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Abstract

This paper advises the use ofk-dimensional size func-
tions for comparison and retrieval in the context of mul-
tidimensional shapes, where by shape we mean something
in two or higher dimensions having a visual appearance.
The attractive feature ofk-dimensional size functions is that
they allow to readily establish a similarity measure between
shapes of arbitrary dimension, taking into account differ-
ent properties expressed by a multivalued real function de-
fined on the shape. This task is achieved through a par-
ticular projection ofk-dimensional size functions into the
1-dimensional case. Therefore, previous results on the sta-
bility for matching purposes become applicable to a wider
range of data. We outline the potential of our approach in a
series of experiments.

1. Introduction

Shape comparison plays a fundamental role in shape
recognition, classification and retrieval, which are very
lively research topics for the disciplines of Cognitive Sci-
ence, Pattern Recognition, Computer Vision and Computer
Graphics. Shape models carry a high value with them, and
search engines able to match, classify and retrieve multidi-
mensional visual media would be useful to speed-up content
design, processing and re-use. Keyword-based annotation is
not sufficient to achieve the necessary capability of resource
exploration for digital shapes. Therefore, a variety of meth-
ods has been proposed in the literature to tackle the problem
of content-baseddigital shape analysis and retrieval.

Recently, there has been an increasing interest towards
geometrical-topological methods for shape comparison,
whose main idea is to perform a topological exploration of
the shape according to some quantitative geometric prop-
erties provided by a real function defined on the shape
[12, 5, 4, 3]. The real function plays the role of alens
through which we look at the properties of the shape. A

common scenario, however, is to have two or more function
defined on the same shape, carrying information on differ-
ent features of the phenomenon under study. Examples arise
in the context of computational biology, in medical environ-
ments, as well as in scientific simulations of natural phe-
nomena. Therefore, a great challenge is to develop and de-
fine tools to extract knowledge from high-dimensional data,
by means of the concurrent analysis of different properties
conveyed by different real functions.

In this context, the aim of this paper is to illustrate how
recent results in Multidimensional Size Theory [6] can be
effectively used to analyze and compare 3D digital shapes
(represented by surface or volume models) equipped by
multivalued functions instead of scalar functions. In Multi-
dimensional Size Theory, indeed, the approach to shape dis-
crimination and comparison is based on the use of a mathe-
matical descriptor namedk-dimensional size function. The
idea is to compare shape properties that are described by
functions taking values inRk, calledk-dimensional mea-
suring functions, defined on topological spaces associated
to the objects to be studied.

Although the special case of1-dimensional size func-
tions has already revealed to be useful when applied to
the problem of comparing images [7] or 3D-models rep-
resented by closed surfaces [2], in this paper we show that
k-dimensional size functions show a higher discriminatory
power, especially when the dimension of the objects to be
studied increase.

The rest of the paper is organized as follows. After intro-
ducing size functions and briefly discussing their properties
in the 1-dimensional case in Sec. 2, we summarize the defi-
nition of thek-dimensional size functions and how they can
be reduced to the 1-dimensional case (Sec. 3). Computa-
tional aspects related to the computation ofk-dimensional
size functions are proposed in Sec. 4. Sec. 5 shows how
the effective application to different kind of shapes (trian-
gle meshes and 3D images) makes this framework flexible
and independent of the shape representation. Conclusions
and suggestions on future developments end the paper.
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2. Background: 1-dimensional size functions

This particular case of1-dimensional size functions
(1SF’s) has been extensively studied in recent past years,
both from the theoretical point of view [9, 12, 13, 15, 18]
and the computational one [2, 7, 17, 19], showing quite a
lot of interesting properties that turn out to be useful in our
approach to the multidimensional problem.

Let us consider a pair(M, ϕ), whereM is a non-empty,
compact, locally connected Hausdorff space endowed with
a finite number of connected components, andϕ : M →
R is a continuous function. Every such a pair is called a
size pair, while each functionϕ is called a(1-dimensional)
measuring functionand its purpose is to encode quantitative
properties of the shapeM.

