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1.Introduction

The basic approach to the analysis of cunrent economic and business
conditions (known as recession and recovery analysis, Moore, 1961) is
that of assessing the short-term trend of major economic indicators
(leading, coincident and lagging) using percentage changes, based on
original units and calculated for months and quarters in chronological
sequence. The main goal is to evaluate the behavior of the economic
indicators during incomplete phases by comparing current contractions
or expansions whith corresponding phases in the past. This is done by
measuring changes of single time series from their standing at cyclical
turning points with past changes over a series of increasing spans. Most
statistical agencies published seasonally adjusted data but, in recent
years, there has been an increasing interest in providing smoothed
seasonally adjusted data or trend-cycles estimates to facilitate recession
and recovery analysis. Among other reasons, this interest originated from
major global economic and financial changes that introduced more
variablity in the series and consequently, in their seasonally adjusted
values, making difficult to determine the short-term trend and an early
detection of the turning point.

The estimation of the trend-cycle with the X11ARIMA -seasonal
adjustment method (Dagum, 1980 and 1988) as well as the U.S. Bureau
of Census Method II-X11 variant (Shiskin, Young and Musgrave,1967)
is done by the application of linear filters due to Henderson (1916).
These Henderson filters are applied to seasonally adjusted data where the
irregulars have been modified to take into account the presence of
extreme values. The length of the filters is automatically selected on the
basis of specific values of noise to signal ratios for the seasonal (I/S) and
trend cycle (I/C) components.

The problem of short-trend estimation within the context of seasonal
adjustment as well as for current economic analysis has attracted the
attention of several authors in the past, among others, Rhoades (1980),



Cholette (1981and 1982), Moore et al. (1981), Kenny and Durbin (1982),
Castle (1987), Dagum and Laniel (1987), Cleveland et als (1990),
Walgren and Wallgren (1990), Gray and Thomson (1990.a, and 1996.b),
Findley and Monsell (1990) and Scott (1990).

The 13-term Henderson trend-cycle estimator is the most often
applied because of its good property for early turning point detection but,
it has the disadvantages of: (1) producing a large number of unwanted
ripples (short cycles of 9 and 10 months) that can be interpreted as false
turning points and, (2) large revisions for the most recent values (often
larger than those of the corresponding seasonally adjusted data). The use
of longer Henderson filters is not an alternative since the reduction in
false turning points is achieved at the expense of increasing the time lag
of tuming point detection.

Recently, one of the authors, Dagum (199¢) has proposed a new
method that enables the use of the 13-term Henderson filter with the
advantages of: (1) reducing the number of unwanted ripples, (2) reducing
the size of the revisions to most recent trend-cycle estimates and, (3) no
increase in time lag of turning point detection. This new method
basically consists of producing one year of ARIMA extrapolations from
a seasonally adjusted series with extreme values replaced by default;
extending the series with its extrapolated values; and then applying the
13-term Henderson filter to the extended seasonally adjusted series
imposing stricter sigma limits (not the default) for the replacement of
extreme values. The object is to pass through the 13-term Henderson
filter, an input with reduced noise.This procedure was applied to the nine
Leading Indicator series of the Canadian Composite Leading Index with
excellent results.

In another study, Dagum, Chhab and Morry (1996) compared this
new method with two model- based trend-cycle estimators: (a) a trend-
cycle state-space model and (2) an ARIMA trend-cycle model. Three
typical series characterized by small, medium and large signal to noise
ratios were chosen and the results indicated the overall superiority of the
new approach according to the above three criteria. In a recent study,
Gray and Thomson(1996.a) have developed a family of trend local linear
filters based on the same criteria of fitting and smoothing as in
smoothing spline functions. These authors show that their filters are a
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generalization of the standard Henderson filters. Smoothing splines,
particularly cubic splines with smoothing parameter estimated by
generalized cross validation, has been widely applied to smooth noisy
data.

