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Abstract

The asymptotic distributions of Augmented-Dickey-Fuller (ADF)
unit root tests for autoregressive processes with a unit or near-unit
root are discussed in the presence of multiple stochastic level shifts
of large size occurring independently in time. The distributions de-
pend on a Brownian motion and a Poisson-type jump process. Due
to the latter, tests based on standard critical values experience power
losses increasing rapidly with the number and the magnitude of the
shifts. A new approach to unit root testing is suggested which re-
quires no knowledge of either the location or the number of level
shifts, and which dispenses with the assumption of independent shift
occurrence. It is proposed to remove possible shifts from a time se-
ries by weighting its increments according to how likely it is, with
respect to an ad hoc postulated distribution, a shift to have occurred
in each period. If the number of level shifts is bounded in probabil-
ity, the limiting distributions of the proposed test statistics coincide
with those of ADF statistics under standard conditions. A Monte
Carlo experiment shows that, despite their generality, the new tests
perform well in finite samples.

Keywords: Unit roots, level shifts, compound Poisson process, ran-
dom fixed point

JEL Classifications: C30, C32



1 Introduction

Since the seminal works by Perron (1989, 1990) it is well known that the
performance of unit root tests is largely affected by the presence of struc-
tural level shifts which, if neglected, tend to inflate the evidence in favor
of a unit root. Busetti and Harvey (2001) and Busetti and Taylor (2003)
report similar findings for the stationarity tests of, inter alia Kwiatkowski
et al. (1992). A major debate in this strand of the literature has been on
whether the possible shift date should be regarded as known or unknown.
Among others, unit root tests robust to a level shift at a known date have
been developed by Perron (1989, 1990), Amsler and Lee (1995), Saikko-
nen and Lutkepohl (2001), Lanne et al. (2002). Tests which allow for
unknown shift dates have been initially proposed by Banerjee et al. (1992),
Perron and Vogelsang (1992), Zivot and Andrews (1992), and subsequently
by Leybourne et al. (1998), Saikkonen and Lutkepohl (2002), Liitkepohl et
al. (2004), among others; see Perron (2005) for a recent survey.

Few attempts have been made to robustify unit root tests in the presence
of multiple level shifts. Lumsdaine and Papell (1997) and Clemente et al.
(1998) generalize the tests proposed by Banerjee et al. (1992) by allowing
for two level shifts at unknown dates. Unfortunately, there is little justifi-
cation for fixing the number of shifts to one or two a priori (cf. Lumsdaine
and Papell, 1997, p.218), and the above mentioned procedures can hardly
be generalized to a larger number of shifts.! Recently, Kapetanios (2005)
has shown how tests for unit roots can be obtained by estimating the shift
dates using Bai and Perron’s (1998) approach, and running a properly aug-
mented Dickey—Fuller (ADF) regression; the critical values depend on the
shift dates and the power of the tests declines as the maximum number of
allowed shifts (which is assumed to be known) increases.

In this paper we take a novel approach to unit root testing in the pres-
ence of multiple level shifts. Specifically, we consider a rather general
autoregressive data generating process with additive level shifts having the
following features: (i) level shifts occur randomly over time; (ii) the num-

LAn attempt has been made by Ohara (1999), who extended the Zivot and Andrews
(1992) approach to the case of at most m breaks (m known). Size and power investigations
(as well as critical values) are presented for the two break case only.



ber of shifts is unknown, and only needs to be bounded in probability; (iii)
shifts need not occur independently over time, and in particular, may cluster
together; (iv) shift sizes are random and of larger magnitude order than the
shocks driving the autoregressive dynamics; (v) although shifts are exoge-
nous throughout the paper, forms of dependence with the shocks driving
the autoregressive dynamics could be allowed without affecting the results.
These features differ in several respects from what has been previously con-
sidered in the literature. For instance, the investigator is not required to have
any a priori knowledge about either the number or the location of shifts.
The restrictions on the sequence of shift dates are mild, the main one be-
ing of technical nature, and requiring the total number of shifts not to grow
with the sample size. This is in contrast with a strand of the literature where
the number of shifts diverges together with the number of observations (cf.
Balke and Fomby, 1991a, 1991b; Franses and Haldrup, 1994; Nelson et
al., 2001), but we adopt it to preserve in the limit the distinction between
ordinary shocks and level shifts.?

Despite the generality of (i)—(v), we are able to propose a family of
ADF-type tests with null asymptotic distribution identical to that of ADF
tests under standard conditions, and hence, without the need for new tables
of critical values. Furthermore, the new tests have the same asymptotic
local power function as standard ADF tests in the case of no level shifts.

Similarly to Amsler and Lee (1995) and Saikkonen and Lutkepohl (2002),
the logic of the tests is to remove from the original time series, say X;, the
level shifts which might have occurred over a given sample, and then to
apply standard ADF tests to the obtained ‘de-jumped’ time series, say Xf .
In order to remove the shifts, for each observation we suggest to compute a
probability &, (with respect to an ad hoc postulated distribution) that a level
shift has occurred at time ¢, given the data. Then, shifts are removed by
defining X? as X7 := X, — >'_, 6;AX,. ADF tests on X} are found
to have the same (pivotal) limiting distributions as standard ADF tests un-
der no level shifts — a property which holds both under the unit root null
hypothesis and under local alternatives.

2In a recent paper, Perron and Qu (2004) adopted an approach similar to ours for eval-
uating the impact of structural breaks occurring randomly over time on log-periodogram
estimation.



The idea of weighting each observation with a (pseudo) probability is
present in the work of Franses and Lucas (1998) on the robustification of
cointegration tests to innovational outliers. Despite the similarity, we de-
part from a rather different statistical model, which gives rise to estimators
and tests with different asymptotic properties. For example, although not
required for the definition of the unit root tests, in our framework consistent
estimation of the shift dates is feasible, in contrast with the framework of
Franses and Lucas.

To evaluate the relevance of the asymptotic theory developed in this
paper, the agreement of its predictions with well-known finite-sample evi-
dence is worth to be noted. Specifically, we show that neglecting the level
shifts affects the asymptotic local power of ADF tests, which is consistent
with widely documented findings that in finite samples unit root tests lose
power in the presence of level shifts.

A specificity of our probability analysis is that it relies on random fixed
point theory. Although it is a common practice to compute parameter es-
timates as fixed points of iterative algorithms, estimators themselves are
rarely studied as fixed points; Aitchison and Silvey (1958) is a notable ex-
ception. By choosing a fixed-point approach, we can ensure that the object
under analytical study is identical with the object which is actually com-
puted - an obvious requirement that may otherwise be hard to check.?

The paper is organized as follows. In section 2 we present the refer-
ence data generating process. We also discuss the asymptotic distributions
of standard unit root tests in the presence of level shifts occurring indepen-
dently over time, and show that the distribution of the ADF statistics are
characterized by a Poisson-type jump process, both under the null and un-
der local alternatives. In section 3 the proposed tests for unit roots in the
presence of level shifts and their asymptotic properties are introduced and
discussed. In section 4 we refine our approach by proposing an algorithm
for estimating the level shift dates jointly with the parameters governing the
autoregressive dynamics. The small-sample properties of the new tests are
analyzed through a set of Monte Carlo simulations in section 5. In section 6
we discuss how the new tests can be implemented in the case of linear time

3For example, numerical techniques may deliver a local maximum of a criterion func-
tion, whereas the asymptotic analysis is carried out for a global one.



trends and unknown autoregressive order. Section 7 concludes. Proofs are
collected in the Appendix. The following notation is used: ‘-’ denotes

weak convergence and B convergence in P-probability, with Op (1) de-
noting boundedness in P-probability; I(-) is the indicator function; I; and
1, are the k£ x k identity matrix and the & x 1 vector of ones. With ‘x := y’
(‘z =: y’) we indicate that = is defined by y (y is defined by z), and ||
signifies the largest integer not greater than its argument. With D[0,1] we
denote the space of cadlag functions on [0,1], endowed with the Skorohod
topology. Finally, for any scalar sequence, e.g. { X}, AX; := X; — X1,
VX = (AXt, ceny AXt—k—&—ly and Xy = (Xt, (VXt)I),.

2 Model and preliminary results

2.1 Model and assumptions

We are interested in testing the unit root null hypothesis Hy : o = 1 against
local alternatives H. : « = 1—¢/T (c > 0), and fixed alternatives Hy : o =
ay € (—1,1) in the following additive level-shift model for the observable
variable X;:

Xt:@/Zt"i_Y%"i_/J/t; t=—k,..,T
Y;f = aY;f—l + Ut, (1)
U = Zi-c:l YiUt—i + Et,

where Y; is an unobservable autoregressive process, Z; is a p x 1 vector
of deterministic terms (e.g. a constant and a linear trend for p = 2), ¢ is
a fixed vector conformable with Z;, and p, is an unobservable level-shift
component. The following assumption is maintained:

Assumption M. (a) The roots of ' (2) := 1 — Zle 7,2" have modulus
greater than 1; (b) {&:}°_, is 1ID(0,02) and E |1]|" < oo for some
r >4,

Assumption M prevents Y; from being 1(2) or seasonally integrated, and
ensures that the so-called long-run variance of w;, hereafter o2 := agl“ (1)’2,
is well-defined. The novelty of the paper lies in the way , is specified and



dealt with. To focus on this aspect, we regard the lag order % as known, and
in the entire analytical part we consider the case ¢ = 0; the case ¢ # 0 as
well as the case of unknown lag order are discussed in section 6. Initial val-
uesaresetto p_y, ..., ug = 0,and (u_og, ..., u_g_1)" is given the stationary
distribution induced by the difference equation u; = Zle Vi g 4
moreover, Y_;_1 may be any real random variable, including a constant,
whose distribution is fixed and independent of 7.

In the absence of level shifts and deterministic terms, X; = Y; holds
for all ¢; in this case, if & and 4 denote respectively the OLS estimators of
aand vy := (vq,...,7)" inthe regression X; = aX;_1 +~'VX;_1+terror,
the well-known ADF unit root tests build on the statistics

ADF; : =T(a-1)/I(1)

ADF, : =(a-1)/s(a),
where I' (1) :=1 — 1,4 and s (&) is the (OLS) standard error of &. Under
Assumption M and fora = 1—¢/T (¢ > 0), itis known (see, e.g., Phillips,
1988; Chang and Park, 2002) thata 5 1,4 5 v and

appy = o B = Belo)  ypp o b Be()dBl)
Jy B ( ) ds fo )2 ds)1/2
as T — oo, where B, (s) = [; e (**)dB(z) defines an Ornstein-

Uhlenbeck process, and B ( ) is a standard Brownian motion. Under the
null hypothesis that ¢ = 0, B.(-) = B(-) and the distributions in (2)
are the univariate Dickey-Fuller distributions. Under the fixed alternative
Hfia = o, € (0,1), both ADF; and ADF; diverge to —oo, and the unit
root tests are consistent.