Given a size pair(M, ϕ), the(1-dimensional) size func-
tion ℓ(M,ϕ) : {(x, y) ∈ R

2 : x < y} → N can be easily
defined by settingℓ(M,ϕ)(x, y) equal to the number of con-
nected components of the lower level setMy = {P ∈ M :
ϕ(P ) ≤ y}, containing at least one point ofMx.
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Figure 1. A size pair and the associated 1-
dimensional size function.

Figure 1(left) shows an example of a size pair(M, ϕ),
whereM is a closed curve and the chosen measuring func-
tion ϕ is defined as the Euclidean distance from the point
P . Figure 1(right) represents the1-dimensional size func-
tion associated to(M, ϕ). Sinceϕ takes value inR, the
domain∆+ of ℓ(M,ϕ) is the subset of the real plane defined
as{(x, y) ∈ R

2 : x < y}. Two of the most interesting prop-
erties of1-dimensional size functions are their resistance to
noise (useful especially in applications) and their modular-
ity: in particular, 1SF’s inherit their invariance properties
directly from the chosen measuring functions. As an exam-
ple, we observe that it would be possible to apply rotations
aroundP to the closed curve, being sure that no changes
occurs in the related1-dimensional size function.

As can be seen in Figure 1, 1SF’s present a typical struc-
ture: ∆+ is divided by solid lines, representing the discon-
tinuity points of the1-dimensional size function, into trian-
gular regions (that may be bounded or unbounded). In all

these regions the value ofℓ(M,ϕ) is constant. In the con-
sidered example, the values ofℓ(M,ϕ) in every triangular
region is equal to the numbers displayed. Thanks to this
particular structure, each1SF can be seen as a linear com-
bination (with natural numbers as coefficients) of charac-
teristic functions of triangles. Hence, by taking the formal
series of vertices associated to their right angles, calledcor-
nerpointsfor the bounded triangles andcornerlinesfor the
unbounded ones, we get a simple and compact representa-
tion.

Each distance between formal series naturally produces
a distance between 1SF’s: The idea is to compare1-
dimensional size functions by measuring the cost of trans-
porting the cornerpoints and cornerlines of a1-dimensional
size function to those of the other one. Two 1SF’s repre-
sented by formal series can be compared by using different
metrics, e.g., the matching distance or the Hausdorff metric.

For details and basic notions about (1-dimensional) size
theory see [9, 12, 13, 15, 18].

3. Multidimensional Size Functions

This Section is devoted to the introduction of prelimi-
nary definitions generalizing the concept of 1SF’s to mea-
suring functions taking values inRk, and to the presenta-
tion of some recent results aboutk-dimensional size func-
tions (kSF’s) [6]. In particular, we will show how a suitable
change of variables permits to reduce multidimensional size
functions to the1-dimensional case, making them suitable
for computation and use in concrete applications.

3.1. Preliminary definitions

We shall now generalize the definitions given in the pre-
vious Section for the 1-dimensional case, and call asize
pair any pair(M, ~ϕ), whereM is a non-empty, compact,
locally connected Hausdorff space endowed with a finite
number of connected components, and~ϕ : M → R

k is
a continuous function. The function~ϕ is said to be ak-
dimensional measuring function, and can be seen like a de-
scriptor of those features that are considered to be relevant
in comparing(M, ~ϕ) with other size pairs.

The following relations� and≺ are defined inRk: for
~x = (x1, . . . , xk) and~y = (y1, . . . , yk), we shall say~x � ~y

(resp. ~x ≺ ~y) if and only if xi ≤ yi (resp. xi < yi) for
every indexi = 1, . . . , k. According to these notations, for
every~y ∈ R

k consider the setM〈~ϕ � ~y 〉 = {P ∈ M :
ϕi(P ) ≤ yi, i = 1, . . . , k}.

In this setting, thek-dimensional size functionof the size
pair (M, ~ϕ) is the functionℓ(M,~ϕ) : {(~x, ~y) ∈ R

k × R
k :

~x ≺ ~y} → N taking each point(~x, ~y) of the domain into
the number of the connected components inM〈~ϕ � ~y 〉
containing at least one point ofM〈~ϕ � ~x 〉.



