka (1996). More important, the anal-
ysis also covers tests which employ heteroskedasticity and autocor-
relation consistent (HAC) estimators of the long-run variance, such
as the well-known Phillips-Perron tests or Stock’s modified SB test.
Furthermore, our framework allows for the presence of deterministic
corrections in the construction of the test statistics; corrections for
the presence of a broken trend (e.g. Perron’s test) are also permitted.

Third, instead of relying on finite-sample results obtainable by
Monte Carlo (MC) experiments only, variance breaks are analyzed
by referring to a novel class of asymptotic results in the unit root
and near-unit root framework under permanent variance changes.
Such results are based on the concept of ‘variance-transformed’ dif-
fusion processes, recently introduced by Davidson (1994). Standard
asymptotics, as e.g. in Phillips (1987a, 1987b), follow as a special
case.

4



Finally, since the asymptotic framework allows for a wide class of
variance behaviour, we will analyze two common variance patterns,
i.e. the single variance permanent break and the case of (upward or
downward) trending variances.

The paper is organized as follows. In Section 2 the reference d.g.p.
and unit root tests are described. In Section 3 an asymptotic theory
for unit root processes under permanent variance changes is devel-
oped and the effect of non-constant variances on the size of the tests
is discussed. Section 4 extends the asymptotic theory to the near-
unit root case and allows to analyze the effect of variance changes on
the power function of the tests. In Section 5 the large sample the-
ory is applied to the single variance break model and to the case of
trending variances. Section 6 concludes. All proofs are placed in the
Appendix. In the following “

w→” denotes weak convergence and “ p→”
convergence in probability; I(·) is the indicator function and “x := y”
indicates that x is defined by y. D := D[0, 1] denotes the space of
right continuous with left limit (cadlag) processes on [0, 1].

2 DGP and test statistics

We start by considering the following first-order autoregressive model

X (t) = αX (t− 1) + u (t) , t = 0, 1, ..., T (1)

u (t) = σ (t) ε (t) (2)

X (0) = 0 a.s. (3)

where {ε (t)} has zero unconditional mean and unit variance , i.e.
E(ε (t)) = 0, E(ε (t)

2) = 1, all t. The error term {u (t)} is split into
the product of two components, {ε (t)} and {σ (t)}, where the lat-
ter component is a multiplicative factor. If {σ (t)} is assumed to be
nonstochastic, σ (t)2 can be interpreted as the time-varying uncon-
ditional variance of the errors, i.e. E(u (t)

2) = σ (t)2. Although it
is not strictly necessary to require that the variance function σ (t)
is non-stochastic, see below, such an assumption allows a consider-
able simplification of the theoretical set-up. Through the paper we
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will also assume that the following set of conditions holds (unless
differently specified).

Assumption V. The variance term σ (t) is defined according to the
following equation

σ (t) := ω (t/T ) (4)

where ω (·) ∈ D is a non-stochastic function with a finite num-
ber of points of discontinuity; moreover, ω (·) > 0 and satisfies
a (uniform) first-order Lipschitz condition except at the points
of discontinuity.

Assumption E. {ε (t)} is a real zero-mean, strictly stationary mixing
process with E |ε (t) |2 = 1, E |ε (t) |p < ∞ for some p > 2 and
with mixing coefficients {αm} satisfyingP∞
m=0 α

2(1/r−1/p)
m < ∞ for some r ∈ (2, 4], r ≤ p. Further-

more, the long run variance λ2ε :=
P∞
k=−∞ E(ε (t) ε (t+ k)) is

strictly positive and finite.

Assumption U . The autoregressive coefficient α satisfies |α| < 1 or
α = 1.

Condition V describes the dynamics of the unconditional variance
of the errors. Under V, the variance function ω (·) is square-integrable
and bounded, i.e.

R 1
0 ω (s)

2 ds < ∞, sups∈[0,1] ω (s) < ∞; moreover,
it is allowed to have a finite number of jumps. Models of single or
multiple variance shifts satisfy condition V with ω (·) piecewise con-
stant. For instance, the function ω (s) := σ0 + (σ1 − σ0) I (s > τ)
corresponds to the single break model with a variance shift at time
[τT ]. If ω (·)2 is an affine function, then trivially the unconditional
variance of the errors displays a linear trend. Seasonal heteroskedas-
ticity is obtained by choosing ω (·) as a periodic function with period
p/T , where p is the number of seasons. The degenerate diffusion
limit of GARCH processes, see Corradi (2000), for large T corre-
sponds to (4) with ω (s)2 :=

¡
σ20 − σ2

¢
exp (−θs) + σ2, θ > 0. The

assumption of a non-stochastic variance function ω (·) can be eas-
ily weakened by simply assuming stochastic independence between
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{ε (t)} and {σ (t)}; obviously, the (stochastic) functional {ω (·)} must
have sample paths satisfying the requirements of Assumption V.1 In
the stochastic variance framework, the results given in the following
should be interpreted as conditional on a given realization of {ω (·)}.
Finally, since the variance σ2 (t) depends on T , a time series gener-
ated according to (1)-(4) formally constitutes a triangular array of
the type {XT (t) : t = 0, 1, ..., T ; T = 0, 1, ...}, where XT (t) is recur-
sively defined as XT (t) := XT (t− 1)+σT (t) ε (t), σT (t) := ω (t/T ).
However, this notation is not essential and the process will be simply
denoted as {X (t)}.

If ω (·) is not constant, then the process is unconditionally het-
eroskedastic. Furthermore, conditional heteroskedasticity is also per-
mitted, since condition E is compatible with the presence of time-
varying conditional variances, see e.g. Hansen (1992b). Condition
E has been used extensively in the econometric literature, as it al-
lows {ε (t)} to belong to a wide class of weakly dependent stationary
processes. Moments of order p > 2 are assumed to exist, and the re-
striction on the mixing coefficients embodies the well-known trade-off
between the moments and the memory of the process. The restric-
tion on the long-run variance λ2ε rules out non-invertibility. The strict
stationarity assumption is mainly used to simplify the proofs of the
results of the paper; it can be removed, hence allowing weak hetero-
geneity of the errors (as e.g. in Phillips, 1987a).

Condition U assumes that the process is generated either through
a stable autoregression (|α| < 1) or through a difference equation
with a unit root. Specifically, if α = 1, {X (t)} is a unit root process
with heterogeneous increments. Integration at non-zero frequencies
and explosive roots are ruled out.