Now, suppose that the level-shift component , is constant except for
a few shifts. The simplest example is the single level shift model, with the
level-shift component changing from p to pp attime 7%, 0 < 7% < T
(cf. Perron, 1989; Amsler and Lee, 1995; Saikkonen and Lutkepohl, 2002,
p.316). This model corresponds to 1, being generated as

fy =g+ 0Tt >T*), 0" = pup — pp, ©)

“The results of the paper remain valid under the more general specification
U2k, ey U—k—1 = Op (1) .




with 6* denoting the magnitude of the level shift, or equivalently, as

t
=g+ Y605, 6y =1(s=T7), )

s=1

with 65 a dummy variable equal to unity at the time 7 of the level shift.
Rather than assuming a single deterministic level shift, in this paper we
consider shifts that occur randomly over time and have random magnitude.
This is achieved by specifying the level-shift component as

¢
Wy = Z 0505
s=1

where {6;} is an unobservable sequence of binary random variables in-
dicating the occurrences of shifts, and {6;} is the (random) sequence of
shift sizes®. The number of level shifts occurring up to time ¢ is given by
Ny = 22:1 b5, With Np denoting the total number of level shifts. The fol-
lowing assumption on the properties of the level shifts is required to hold
jointly with Assumption M.

Assumption S. (a) N is bounded in probability conditionally on Ny >
1; (b) 6; = T"?n,, where {n,}X_, and {n;'}L_, are sequences of
Op (1) random variables as T — oo; () {6:}7_, is independent of
Yogo1, (u—ok, ey u—g—1)', {1}, and {n,} 1, forall T.

Several points are worth to note.

Remark 2.1. Formally, since {6,}, {6} and, under H., also « of (1) depend
on T', we are considering a triangular array of the form { X7; = Y7 s +pp;
t=—k,...,T,T =1,2,..}. The magnitudes of the level shifts could also
constitute an array {ng,;t = 1,...,7, T = 1,2, ...} with the property that,
for every e € (0,1), P(Mc > [np4| > me) > 1 — e for some constants
M,>me.>0andt=1,...,T,T =1,2,...; see Theorem 1 below. Unless
differently specified, to keep notation simple we drop the ‘1" subscript.

®As remarked above, we set 1, = 0 in the following.



Remark 2.2. Assumption S generalizes the simple single shift model (3)-
(4) in a number of directions. Specifically, it allows for multiple level
shifts, whose number N only needs to be bounded in probability. This
is a stochastic analogue of the deterministic setup in, among others, Per-
ron (1989), where processes with a fixed number of structural breaks are
studied. It is in contrast with the setup of, e.g., Balke and Fomby (1991a,
1991b) and Franses and Haldrup (1994), who let the number of level shifts
diverge together with the sample size. Assumption S does not restrict the
dependence structure of {6}, and in particular, allows for clusters of level
shifts (including shifts at consecutive dates).

Remark 2.3. Assumption S(b) fixes the stochastic magnitude order of level-
shift sizes at 7V/2; it is not new, cf. Leybourne and Newbold (2000a,
2000b) and Perron (1989, p.1372). This choice matches the stochastic mag-
nitude order of {Y;} under the hypothesis &« = 1 — ¢/T and implies that
level shifts have a non-negligible effect on the asymptotic distribution of
ADF statistics: a desirable property given the broad evidence of a substan-
tial effect on their finite-sample distributions. The rate of 7%/2 has also
been used by Muller and Elliott (2003) to model the initial observation of
processes with roots near unity. Note that Assumption S imposes no re-
striction on the dependence structure of {n, }, and hence, of shift sizes.

Remark 2.4. Assumption S(c) specifies the occurrence of level shifts as
exogenous. This is not a strictly necessary assumption for the results of the
paper. Thus, if P denotes the sequence of probability measures induced by
model (1) under Assumptions M and S, and conditional on the occurrence
of at least one level shift (as will be imposed in section 3), it holds that
maxys,—1 |€¢] = maxj<i<r |6iet], maxys,—1 |AYz|, maxys,—1 |n;| and
maxy.s,—1 |1; !| are bounded in P-probability. What matters in the proofs
of the main results is this boundedness, and as long as a relaxation of S(c)
(such as the case of endogenous level shifts) does not affect it, the results
of the paper continue to hold.®

®Some kinds of dependence between &, and (es,n,) violate boundedness; consider,
e.g., the case 6; := I{|e:| = maxi<s<r |es|}, Where maxy.s,=1 |£:| = maxi<i<7 |et]
and {e;} is I1D Gaussian.



Remark 2.5. Our model can equivalently be expressed in the multiple-break
format (see, e.g., Bai and Perron, 1998) with m := Np breaks and

X, =Yi+u9, =T, 141,.,T5,j =1,..,m+1, (5

where the break points 7} are obtained as 7; := max{t € {1,...,T} :
N < §}, with Ty := —k, Tppy1 := T and pl9) .= pr;- O

2.2 Effect of level shifts on ADF tests

Our goal is to propose unit root tests with asymptotic distributions (2) under
the full generality of Assumption S. In this section we argue that these tests
cannot be the standard ADF tests, since under Assumption S their asymp-
totic distributions depend on nuisance quantities. To make this point, we do
not need the full generality of the assumption; instead, to render the prob-
lem more tractable, we introduce extra structure in the dependence and het-
erogeneity properties of the level shifts. The extra assumptions, which still
represent a significant generalization of Leybourne and Newbold’s (2000a)
single-shift setup, are maintained only in the present sub-section.
Let {5, } be serially independent, and let P(§, = 1) satisfy 3., P(6s =

1) = G(t/T)fort = 1,...,T, where G : [0,1] — [0,00) is a continuous
non-decreasing and not identically zero function such that G(0) = 0. For
example, with G(s) = As (A > 0 and T" > \) the case of time-independent
shift occurrence probability obtains: P(6; = 1) = A/T. In general, how-
ever, the probability of shift occurrence can vary in time, as, e.g., in the
case G (s) = A(s — 3)I(s > 3), where P(é, = 1) equals 0 and \/T re-
spectively in the first and the second half of the sample. Note that under
the adopted specification the distance between consecutive level shifts in-
creases with 7.7 Further, let §; = T''/25,, and let n, be a rescaled linear
process: 1, := F'(t/T) Y ;2 t;wi—i, where F' : [0,1] — R isa continuous
function, 3.°°, |1 < co and {w;}__ is 1D with E|w;| < 00.® For in-
stance, similarly to w;, Y ;2 1;w;—; could be the stationary solution of an

"As is needed for convergence of the level-shift process in D [0, 1]; cf. Example V1.1.20
of Jacod and Shiryaev (2003). See also conditions (3.1)—(3.2) of Leipus and Viano (2003).

¥Stochastic boundedness of {n; }, like in Assumption S(b), requires further assump-
tions on F, {¢,} and {w:}. These are relevant to the detection of level shifts, but not to
Theorem 1, so we omit them.



autoregressive equation. The so defined {n, } is, in general, weakly serially
dependent with time-varying variance driven by F'(-) (see, e.g., Cavaliere,
2004), but can also be 11D as a special case. Asymptotics for the ADF
statistics under this specification are given in Theorem 1, where P denotes
a Poisson process with intensity G. The process P is defined on [0, 1] and is
constant apart from finitely many jumps equal to 1. Recall that o2 denotes
the long-run variance of w;.

Theorem 1 Let Assumption M be satisfied, and let 6, be specified as above,
with {8;:}7_,, {w:}1___ and {e;}__, jointly independent and indepen-
dentof Y_;_; and (u_ok, ..., u_x_1)". Then, under Hy and H,, the follow-
ing convergence holds in D [0,1] as T" — oo:

1

X S oM (), H()=Be() 4 =Cr(), )

where B, and Cr are independent stochastic processes, B, is an Ornstein-
Uhlenbeck process with parameter ¢, Cr (+) is a non-homogeneous com-
pound Poisson process Cr (s) = Zf:(f) F(r;)nf, with {n*} 11D, distributed
as n; and independent of P (-), and with {T,L'}Z):(i) denoting the sequence of
jump times of P. Moreover,

()+%0 ADF, wfo ()+%0
, %1]0 d81/2

(7)
P(1)

where >¢ and s depend on [Cr] /o2, with [Cp] = S [F(ri)ni]?
standing for the quadratic variation of Cr over [0, 1]. For £ = 0 we have
s9 = 0and sq = 1+ [Cr] /o2, while for any k, >0 = 0 and s = 1
conditionally on P (1) = 0.°

ADFE;, % fﬂ

fo

In Theorem 1 two effects of level shifts on the asymptotic distribution
of ADF statistics under Hy and H. can be disentangled. First, in (6) the
weak limit Cr(-) of the level-shift process T*1/2MLT,J is superimposed on

the weak limit B(-) of 7-1/2Y| ., in the same way as 1, is superimposed

The expressions for s, and s, for arbitrary k are given in the Appendix.
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on Y; in finite samples. As a consequence, H. (-) appears in (7) instead
of B.(-). Second, outliers that shifts in the levels of X; induce in its first
differences give rise to »¢y # 0 and s; # 1. For k = 0 the only effect is
through outliers in the left-hand side regression variable AX;; they lead to
inconsistent estimation of o2 = Var(e;), and thus, to ¢, # 1. For k > 0,
outliers in the lags of A X, lead to inconsistent estimation of -y, and affect
also the limiting distribution of 7'(& — 1); hence, the appearance of s¢ # 0
and the more involved expression for s¢;. The difference between (7) and
the Dickey-Fuller distributions (2) arising in the absence of shifts agrees
with the different finite-sample performance of ADF tests in the two cases,
most notably under local alternatives, where level shifts lead to substan-
tial power losses. The Monte Carlo simulations in section 5 illustrate this
aspect.

Remark 2.6. A simple special case of distributions (7) obtains when n, =
wr = n is fixed (shift sizes are identical), F* = 1 and G(s) = As for
some A > 0and T > A. Then P is a time-homogeneous Poisson process,
Cr is replaced by 5P in (6) and (7), and [Cr] is replaced by n?P(1). The
importance of the Poisson component depends on the size of the level shifts
relative to the long run variance of the errors (through /o), as well as
on the intensity of occurrence of level shifts. When the level shifts are
small, i.e., n/o is close to zero, the limiting distributions in (7) are close to
the usual Dickey-Fuller type distributions. Conversely, when the shifts are
large, the Poisson component becomes dominant.