The main purpose of our study is to investigate whether cubic spline
functions can be used as a substitute of the 13-term Henderson filter and,
if so, they can further improve on Dagum (1996) method. We also
investigate the extent to which the first and second order differences of
cubic spline trend-cycle curves can be useful to predict the upcoming of
a turning point by monitoring the most recent values.

Section 2 summarizes the properties of the 13-tern Henderson filter
for central and end values of the series. Section 3 introduces the cubic
spline model and discusses the selection of the smoothing parameter 4.
Section 4 compares the results given by the cubic spline and the standard
13-term Henderson applied to the same input, that is, seasonally adjusted
data with extreme values replaced by the default option and no ARIMA
extrapolations. The comparison is done with a coincident indicator, the
Italian Index of Industrial Production and three Canadian Leading
Indicator Series. Section 5 analyses the information given by the first and
second order differences of the cubic spline trend-cycle to assess the
upcoming of turning peints. Finally, section 6 gives the conclusions and
directions for future research.

2. The 13-term Henderson Trend-Cycle Filter

The properties of the 13-term Henderson filter have long been
discussed by authors preoccupied with the problem of trend-cycle
estimation. Two important studies on the theoretical properties of the 13-
term Henderson filter are found in Gray and Thomson (1996.2, 1996.b)
and in Dagum, Chhab and Chiu (1996) where the derivation and
properties of all the linear filters, single and combined, available in
X11ARIMA and Census X11 is discussed using spectral analysis.

The 13-term Henderson filter as its variants, 9-and 23-term, are based
on summation formulas mainly used by actuaries. The basic principle for
the summation formula is the combination of operations of differencing
and summation in such a manner that when differencing above a certain
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order is ignored, they will reproduce the functions operated on. The merit
of this procedure is that the smoothed values thus obtained are functions
of a large number of observations whose errors, to a considerable extent,
cancel out. These filters have the properties that, when fitted to second or
third degree parabolas, their output will fall exactly on those parabolas
and, when fitted to stochastic data, they will give smoother results than
can be obtained from weights which give the middle point of a second
degree parabola fitted by least squares. Recognition of the fact that the
smoothness of the resulting filtering depends on the smoothness of the
weight diagram led Henderson (1916) to develop a formula which makes
the sum of squares of the third differences of the smoothed series a

minimum for any numbers of terms. In other words, the Z(A’ Y, )2 is
minimized (where A is the difference operator, and y, is the output or
smoothed series) if and only if z:(A:’hjt )z (wheré h,'s are the weights)
is minimized.

If the span of the average is 2m-3, Henderson showed that the general
expression for the n-th term of the filter that minimizes Z(A’ h, )2 is:

315[(m—l)2 —n:’](m2 —-nz)[(m+l)2 —n21[3m2 —16-11n2] @1
— 8m(m® —1)(4m’ ~1)(4m’ —9)(4m - 25) '

To derive a set of 13 weights from (2.1), 8 is substituted for m and the
values are obtained for each »n from -6 to 6. The Henderson 13-term
trend-cycle filter is thus given by,

H,,(B)=-.0198"° -.028B"° + .00B™ + .065B
+.147B* + 21487 + 24B™ + 214B (2.2)
+.147B* + .065B° + .00B* —.028B° - 019B°

where B is the backshift or lag operator defined by B™y, =y,_, and
B’ =1.

The calculation of the weights of the asymmetric Henderson filter in
the X11ARIMA method is based on the minimization of the mean
squared revision (MSR) between the final estimates (obtained by the
application of the symmetric filter) and the preliminary estimate
(obtained by the application of an asymmetric filter) subject to the
constraint that the sum of the weights is equal to one. The assumption
made is that at the end of the series the seasonally adjusted values are

equal to a linear trend-cycle plus a purely random irregular ¢, such that
NID ~ (O,crj) . The equation used is

; 2 L L] ;