In order to assess the impact of time-varying variances on unit
root tests we initially consider the standard Dickey-Fuller type unit

1In the stochastic variance framework, one could assume that {ω (·)} is gen-
erated by the diffusion dω (s)2 = (ω0 − θω (s))ds + σω (s) dB (s), {B (·)} being a
standard Brownian motion. This pattern corresponds to the non-degenerate large
sample limit of GARCH processes, see Corradi (2000). Note, however, that in
order to cover this case one should relax the Lipschitz continuity restriction.
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root tests

DF (bρ) := T (bρ− 1) (5)

DF (t) :=
bρ− 1
s.e. (bρ) (6)

where bρ := (PT
t=1X (t− 1)2)−1

PT
t=1X (t)X (t− 1) is the first order

sample autoregressive coefficient of {X (t)} and
s.e. (bρ) := bσu(PT

t=1X (t− 1)2)−1/2 is the (OLS) standard error ofbρ, with bσ2u denoting the sample variance of the residuals, i.e. bσ2u :=
(1/T )

PT
t=1 bu (t)2, bu (t) := X (t)− bρX (t− 1).

When constant or trend corrected tests are used, the previous
statistics do not change except for X (t) being substituted for by
Xc (t) := X (t) − X (constant-corrected test) or by the residuals
Xc,t (t) of the OLS projection of X (t) on (1, t)

0 (constant and trend-
corrected test). We denote intercept-corrected and trend-corrected
Dickey-Fuller tests with DFc (bρ) ,DFc (t) and with DFc,t (bρ) ,DFc,t (t)
respectively. In order to assess whether variance breaks can be con-
fused with structural breaks in the trend component, we also con-
sider Perron’s test, which is based on statistics (5)-(6) with X (t)
replaced by the residuals Xc,t;τ (t) of the OLS projection of X (t) on
(1, t, tI (t > [τT ]))0, where [τT ], 0 < τ < 1, is the break date. We
denote these tests with DFc,t;τ (bρ) and DFc,t;τ (t).2

Furthermore, it is interesting to consider the locally best invariant
test (LBI, see Tanaka, 1996)

LBI :=
(X (T )−X (0))2

Tbσ2u (7)

and the (modified) Sargan-Bhargava test

MSB :=

PT
t=0X (t)

2

Tbσ2u (8)

2For space constraints we will not focus on unit root tests based on GLS de-
trending, see Elliott et al. (1996), which can be treated in the same manner as
the tests considered here.
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The LBI and MSB tests reject the unit root null hypothesis for small
values of (7). Like the DF tests, the MSB statistics can be corrected
either for a constant, a constant and a linear trend or a constant and
a broken linear trend by substituting X (t) in (8) with Xc (t), Xc,t (t)
and Xc,t;τ (t) respectively.

Along with the previously mentioned tests, since the error compo-
nent {ε (t)} can display short memory we also consider autocorrelation-
corrected unit root tests, namely the Phillips-Perron coefficient-based
and t-based tests3. Such tests employ a sum-of-covariances estimator
of the long-run variance of the form

bλ2u := T−1X
k=−T+1

h

µ
k

qT

¶bγu (k) , bγu (k) := 1

T

TX
t=|k|+1

bu (t) bu (t− |k|)
(9)

and are given by

PP (bρ) := DF(bρ)− (bλ2u − bσ2u)/2
T−2

PT
t=1X

2
t−1

PP(t) :=
bσubλu DF(t)− (bλ2u − bσ2u)/2bλu(T−2PX2

t−1)1/2

In the following, it is convenient to assume that the lag trunca-
tion/bandwidth parameter qT and the kernel function h (·) satisfy
the condition (de Jong, 2000):

Assumption K. (K1) For all x ∈ R, |h (x)| ≤ 1, h (x) = h (−x); h (x)
is continuous at 0 and for almost all x ∈ R; R |h (x) |dx < ∞;
(K2) qT ↑ ∞ as T ↑ ∞, and qT = o(T γ), γ ≤ 1/2− 1/r.

This condition is general enough for our purposes since it is satis-
fied by the most commonly employed kernel functions, see Andrews
(1991) and Hansen (1992a).

3It is preferable to consider semiparametric unit root tests instead of fully-
parametric augmented Dickey-Fuller type tests since the latter class of tests re-
quires a more involved asymptotic theory without displaying substantial differ-
ences from the former class.
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We also consider the autocorrelation-corrected LBI andMSB tests,

which are based on statistics (7) and (8) with bσ2u replaced by bλ2u.
3 Unit root asymptotics under changing vari-

ances

In this section an asymptotic theory for heteroskedastic autoregres-
sive process will be derived under the assumption of a unit root. Such
a theory allows to derive the large sample distribution of the unit
root test statistics when the underlying d.g.p. is integrated with het-
eroskedastic errors, consequently allowing to evaluate the size prop-
erties of the tests.

Assume that the d.g.p. satisfies (1)—(3) with α = 1. As we
will show in the following, even if {X (t)} has a unit root, due to
the presence of heteroskedasticity it is not I(1) in the usual sense4.
In order to develop the necessary asymptotic theory it is useful to
introduce the following Brownian functional

Bω (s) := σ−1
Z s

0
ω (r) dB (r) , σ2 :=

Z 1

0
ω (r)2 dr (10)

where B (·) is a standard Brownian motion in D. Since σ2 is the
limit of (1/T )

PT
t=1 σ

2
t , it can be naturally interpreted as the (asymp-

totic) average variance of the errors. The process {Bω (·)} is Gaussian
with quadratic variation

R s
0 ω (r)

2 dr/
R 1
0 ω (r)

2 dr.5 It corresponds to
the diffusion process generated by the stochastic differential equation
dBω (s) = σ−1ω (s)dB (s) with initial condition Bω (0) = 0 a.s. For
ω (·) constant, Bω (·) becomes a standard Brownian motion.

The next lemma contains the basic results required to derive the
asymptotic distributions of the test statistics in the heteroskedastic
unit root framework.

4That is, it does not satisfies the invariance principle T−1/2X ([·T ]) w→ λB (·),
where {B (·)} is a standard Brownian motion.

5If {ω (·)} is stochastic, then the marginal distribution of Bω (s) is mixed Gaus-
sian with centre 0 and mixing parameter

R s
0
ω (r)2 dr/

R 1
0
ω (r)2 dr.
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Lemma 1 If conditions (1)-(3) are fulfilled with α = 1 then, as
T ↑ ∞, the approximant XT (s) := T−1/2X ([sT ]) satisfies XT (·) w→
σλεBω (·).