Remark 2.7. The functional convergence T~/ 7., <> Cp(-) in D[0,1]
generalizes Theorem 3.1 of Leipus and Viano (2003) to a setup where
the jumps of the finite-sample process can be weakly dependent and het-
eroskedastic. The jumps of the limiting process Cr are anyway indepen-
dent, since the jumps of 7—1/2., are sampled from {1, } at intervals whose
length diverges as T — oo, and since the dependence between the terms
of {n,} vanishes as the time distance between them grows without bound.
Functional convergence to Cr leads to Lemma A.3, which contains (uni-
variate) generalizations of product-moment convergences of Georgiev (2005),
and underlies (7). For k = 0, {n,} i.i.d. with En; = 0 and En? < oo,
F = 1and G(s) = As, in (7) convergence of the ADF; statistic under
the unit-root hypothesis follows by specializing the discussion of Georgiev

11



(2005, section 3) to the univariate case.

Remark 2.8. From the proof of Theorem 1 it follows that for a fixed o €
(—1,1) the convergence T—I/QXLT_J % Cr () holds in D[0,1]; cf. (6).
Thus, X 7. has the same stochastic magnitude order under H; and Ho.
As a consequence, by modifying the proof of Theorem 1 it can be shown
that in our setup ADF tests are not consistent against fixed alternatives; cf.
Leybourne and Newbold (2000b, Corollary 1). [

3 Tests which account for the level shifts

3.1 Overview

Given the conclusion of Theorem 1 that, in the presence of level shifts, the
ADF statistics based on the observed time series X; do not have the usual
asymptotic distributions (2), here we propose modified statistics which do
have (2) as their asymptotic distributions. Two powerful implications are
that, first, standard tables of asymptotic critical values can be used for the
proposed tests, and second, whatever the number and the size of the shifts,
these tests have the same asymptotic local power as ADF tests in the ab-
sence of shifts.

Recall that, under Assumption M, (2) are the asymptotic distributions
of the ADF statistics from the regression Y; = aY;_1 +7'VY;_1+errory,
which, being Y; unobservable, is not feasible empirically. Since Y; =
X — p, can be thought of as obtained form X; by removing the (also
unobservable) level shifts, we propose to conduct ADF tests on a process
obtained by subtracting from X an estimator of x,. The idea is related to
Saikkonen and Litkepohl (2002), who suggest to adjust the original time
series by removing an estimator of its deterministic component, including
possible (deterministic) level shifts. Since in our case y, is a random jump
process, in what follows our procedure is referred to as ‘de-jumping’.

If 6; were observable, but the shift sizes not, to optimize test power un-
der alternatives close to the null we could estimate the shift sizes by pseudo-
GLS under local alternatives, as suggested by Elliott et al. (1996). Further-
more, to keep under control the finite-sample size of the resulting tests,
following the suggestion of Saikkonen and Liitkepohl (2002) and Lanne et

12



al. (2002), we would set the localizing parameter to zero. This reduces
to estimation of shift sizes under the unit-root null, i.e., to a regression of
AX; on impulse dummy variables, one per shift. The implied estimator of
1, would be

t t t t
fi =) 6AXe =Y 805+ Y 6AYe=py+ » 6AY,,
s=1 s=1 s=1

s=1

The estimation error i, — p, = 22:1 0sAY5 is bounded in probability
uniformly in ¢ (see Lemma A.2 in the Appendix), while x, (as well as Y;
under Hy and H,) has stochastic magnitude order 7%/2. This difference
turns out to be sufficient for the ADF statistics based on the ‘de-jumped’
series X0 == X; —fi, = Yo+ (py — 1), t = 1,..,T, (X{ == X, = V;
fort = —k, ..., 0) to have the null and local-to-null asymptotic distributions
given in (2), and to diverge under fixed alternatives.

In the case of unobservable §; we imitate the above de-jumping scheme
through the following three-step procedure:

1. the sequence of level shift indicators {¢;} is consistently estimated
by an estimator {¢; }; the level shift component is estimated by [l =
>t O AX,;

2. the level shifts are removed by constructing the de-jumped series
X=X, —pd(t>1)and X := X; (t = —k, ..., 0);

3. standard ADF tests, say ADF? and ADF}, are computed using X7
instead of the original time series; the unit root null hypothesis is
evaluated by comparing ADFa‘S and ADF} to standard asymptotic
critical values (see, e.g., Fuller, 1976).

In this framework, the key step is the consistent estimation of level
shift indicators. Specifically, since X{ = V; — 3>/ 6,AY, — S0 (65 —
8s)0s = XP — 3L (s — 85)0s, for the ADF test obtained from 1-3
above not to be influenced asymptotically by the fact that ; are estimated,
ZtT:l |6, — 6;| should converge to zero sufficiently fast. In the next sub-
subsection we propose an estimator &; with this property; it is the expec-
tation of §; conditional on the data, with respect to an ad hoc postulated

13



distribution. This estimator offers the flexibility of not requiring an explicit
decision rule about the location of shifts, although as a by-product it gives
rise to such a rule with a traditional interpretation.

3.2 Level shift estimation and unit root tests

Our proposed level shift estimation method starts by noticing that the dis-
tribution of AX; is a mixture, with mixing variable 6; and mixture com-
ponents'® AY; (when §; = 0) and AY; + 0; (when §; = 1). Therefore,
estimating the shift indicators é; is equivalent to classifying the observable
increments A X, into such equal to AY; and such contaminated by 6;. Since
under Assumption S the mixture components have different orders of mag-
nitude, they are ‘well-separated’ and consistent classification is feasible.

In the spirit of quasi maximum likelihood [QML] estimation,'! we re-
place (for the basic version of our estimator) the true probability distribu-
tion of the increments {AX;}” | by the distribution of a sequence of T
independent draws from the following mixture:

(6, AX,) (0,0 -t(v)) with probability 1 — /T
b (1, (02 +Tn)" /2 -t (v))  with probability /T,
(8)
where ¢ () denotes a Student ¢ distribution with » degrees of freedom. The

corresponding quasi-likelihood function for \, when o2 and ,? are regarded
as known, is

Hf:l (%d)u(AXta O'2 -+ T772) + (1 — %)fby(AXt; 0'2)>,

where, for a > 0, ¢, (e; a?) is the probability density function of a - ¢ (v).

0 Although we write as if the two component distributions are the same for all ¢, in gen-
eral they constitute a family indexed by ¢ (e.g. n, does not need to be identically distributed
over time); cf. Remark 2.1.

"The level shift estimator is inspired by the specification in Remark 2.6; nevertheless,
all the results in what follows hold in the more general setup of Assumption S.
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The QML estimator of A then satisfies the equation

T
A=03(0) =) 6(AXiC),  Ci=(An*a?), ©)
t=1

with

AT A o, (e;02) 11
6(es¢) = T [? + <1 a T) ¢, (e;02+Tn?)1 (10)

We abbreviate 6 (A X;; ¢) to 6;(C). Note that 6, (¢) = E(6;| {AX}1_,) =
E(8;/AX;), with E(-| {AX}T_,) denoting expectation conditional on the
data under distribution (8). Thus, &, (¢) measures how likely it is, given the
data and the postulated distribution, a level shift to have occurred in period
t.

From (9) it follows that, for fixed o and 7?2, the QML estimator of
A is a fixed point of the map \ — Zthl b¢ (). This allows to retrieve
the estimator of the level shift indicators straightforwardly. First, the fixed
point can be computed by iterating the map until convergence. Second, the
resulting estimate of A can be inserted into (10), yielding the estimates of
¢ needed to eliminate the level shifts from the original time series.

The pseudo parameters n? and o2 are related to the squared magnitude
of the draws from the mixture components, respectively 7~ Zthl 5i(AX,)?
and 7-1 ST (1 — 6;) (AX;)2. Thus, instead of fixing % and o2 a priori,
we suggest to replace them with

T
D) = DB (AX (11)
1 t;l )
Q) - == R (O)NAK)

“
Il
—_

The estimator of {6;}7_, is then obtained as {6;((;)}7_,, where (1 is a
random fixed point of the random map & obtained by combining egs. (9)
and (11):

@7 (¢) = (27 (€), % (), 25 (¢))"- (12)
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Once (1 has been found, level shifts can be removed from X; by com-
puting the series X{ := X; — 320, 85(Cr)AX, (t > 1), XP := X, (t =
—k, ..., 0), and the unit root hypothesis can be tested by conducting standard
ADF tests, henceforth ADFS and ADF}, on the ADF regression X =
aX} |+~ VX +error, (recall that VX{ == (AXY?, ..., AX? . )). In
the next sub-section we show that 6,(¢,) estimate §; consistently at a rate
fast enough for ADFa‘S and ADF} to have the usual Dickey-Fuller type
asymptotic distributions under the null and under local alternatives. Under
fixed alternatives the statistics give rise to a consistent test.

Remark 3.1. The plot of § (e; ¢) as a function of |e| is an S-curve starting
at \/T for e = 0, and approaching unity as |e| — oo. For larger values
of v in (8), the curve is closer to that of a step function, in the sense that it
remains closer to 0 for small |e|, exhibits steeper increase for intermediate
values of |e|, and is closer to 1 for large |e|. As extensive simulations have
shown, larger values of v translate into a more sensitive estimator of {6}
in finite samples, and into unit root tests with better finite-sample power.
We found no further power gains associated with the use of binary 0-1
estimators instead of our smooth estimators 4 (-; ¢). That is, a 0-1 estimator
defined as equal to unity if and only if (;¢) > K, k € (0,1), induces for
some values of « tests with power comparable to that of a smooth estimator
with large v, whereas for other values of « the 0-1 estimator yields lower
power. Moreover, the optimal value of « depends on the DGP. For these
reasons, we prefer to base our tests on the smooth estimators and not on a
0-1 estimator.

Remark 3.2. Recall that, under model (1), a level shift occurring at time ¢
generates a large outlier in the differenced series A X;. Hence, an approach
alternative to our smooth level shift estimator is the application to A X,
of traditional outlier detection methods (see, e.g., Chen and Tiao, 1990,
Chen and Liu, 1993, and references therein). Simulations have shown
that implementation of these methods in conjunction with de-jumping re-
sults in oversized tests, with no gains in size-adjusted power. Interestingly,
our approach can, but need not, operate as a traditional method. Tradi-
tional methods typically classify as outliers regression residuals which,
upon standardization, exceed some threshold. In our framework, the in-
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equality 6 (e;¢) > w, & € (0,1), is equivalent to |e/a| > 77, (k, A, n/0),
for a function 77, which can be found explicitly. Hence, if we evaluate
5(-; () at a regression residual, as we essentially do in section 4, and com-
pare the value to a threshold &, this is equivalent to a comparison of the
standardized residual to a threshold depending on &, on the occurrence in-
tensity of shifts, and on their relative size. As mentioned in the previous
remark, in terms of test properties, there seems to be little payoff to the
complication of choosing an appropriate .