3.2 Reduction to the 1-dimensional case

When dealing withk-dimensional size functions, we
have to face some problems: (i) the analogues for corner-
points and cornerlines (see Section 2) seem not to exist,
meaning that we are not able to represent kSF’s by for-
mal series; (ii) a direct approach to the multidimensional
case implies working in subsets ofR

k × R
k: In this case,

the absence of a compact representation fork-dimensional
size functions involves great efforts from a computational
point of view. All these problems can be by-passed by
means of a suitable change of variables, introduced in [6],
that allows us to reducek-dimensional size functions to
the 1-dimensional case. Indeed, it has been demonstrated
that there exists a parameterized family of half-planes in
R
k ×R

k such that the restriction ofℓ(M,~ϕ) to each of these
planes can be seen as a particular 1-dimensional size func-
tion.

Let (M, ~ϕ) be a size pair, with~ϕ = (ϕ1, . . . , ϕk) :

M → R
k. We shall calladmissible pairany pair(~l,~b) ∈

R
k × R

k with ~l unit vector such thatli > 0, i = 1, . . . , k,
and

∑k
i=1 bi = 0. The set of all admissible pairs will be

denoted byAdmk. In this setting, consider the foliation of
the open set∆+ = {(~x, ~y) ∈ R

k × R
k : ~x ≺ ~y} given by

the parameterized family of half-planes{π(~l,~b)}(~l,~b)∈Admk
defined by the parametric equations:

{

~x = s~l +~b

~y = t~l +~b

with s, t ∈ R, s < t. Under these assumptions, in [6] the
following result has been proved:

Theorem 1. Let (~l,~b) be an admissible pair, andF ~ϕ

(~l,~b)
:

M → R be defined by setting

F
~ϕ

(~l,~b)
(P ) = max

i=1,...,k

{

ϕi(P ) − bi

li

}

.

Then, for every(~x, ~y) = (s~l+~b, t~l+~b) ∈ π(~l,~b) the following
equality holds:ℓ(M,~ϕ)(~x, ~y) = ℓ(M,F

~ϕ

(~l,~b)
)(s, t) .

In other words, Theorem 1 states that a foliation of∆+

in half-planes can be given, such that the restriction of ak-
dimensional size function to these half-planes turns out to
be a classical size function in two scalar variables. This
result implies that each size function, with respect to a
k-dimensional measuring function, can be completely and
compactly described by a parameterized family of discrete
descriptors: Indeed, we can associate a formal seriesσ(~l,~b)

(see Section 2 ) with each admissible pair(~l,~b), with σ(~l,~b)

describing the1-dimensional size functionℓ
(M,F

~ϕ

(~l,~b)
)
.

Denoting by d(ℓ
(M,F

~ϕ

(~l,~b)
)
, ℓ

(N ,F
~ψ

(~l,~b)
)
) the (matching)

distance [9] between the1-dimensional size functions
ℓ(M,F

~ϕ

(~l,~b)
) and ℓ

(N ,F
~ψ

(~l,~b)
)

induced by the related repre-

sentations by formal series, the distance between twok-
dimensional size functionsℓ(M,~ϕ), ℓ(N , ~ψ) can be defined
as

D(ℓ(M,~ϕ), ℓ(N , ~ψ)) =

sup
(~l,~b)∈Admk

min
i=1,...,k

li · d(ℓ
(M,F

~ϕ

(~l,~b)
)
, ℓ

(N ,F
~ψ

(~l,~b)
)
).

If we choose a non-empty and finite subsetA ⊆ Admk,
and we substitutesup(~l,~b)∈Admk with max(~l,~b)∈A in the def-
inition of D(ℓ(M,~ϕ), ℓ(N , ~ψ)), then we obtain a distance be-
tweenk-dimensional size function, which is computable
and suitable for applications.