E[,.l(*v'")] =cf[r =Y h{t-i) +a2 Y (hy -hﬁ)’] (2.3)
J==i j=—m -

where h,, and h; are the weights of the symmetric (central) filter and

the asymmetric filters, respectively; h;=0 for j=-m, .,~i-1, ¢ is

the slope of the line and o’ denotes the noise variance. There is a

relation between ¢, and o’ such that the noise to signal ratio, I/C is
given by

IRY ; 4
I/C=(4cra/x) Acl| or -%:mfc—)z

(2.4)

The I/C noise to signal ratio (2.4) determines the length of the
Henderson trend-cycle filter to be applied. Thus, setting /=0 and m=6 for
the end weights of the 13-term Henderson, we have,

E["o(i:)] > [i hy ]2 * i (hﬁf -k )2 (2:3)

T, -ﬁ(I/C)z =i et
Making I/C = 3.5 (the most noisy situation where the 13-term

Henderson is applied), equation (2.5) gives the same set of end weights
of Census X11 variant (Shiskin, Young and Musgrave, 1967). The end
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weights for the remaining monthly Henderson filters are calculated using
I/C = 99 for the 9-term filter and I/C = 7 for the 23-term filter. The
estimated final trend-cycle is obtained by cascade filtering that results
from the convolution of various linear trend and seasonal filters. In fact,
if the output from the filtering operation H is the input to the filtering
operation Q, the coefficients of the cascade filter C result from the
convolution of H *Q. For symmetric filters H*Q=0+*H but this is

not valid for asymmetric filters. Assuming an input series x,,
t=12,...,T, we can define a matrix H=|:h,g.:|, k=12,...,m,,
j=12,...,2m, +1, where each row is a filter and m, is the half length
of the symmetric filter. & _ denotes an asymmetric filter where the first

m, coefficient are zeroes and #, ., denotes the symmetric filter.

g +1.

Given data up to time 7, the m, +1 most recent values of the output
(filtered series) are given by

2m, +1

(2.6)

h -
Yraa = Z hijr-k+m,+2-j
J=my —k+2

The 13-term Henderson filter can then be put in matrix form as
follows:

0 0 0 0 =-02 -0 012 .120 24 353 421
0 0 0 -0 -8 02 080 .1% 24 22 28
0 0 =016 <@ 0B 08 19 216 241 216 .148
0 -0Pp -2 M 0% .45 28 230 201 1Bl 06 ((2.7)
0 =011 -2 0B 067 M5 210 235 205 .36 (050 -018
0 017 -5 (01 066 .47 213 238 212 14 061 —006 —(34
-0 -8 0 06 47 214 240 214 147 06 O -8 019

o= e Y o [ o B =
o o O O

The properties of the cascade filters can be studied by analyzing their
frequency response functions. The frequency response function is
defined by

H(w)= Y ae™ @8)

where a; are the weights of the filter and @ is the frequency in cycles

per unit of time. In general, the frequency response functions can be
expressed in polar form as follow,

H(w)=A(w)+iB(w)= G(m)e"(“’)‘ (2.9).

where G(.c:.:)=|:Az(r:u)+B2 (a))]% is called the gain of the filter and

¢(w)=tan" (-B{w)/A4(w)) is called the phase shift of the filter and is

usually expressed in radians. The expression (2.9) shows that if the input
function is a sinusoidal variation of unit amplitude and constant phase

shift y (@), the output function will also be sinusoidal but of amplitude
G(w) and phase shift (@) +¢(w). The gain and phase shift vary with
@ . For symmetric filters the phase shift is 0 or +#, and for asymmetric
filters take values between *x at those frequencies where the gain

function is zero. For a better interpretation the phase shifts will be here
given in months instead of radians (the phase shift in months is given by

¢(w)/27z0 for @#0). The gain function shown should be interpreted
as relating the spectrum of the original series to the spectrum of the

output obtained with a linear time-invariant filter. For example, let Y,{°)
be the estimated seasonally adjusted observations for the current period

based on data x, r=1,2,...,T, then the time series {K(o)} is obtained
from {X,} by application of the concurrent linear time-invariant filter
K (B). Thus, the gain function shown in Figure 2.2 below relates the
spectrum of {x,} to the spectrum of { y,(°)} and not to the spectrum of the

complete seasonally adjusted series produced at time ¢ (which includes
Y,m , a first revision of time #-1, a secon revision at time ¢-2, and so on).