Remark 3.3. As our model can be cast within the multiple break format
(5), another approach to the estimation of level-shift dates is the proce-
dure of Bai and Perron (1998). Again, extensive Monte Carlo experiments
have shown that in our framework this procedure does very well in detect-
ing the correct level shift dates under fixed alternatives, with unit root tests
based on Bai-Perron de-jumping having power properties comparable to
ours. However, in our experience unit root tests based on Bai-Perron de-
jumping tend to have worse size properties and, under local alternatives,
worse size-adjusted power.}2 Another distinct advantage of our approach
over the Bai-Perron method (as well as over many traditional outlier detec-
tion methods) is that our tests work also when level shifts occur at consecu-
tive dates; more generally, we do not need the distance between consecutive
level shifts to grow with 7. [J

3.3 Asymptotic results

We start this sub-section with a theorem about existence, uniqueness and
asymptotics for a fixed point { of the mapping ®, see (12), such that the
estimator of the level shift indicators &,(C7) is consistent for &, uniformly
in t.12 The theorem also ensures that ¢ can easily be computed by iterating
®7 until convergence.

12 possible explanation for this result is that the Bai-Perron procedure delivers unsat-
isfactory results when the level shift component ., and the (near-) integrated component
Y; are both of order Op(7/2), as in our model under the null hypothesis and under local
alternatives.

Bt is immediate that &1 also has the trivial fixed point (0,0,77* 37 (AX;)?),
which however fails to satisfy the consistency requirement.
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Theorem 2 Let P be the probability measure induced, under Assumptions
M and S, by model (1) with either & = 1 —¢/T, ¢ > 0,0r @ = a, €
(=1, 1), and conditional on the realization of at least one level shift. If v of
(8) satisfies 3 < v < r — 1, then:

EXISTENCE. There exists a random sequence {1} such that P(®7({) =
¢r) — 1,{p = Op (1) and { is component-wise bounded away from zero
in P-probability.

UNIQUENESS. If (7 and ¢7 both have the above properties, then
P =¢s1) — 1.

COMPUTABILITY. For every non-random (p, with positive coordi-
nates, the sequence of iterates (p; = ®7({r;—1), i > 1, satisfies
P(Cpi —imso0 (1) — 18T — oco. _

CONSISTENCY. 37 16,—6:(Cp)| = Op(T~Y2), S 6:(1-68:(Cp)) =
Op(T~¥=2/2yand (1 = (N, Hr, 0%)+op (1), where Hy := Y1 &2
and 0% := Plimr_. Var(AYr).

Thus, ¢ is consistent for (N7, Hy, 0%), and {6;(¢1) }1, is consistent
for the sequence of level-shift indicators {6,}_, at the rate of T%/2. As a
consequence (not used in the sequel), for any sequence ar = const €
(0,1) or agp = T /2,0 < € < 1/2, the set of periods with &;(C7) > 1 —
ap coincides, with P-probability approaching one, with the set of periods
where level shifts occur. This is a consistent explicit level-shift detection
rule.

Remark 3.4. Adopt the notation z = (2%, 27, 2%)’ for vectors z € R3.
According to the consistency part of Theorem 2, (¢7, ¢h) = (Np,Hr) +
op (1). This introduces a small complication into the argument for exis-
tence of (, for in general no compact in R? contains N7 and Hr (and
hence, (G}, ¢+)) with probability approaching one, while existence theo-
rems for random fixed points are typically formulated for self-maps of com-
pacts. One consequence is that to prove the theorem we resort to the trick
of looking for a fixed point of the form {; = { (z7), where ( is the random
function ¢ (2) = (Nr + 2%, Hrz",29), and (23, 27) = (0,1) + op (1).
For Hp # 0 the inverse function ¢! is well-defined, and 27 can be found
as a fixed point of (=% o &7 o ¢. To ensure that we can avail of this fact,
Theorem 2 is stated conditionally on the presence of level shifts (N > 1),
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so that Hy # 0 a.s. The case Ny = 0 is considered in the simulation
exercise. [J

Before introducing in Theorem 3 our main result, we present an impor-
tant lemma which forms the basis of the proofs of both Theorems 2 and
3. The lemma contains several convergence statements uniform on com-
pacts. One regards the rates of consistent estimation of {¢;}; another one,
the distance between the OLS estimators of « and v from ADF regressions
for de-jumped series and for the unobserved Y;; yet another statement is
an evaluation of the Jacobian matrix of ® that underlies contraction argu-
ments. In the lemma, for compacts A7 in R3 and real functions f defined

on Az, we write sup,c .. f (((2)) as sup,,,. f(¢).

Lemma 1 Let ¢ be the random function defined by ¢ (z) := (Np+2*, Hp2",
29)’, or the identity function on IR, and let the compact A C R? be such
that max,cs,. ¢V (2) = Op(1) and min,cs, ¢V (2) are bounded away
from zero in P-probability, v € {\, 7, s}. Define X{ := X,—>t_ 6, (¢) AX,
(t > 1), X} := X; (t = —F,...,0), and let VX9 be defined accordingly.
Under the conditions of Theorem 2, it holds that:

a. supy, Yoy 8¢ — 6:(C)] = Op(T2) and sup,, S, 6:(1 —
5:(¢)) = Op(T~~2)/2);

b. supy,. (INr — @2 (O) |, [Hr — 27.(Q) ], |0 — F.(O)[) = op (1)
component-wise;

¢. supy, (T (6 — as) , TY2(3 — 7)) = op (1) and sup, [6? -
0275| =op(1)ifa =1—¢/T (c > 0), where &, 4 and 62 (as, 74
and ag s) are the OLS estimators of o,  and o2 from the regression Y; =
Y1+ VY iterror, (X = aX) | ++/'VX)_ +errory);

d. sup,ea, [(®1)cle=c(z)|l = op (1), where (1), is the Jacobian
matrix of &7 (<).

Remark 3.5. Throughout, the random functions appearing in suprema, in-
fima, maxima and minima are continuous and have separable domains (sub-
sets of R™). Hence, the extrema in question are random variables.

Remark 3.6. The lemma states that the OLS estimators of « and ~y based on
de-jumped data and on the unobservable Y; are asymptotically equivalent
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under the null and under local alternatives. Asymptotic equivalence holds
for any z belonging to any A, not only for a fixed point of (=% o & o (.
However, since the fixed point matches relevant sample characteristics, it
can be expected that a test based on it has better finite-sample properties.
As can be seen from the proof of Lemma A.7 in the Appendix, under fixed
alternatives a5 and 4 are asymptotically equivalent to the OLS estimators
from the unfeasible regression for data de-jumped with the true {6, } instead
of {6,(¢)} (X7 in the notation of section 3.1), but not to the estimators
from a regression for Y;. This is not surprising given that de-jumping was
aimed at optimizing test properties close to the unit-root null. A similar
phenomenon, which does not compromise the consistency of the tests, can
be seen in the proof of Theorem 4.2 of Saikkonen and Litkepohl (2002). O

We are now ready to state our main result.

Theorem 3 Suppose that the conditions of Theorem 2 are satisfied. Let (1
be as in Theorem 2, and X? denote X? of Lemma 1 evaluated at ¢;. Un-
der Ho and H,, the ADF statistics ADF2, ADF}? based on the regression
X} = aX? | ++/'VXS | +error; have asymptotic distributions given by
(2),ie,asT — oo

ADFS % fO

dB () ADFS 2 fo B (s)
fo ’ & fo 2 ds)1/?

where weak convergence refers to the sequence of measures conditional on
Nr > 1. Under Hy, ADF? L s and ADF} f _sasT — .

According to Theorem 3, in the presence of level shifts the asymptotlc
distribution of the ADF statistics based on the de-jumped time series Xt
is the same as that of standard ADF statistics computed from series with
no level shifts, both under the null and under local alternatives. This result
allows to refer to well-known tables of critical values (cf. e.g. Fuller, 1976).
Moreover, under fixed alternatives the proposed tests are consistent.
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4 Joint estimation of model parameters and level-
shift indicators

The unit root tests described earlier are based on a sequential procedure:
initially, level-shift indicators 6; are estimated by looking at the observable
increments AX; = AY; + 6:6;; later, the parameters of model (1) are
estimated by an ADF regression on the de-jumped series. In this section we
discuss a procedure for joint estimation of level-shift indicators and model
parameters. Interest is not in parameter estimation per se, but rather in the
possibility to obtain estimates of ; based on estimates of the innovations
et + 040y, instead of AY; +6:0;. As ¢; has smaller variance than AY;, «; and
et + 0; are better separated than AY; and AY; + 6;, so the joint procedure
can be expected to have better finite-sample properties than the sequential
one.

In our setup, the joint estimation problem can be solved computation-
ally by means of a simple iterative procedure. Specifically, the following
steps can be followed: (i) estimation of level shift indicators (where, at the
first iteration, the estimates obtained from the basic estimation procedure,
see section 3.2, are used); (ii) construction of a de-jumped time series; (iii)
estimation of the regression coefficients « and ~y by a standard ADF regres-
sion on the de-jumped series; (iv) computation of estimates of ¢; + 0;6;.
These estimates serve as a new input for step (i), and the procedure is it-
erated until convergence. The unit root test statistics are computed within
this procedure at step (iii).

As for the basic de-jumping of section 3.2, the above procedure delivers
a fixed point, say £, of arandom map, say Wr. Compared to &7 from (12),
W is of larger and sample-dependent dimension, as it has components for
the parameters « and ~, and also for each &;, ¢t = 1,...,T. The definition
follows.