4. Computational aspects

From the computational point of view, the reduction of
k-dimensional size functions to the1-dimensional case al-
lows us to use the existing framework for computing 1SF’s.
In this discrete setting, the counterpart of a size pair is given
by asize graph(G, ϕ), whereG = (V (G), E(G)) is a finite
graph, withV (G) andE(G) the set of vertices and edges
respectively, andϕ : V (G) → R is a measuring function
labeling the nodes of the graph [8].

In this paper, we deal with models represented by trian-
gle meshes and black-and-white voxel images. In the first
case, the size graph is made of the vertices and the edges of
the triangle mesh. In the latter case,V (G) corresponds to
the image voxels andE(G) represents the 18-neighborhood
connectivity.

Once the size graph has been built, the computational
complexity for computingk-dimensional size functions on
a single half-plane of a given foliation isO(n log n + m ·
α(2m + n, n)), wheren andm are the number of vertices
and edges in the size graph, respectively, andα is the inverse
of the Ackermann function [8].

Statistics related to the time required to compute the de-
scriptor for a single half-plane of a given foliation and the
storage size are reported in Table 1. The values show that
size functions are fast to compute and easy to store, for both
vector and raster models. These results have been obtained
on a 1.5GH Pentium 4, RAM 1M.

5. Experiments

The aim of this Section is to analyze the potential of
the proposed approach for comparing and retrieving 2-
and 3-dimensional data, using both vectorial (i.e., triangle
meshes) and raster (voxel images) representations.



Model | V | | E | Time Descriptor

Human1 5772 11540 0.088s <1k
Human2 5775 11546 0.089s <1k
Teddy 12831 25658 0.131s <1k
Plier 14844 95699 0.256s <1k
Cup 121329 760717 0.680s <1k
Chair 30487 197759 2.316s <1k

Table 1. Statistics relating the dimension of
a model (in terms of number of vertices and
edges) with the time to compute multidimen-
sional size functions on a single half-plane
of a foliation, and with the storage size of the
descriptor. The first three models are triangle
meshes, the latter three are voxel images.

To perform our tests we have considered the database of
280 triangle meshes classified in 14 classes of 20 models
used in [1] and the McGill 3D Shape Benchmark [16] that
offers about 420 volume models, classified in 19 classes.

5.1 Triangle meshes

In order to compare and retrieve the triangle meshes in
the first database [1], we have defined a bi-dimensional
measuring function~ϕ = (ϕ1, ϕ2). Hereϕ1 is a normalized
Euclidean distance from the barycentre of the model, and
ϕ2 is a normalization of the the averaged geodesic distance
proposed in [14]. More formally,

ϕ1(v) = 1 −
| v − B |E

ϕ1M
,

whereB denotes the barycentre of the mesh andϕ1M =
maxvi∈V | vi − B |E ; and

ϕ2(v) = 1 −

∑

i g(v, bi) · area(bi)

ϕ2M
,

where g represents the geodesic distance,{bi} =
{b0, . . . , bk} is an almost uniform sampling of the vertices
of the mesh,area(bi) is the area of the neighborhood ofbi
andϕ2M = maxvj∈V

∑

i g(vj , bi) · area(bi).
The foliation ofR2 × R

2 chosen in our experiments is
the following one:















x1 = s cos θ + b

x2 = s sin θ − b

y1 = t cos θ + b

y2 = t sin θ − b.

In Figure 2 we depict the 2-dimensional size functions
obtained combiningϕ1 and ϕ2, restricted to three dif-
ferent half-planes of the foliation above. From left to

right, for each model, we represent the size functions ob-
tained from the following pairs of parameter vectors:~l1 =

(
√

3+1
2
√

2
,
√

3−1
2
√

2
), ~b1 = (0, 0), ~l2 = (

√
2

2 ,
√

2
2 ), ~b2 = (0, 0) and

~l3 = (
√

3−1
2
√

2
,
√

3+1
2
√

2
), ~b3 = (0, 0). Vectors~li correspond to

values of the angleθ of π
12 , π4 , and 11π

12 respectively. Each
row in the Figure depicts, from left to right, a model and its
1SF associated to the three half-planes defined above.

Observing the first two rows, we can notice how the same
structure in size functions corresponds to the similarity be-
tween shapes, resulting in a high discriminatory power. In-
deed, the size functions of the two human models are each
other very similar, while those of the third object are quite
different.