The 13-term Henderson filter combined with the standard seasonal filters
(5 and 7 term weighted moving averages) produces a symmetric cascade
filter for central values (at least four years from each end of the series)
with a gain as exibit in Figure 1.

Figure 1 also shows the gain functions of short and long convolutions
corresponding to the 9-term Henderson (H-9) and the 23-term Henderson
(H-23) respectively. It is apparent that cycles of 9 and 10 months
periodicity (in the 0.08-0.18 frequency band) will not be suppressed by
any of the cascade filters, particularly those using the 9 and 13-term
filters. In fact, 90%, 72% and 21% of the power of these short cycles are
passed by the 9, 13 and 23-term Henderson filters, respectively. For the
concurrent asymmetric trend-cycle filter which is applied to the last
observation, the peak reached at the 0.08-0.16 frequency band is even
larger as shown in Figure 2.a. When ARIMA extrapolations are used the
gain resembles more the symmetric filter but there is a slight increase in
phase shift as shown in Figure 2.b.

@ 005 04 015 02 025 03 035 04 045 03
frequency

Fig.1 Trend-cycle symmetric cascade filters: gain function.
-+ (3x3)(3x3)[H-9] — (3x3)(3x5)H-13]- (3x3)(3x9)[H-23]
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¢ 005 01 045 02 025 03 035 0O Q.45 05
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Model: (0,1,10,1,1) 6=4 ©=6

Fig. 2.a Trend-cycle concurrent cascade filters, (3x3)(3x5)[H-13), with
and without ARIMA extrapolations: gain function.

--- With consistent extrapolation — Without extrapolation

L 1 N i 1 1 | i 1 |
¢ 005 01 015 02 02% 03 035 004 045 03
frequency

Model: (0,1,1%0,1,1) #=4 ©=.6
Fig. 2.b Trend-cycle concurrent cascade filters, (3x3)(3x5)[H-13], with

and without ARIMA extrapolations: phase-shift.
--- With consistent extrapolation — Without extrapolation
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3. Smoothing Spline Functions

The current literature on spline functions, particularly on smoothing
splines, is very extense and we refer the reader to Wahba (1989) for an
excellent summary of the most important contributions on this topic. The
problem of smoothing via spline functions is closely related to that of
smoothing priors and signal extraction in time series, where these later
are approached from a parametric point of view (see, among others,
Akaike 1980.a and 1980.b; Gersch, 1992 and Kitagawa and Gersch,
1996).

Similar to the Henderson filters, the original work on smoothing
spline functions was based on the theory of graduation. The first two
seminal works related to smoothing splines are due to Whittaker (1923)
and Whittaker and Robinson (1924) who proposed a new graduation
method that basically consisted of a trade-off between fitting fidelity and
smoothing. The problem was that of estimating an unknown "smooth”
function f , observed with errors assumed to be white noise. That is,

given a set of observations y, =1, 2, ...,T such that,
v, =fi+g £i~N(0,0'2) (3.1)

we want to minimize

N N 2 :
2+t 2 (A (32)
i=l i=k+1

where A*f, denotes the k-th order difference of f;,e. g Af=f—f.,
A’ f, =A(4f,), and so on. The smoothing trade-off parameter # must be

appropriately chosen.

Following this direction, Schoenberg (1964) extended Whittaker
smoothing method to the fitting of a continous function to observed
data, not necessarily evenly spaced. In this case, the model is

12
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vi=f(x)+e & ~N(0,0%) (3.3)

where the unobserved function f is assumed to be "smooth” on the
interval [a,b] and the observations are at the » points x,,x,,...x,. The
problem is to find

o l < _ 2 b (m) " 2 ” .
j;-mmnz_]:(y,. f(xi)) +/1;ﬂ:f ( ):| di 34

feC =

where C™ 1is the class of functions with m continous derivatives and
A>0. '