For a given d = (dy, ...,dr)’, denote the process X; de-jumped with
weights d by X¢ = X; — S0 dsAX(t > 1) and X¢ := X, (t =
—k,...,0), so that X¢ := (X2, (VX%)") (¢t > 0) as agreed in section 1.
Further, for a given (a,~'), letef := AX; —(a,~') DrX¢& | (t > 1), where
aisinserted for T'/2 (a — 1), and Dy is the diagonal (k + 1) x (k 4 1) ma-
trix diag(T~%/2,1, ..., 1). Define Uy, withargument & := (d', a, ', X\, n?, 02)’
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and with components W4, W7, w2, Wl and U9, as follows. First, let
UG = (U, .., WhLY, UG, (&) = 8(ef; \,n?,0%) fort = 1,..., T, see
(10), and W2, (¢) := Zle ., (€). Denote the series X; de-jumped with
WL by XV = X, - 30 W (O AX, (t > 1) and X = X,
(t = —k, ..., 0); for X} defined accordingly, define ¥7:” (£) as the estima-
tor of (a,~")’ from the regression

AXY = (a,7)DpX} | + error;. (13)

Finally, using e} := AX; — (U7) DyX} | as an updated estimator of
et + 6404, define

T
VI (€) :=T7" ) 09y (6) (¢ff)?
t=1

and

T

UG () =T (1=, (&)(e))?.

t=1

For a fixed point £, of W7, consider the ADF statistics, say ADF&I’
and ADF}Y, from regression (13) for X’ evaluated at ¢ = £,.. The next
theorem discusses existence and uniqueness of a fixed point £ such that
9., (€r) estimate &, consistently. It also states conditions ensuring that
ADFY and ADFY have the usual asymptotic distributions (2) both under
the null hypothesis and under local alternatives.

Theorem 4 Let the conditions of Theorem 2 hold. Under Hy and H., ¢ > 0,
then:

EXISTENCE. There exists a random sequence {{+} such that:

i. P(Up(&p)=¢&r) — 1, 0e. &p is a fixed point of U with P-
probability tending to 1;

ii. CONSISTENCY. {4, (¢1)} estimate {6, } consistently: S°7 | |6; —
WY, (67) | = Op(T~Y2) and S50, 6,(1 — U, (¢7)) = Op(T--2/2),
whereas (U7 (67), U (§7) , 95 (§7) , (W7 (7)) = (N7, Hr, 02,7') +
op (1);
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iii. UNIT RoOT TESTS. The limiting distributions of ADFY and
ADFY are given by

w dB w
ADF \IJ fO ( ) ADFt\IJ fO S)

fo | fo “ds)1/2’
where weak convergence refers to the sequence of measures conditional on
Np > 1.

Furthermore, if part (b) of Assumption M is replaced by the require-
mentthat E|e;|” < oo for some r > 5, then for 4 < v < r—1 the following
facts hold too.

UNIQUENESS. If & and ¢ have properties (i) to (iii), then P(¢p
CT) — 1.

COMPUTABILITY. Let 6(Cp) == (61(Cp), ..., 67(Cp)) and &g :=
(5(Cp), TY?(as — 1),7%, ), with ¢ as in Theorems 2 and (s, 75)
obtained from the regression in Theorem 3. Let also §; := W (§7,;_4) for
i>1.Then P(ép; —ioo &) — 1asT — oc.

Remark 4.1. The theorem is similar to Theorems 2 and 3, but weaker in
some respects. Uniqueness is established within a smaller class of se-
guences than in Theorem 2, but this has no practical implications, given
that the iterative algorithm from the computability part above converges to
the fixed point £, with properties (i)-(iii). The choice of initial value for the
iteration is important: Theorems 2 and 3 ensure that £, defined through
the fixed point of the basic de-jumping procedure, is sufficiently close to
& for the iteration to converge.

Remark 4.2. Theorem 4 does not cover fixed alternatives, which are studied
in the next section by simulation. (J

5 Monte Carlo results

In this section the finite-sample size and power properties of standard ADF
tests (ADFy, ADF}) and of the proposed ADF tests based on level-shifts
removal are investigated by Monte Carlo simulation, for DGPs either with
or without level shifts. We need to establish two main facts: first, that allow-
ing for multiple level shifts does not result in deteriorated size properties of
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the new tests; second, that the power properties of the new tests are close to
those of the usual ADF tests under standard conditions (i.e., without level
shifts), at least as the sample size increases, under fixed and local alterna-
tives. Additional aspects of interest are how the new tests behave when the
magnitude of the level shifts is independent of 7', and how the properties
of the tests are affected by the choice of degrees of freedom v in (8). In
particular, we want to assess whether the bounds on v in Theorems 2, 3 and
4 are strict. Finally, the section ends with a study of the single shift case, in
which our tests are compared to some well-known unit root tests especially
developed to deal with a single shift. We aim at showing that not using
the prior information on the number of shifts (which in practice is available
only by exception), does not necessarily entail power losses for our tests.

The employed DGPs are as follows. Data are generated for sample
sizes of T" = 100, 200, 400 observations according to model (1) with &k = 1,
v =y € {-0.5,0,0.5}, ¢ = 0, Y_1 = 0 and zero-mean unit-variance
11D innovations, following either a Gaussian or a standardized ¢(10) distri-
bution. We consider the unit root case, which obtains by setting o« = 1 in
(1), the sequence of local alternatives o« = 1 — ¢/T" with ¢ := 7, and the
fixed alternative o = 0.9.

Three specifications of the level shift component are initially employed.
First, the case of no level shifts (, = 0 for all ¢) is considered, with the
resulting model denoted by Sp. Second, with S; we denote the case of four
shifts occurring at fixed sample fractions ¢;, i = 1, ..., 4, with ¢; := [0.27T'|,
to :=10.35T'|, t3 := |0.67"] and ¢4 := |0.87"|, and with size magnitudes
n = n4 = 0.4 and ny = —ng := 0.35; consequently, the level shift
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component is*

pe o= TY2[041s 007y + 0-350s 0357 (14)
_0-35H{t2L0.6Tj} + O.4H{t2L0.8TJ}] '

Third, we consider a case, S.. in the following, with a random number of
level shifts N ~ 2 + B(T,2/T) (B denoting a Binomial distribution);
i.e., at least two, and on average four, level shifts occur over the sample.
The shift dates ¢;, i = 1, ..., Np, are generated as ¢; := |7,T'|, where the
relative locations 7; are independent and uniformly distributed on [0, 1];
the (independent) shift sizes n, are drawn from a uniform distribution on
[—4,—0.35] U [0.35,4].

We consider tests based both on the basic de-jumping procedure (ADFg,
ADFE), see sections 3, and on the “finer’ version of section 4 (ADFa‘f’ ,ADFt‘I’).
For the degrees of freedom parameter v of (8), in the Gaussian case Theo-
rems 2, 3 and 4 allow us to choose arbitrarily large finite values. We have
checked that the simulation results for large finite v are, first, virtually in-
distinguishable from those for v = oo (i.e., standard Gaussian densities
instead of ¢ densities in (8)), and second, yield best test performance. Thus,
in what follows we set v = oo in the case of Gaussian innovations. In the
case of standardized ¢ (10) innovations, to investigate the relevance of the
upper bound on v in Theorems 2, 3 and 4, we use both v = 8 (which sat-
isfies the bound » < r — 1) and v = oo (which violates it). All tests are
performed at the 5% (asymptotic) nominal level, with critical values taken

14For our selection of T, this model generates level shifts of size between 4 and 8 standard
deviations of the errors. These shift magnitudes, although large, are not unrealistic. For
instance, Vogelsang and Perron (1998, p.1090) report, for the long GNP series considered
in Perron (1992), level shifts ‘generally no larger (in absolute value) than 8 (...) relative to
the standard deviation of the innovation errors’. Furthermore, in some recent papers (see
Papell et al., 2000, inter alia), unit root tests under level shifts are applied to unemployment
series where level shifts are as large as 10 times the standard deviation of the innovations.
Using, as in Perron (1990), quarterly US unemployment data from 1948 to 1988 with a
break at 1974:1, we have estimated the size of the shift as 6.9 times the residual standard
deviation from a 9 lags ADF regression on the dejumped data (cf. Perron, 1990, Table 1).
With T' = 163 this corresponds to n = 0.54, which is actually larger than the values we
have used in our Monte Carlo design. Similarly, using monthly unemployment over the
same range (1" = 485) we find that the size of the shift is 10.4 times the residual standard
deviation from the second-stage ADF regression; this corresponds to n = 0.47.
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from Fuller (1976, Tables 10.A.1 and 10.A.2). Computations are based on
10,000 Monte Carlo replications and are carried out in Ox v. 3.40, Doornik
(2001).

Size. In Table 1 we report the finite-sample size of the six considered tests
for Gaussian innovations. Two results are worth to note. First, in the case
of no level shifts (Model Sp) the size properties of the proposed tests are ac-
curate, with sizes ranging from 4.8% to 5.5% for the AD F® tests (basic de-
jumping) and from 4.9% to 6.0% for the ADF"Y tests (finer de-jumping).
Hence, allowing for multiple level shifts does not result in spurious rejec-
tion of the unit root hypothesis.’® Second, in the case of multiple level
shifts (Modes S4 and S,.) standard ADF tests tend to be slightly under-
sized, in particular for v = +0.5.16 Conversely, despite their generality the
ADF? and ADFY tests display good size properties, with ADF¥ being
only slightly oversized for moderate sample sizes. Hence, also for mod-
els Sy and S, allowing for multiple level shifts does not lead to spurious
rejection of the null hypothesis.

Power against local alternatives. In Table 2 the size-adjusted power of
the six tests is investigated under the local alternative o = 1 — 7/7, still
for Gaussian innovations. In the case of no level shifts the new tests have
roughly the same power properties as standard ADF tests. That is, allowing
for level shifts when there are actually none, does not deteriorate the power
properties of the tests. The picture changes when level shifts occur. For
Model Sy, standard ADF tests have extremely low power: with T = 100,
power is about 0 for v = —0.5, about 0.2% for v = 0 and about 10%
for v = 0.5 (in agreement with Theorem 1, the distribution of the ADF
tests depends both on ~ and on the level-shift process). Conversely, the
tests based on de-jumping have good power properties, with power growing
toward the asymptotic power envelope as the sample size increases. For

5This is an important conclusion given that we did not present analytical results for
model So.

8 This result agrees with the asymptotics of Section 2, where it is shown (i) that in the
presence of level shifts standard unit root tests do not behave according to the standard
asymptotic theory even under the null hypothesis, and (ii) that the ADF test statistics are no
longer invariant to the short run parameters .
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T = 100, power is about 10% for v = —0.5, 20% for v = 0 and 30%
for v = 0.5; for T = 200 power grows above 20% for v = —0.5, 30%
for v = 0 and 40% for v = 0.5. For T" = 400 the rejection rate is about
38% for negative v and 45% for v € {0,0.5}. The unit root tests based on
finer de-jumping (ADF'Y) seem to be preferable over the tests based on the
basic de-jumping (ADF?) for small sample sizes, as expected. Notice also
that the dependence of finite-sample power on - diminishes as 7" increases,
as predicted by the asymptotic results of sections 3 and 4. Results for the
random shift model S, do not qualitatively differ from those for the Sy
model; in general, the power loss experienced by standard ADF tests is less
severe than for Sy, and the power of our tests is closer to the asymptotic
power envelope. Overall, the power results are promising, as they show that
we are able to distinguish between unit root processes and processes which
are stationary apart from several level shifts even in samples of moderate
dimension.