According to Lemma 1, the time series {X (·)}, properly scaled,
converges to a continuous transformation of a standard Brownian
motion. Trivially, for ω (·) constant the lemma becomes a standard
invariance principle, see e.g. Billingsley (1968). The implications for
unit root tests are reported in the next theorem, where Na|b (s) :=
a(s)− (R a(r)b(r)0dr)(R b(r)b(r)0dr)−1b(s) if b(·) 6= 0 a.s., Na|b (s) :=
a(s) otherwise, all integrals running from 0 to 1.

Theorem 2 Let the d.g.p. satisfy conditions (1)-(3) with α = 1.
Then, if λ2ε = 1 the asymptotic distributions of the unit root test
statistics are

DF(bρ) ,PP(bρ) w→ NBω|F (1)
2 −NBω |F (0)

2 − 1
2
R 1
0 NBω |F (s)

2 ds
(11)

DF (t) ,PP(t)
w→ NBω|F (1)

2 −NBω |F (0)
2 − 1

2
³R 1
0 NBω |F (s)

2 ds
´1/2 (12)

LBI
w→ ¡

NBω |F (1)−NBω |F (0)
¢2

(13)

MSB w→
Z 1

0
NBω |F (s)

2 ds (14)

where F depends on the deterministic terms included in the estima-
tion. Specifically:

1. if no deterministics are introduced in the estimation, then F (s) :=
0, all s, and NBω|F (s) = Bω (s);

2. if a constant is appended to Xt−1 in the estimation, then F (s) :=
1, all s;

3. if a constant and a trend are appended to Xt−1 in the estima-
tion, then F (s) := (1, s)0;

11



4. if a constant and a broken trend are appended to Xt−1 in the
estimation, then F (s) := (1, s, sI (s > τ))0.

If λ2ε 6= 1, the results do not change provided that the unit root tests
are autocorrelation-corrected and satisfy condition K.

The results of the theorem do not change if seasonal dummies
are included both in the DGP and in the model, provided that a
constant is appended to Xt−1 in the estimation and the dummies
are orthogonalized with respect to the constant, i.e. they are of the
type di (t) := I(tmod p = i)− p−1, where p is the number of seasons.
Moreover, the results 2—4 do not change if a constant is added to the
DGP; the results 3—4 do not change if a linear trend is added to the
DGP; result 4 does not change if a linear trend with slope varying at
time [τT ] is added to the DGP.

In order to understand the distributional implications of changing
variances, let us initially consider the Dickey-Fuller DF (bρ)/Phillips-
Perron PP (bρ) test without deterministic corrections. Trivially, when
ω (s)2 = σ2 > 0, Bω (s) = B (s) and if the errors are not autocorre-
lated (i.e. λ2ε = 1) the test statistics are asymptotically Dickey-Fuller
distributed, i.e.

DF (bρ) ,PP(bρ) w→ (B (1)2 − 1)/2R 1
0 B (s)

2 ds
(15)

while, in the presence of heteroskedasticity, the distribution becomes

DF (bρ) ,PP(bρ) w→ (Bω (1)
2 − 1)/2R 1

0 Bω (s)
2 ds

(16)

The difference between (15) and (16) can be appreciated by noticing
that the limit process in Theorem 1 can be expressed in a slightly
different way, as explained in the following proposition.

Proposition 3 The limit Brownian functional (10) satisfies the dis-
tributional equality

Bω (s)
d
= Bη (s) := B (η (s))
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where η (s) := (
R 1
0 ω (r)

2 dr)−1
R s
0 ω (r)

2 dr and B (·) is a standard
Brownian motion.

Since ω (·) 6= 0 a.e., η (·) is an increasing homeomorphism on
[0, 1] with η (0) = 0, η (1) = 1; consequently {Bη (·)} is a ‘variance-
transformed’ Brownian motion, see Davidson (1994). It represents a
Brownian motion under modification of the time domain, since Bη (·)
at time s ∈ [0, 1] has the same distribution as the standard Brow-
nian motion B (·) at time η (s) ∈ [0, 1]. A consequence of Proposi-
tion 3 and of the equality Bη (1) = B (1) is that in the absence of
deterministic corrections the asymptotic distributions of all the con-
sidered tests can be expressed as combinations of two random vari-
ables, namely (B (1)2 ,

R 1
0 B (s)

2 ds+ Z), where the random element

Z :=
R 1
0 (Bη (s)

2−B (s)2)ds equals zero in the standard homoskedas-
tic unit root framework. The following asymptotic representation is
therefore obtained for the simple DF(bρ) /PP(bρ) statistic

DF (bρ) ,PP(bρ) w→ (B (1)2 − 1)/2R 1
0 Bη (s)

2 ds
=

(B (1)2 − 1)/2R 1
0 B (s)

2 ds+Z
(17)

where the term Z depends on the presence of heteroskedastic errors.
Similarly, the following representation can be given for the other tests
considered:

DF (t) ,PP(bρ) w→ (B (1)2 − 1)/2³R 1
0 B (s)

2 ds+ Z
´1/2 (18)

LBI
w→ B (1)2 (19)

MSB w→
Z 1

0
B (s)2 ds+ Z (20)

The above results allow to sketch some size implications of het-
eroskedasticity. The presence of the random variable Z represents
the leading cause of size distortions, and a test which put weight on
it (like all the commonly used unit root tests) might not reliable. The
LBI statistic without deterministic corrections, which asymptotically
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depends on Bη (1)
2 = B (1)2 and not on

R 1
0 B

2
η (s) ds, is not affected

by the presence of heteroskedasticity, i.e. it is χ2 (1)-distributed as in
the homoskedastic framework6. The other tests (as well as the tests
based on deterministic corrections) do not fulfil the same property.

Note that since Z can be both positive and negative, it is not
possible to establish if heteroskedasticity leads to either oversized
or undersized tests, unless specific forms of ω (·), hence of η (·), are
analyzed. In general the unconditional expectation of Z is −0.5 +R
η (s)ds, which lies between −0.5 and 0.5; values greater (lower)

than 0 might indicate that the test statistic tends to take on average
higher (lower) values than in the homoskedastic case. However, the
effect of Z on the tails of the distribution can be different, see Section
5.