Notice also how size functions homogeneously evolve
over the half-planes of the foliation. Indeed the shape infor-
mation conveyed by the multivalued measuring functions
is distributed over the different half-planes. This means that
the similarity (or dissimilarity) between objects can be eval-
uated by concurrently analyzing different shape properties.
In other words, what we expect is that thek-dimensional
size functions of similar objects are close one to the other
over the whole foliation, thus guaranteeing also robust-
ness with respect to small changes and perturbations of the
model.

5.2 Voxel images

As a first approach, in order to describe the raster models
in [16], we have chosen a 3-dimensional measuring func-
tion that respect the grid orientation of the voxels. In other
words, we discriminate the models with respect to their spa-
tial extent. Thus, denotingB = (Bx, By, Bz) the coordi-
nates of the center of mass of the model, for each voxel
v = (vx, vy, vz) we have considered the 3D measuring
function~ϕ = (ϕx, ϕy, ϕz), where:







ϕx = − | vx − Bx |E
ϕy = − | vy − By |E
ϕz = − | vz − Bz |E .

The aim of Table 2 is to show the stability of the distance
defined in Section 3.2. The distances between six different
objects in our database (two spiders, two cups and two man-
ufactured models) are reported. These results are obtained
using~l = (

√
3

3 ,
√

3
3 ,

√
3

3 ) and~b = (0, 0, 0) as naive param-
eters to define an half-plane ofR

3 × R
3. As expected, the

comparison framework satisfies the identity property, guar-
anteeing that a model has a null distance from itself. In ad-
dition, the distance between two models in the same class
is significantly smaller than the distance between objects
belonging to different classes (e.g. a spider and a manufac-
tured model).



0.00 1.59 7.77 7.77 23.54 23.99

1.59 0.00 7.77 7.77 24.71 25.15

7.77 7.77 0.00 3.42 22.63 23.08

7.77 7.77 3.42 0.00 20.07 20.51

23.54 24.71 22.63 20.07 0.00 1.25

23.99 25.15 23.08 20.51 1.25 0.00

Table 2. Matching distances between six dif-
ferent models in our database over a sin-
gle plane of a foliation. Computing 420 ×
420 comparisons between the models in the
database requires 9.68s.

Finally, we show how the synergy of more shape prop-
erties, analyzed by means of multidimensional measuring
functions, better characterizes the elements of a class. Fig-
ure 3 exhibits what happens whenϕx, ϕy , ϕz and~ϕ = ϕxyz
are considered, eitherϕx, ϕy, ϕz alone as1-dimensional
measuring functions (first three columns), or combined in
a 3-dimensional measuring function~ϕ (last column). In
addition, we compare the performance of~ϕ with respect
to a 1-dimensional measuring function which is indepen-
dent of the spatial embedding, namely the distance from the
barycentre (ϕ1). In the columns of Figure 3 we rank the
firstly retrieved items in the 3D image database [16], when
the query is the model on the top row. It can be seen that
the performance of~ϕ improves the retrieval results, dimin-
ishing the number of false positives. These results show
that thek-dimensional size functions are promising, and we
foresee their usage for retrieval of multidimensional digital
shapes.

6. Conclusions

In this paper we have sketched how recent results in Mul-
tidimensional Size Theory can be effectively used to an-
alyze and compare 3D digital shapes (represented by sur-
face or volume models) equipped by multivalued functions
instead of scalar functions. The added value of this ap-
proach relies in the fact that it provides a modular frame-
work based on the idea of describing shapes by geometrical-
topological properties of different real functions. We are
currently working at the development of more measuring
functions, in order to analyze different kind of shape fea-
tures of 3-dimensional models.

Figure 3. Top retrieval results when four
single measuring functions and the 3-
dimensional size function that combines ϕx,
ϕy and ϕz are used. Results are depicted in
every column in increasing order of distance
from the first model.

Moreover, the first experimental results encourage us
to further investigate the application of this modular the-
oretical framework to higher dimensional and also time-
dependent data.
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