Power against fixed alternatives. Table 3 reports the (size-adjusted) power
of both standard and our unit root tests against the fixed alternative o = 0.9.
In the case of no level shifts (model Sp), the power of our test is close to the
power of a standard unit root test; hence, there is no particular disadvantage
in using the unit root tests which are robust to level shifts even if no shift
occur. For model Sy, standard ADF tests have (size-adjusted) power close
to 0, even for large sample sizes. Conversely, ADF?® and ADFY tests have
power which significantly increases with the sample size. As in the case of
local alternatives, large sample sizes are needed for the tests to achieve a
power level close to that of ADF' tests under no level shifts. Interestingly,
the tests based on the joint estimation of the level shift indicators and the
autoregressive parameters (ADF¥) have higher power than the tests based
on the basic de-jumping (ADF?) when ~ is negative. Results for the ran-
dom level shifts model S, do not differ substantially, except that standard
ADF test now have non-zero power. For fixed alternatives which are fur-
ther away from the null hypothesis, these results remain unchanged except
that the joint estimation of the level shift indicators and the autoregres-
sive parameters now allows to achieve better power properties in samples
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of moderate sizel’. In summary, the power properties of the proposed tests
appear to be good also against the fixed alternatives, with power converging
toward one as the sample size grows, as predicted by Theorem 3.

Fixed shift sizes. Although our paper deals with large level shifts, mod-
elled as proportional to 7*/2, here we briefly compare the properties of
standard unit root tests and of the proposed tests when the size of the level
shifts is kept fixed as T increases. To this aim, we consider the following
modification of model Sy:

e o =A4lgs 027y + 350 0357} (15)
—3.5L4e> 0.67)) + 400> |0.87)3 -

For T' = 100, it generates exactly the level shift component (14) analyzed
so far, whereas for larger sample sizes, (15) generates shifts of smaller mag-
nitude with respect to (14). Table 4 reports size, local power and non-local
power for T = 200, 400; results for 7" = 100 are given in Tables 1-3, panel
S4. The following results are worth to note. First, although the impact of
the level shifts decreases as the sample size increases, the power of stan-
dard ADF tests is still very low. Size distortions, however, are ameliorated.
Second, the local power of the proposed ADF?®, ADF'Y tests still tends to
the power envelope in the case of no shifts, although more slowly than in
the case of large level shifts, as expected. Third, the power of the proposed
tests grows as the sample size increases.

Student-t innovations and the choice of v. We now examine the prop-
erties of the tests when the innovations, instead of being Gaussian, follow

171t has been recently noticed that for some unit root tests, power can decrease as « gets
away from 1; see Perron and Qu (2006) and references therein. In order to assess whether
this drawback affects out tests as well, we have run some Monte Carlo simulations based
on model S, for various values of «, «v and T". The results show that the power reversal
problem does not seriously affect our tests. More specifically, although the size-adjusted
power is not monotonic in «, power tends to stabilize as « declines, in particular for the test
based on the finer de-jumping method of Section 4. Moreover, there is no evidence that,
for values of « far away from the null, power tends to be very small. In general, the tests
based on finer de-jumping have the best power properties (the full set of results is reported
in Appendix S).
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a standardized Student ¢(10) distribution. The ADF® and ADFY statis-
tics are computed using v = 8 (satisfying the assumption » < r — 1 of
Theorems 3 and 4) and v = oo (violating this assumption). Only the size-
adjusted power under Model S, is reported in Table 5.2 First, it is seen
that the power of standard tests is almost as poor as for the case of Gaus-
sian innovations, ranging from 0 (v = —0.5) to 11.5% (v = 0.5, T' = 400).
Regarding the ADF? and ADF"™ tests, for v = 8 only T > 200 ensures
a substantial power gain over standard tests. To the contrary, the tests em-
ploying v = oo have power properties close to those observed for Gaussian
errors, with only a slightly stronger dependence on the short run coefficient
~. Given also that the tests exhibited good size properties, for sample sizes
comparable to those considered in the Monte Carlo experiment, we suggest
to use large values of v, even for non-Gaussian innovations.1®

Single level shift and comparison with existing tests. As anticipated at
the beginning of the section, we aim at comparing the proposed tests against
existing methods in the well studied case of a single level shift; see Perron
(2005) and Vogelsang and Perron (1998) for a review. Specifically, we con-
sider the following tests for a unit root under a level shift at an unknown
date: (i) the test proposed by Perron and Vogelsang (1992), ADFV here-
after; (ii) its “efficient’ generalization based on GLS removal of the level
shifts, as proposed by Perron and Rodriguez (2003), denoted as ADF/V .20
Notice that these tests are not similar in the presence of a level shift of large
size?!, and hence, they might experience some size distortions. Although in
our framework the shift date is unknown, we also compare our tests to tests
employing a known date of shift occurrence. Namely, we consider Per-

18Extended tables covering both size and power under models Sy, S, and S, are reported
in Appendix S.

¥This choice may not be optimal in the absence of level shifts; see the So-panel referred
to in the previous footnote.

\\e do not compare our tests with tests designed for the case of two level shifts (e.g.,
Lumsdaine and Papell, 1997; Clemente et al., 1998) since these tests do not outperform
their single-break counterparts (i.e, the ADFLV test) when there is only a level shift. We
also avoid comparison with the tests by Ohara (1999) and Kapetanios (2005) since these are
designed for the case of innovational outliers only.

2The reason is that, when the size of the level shifts is large, the level shift component is
no longer ‘slowly evolving’ in the sense of Elliott et al. (1996), Condition B.
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ron’s (1990) unit root test, ADF/L_ (7 denoting the date of the level shift
expressed as percentage of the sample size) hereafter, and a ‘known date’
version of Perron and Rodriguez (2003) GLS-based test, ADFLF in what
follows. Our aim is to evaluate to what extent allowing for multiple breaks
at unknown dates results in a power loss with respect to tests especially de-
signed for the case of a single level shift. We consider the case of a shift
of size nT''/2, n = 0.4, occurring at the middle of the sample, i.e., at time
[7T], T = 0.5; hence, the level shift component

py = T3040 0 57)y) (16)

is of magnitude comparable to those considered earlier.

Results are reported in Table 6, where the first panel contains simulated
test sizes. The proposed tests have good size properties, comparable to the
size of the tests assuming a known shift date, namely ADF/, and ADFLE.
Conversely, due to the magnitude of the shift, the ADEFY and ADEFPER
tests are slightly oversized for v = 0 and v = —0.5. Regarding the (size-
adjusted) power against local alternatives (second panel in the table), we
observe that in the presence of large shifts, the power of the proposed tests
is above the power of the ADEF® and the ADEFV test (the former be-
ing more powerful than the latter, as expected; cf. Perron and Rodriguez,
2003), in particular for larger sample sizes (7" = 200, 400). Compared to
tests assuming a known shift date, although the proposed tests dominates
Perron’s (1990) test,?? they are dominated by the known-date version of
Perron and Rodriguez (2003) test, ADFF R, Nevertheless, for T > 100 the
power of our tests is not too far from the power of the ADEL* test. Over-
all, the tests based on finer de-jumping, ADEY and ADF¥, show better
power than the test based on the basic de-jumping, ADFS and ADF}, in
particular for moderate sample sizes and v < 0. Moreover, our ‘finer’
method does pretty well compared to unit root tests assuming a level shift
at an unknown date and, for samples of at least 200 observations, also with
the tests assuming a known shift date. The results do not qualitatively differ
when the fixed alternative o« = 0.9 (third panel in the table) is considered.

22This result is expected since Perron’s (1990) test is not based on an efficient de-jumping
procedure under local alternatives; cf. Perron and Rodriguez (2003).
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We conclude with a discussion of the fixed alternative o = 0.9 when
the size of the single level shift is kept constant at 4 times the standard
deviation of the innovations, corresponding to (16) with 7" = 100. Results
for T'" = 200,400 are reported in the lowest panel of Table 6. Under a
fixed alternative and fixed level-shift size, as the sample size gets larger our
test tend to be outperformed by some of the existing tests, in particular for
v < 0. For+ > 0, the proposed tests do better than the AD "’ test and, for
v = 0.5, they are comparable with the ADF/F test which, however, does
better for v < 0. Notice that here the effect of the (fixed) level shift on the
power of standard ADF tests becomes negligible as the sample size grows.

6 Further issues

In this section we briefly show how the proposed tests can be used in the
case of a linear time trend and in the case of unknown autoregressive order.

6.1 Linear time trends

Although all the analytical results given so far are derived under the as-
sumption of no deterministics in the DGP, in the presence of linear time
trends the proposed tests can be successfully applied in conjunction with a
proper detrending procedure.

The approach we suggest is to combine pseudo-GLS detrending (see
Elliott et al., 1996) with de-jumping in the computation of the ADF® and
ADFY statistics.?® Specifically, in the presence of a linear trend, the basic
de-jumping procedure can be combined with deterministic corrections in
the following way:

1. &; is estimated using basic de-jumping (i.e., neglecting the presence
of the linear trend);

2. level shifts are removed by computing X’f as in section 3.1;

BGiven a time series X, the pseudo-GLS detrended series at o := 1 — E/T_(E > 0)is
defined as X7 := X — % Z, where (X¢, X7') := (Xo, (L —aL) Xy), (25, Z7) =
(Zo, (1 —aL) Z;) and > minimizes S(¢%) := >, (X7 — ¢*' Z{)>.
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3. pseudo-GLS de-trending is applied to X’f;

4. the ADF?® statistics are obtained from an ADF regression for the
de-trended X?.

As in section 4, via an iterative procedure it is also possible to obtain the
estimates of the level shift indicators jointly with those of the autoregressive
coefficients and the coefficients of the linear trend Z, = (1,t)’. To this
end, the vector £ and the mapping ¥, of section 4 are augmented with
components ¢ = (¢, ;)" and ¥ for the coefficients of the linear trend.
In place of eZ, the estimates e™ := e — _ of &, + &,6, are used in the
definition of ¥4, and ¥2. The updated de-jumped series is now XY :=
Xy — Y W (AX — ,); it is GLS-detrended to get X7 and the
updated estimate ¥%. ADF regression is performed on Xt'l’ " instead of
XY, and e are replaced by e;" := e — W¥. The iteration is initialized
with the outcome of the basic de-jumping procedure, see 1 — 4 above.