Finally, it is worth noting that the asymptotic distribution of
autocorrelation-corrected tests (such as e.g. the PP tests) are not af-
fected by any nuisance parameters depending on the short run mem-
ory of the errors, in particular the long-run variance λ2ε. This inter-
esting property holds (although heteroskedasticity affects the distri-
bution of the test statistics as shown in equations (11)—(14)) since
estimators of the long-run variance as provided in formula (9) under
condition K remain consistent even under heteroskedasticity of the
form considered here.

4 Near-unit root asymptotics under changing
variances

In this section the implications of heteroskedastic errors in the near-
unit root framework are investigated. This issue is related to the
analysis of the power properties of unit root tests. Since it is straight-
forward to show that the consistency of the tests is not affected by

6Hence, even if its (asymptotic) power function is generally below the asymp-
totic power envelope (see Elliott et al., 1996), the LBI test has the correct size
under non-constant variances.
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heteroskedasticity of the form considered in this paper7, a more inter-
esting exercise is to assess how the asymptotic local power function
of the tests depends on the presence and on the form of heteroskedas-
ticity.

Suppose that the d.g.p. satisfies (1)-(3) in the local-to-unity
framework:

α = exp (−c/T ) ≈ 1− c

T
, c > 0. (21)

This specification generalizes the class formed by the so-called near-
integrated processes since heteroskedasticity of the errors is allowed.
As in the standard near-unit root framework, the non-negative pa-
rameter c controls the speed of mean reversion.

As in Lemma (1), it is possible to derive a weak convergence result
for the continuous-time approximant XT (s) := T−1/2X ([sT ]). For
this purpose the following Brownian functional needs to be introduced

Jω (s) :=

Z s

0
e−c(s−r)dBω (r) = σ−1

Z s

0
e−c(s−r)ω (r) dB (r) (22)

where Bω (·) is the diffusion process with heteroskedastic increments
defined in (10) and B (·) is a standard Brownian motion in D. Pro-
cess (22) is an Ornstein-Uhlenbeck (OU) process with heteroskedastic
increments; it satisfies the stochastic differential equation dJω (s) :=
−cJω (s) ds+σ−1ω (s) dB (s) with the usual initial condition Jω (0) =
0. The standard OU process is obtained as a special case for ω (·) = σ
a.e. An alternative representation of {Jω (·)} which does not re-
quire stochastic integration can be given, namely Jω (s) = Bω (s) −
c
R s
0 e

−c(s−r)Bω (r) dr. Moreover, by recalling the relation between
{Bω (·)} and the variance-transformed Brownian motion {Bη (·)} the
following distribution equality is also obtained

Jω (s)
d
=

Z s

0
e−c(s−r)dBη (r) = Bη (s)− c

Z s

0
e−c(s−r)Bη (r)dr .

The linkage between {XT (·)} and the functional {Jω (·)} is given
in the next lemma.

7Provided that the residual variance which enters the DF(t), the LBI and the
MSB statistics is computed under the alternative hypothesis, see Stock (1994).
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Lemma 4 If conditions (1)-(3) are fulfilled with α = exp (−c/T ),
c > 0, then, as T ↑ ∞, the approximant XT (s) := T−1/2X ([sT ])
satisfies XT (s)

w→ σλεJω (s).

The implications for the asymptotic distributions of the unit root
tests are summarized below.

Theorem 5 Let the d.g.p. satisfy conditions (1)-(3) with α = αT :=
exp (−c/T ), c > 0. Then, if λ2ε = 1 the asymptotic distributions of
the unit root test statistics are

DF(bρ) ,PP(bρ) w→ NJω|F (1)
2 −NJω |F (0)2 − 1

2
R 1
0 NJω |F (s)

2 ds

DF(t) ,PP(t)
w→ NJω|F (1)

2 −NJω |F (0)2 − 1
2
³R 1
0 NJω |F (s)

2 ds
´1/2

LBI
w→ ¡

NJω |F (1)−NJω |F (0)
¢2

MSB w→
Z 1

0
NJω |F (s)

2 ds

where F depends on the deterministic terms included in the estima-
tion, see Theorem 2. If λ2ε 6= 1, the results do not change provided
that the unit root tests are autocorrelation-corrected and satisfy con-
dition K.

Theorem 5 shows how the local-to-unity asymptotics are non-
standard in the heteroskedastic case. The asymptotic distributions
(and consequently the asymptotic local power functions of the tests)
are affected by both the location parameter c and the structure of
heteroskedasticity. Note that it is not possible to establish whether
heteroskedasticity leads to higher or lower power with respect to the
standard homoskedatic framework, unless a specific form is chosen
for the variance ω (·) functional. However, substantial modifications
of the power functions of the tests are likely to be found. This issue
is examined in the next section.
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5 Further insights on size and power

In this section we show how the results obtained so far can be used
to analyze two special models of heteroskedasticity. In the first case,
the variance changes at a given point in time, namely at time [τT ],
τ ∈ (0, 1). Since for most macroeconomic series it is difficult to iden-
tify specific events that might cause an abrupt volatility change (see
van Dijk et al. 2002), we also consider the effect of a smoothly chang-
ing variance. Specifically, the second case deals with both upward and
downward trending variances. For ease of notation, the asymptotics
are presented under the assumption of no deterministics, while Monte
Carlo estimates of the asymptotic size and power functions are pre-
sented for all the four deterministic corrections previously considered.

5.1 Single variance shift

The case of a single variance shift which occurs at time [τT ] corre-
sponds to the variance function

ω (s)2 = σ ([sT ])2 = σ20 + (σ
2
1 − σ20)I (s > τ ) , s ∈ [0, 1], τ ∈ (0, 1)

(23)
where τ represents the date of the variance break, expressed as the
ratio between the pre-break sample size and the total sample size.
The parameters σ20, σ

2
1 are the pre-break innovation variance and the

post-break innovation variance respectively. The asymptotic average
variance is given by σ2 :=

R 1
0 ω (r)

2 dr = σ20τ + σ21 (1− τ). The same
d.g.p. is analyzed by Kim et al. (2002), who focus on the DFc (t)
test; the behavior of DF (bρ) (no deterministics) under an observation-
ally equivalent d.g.p. is considered by Hamori and Tokihisa (1997).
We extend their analysis by covering different types of deterministic
corrections and the various unit root tests previously mentioned.

Let δ2 := (σ0/σ1)
2 denote the ratio between the pre-break and

the post-break variances. In the case of no deterministic corrections
the next result follows from Theorem 2.