The solution to (3.4} known as a smoothing spline is unique and given
by a univariate natural polynomial (unp) or piecewise polynomial
function spline of degree 2m-1 with knots at the data points x,,x,,...x, .
The smoothing trade-off parameter A controls the balance between the
fit to the data as measured by the residual sum of squares and the
smoothness as measured by the integrated squared m-th derivative of
the function . When m=2, which is the case of a cubic smoothing spline

then the integral of the squared second order derivative f @ is curvature
and a small value for the integral corresponds visually to a smooth curve.
As A — 0 the solution f, tends to the unp spline which interpolates the
data, and as A — o, the solution tends to the polynomial of degree m
best fitting the data in the least squares sense. The smoothing trade-off
parameter A is known as hyperparameter in the Bayesian terminology
and it has the interpretation of a noise to signal ratio, the larger the A the
smoother the trend-cycle.

The estimation of A was first done using ordinary cross-validation
(OCV). OCV consisted of deleting one observation and solving the
optimization problem with a trial value of A , computing the difference
between the predicted value and the deleted observation, accumulating
the sums of squares of these differences as one runs through each of the
data points in turn, and finally choosing the A for which the accumulated
sum is the smallest. This procedure was improved by Craven and Wahba

13



(1979) who developed the generalized cross validation (GCV) method
currently available in most computer packages. GCV can be obtained
from OCV by rotating the system to a standard coordinate system, doing
OCV, and rotating back. The GCV estimate of A is obtained by
minimizing

(- A(a)y[
[T (1-4(2)]

(3.5)

v(A)=

where A(A) is the influence matrix associated with f, that is, A{A)
satisfies

S (xl) M
: = A(i) : (3.6)

fi(x) Y,

Trace A(A) can be viewed as the "degrees of freedom for the signal”
and so, (3.5) can be interpreted as minimizing the standardized sum of
squares of the residuals. Cross-validated smoothing splines has also
given good results for the estimation of derivatives or other local features
of maxima and minima and will be the ones used in this study.

4. Comparison between the Cubic Smoothing Spline and the 13-term
Henderson Trend-cycle Estimators

The comparison between the Cubic Smoothing Spline (CSS) and the
13-term Henderson (H-13) estimator is done as follows:
(1) The input for both trend-cycle estimators is the seasonally adjusted
series modified by extreme values with zero weight. The identification
and replacementof extreme values is done with the default option of
X11ARIMA which defines as extreme value with zero weight any
irregular falling outside 12.5¢ .

14

BRK] -

(2) To estimate the CSS trend-cycle we use the default option of the S-
Plus computer program subroutine which is based on Hastie and
Tibshirani (1990). The default option automatically selects the knots and
calculate A using the generalized cross-validation procedure. In those
cases where the CSS results differ significantly from those given by H-
13 in the sense that the trend-cycle is either too smooth or too bumpy, we
search for other values of A to approximate the H-13 trend as discussed
later in this section.

(3) The comparison between both trend-cycle estimators is based on two
of the three criteria used by Dagum (1996), namely: (i) number of
unwanted ripples and (ii) time lag to detect the turning point. At this
stage of the research we have not carried out an analysis of the revisions
to the most recent estimates from CSS, however, by visual inspection of
the graphs used for criteria (ii) we can get some information on the size
of the total revision of the turning point.

Next, we discuss the results for the Italian Index of Industrial
Production (IIP), a coincident economic indicator (Klein, 1995), and the
three Canadian Leading Indicators, New Orders for Durable Goods
(NODG), Average Workweek in Manufacturing (AWM) and House
Spending Index (HSI) discussed in Dagum (1996).

Case 1. Italian Index of Industrial Production

The monthly data for the Italian Index of Industrial Production are
those published in seasonally adjusted form by the Italian statistical
agency ISTAT and cover the period January 1985-December 1994. This
series was adjusted for extreme values as described in (1) above and the
CSS and H-13 trend-cycles were estimated .