As is standard, we evaluate the properties of the tests using pseudo-GLS
detrending at @ := 1 — ¢/T, with ¢ = 13.5. Results are reported in Table 7
(size) and Table 8 (local power). All conclusions obtained for the case of no
deterministic terms carry over: first, in the absence of level shifts our tests
behave as the standard ADF tests, while in the presence of shifts our tests
do not experience the serious power loss of standard ADF tests. The only
difference from the results in Tables 1-2 is that in the presence of shifts
the (still severe) power loss of standard ADF tests is partially mitigated by
detrending the data.?* As to our tests, GLS detrending of the de-jumped
series does not seem to affect their size and power properties.

6.2 Unknown AR order

So far, we have assumed that the autoregressive order %k of the errors is
known to the econometrician. In more realistic situations, & is unknown
and needs to be estimated.

2AFyrther simulations (not reported) have shown that OLS detrending could be used in-
stead of pseudo-GLS detrending. Obviously, OLS detrending leads to different (asymptotic)
power properties (cf. Elliott et al., 1996; Mdller and Elliott, 2003).
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To deal with unknown lag order we suggest the following strategy,
which combines our test procedure with standard methods for the determi-
nation of the lag order. At the first round, the basic de-jumping algorithm
of section 3 (which does not require to specify k) is applied, and the de-
jumped time series, Xf, is obtained; see steps 1 — 2 in section 3.1. At the
second round, using Xf a standard criterion for the determination of the
lag order is employed; this delivers an estimate of k, say k. At the final
round, the ADF? statistics are computed (see step 3 in section 3.1) fixing
the number of lags at k.

Tests based on the finer de-jumping of section 4 can be implemented as
well: once k& has been estimated as described above, ADFY statistics can
be constructed by fixing k at k.

In Table 9 we report the results from a small Monte Carlo experiment
based on model Sy (four level shifts at fixed locations). Two criteria for
lag order determination are used: a sequential ¢ test and the BIC criterion;
see Ng and Perron (1995). The size of the tests is largely acceptable, with
the tests based on the sequential ¢-tests being slightly more liberal than
the tests based on the BIC. Also, ADFY tests are slightly oversized when
compared with the basic tests ADE?. The (local) power of the tests is not
too distant from the power obtained by fixing & at its true value. Again, the
joint estimation procedure of section 4 leads to better power for negative
values of ~.

7 Conclusions

We have proposed a modification of the well-known augmented Dickey-
Fuller (ADF) tests which allows to test for unit roots in the presence of
multiple level shifts. Differently from existing work, we do not restrict the
number of level shifts — which occur at random dates and have random sizes
— apart from requiring it to be bounded in probability. The proposed tests
have a limiting null distribution for which critical values are well-known;
moreover, they have the same asymptotic power functions as standard ADF
tests under no level shifts. A Monte Carlo simulation has shown that the
new tests behave well in finite samples, and that they can account for linear
time trends and unknown lag orders as well.
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The results of the paper can be extended in various directions, which
we reserve for further research. For instance, the finite autoregression as-
sumption may be replaced by a general linear process assumption, along
the work of Chang and Park (2002). A further important extension is to
multivariate cointegrated models.
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A Mathematical appendix

The appendix contains proofs of the results given so far. The following
notation is used: as previously, P denotes the sequence of probability mea-
sures induced by model (1), conditionally on Ny > 1, and under Assump-
tions M and S. Under the hypotheses Hy and H. (null and local alter-
natives), the measure P specializes to P, while under H; (fixed stable
alternative), P specializes to Py. For a sequence {y; } of random variables,
max;<7{ys} = max_p<i<r{ys}, maxps,—1{y:} = maxi<i<r{6:ys},
and ming.s,— {y:} := (maxys,—1{y; *})~'. An asterisk denotes true pa-
rameter values in cases of ambiguity; ||.|| denotes the Euclidean norm.

A.1 Preliminary lemmas

Lemma A.1 The following magnitude orders hold:

a. maxi<T |}/t| = OPE(T1/2>;

b. If max,<7 |e| = Op (T7), 7 > 0, then max<7 |uy| = Op (T7),
maxi<T |Y;5| = Opf (TT) and max<T |AYH =Op (TT>;

c. If Epler|“t! < 0o, v >0, then .1, |[AY; "t = Op (7).

PROOF. As ey, Y i1 and (u_ok, ..., u_k—1) are assumed independent of
65 forall t and s, conditioning on N > 1 in the definition of P is irrelevant
for this proof. Under P, we have max;<7 |T~1/2Y;| = o maxyc(o 1] |Be (3) |
(see (2) for the definition of B.); hence (a). In (b) the evaluation of max;<7 ||
(and also of max;<7 |Y;| and max;<7 |AY;| under Py) obtains from the
moving average representation of u; (resp. Y; and AY;) with exponentially
decreasing coefficients. Under P, from AY; = (—¢/T)Y;—1 + u and (a)
it follows that max; < |AY;| inherits the magnitude order of max;<7 |uy|.
As to part (c), since wu; is the stationary solution of u; = Zle Vi Ut—i +
er, (ug)¥1 is stationary and ergodic by Theorem 3.35 of White (2001).
Then Ep \51|”+1 < oo implies, by the Marcinkiewicz-Zygmund inequal-
ity, that Ep|u;|"*1 < oo. By an ergodic LLN (Theorem 3.34 of White,
2001), S°7, Jw|[*** = Op (T)). Under P; a similar argument applies to
ST |AY;|*t1. Under P, the evaluation 3"/, |AY;[**1 = Op, (T') fol-
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lows from
S AV < 2 (0 T T D2 S T2y e

and "7 |T712Y; 1 |"*! < T(maxier |T-V2Y;|)" ! = Op, (T); see
(@). .

LemmaA.2 If y» = Op (1) is a sequence of random variables indepen-
dent of 6, for all ¢, s under P, then Zle 8¢ lye] = Op (1) and maxy.s,—1 |yt| =
Op (1).

PROOF. Direct from the definitions of the measure P (by Assumption S(a))
and of boundedness in probability. B

A.2 Proof of Theorem 1 and related results

To avoid confusion with the conditional measure P, we use (Q for the mea-
sure in Theorem 1.

A.2.1 Proof of Theorem 1 (Part I)

Here we derive the weak limit of the process T-1/2X 7. The limiting
distributions of the ADF statistics will be obtained at the end of the subsec-
tion.

Recall that X; = Y; + p;, and define n; := > ;2 1;w;—;. To obtain
the weak limit of 7-/2 .|, we start from the convergence of W, =

AT 5,1z, and then use the representation T2 g, = ST P@/T) A,

First, we show that the serial dependence of {n;} is lost in the limit of
“TT-J' Consider, possibly upon enlarging the underlying probability space,
adoubly infinite matrix {w }ien +cz Of i.i.d. random variables, with wy; :=
wy, and which is independent of {¢;}X ; and {Y;}L_, ,. Denote by r; the
time of the last shift occurrence before time ¢ (r, := —oo if there are no
shifts before time ¢), and for ¢t = 1, ..., T define

t—re—1 [e’e) 0
=N Yt X ) + (1 8) L Vi,
=0 =0

i=t—r¢
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where S°%° _(-) := 0. For a fixed T the vector {n,”}1_, is distributed
as T independent draws from the distribution of n} (no w;; is present in
two different ;" ’s), and is independent of {&;}Z ; (direct by writing its
distribution conditional on {§;}7_, and observing that it does not depend
on {6;}1_,). Thus, the weak limit of ZtL lj 8¢, obtains from Theorem 3.1
of Leipus and Viano (2003). Since E|n | = E|ni| < oo (as |mpI|ed by
Elwi;| = Elwi| < ocoand > 72, [¢;] < 00), we have that thl st 5
Zf:('l) ni =: C(-) in D0, 1], where P is the Poisson process defined in
Theorem 1.

Next, we argue that also M. has C(-) as its weak limit. For s € [0, 1]
we have that

[Ts]
Zl tnt = Z 6t77t +293, where 193 = Z 615 Z ¢Z(wt i ww_i).
t= t=1 i=t—r¢

By the independence of w’s and 6’s, and with my := minj<;<7{t — ¢}
denoting the minimum distance between two consecutive shift dates (oo if
at most one shift occurs),

E(Srg[gﬁwsl\{ét}le) < (Zét > 9l (lweil + lwra—il)] {8e} 1)

=t—r

= Z(E]wo\)(t;lét io: Vi)

i=t77‘t

< AE|wo)Nr( 3 i)

i:mT

Since Y%, yz/}zy < oo by assumption and mp A oo, it follows that

> ey [0l LA 0, and further, that E(3-7°, ;)2 — 0 by dominated
convergence. Thus, by taking expectations in the above display,

E(m[gx [9s]) < 2(E [wol)[ENFE(3,,y [9])7]1/? — 0

since EN2 — G (1) + G (1)* by a direct calculation (G denoting the Pois-
son intensity), so that max,¢y 1] [Js| = oq (1) by Markov’s inequality.
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The last relation is equivalent to maxefo,1] |17, — ZgiJ S| =

w

0q(1), and hence, if, | has the same weak limit asztg’lJ syt Wi, —
C(-) in D0, 1]. Due to the equality 7~/ 7| = S P/ Ap, the
convergence 7~ 1/2u 1| = [( F(s)dC(s) = Cp is expected. For brevity
and consistency with further references, we note that it follows, e.g., from
Theorem 2.7 of Kurtz and Protter (1991). On the other hand, using standard
local-to-unity asymptotics, 7-1/2Y|7; % B, (-) in D[0,1]. Due to the
stochastic independence of 1, and Y7, the joint convergence

T2 g 1) 5 (0Be () ,Cr () (A1)

in the product space (D[0, 1])*? obtains. Although this is not a topological
vector space, the functional (z,y) — x + y is continuous on the support
C[0,1]xD[0,1] of (¢B. (*) ,Cr (-)), and T~Y/2X 1| = 0B, (-)+Cp (-) =
oH. (-) by the continuous mapping theorem (CMT).