Corollary 6 Let the d.g.p. satisfy the conditions of Theorem 2 with
ω (·) defined as in (23). Then, the asymptotic distributions of the
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unit root test statistics in the absence of deterministic corrections are
given by (17)—(20) with Z replaced by

Zτ ,δ :=
1− δ2

δ2

Ã
(1− τ)

Z a(δ,τ)

0
B (r)2 dr − τδ2

Z 1

a(δ,τ)
B (r)2 dr

!
(24)

and a(δ, τ) := τδ2/
¡
δ2τ + 1− τ

¢
.

Hence, the limiting distribution of the DF/PP and MSB statistics
is affected by the random variable Zτ ,δ, which vanishes only for τ = 0,
τ = 1 or δ = 1. Note that the term a(δ, τ) can be rewritten as the
ratio between σ20τ and the average variance σ

2 = σ20τ + σ21 (1− τ).
The asymptotic size of the Dickey-Fuller DF (bρ)/Phillips-Perron

PP (bρ) tests is plotted in Figure 1 under a 5% significance level. The
break date τ takes values within the set {0.1, 0.3, 0.5, 0.7, 0.9} while
δ spans the interval [0.01, 100] in order to evaluate also the impact of
very large variance changes. The asymptotic sizes were simulated by
discretizing the limit Brownian functional over T = 5, 000 segments
and using 50, 000 replications. Four cases are considered depending
on the chosen deterministic corrections: no deterministics (panel a),
constant (panel b), constant and trend (panel c), constant and broken
trend (panel d), the last case corresponding to the Perron’s test with
break date set to τ .

The inspection of the figure reveals the following facts which have
not been reported in the existing literature. First, a single variance
shift mostly causes an increase in the size of the tests. Variance
shifts imply size reductions only in a small subset of the parameter
space; moreover, such reductions are usually negligible. Second, a
positive variance shift (δ < 1) which takes place near the end of the
sample (i.e. τ is close to 1) has a stronger impact on the test size
than a positive shift which occurs at the beginning of the sample
(τ close to 0). Conversely, negative variance shifts (δ > 1) have a
stronger impact when τ is close to 0.8 Third, by adding deterministic

8It should be noticed that the latter result is reported by Kim et al. (2002)
when the DFc (t) test is considered. These authors, however, have not emphasized
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corrections the size does not necessarily increase. Generally, however,
in the case of variance reductions the inclusion of extra deterministic
terms inflates the test size. Fourth, Perron’s test, as well as the other
tests, can reject the null hypothesis too often in the presence of a
variance shift. Hence, the presence of a single variance break can be
erroneously interpreted by Perron’s test as evidence of stationarity
around a broken trend.

Are all unit root tests equally affected by variance changes? The
results of Section 3 suggest that a variance shift might not have the
same effect on all tests. We briefly tackle this issue by showing in
Figure 2 the asymptotic size of the DF(bρ) /PP(bρ), DF (t) /PP(t)
and MSB tests by fixing δ = σ0/σ1 and varying λ between 0 and 1;
specifically, δ = 0.2 when a positive variance shift takes place (panel
a) and δ = 5 when a negative variance shift occurs (panel b). Due
to space constraints, only the tests corrected for a constant and a
linear trend are considered. Interestingly, in the case of a negative
variance shift, the DF(t) test is the most seriously affected by size
distortions, followed by the DF(bρ) test and by the MSB test. This
picture changes when positive variance shifts are considered: in such
a case, the MSB test is the most oversized test, followed by the DF(bρ)
test and by the DF (t) test. Hence, no test dominates the other tests
in terms of size accuracy. Interestingly, if a constant is included in
the estimation, the size of the MSB test does not change when δ and
τ are replaced with 1/δ and 1− τ respectively9.

We can now investigate the effect of a variance shift on the asymp-
totic power of the tests. As for the size analysis, 5% significance level
tests are considered for different values of δ and τ . An MC simu-
lation has been employed, where the limit Brownian functional (22)
has been simulated over T = 5, 000 segments and using 50, 000 repli-
cations. The (autoregressive) location parameter c is set to 10.

that also positive variance breaks can significantly affect the size properties of the
tests.

9This result is a special case of the following property, which holds for any
heteroskedasticity function ω (·): the asymptotic distributions of the MSBc,
MSBc,t,MSBc,t;τ statistics do not change if {ω (s)} is replaced by {ω (1− s)} and
τ is replaced by 1− τ .
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Results are illustrated in Figure 3. Generally, the tests tend to
have higher power with respect to the homoskedastic case. Similarly
to what obtained for the size analysis, the presence of deterministic
corrections inflates the power especially when a positive variance shift
takes place near the end of the sample, or when a negative shift takes
place at the beginning of the sample. An interesting exception is
the test without deterministics, which loses power when the variance
increases (δ < 1).

5.2 Trending variances

In the framework of the d.g.p. (1)—(3), a simple specification which
allows for trending variances is obtained by setting

ω (s)2 := σ20 +
¡
σ21 − σ20

¢
s, (25)

which implies that the variance varies linearly from σ20 (s = 0) to σ
2
1

(s = 1); the average variance is σ2 = 0.5(σ20 + σ21).
As in the previous section let δ := σ0/σ1. It is straightforward to

derive the following result from Theorem 2.

Corollary 7 Let the d.g.p. satisfy the conditions of Theorem 2 with
ω (·) defined as in (25). Then, the asymptotic distributions of the
unit root test statistics in the absence of deterministic corrections are
given by (17)—(20) with Z replaced by Zδ :=

R 1
0 f (s)B (s)

2 ds, where
f (·) is defined as

f (s) :=
(1 + δ2)/2−

q¡
δ4 + (1− δ4)s

¢q¡
δ4 + (1− δ4)s

¢ . (26)

For δ = 1 (constant variance), f (s) = 0, all s, and the usual
asymptotic distributions arise.

Figures 4 and 5 report the asymptotic size and local power of the
DF(bρ)/PP (bρ) tests with a 5% nominal size and different determinis-
tic components; see the previous section for details on the MC design.
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Together with the variance model (25), the more general specification
is also considered:

ω (s)r := σr0 + (σ
r
1 − σr0) s (27)

where for the sake of simplicity r is assumed to be strictly positive.
Equation (27) implies that the variance varies monotonically from σ20
to σ21, but not necessarily in a linear fashion

10. The linear case of
equation (25) corresponds to r = 2. The value of r is chosen within
the set {0.1, 0.5, 1, 2, 10}.

Conclusions similar to the case of single variance shifts can be
drawn: upward or downward trending variances usually lead to over-
sized tests (although cases of slightly undersized tests cannot be ruled
out). With respect to the case of a single abrupt shift, trending
variances seem to determine lower size distortions and lower power
changes. The strongest size deviations from the nominal level occur
when the variance increases at growing rates or decreases at declining
rates (r = 0.1 in the figures).