Figure 3 shows the major differences between the two trend-cycle
curves, being the CSS too smooth. We then looked at the value of the
noise to signal ratio (I/C) given by the X11ARIMA method which would
have been used to determine the appropriate length of the Henderson
filter. The YC was equal to 4.11 which correspond to the 23-term
Henderson instead of the 13-term. In fact, we found that the automatic
option of the S-Plus software for the estimation of the CSS trend-cycle
of the IIP gave results close to those from XI1ARIMA. These two

15



trend-cycle curves are shown in Figure 4. However, as it is already well
known, the 23-term Henderson filter is a poor predictor of turning points 110
and, as shown in Figure 5, it takes 8 months the detect the July 1993
turning point of this series. Similar time lag is observed for the automatic
CSS trend-cycle as exhibit in Figure 6. These Figures 5 and 6,
resembling "porcupines”, give the revision path of the last available
point, in this case, July 1993 as we keep adding one observation at a
time. Only after 8 months have being added to the series ending in July

1993, the turning point is clearly detected. A crude measure of the size of 80 e A ne bt bt
the revision is given by the distance between the first estimate when the ﬂ % E; ? § 5; 'f'_; ?é 2 °°§ 2 i § § g‘ % g 2 g é i
series ends in July 1993 and the final estimate for the same month when o T T A e T
the series ends in April 1994. Here, the revisions for the CSS trend-cycle ‘

Fig. 4. CSS and standard H-23 trend-cycle estimates (IIP).

timate looks slightly 1 .
estimate looks slightly larger —CSS ---H-23.

Next, we tried to approximate the results given by the 13-term
Henderson which, although introduces 4 false turning points (see Figure
3) it has the advantage of reducing the tuming point detection to 4
months (see Figure 7). After experimenting with several values of the

smoothing parameter, we found that for a A= 5.8x10-6 the CSS trend Revision path of July-August 1993 turning point

cycle ressembles that of the H-13 and reduces the false turning points to {zp)
three (see Figure 9). The time lag to detect the July 1993 turning point is
of four months as with the H-13 with similar revisions (see Figure 8). 2 %
9% 9%
110.00 7 ”
105.00 | % %
100.00 | 9 9
$5.00 4 54 | 4 : 54 | - t : ;
2 8 & & 8 % 2 3 8% & 3
90.00 | ' i 8§ 2 § ;3 5 : ggz;#zz;g
85.00 |
80.00 |\ 5 Fig. 5. With standard H-23 Fig. 6. With CSS(automatic A)
25855588288553888533%
AREEEE35§ZI5E8E53535:25+3

Fig 3. CSS and standard H-13 trend-cycle estimates (IIP).
—CSS ---H-13.
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Fig.9 CSS(A=58x10") and standard H-13 trend-cycle estimates (IIP).
— (8§ -—-H-13.

Finally, we compare the cubic smoothing spline with A= 5.8x10-%
with the trend-cycle estimate developed by Dagum (1996). The results
shown in Figure 10 indicate a close relation between both trend-cycle
curves except that the Dagum method based on a modification of the 13-
termt Henderson reduces two more false turning points. The revision path
of the tuming point starting in July 1993 with Dagum trend-cycle is
given in Figure 11. It is apparent that July- August are very close and that
it takes 4 months to detect the turning point.

18
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Fig.10. CSS (A =5.8x10" ) and Dagum trend-cycle estimates (IIP)
— CS8S --- Dagum.

Fig.11. Revision path of July-August 1993 turning point with Dagum
method (IIP).

Case 2. Canadian Leading Indicators

The three Canadian Leading Indicator series are New Orders for
durable goods (NODG), Average Workweek in Manufacturing (AWM)
and the House Spending Index (HSI) used in Dagum (1996). These
series, for the period January 1981-December 1993, are seasonally
adjusted and published by Statistics Canada.