We now turn our attention to the asymptotic local power func-
tion. In the presence of deterministic corrections, the power is gen-
erally higher than in the homoskedastic case. Again, the test with-
out deterministics is an interesting exception since heteroskedasticity
mainly leads to a power loss, especially when the variance is trending
upward (δ < 1). Finally, note that the smaller r, the stronger the
impact of heteroskedasticity on the asymptotic power function of the
test.

6 Conclusions

The theoretical results presented in this paper allow to analyze in
detail whether (and how) permanent changes in the variance of the
errors of a (possibly integrated) autoregressive process affect the size

10Setting r = 1 generates the hypothesis that the unconditional standard devi-
ation of u (t) — not the variance — is a linear function of t. In general, if δ < 1
(i.e. σ1 > σ0) the variance increases at growing rates when r < 2. If δ > 1 (i.e.
σ1 < σ0) the variance decreases at growing rates when r > 2.
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and the power function of unit root tests. It is shown that variance
changes usually lead to oversized tests, although the tests can also be
undersized. In general, (abrupt or smooth) early negative variance
changes and (abrupt or smooth) late positive variance changes have
a strong impact on the size of the tests. The power functions of the
tests are also affected by the presence of heteroskedasticity.

The implications of our results are twofold. First, the constancy
of the second moments of the errors becomes a crucial issue which
should always be investigating before interpreting the outcome of unit
root tests. Second, since the direction of size distortions depends
on nuisance parameters, new unit root tests which are invariant to
the presence of heteroskedastic errors should be developed. To our
knowledge, this issue has been tackled only by Kim et al. (2002).
However, only the case of a single variance shift is covered by their
proposal. Therefore, since for most macroeconomic time series it
is difficult to identify specific dates that could be connected to an
abrupt volatility change, it is certainly of interest to robustify unit
root tests for the presence of different and unknown forms of variance
dynamics. The results given in this paper provide the basic steps to
investigate this topic.

A Mathematical Appendix

A.1 Preliminary lemmas

The following lemmas are useful to prove the results of the paper.

Lemma 8 Let {Xt} be a mixing process of size −ϕ. Then Yt,T :=
ω (t/T )Xt, where ω () is a deterministic function, is mixing of the
same size.

Lemma 9 Let λ2u,T :=
PT−1
k=−T+1 h (k/qT ) γu,T (k), where, for k ≥ 0,

γu,T (k) :=

(1/T )
PT−k
t=1 E(u (t)u (t+ k)), while γu,T (k) = γu,T (−k) for k < 0.

Then, under Assumptions V and K, λ2u,T − σ2λ2ε → 0 as T ↑ ∞.
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Lemma 10 Let eλ2u be an estimator of the long-run variance of {u (t)},
where the u (t)’s are used instead of the bu (t)’s. Then, under Assump-
tions V and K, eλ2u − λ2u,T

p→ 0 as T ↑ ∞.

Lemma 11 Let bλ2u be an estimator of the long-run variance of {u (t)},
based on the bu (t)’s. Then, under Assumptions V and K, eλ2u−λ2u,T p→
0 as T ↑ ∞.

Lemmas 9, 10 and 11 have the following corollary.

Corollary 12 Under the assumptions of Lemma 10, bλ2u− σ2λ2ε
p→ 0

as T →∞.

A.2 Proofs

Proof of Lemma 1. Under the assumptions of the theorem it is
straightforward to see that (σ ([sT ]) ,XT (s))

0 = (ω (s) ,XT (s))0 sat-
isfies the requirements for convergence to stochastic integral. Specif-
ically, since σ ([sT ])→ ω (s) in the Skorohod topology, we can apply
e.g. Hansen (1992b), Theorem 3.1 to obtain the following weak con-
vergence

T−1/2
[sT ]X
t=1

ω (t/T )u (t)−CT (s) w→ λε

Z s

0
ω (r)dB (r) = σλεBω (s)

where

CT (s) :=
1

T 1/2

[sT ]X
t=1

(σ (t)−σ (t− 1))z ([sT ])− 1

T 1/2
σ ([sT ]) z ([sT ] + 1) ,

(28)
and z (t) :=

P∞
k=1 Et(ε (t+ k)). To complete the proof we need to

show that CT (s) is op(1). Consider the second term of the r.h.s.
of (28). Since ω (·), hence σ (·), is bounded, for some K < ∞
|T−1/2σ ([sT ]) z ([sT ] + 1) | ≤ K T−1/2 sups∈[0,1] |z ([sT ]) | p→ 0 since
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maxt |z ([sT ]) | is op
¡
T 1/2

¢
, see Hansen (1992b), formula A.3. Re-

garding the first term we can consider the inequality¯̄̄̄
¯̄ 1

T 1/2

[sT ]X
t=1

(σ (t)− σ (t− 1))z ([sT ])
¯̄̄̄
¯̄ ≤ maxt |z (t) |T 1/2

[sT ]X
t=1

|σ (t)− σ (t− 1)| .

Since T−1/2maxt |z (t) | = op (1), it is only left to prove thatP |σ (t)− σ (t− 1)| is asymptotically bounded. But since ω (·) is
first-order Lipschitz continuous except at N <∞ points of disconti-
nuity,

[sT ]X
t=1

|σ (t)− σ (t− 1)| =

[sT ]X
t=1

¯̄̄̄
ω

µ
t

T

¶
− ω

µ
t− 1
T

¶¯̄̄̄
≤ 2KN +

[sT ]X
t=1

M
1

T

= 2KN +M
[sT ]

T
≤ 2KN +M .

Proof of Theorem 2. We prove the theorem for the DF (bρ) /PP(bρ)
tests in the case of no deterministic corrections. The proof easily ex-
tends to the remaining tests.