For NODG and AWM, the automatic CSS trend-cycle eshmator gives
results similar to those of the standard H-13 with respect to both the

19



number of unwanted ripples and time lag to detect the turning point.
These are shown in Figures 12, 13 and 14 for NODG and in Figures 39 [ i
15,16 and 17 for AWM. 38.6 b S i
38.2 L .
10500 J 178 | /
9500 4 317.4 |
8500 37?1:+‘r;;y.‘=i+%—-%;=4¢k:1,=,ks
' FERRRREINLRES5528882855358888
7500 EEEESEAZAD5EEE5353 52525553
6500
5500 e ‘ Fig.15 CSS and standard H-13 trend-cycle estimates (AWM).
s sl inggslsheRgsefaagEgs —CSS --H-13.
EESEiESEEEEEE35555 55555353
Fig.12. CSS and standard H-13 trend-cycle estimates (NODG). Revision path of March 1991 turning point
—CSS - H-13. (AWM)
. . . 381 38.1
Revision path of February 1991 turning point
(NODG) 375 } 799
317 377
9500 9500
375 375
93001 9300
. 373 gy wmal ,
9100 ' $100 | 2 - - _ _ - g — - - =
A T % 3 1 1 %
00 o0 ‘ g & & & £ 5 & ¢ & 2 £
8700 B700 - : -
- Fig 16. With standard H-13 Fig.17. With CSS (automatic A}
8500 — -
& 8 S Y E S & & g 3 5 & . .
g i i & &g =2 B : ¥ 5§ & 3 On the other hand, for the House Spending Index (HSI) series, the

automatic CSS trend-cycle estimator produces much more false turning
Fig.13. With standard H-13 Fig.14. With CSS (automatic A) points than the standard H-13 as exhibit in Figure 18 but the time lag to
detect the December 1990 turning point is of four months in both cases
(see Figures 19 and 20).
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Fig.18. CSS and standard H-13 trend-cycle estimates (HSI).
—CSS --- H-13.

Revision path of December 1990 turning point
(Hsl)

8,45143%'&
¥ 3 3 ¢

Apr-9t 1

Fig.19. With standard H-13 Fig.20. With CSS (automatic )}

Similar to the Italian Index of Industrial Production, we looked for
other values of the smoothing parameter to produce trend-cycle estimates
resembling more those of the standard H-13 filter. The CSS with
A=58x10"% produces a trend-cycle curve very close to that of the
standard H-13 with no distortions in the revision path of the December
1990 turning point (see Figures 21 and 22). This value of A was
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obtained by fitting the automatic CSS to the middle part of HSI series
(1986-89) where the modified seasonally adjusted series changes its
directions many times.
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Fig.21. CSS (A1=58x10") and standard H-13 trend-cycle estimates
(HSD). — CSS --- H-13.
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Fig.22. Revision path of December 1990 turning point (HSI) with CSS
(A=58x10"),

5. Turning Point Prediction
One important property of the CSS trend-cycle estimator is its

capability for fast detection of turning points as new observations are
added to the series. Cubic spline functions have first and second order



derivatives and these can be interpreted as giving the trend-cycle rate of
change and its acceleration, respectively. Both provide useful
information on the upcoming of a turning point which depends on: (1)
the presence of a zero point in the first order derivative and (2) the sign
of the second order derivative at that point. To predict the upcoming of a
turning point the following should be taken into consideration: (1) the
presence of an inflection point in the first derivative curve, (2) the
distance of the inflection point from the abscissa and (3) the acceleration
given by the second order denivative. Instead of using the derivatives of
the CSS trend-cycle, we here use the first and second order differences
of the most recent months (the last six) to predict the upcoming of a
turning point. This procedure can also be used with any other trend-cycle
estimator as long as it detects turning points with short time lags and the
revisions of the most recent value converge monotonically to the final
value. Figure 23.a shows the time path of the first differences of the IIP
cubic smoothing spline trend-cycle with 2=5.8x10-¢ for the most recent
months before July-August 1993 tuming point. It is apparent that the rate
of change of the series is rather constant and close to zero. This
information together with the acceleration of the change, given in Figure
23.b, provide an indication of the arrival of a turning point. In fact, the
second difference curve is also flat and close to zero, signalling that the
acceleration of the change has stopped. It becomes positive with the
addition of September, indicating that the turning point will be a trough.
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Figure 24.a shows the time path of the first differences of the NODG
automatic CSS trend-cycle-for the last six months before February 1991
turning point. It is apparent that the first difference curve is negative but
linearly increasing and approaching to zero. The arrival of a tumning
point is confirmed as a point of maxima or minima by the time path of
the second order differences. In this case, it is positive and thus
indicating the presence of a trough (see Figure 24.b). Figures 25.a and