Following Phillips (1987a) we can write DF (bρ) as
DF(bρ) := T−1X (T )2 − T−1PT

t=1∆X (t)
2

2T−2
PT
t=1X (t− 1)2

The weak convergence of Lemma 1 and the continuous map-
ping theorem ensure that T−1(X ([sT ])2 ,

PT
t=1X (t− 1)2) converges

weakly to σ2λ2ε(Bω (s)
2 ,
R 1
0 Bω (s)

2 ds). Regarding the term

(1/T )
PT
t=1∆X (t)

2 = (1/T )
PT
t=1 σ (t)

2 ε (t)2 =: bσ20, it is sufficient
to refer to Lemma 8 and to apply a triangular array version of
McLeish’s strong law of large numbers (see e.g. White, 1984) to
get (1/T )

PT
t=1 σ (t)

2 ε (t)2 − (1/T )PT
t=1 E(σ (t)

2 ε (t)2)
a.s.→ 0; since

(1/T )
PT
t=1 E(σ (t)

2 ε (t)2) = (1/T )
PT
t=1 σ (t)

2 → σ2 the desired re-
sult follows.

Taken together, these results prove the theorem for the DF(bρ)
statistic in the absence of deterministic corrections and for λ2ε =
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1. Note that in order to extend the proof to the remaining tests it
is needed to prove that bσ2u p→ σ2λ2ε. But this convergence follows
immediately since bσ2u = bσ20 +Op ¡T−1¢.

To prove that the asymptotic distribution of the PP (bρ) statistic
does not depend on λ2ε, consider the equality

PP (bρ) = T−1X (T )2 − bσ20 − (bλ2u − bσ2u)
2T−2

PT
t=1X (t− 1)2

.

Since (i) (T−1X (T )2 , T−2
PT
t=1X (t− 1)2)0 w→ σ2λ2ε

³
B (1)2 ,

R
B (s)2 ds

´0
,

(ii) bσ2u, bσ20 p→ σ2 and (iii) bλ2u p→ σ2λ2ε, see Lemma 12, the desired result
immediately follows.

Proof of Lemma 4. We follow the proof of Lemma 1 and Phillips
(1987b). By recursive substitution XT (s) can be expressed as

XT (s) =
1

T 1/2
X[sT ] =

1

T 1/2

[sT ]X
t=1

e−c([sT ]−t)/Tσ (t) ε (t)

=

Z s

0
e−c(s−r)dST (r) + Op

³
T−1/2

´
,

where ST (s) := T
−1/2P[sT ]

t=0 σ (t/T ) ε (t) has bounded variation, see
Phillips (1987b, p.539). Integration by parts leads to the equalityZ s

0
e−c(s−r)dST (r) = ST (s) + c

Z s

0
e−c(s−r)ST (r) dr

and, since ST (s)
w→ σλεBω (s), see Lemma 1, the continuous mapping

theorem ensures the weak convergence

XT (s)
w→ σλεBω (s)− cσλε

Z s

0
e−c(s−r)Bω (r) dr

which can be equivalently written as the stochastic integral

XT (s)
w→ σλε

Z s

0
e−c(s−r)dBω (r) = σλε

Z s

0
e−c(s−r)ω (s)dB (r) .
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Proof of Theorem 5. By direct consequence of Lemma 4 and
the continuous mapping theorem, in order to prove the theorem we
can follow the proof of Theorem 2, with the only exception of con-
sidering {Jω (·)} as the limit Brownian functional. Regarding bσ20
and bσ2u, since bφ = exp (−c/T ) + Op

¡
T−1

¢
= 1 + Op

¡
T−1

¢
, thenbσ2u = bσ20 +Op ¡T−1¢ and bσ20 = T−1PT

t=1 σ (t)
2 ε (t)2 +Op

¡
T−1

¢
. As

T−1
PT
t=1 σ (t)

2 ε (t)2
p→ σ2, see Theorem 2, the proof is completed.

Proof of Proposition 3. Since (i) E (Bω (s)) = 0, (ii) E(Bω (s)
2) =

σ−2E((
R s
0 ω (s) dB (s))

2)

= σ−2
R s
0 ω (s)

2 ds =: η (s), (iii) {Bω (·)} has independent increments
and (iv) η (·) is an increasing homeomorphism on [0, 1] with η (0) = 0,
η (1) = 1, from Corollary 29.10 of Davidson (1994) it follows that
{Bω (·)} is distributed as {Bη (·)}.

Proof of Corollary 6. To prove the corollary we refer to Theorem

2 and to the equality Bω (s)
d
= B (η (s)), see Proposition 3. Under

the assumption of the corollary, η (·) is given by the piecewise linear
function

η (s) =
δ2s+

¡
1− δ2

¢
(s− τ) I (s > τ)

δ2τ + 1− τ
, (29)

which impliesZ 1

0
B (η (s))2 ds =

Z τ

0
B
³

δ2s
δ2τ+1−τ

´2
ds+

Z 1

τ
B
³
s−τ+δ2τ
δ2τ+1−τ

´2
ds

=
¡
δ2τ + 1− τ

¢Ã 1
δ2

Z a(δ,τ)

0
B (r)2 dr +

Z 1

a(δ,τ)
B (r)2 dr

!
with a(δ, τ) := δ2τ/

¡
δ2τ + 1− τ

¢
. By adding and subtractingR 1

0 B (r)
2 dr, after some algebra the desired result is obtained.

Proof of Corollary 7. As in the previous proof it is useful to

consider the equality Bω (s)
d
= B (η (s)), where {B (·)} is a standard
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Brownian motion. In this case, some algebra allows to get η (s) =¡
1 + δ2

¢−1
(2δ2s+(1−δ2)s2), and a simple application of the change-

of-variables rule yieldsZ 1

0
B (η (s))2 ds =

Z 1

0
B

µ
(2δ2 + (1− δ2)s

1 + δ2
s

¶2
ds

=
1

2

Z 1

0

1 + δ2q¡
δ4 + (1− δ4)s

¢B (s)2 dr
The proof is completed by adding and subtracting

R 1
0 B (s)

2 ds, rear-
ranging and defining f (·) as in (26).

Proof of Lemma 8. It follows by simply extending White (1984),
Lemma 6.18, to the case of mixing triangular arrays.