+ 25.b provide similar kind of information to predict the arrival of the

March 1991 turning point of the Average Workweek in Manufactunng
series. In fact, we can see a pattern similar to the NODG series.

February 1991 turning point.
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Finally, to predict the arrival of the December 1990 turning point of
the House Spending Index we look at Figures 26.a and 26.b. We can see
from Figure 26.a that since July 1990 till November 1990, the changes
are negative and the curves are nearly constant indicating a linear
decrease in the original data but with the addition of December, the value
is near zero signalling the arrival of a turning point. This information
together with the fact that the acceleration is positive is useful to predict
the upcoming of the turning point. It is also worthwhile to notice that the
acceleration curve changes direction often since June 1990, coinciding
with the high variability of this series during that period.

December 1990 turning point
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Fig. 26a. CSS (A=58x10") first Fig.26b. CSS (A =5.8x10"%) second
differences. differences

6. Conclusions and Directions for Future Research.

We have investigated the use of cubic smoothing spline functions as
an alternative to the standard 13-term Henderson filter often applied for
trend-cycle estimation for current economic analysis. Both trend-cycle
estimators are applied to seasonally adjusted data modified by extreme
values and the comparison is based on: (1) number of unwanted ripples
or false turning points present in the final trend-cycle estimates, and (2)
time lag to detect a true turning point.

We used a very important Italian series, the Index of Industrial
Production (IIP) which is.a coincident indicator and three Canadian
Leading Indicators, New Order for Durable Goods (NODG), Average
Workeek in Manufacturing (AWM) and House Spending Index (HSI).
The cubic smoothing spline (CSS) trend-cycle was first estimated with
the default option that automatically selects both the number of knots
and smoothing parameter. In this manner, the CSS trend-cycle estimator
is as easy to apply as the standard 13-term Henderson filter. To our
surprise, the results indicated that the automatic CSS produces estimates
equivalent to the kind of Henderson filter chosen by the X11-ARIMA
based on the noise-signal ratio (I/C) for the series under question. Hence,
for the IIP and HSI series the estimates were very different from the H-
13 trend-cycle. For the other two, the automatic CSS trend estimator
gave results equivalent to those of the H-13 filter in the sense of criteria
(1) and (2) above.

Further experimentation with IIP and HSI to find a smoothing
parameter A (no longer chosen automatically) to approximate the H-13
trend-cycle as imposed on these two series, lead to the value of
A=5.8x1076 as the one giving the closest estimates.

We proposed an approach to predict the upcoming of a turning point,

given the availability of first and second order derivatives of cubic
smoothing spline functions which can be interpreted as rate of change
and acceleration of the trend-cycle, respectively.
In order to extend the possibility of using this approach for any trend-
cycle estimator (as long as it detects rapidly true turning points and the
revisions of current values converge monotonically to the final} we used
first and second order differences instead of first and second order
derivatives.

For the series analysed, first and second order differences were
calculated for the most recent trend-cycle values and its time path
monitored as new observations were added. The proposed procedure
gave good results to predict the arrival of the true turning point of each
series.

We intend to apply this procedure to a much larger set of coingidcnt
and leading Italian and Canadian Indicators in order to evaluate better its
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capability as a -substitute of the standard 13-term Henderson filter.
Further research is still needed on:

(1) Application of the CSS in a2 moving manner but with a fixed window,
e.g five years of data .

(2) Using ARIMA extrapolations and a smoother input as in Dagum
(1996) to see whether the CSS trend estimates are improved according to
this author three main criteria.
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