Proof of Lemma 9. let λ2ε,T :=
PT−1
k=−T+1 h (k/qT )γε (k), γε (k) :=

E (ε (t) ε (t+ |k|)). Since λ2ε,T → λ2ε, see de Jong (2000), we only need

to prove that λ2u,T − σ2λ2ε,T is o (1).
Set ∆T (k) := |γu,T (k)−σ2γε (k) |. Since E (u (t)u (t+ k)) can be

written as
σ (t)σ (t+ k) E (ε (t) ε (t+ k)), the following inequality holds

∆T (k) ≤ |E(ε (t) ε (t+ |k|)) |
¯̄̄̄
¯̄ 1T

T−|k|X
t=1

¡
σ (t)σ (t+ |k|)− σ2

¢¯̄̄̄¯̄
= |E(ε (t) ε (t+ |k|)) |c (T, k)

where c (T, k) :=
¯̄̄
(1/T )

PT−|k|
t=1

¡
σ (t)σ (t+ |k|)− σ2

¢¯̄̄
. This result

implies that

¯̄
λ2u,T − σ2λ2ε

¯̄
=

¯̄̄̄
¯

T−1X
k=−T+1

h

µ
k

qT

¶
∆T (k)

¯̄̄̄
¯

≤
¯̄̄̄
¯

T−1X
k=−T+1

h

µ
k

qT

¶
c (T, k) |E(ε (t) ε (t+ |k|)) |

¯̄̄̄
¯
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≤ sup
−T<k<T

c (T, k)h

µ
k

qT

¶ T−1X
k=−T+1

|E(ε (t) ε (t+ |k|)) |

≤ A sup
−T<k<T

c (T, k)h

µ
k

qT

¶
since for some a > 0

P∞
k=0 |E(ε (t) ε (t+ |k|)) | < a

P∞
k=0 α

1−2/p
m <

a
P∞
k=0 α

2(1/r−1/p)
m =: A < ∞, where the first inequality follows e.g.

from Davidson (1994, Corollary 14.3) while the second follows from
the inequality 1−2/p > 2 (1/r − 1/p), always true under Assumption
E . Hence, what is left to be proved is that limT→∞ supk c (T, k)h (k/qT ) =
0. Since as T →∞, c (T, k) is bounded for all admissible values of k
while h (k/qT )→ 0 if k/qT is not O (1), it is sufficient to consider the
supremum over all k which are O (qT ). For k ≥ 0

c (T, k) =

¯̄̄̄
¯̄ 1T

T−|k|X
t=1

¡
σ (t)σ (t+ |k|)− σ2

¢¯̄̄̄¯̄
=

¯̄̄̄
¯̄ 1T

T−|k|X
t=1

σ (t)σ (t+ |k|)− 1

T

T−|k|X
t=1

σ (t)2

+
1

T

T−|k|X
t=1

σ (t)2 − T − |k|
T

σ2

¯̄̄̄
¯̄

=

¯̄̄̄
¯̄ 1T

T−|k|X
t=1

σ (t)σ (t+ |k|)− 1

T

T−|k|X
t=1

σ (t)2

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄ 1T

T−|k|X
t=1

σ (t)2 − T − |k|
T

σ2

¯̄̄̄
¯̄ (30)

For |k| = O(qT ) = o (T ) and (1/T )
PT
t=1 σ (t)

2 → σ2, the term in
(30) converges to 0. Concerning the first term, the following inequal-
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ities hold ¯̄̄̄
¯̄ 1T

T−|k|X
t=1

σ (t)σ (t+ |k|)− 1

T

T−|k|X
t=1

σ (t)2

¯̄̄̄
¯̄

=

¯̄̄̄
¯̄ 1T

T−|k|X
t=1

(σ (t)− σ (t+ |k|))σ (t)
¯̄̄̄
¯̄

≤ 1

T

T−|k|X
t=1

|σ (t)− σ (t+ |k|)|σ (t)

≤ max
t=1,...,T−|k|

|σ (t)| 1
T

T−|k|X
t=1

|σ (t)− σ (t+ |k|)|

≤ sup
s∈[0,1]

ω (s)
1

T

T−|k|X
t=1

¯̄̄̄
ω

µ
t

T

¶
− ω

µ
t

T
+
|k|
T

¶¯̄̄̄
which converges to 0 since supω (s) is bounded andPT−|k|
t=1 |ω (t/T )− ω (t/T + |k|/T )| is O(1), see the proof of Lemma

1 for k = 1. This proves that (1/T )
PT−|k|
t=1 σ (t)σ (t+ |k|) → σ2 for

|k| = O(qT ) and consequently that lim sup c (T, k)h (k/qT ) = 0, thus
completing the proof of the Lemma

Proof of Lemma 10. Since {u (t)} is mixing of the same size of
{ε (t)}, see Lemma 8, it is sufficient to adapt the proof of Theorem 2
in de Jong (2000).

Proof of Lemma 11. It can be easily obtained by adapting Theo-
rem 3 in Hansen (1992a).
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Figure 1: Asymptotic size of the DF (ρ̂) /PP(ρ̂) tests under a sin-
gle variance shift for τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and for δ between
1/100 and 100. Nominal size: 0.05. Panel (a): no deterministics cor-
rection; Panel (b): constant-corrected test; Panel (c): constant and
trend-corrected test; Panel (d): constant and broken trend-corrected
(Perron) test.
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Figure 2: Asymptotic size of the DF(ρ), DF(t) and MSB tests under
a single variance shift for τ between 0 and 1. Panel (a): δ = 0.2
(positive variance shift); Panel (b): δ = 5 (negative variance shift).
Constant and trend-corrected tests. Nominal size: 0.05
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Figure 3: Asymptotic power function of the DF(ρ̂) /PP(ρ̂) tests un-
der a single variance shift for τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and for δ
between 1/100 and 100. The location parameter c is set to 10. Nom-
inal size: 0.05. Panel (a): no deterministics correction; Panel (b):
constant-corrected test; Panel (c): constant and trend-corrected test;
Panel (d): constant and broken trend-corrected (Perron) test.
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Figure 4: Asymptotic size of the DF (ρ̂) /PP(ρ̂) tests under trending
variances for r ∈ {0.1, 0.5, 1, 2, 10} and for δ between 1/100 and 100.
Nominal size: 0.05. Panel (a): no deterministics correction; Panel
(b): constant-corrected test; Panel (c): constant and trend-corrected
test; Panel (d): constant and broken trend-corrected (Perron) test
with τ = 0.5.
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Figure 5: Asymptotic power function of the DF(ρ̂) /PP(ρ̂) tests un-
der trending variances for r ∈ {0.1, 0.5, 1, 2, 10} and for δ between
1/100 and 100. The location parameter c is set to 10. Nominal size:
0.05. Panel (a): no deterministics correction; Panel (b): constant-
corrected test; Panel (c): constant and trend-corrected test; Panel
(d): constant and broken trend-corrected (Perron) test with τ = 0.5.
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