Note next that (1) implies the following representation of AX;:

AX, =

=1

k
VAXy i + 24, & =+ D(L)Ap, — (¢/T)D(L)Y;_y

fort =1,..,T. Let VX; 1 := (AX;_1,...,AX; ), and similarly for
VY,_;and Vu,_,. The numerator of the AD Fy statistic based on X; can
be expressed as T' (a — 1) = (Ar/T) (Br/T?)~1, where

T
AT = Zthlgt
t=1

T T T
(3 X1 VX )X VX VXG )N VX&),
t=1 t=1 t=1

I 2
Br = > Xi,

t=1

T T T
_(; Xt-NX;,l)(t; VX1 VX)) 7Y t_zl VX 1 X 1),

see Chang and Park (2002). We write the limits of these and of related
quantities using stochastic integrals. The limits follow from Theorem 2.7
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of Kurtz and Protter (1991), in view of the relation N7 = O¢(1) and of the
convergence

T 2((Yir s 7)) (S e )y b)) (A2)
= ((0Be,Cr), (0B, Cr),Cr)’

on the space Ds5[0, 1] of 5 x 1-vector cadlag functions, endowed with the
Skorohod topology. Convergence (A.2) holds on the product space (DJ0, 1])*®
similarly to (A.1), and can be extended to D50, 1] by Proposition VV1.2.2(b)

of Jacod and Shiryaev (2003). Thus, Kurtz and Protter’s theorem delivers
that, jointly with (A.2),

T 1
TS Vs ) (e S) > [ (0B (5) . Cr (5) (0B (), Cr (5).
t=1 0
(A.3)
Another useful limitis that of ML :=T—" "7 (Ap,, Vi, 1) (Apy, Vith_y)
and its continuous transformations. As S°7 | &; ;8;_; = og (1) fori # j,

d7—; = 0 with probability approaching 1 fori = 0, ..., k, and maxy.s,—1 |n,| =
Og(1) by Lemma A.2, it holds that

T
=Tr1 (T (Ap)?) +o0g (1) = Ty [Crl (A4)
=1

the ”mit as TS0 (Ap)? = T4 g — 2T 0 ey Apy)
Cr(1)? — 2]0 Cr(s)dCr(s) = [Cr] by (A.2), (A.3) and CMT. Conver-
gence is joint with (A.2) and (A.3) again by CMT. B

A.2.2 Proof of Theorem 1 (Part 1)

To complete the proof of Theorem 1 we need to introduce the following
lemma.

Lemma A.3 Let Qyv denote the probability limit of 7! Zle VY,_1VY,_4,
and let ;v be the constant matrix defined through 71 Zthl Y, VY, | 5
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0?1}, fo s)dB.(s) + Qv (see, e.g., Hansen, 1992; Phillips, 1987,
Lemma 1), Where 1, is a k£ x 1 vector of ones. Then, as T' — oo, the
following converge jointly:

() T2y, X7, 5 o? fo s)*ds;
(7' x5 5T 2f0 He (s)+(I(1)—=1) [Crl;
i)y 7' S°L, VX VX, —>QVV+[CF] Ik* Wy
) (V) 7' X VX B 15 {0? [ He (s) dHe (s) + [CR]} +
1V

(v 71 Zt 1VXt 15t = —y[Crl;

Vi) T, & 5 o2 + [Cpl (14977).
PROOF. Convergence (i) obtains from (6) and CMT. Further, the left side
of (ii) equals A; + As + Ag, with the following A;’s. First, Ay =
T Xi1e % 0T (1) fi) He (5) dB (s) by (A.3) and CMT, since
o = o./T(1). Second, Ay := TSI X, T(L)Ap,, which can be
written, with v, := —1, as

k T T 4
Ay = _TilZ'Yi[tz:IXt—i—lANt—i+t§:1(z:1A:ut—j)A:ut—i
_= = J:

=0
+§__F:(§i:AY;5 J)A:U’t 7,]

The first summation in brackets contributes to Ao with

T 1
L) (T Y Xe1Aw) +0g (1) ﬂru)a/o M. (s)dCr (s) .
t=1

The contribution of the second one is a continuous transformation of M
in (A.4) and tends to (T' (1) — 1) [Cr]. Since T—1 Zt LAY ]Aﬂt i =
og (1) by Lemma A.2, we can conclude that Ay = T (1 fo $)dCr (s)+
(T'(1) = 1) [CF]. Third,

Az :=-T % ZXt T(L)Y; 1 5 —co’T (1 /H B (s)ds
t=1
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by (A.2) and CMT. Combining the limits of the A;’s, and recalling that
B, (s) satisfies dB. (s) = —cB. (s) ds+dB (s), gives the limit asserted in
(ii).

WithB: = 71 Zthl VY,._1Vu;_,, convergence (iii) follows from
the identity

T T T
TS VX, VX, | = TS VY VY,  +T7 S Vi, Vi)
t=1 t=1 t=1
+B+B.

Here B = og (1) by Lemma A.2 applied element-wise, whereas the other
two terms have limits Qv and [Cr] I, respectively, the latter by (A.4). For
(iv), note that

T T T
T Y XeaVX Ly = T Y Y VY + T Y 4, VY,
t=1 t=1 t=1
1 T
+T Zthlvlj’;—lv
t=1

where the limit of the first term on the right side is given in the hypothesis,
the second term equals 7! ZtT:l(ut,QAYt,l, s 1 AY; ) +0g (1)
by Lemma A.2, and converges weakly to o1}, fol Cr (s) dB. (s) by partial
summation and (A.3), while, again by Lemma A.2, the third term equals

T
T_l Z:I(Xt72AMt717 ey Xt—k—lAiutfk:)
=
-1 L 2 k
+T tzl((AMt_D . IAMt—i)AMt—k)+OQ (1),
= 1=

and can be seen to tend to 1, {o fol He (s)dCr (s) + [Cr]} by (A.3), (A.4)
and CMT.
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For items (v) and (vi) we have

T T
(i > VX8 = T > Vi I'(L)Ap; +C+D
t=1 t=1

+E+F 5 —v[CFr],
T T 9
T E = T Y S+ T Y (D(L)Aw)
t=1 t=1
+G +H = 02+ (1+9'7) [Cr],

since two kinds of og (1) terms appear in these expressions. First,

T
C : :Tfleut_lst
t=1
T
D : =T"') VY, T(L)Ay,
t=1

and

T
G:=2T"") el'(L)Ay,
t=1

are og (1) by Lemma A.2. Second, E : = 71 Zthl VY 16 ) by an
LLN  for T 'S (ws1,...,usx)e; and by (A3) for
T2 Zle (Y;_2,...,Yi_r_1) &, and similarly for F and H which con-
tain overnormalized contributions of ¢7'~1Y;_;. The terms with non-zero

limits are 71 57 e2 % 52 by an LLN,

T
T_l Z V,U«t_lr(L)AMt = (kala Ik)M(la _’}/),g - [CF]
t=1

by (A.4) and CMT, and

T
Ty (D(L)Awy)* = tr((1, =) (1, =/ )M)= [CF] (1 +")
t=1
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by (A.4) and CMT again.

Convergence is joint since, up to terms with constant probability limits,
the left sides (i)-(vi) can be collected in a continuous transformation of the
left sides of (A.2)-(A.3). &

From Lemma A.3 it then follows that, with T, := I' (1)+1}(2%¢) "1y [Cr],

T A % Tooo? [ He (8) dHe (5) + (Too + Qv (259) 1y — 1) [Cr],
T72Br % o? fé H, (s)? ds.

Since T (& — 1) = (Ar/T) (Br/T?)~1, it follows that & £ 1, and hence,

T T

L) @ =1-15=T(1) = 13(X VX VX)) 1 (X VX&)
t=1 t=1

+o0g (1).

From Lemma A.3 we find I' (1) % TI's.. Taken together with ADF; =
T (& — 1) /T (1), these results yield the limit of ADF in (7) with 3¢ :
1+ (v (QGy) 'y = DI [CF] /0*.

The proof for the ¢ statistic is similar. Specifically, as A%/T2 = O¢ (1),
see above, the following equalities hold:

ADF, = Ap/T(BpCp/T? — A%/T3)~1/2

= 5 (Br/T*)V*(Cr/T) ™ + 0q (1)
= T(@—1)(Br/T)*(Cr/T) "/ +0q (1) (AS)
with (Chang and Park, 2002)
T T T T
Cr := t; g2 — (t; avx;,l)(t; vxt_lvxg,l)*l(t; VX 12¢).
(A.6)
According to Lemma A.3,

T7'0r % o2 +[Cr] (1 +797) — 7' (%y) M [Cr)* = Cws .
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Hence, (A.5) and (A.6) ensure that

Too0? [ He (8) dHe (8) + (Too + Qv (Q9g) 1y — 1) [C]
JC%Z(IOI H (s)* ds)1/2

ADF, &

which is the limit in (7) with s := C,,T';20~2. In the special case k = 0,
we have 'y, = 1, O = 02 + [Cr] and 2 = o2, from where the simpler
expressions for s¢ and sz;. B

A.3 Proof of Theorem 3 and related results
A.3.1 Uniform evaluations related to de-jumping

Lemma A.4 Suppose that {é;} is a sequence such that max;<;<7 |é:—e1—
010t = 0p(T1/2). Then maxy.s,—1 ¢2 = Op (T) and T~ ! miny.s,—1 €7 is
bounded away from zero in P-probability.

PROOF. Recall that §; = T"'/2n,. The evaluation of max;.s,—; ¢7 follows
from the inequality

52 2 2 5 1/2 2
max é; < 3(T max n;y + max e; + max (¢ —e; —T/46
=1 ( P AU s 1§t§T( bt 1))

by applying Lemma A.2 to the first two maxima on the right side, and the
hypothesis of the lemma to the last one. The fact that 7! miny.s,—; €7 is
bounded away from zero in P-probability obtains from 7—! miny.s,—1 é7 >
(mings,—1 77) mings,—1 |1 — [y " (T~1/2¢ — 77t)H2- The first minimum
on the right side equals (max.s,—; 7; 2) "' = (Op (1))~ by Lemma A.2
and the assumption that 7, * = Op (1), while the second one is 1 + op (1).
Indeed, since

175 _ m1/2 _1 . =y
T < T2
max [, (é m)l < max | ( max e — e .

— T1/2
+max |ee]) = op(T),
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it follows that, with P-probability approaching one,
min [1— [ (T2 —n,)|| = 1=T7"2 max ;' (& — T"*n,)|
t:6p=1 t:6p=1

= 14o0p (1) . |

Remark A.1. In the discussion of joint de-jumping and parameter estima-
tion, instead of a sequence of random variables {é;}, a sequence of random
functions {é;(-)} of a vector variable with domain Y (say) will appear. If
we suppose that sup, cy,..i << |é¢(y) —e: —8,0:| = op(T"/?), the conclu-
sions of Lemma A.4 hold for sup,cy,...5,—1 €7 (y) and inf ey, 1.5,—1 €7 (y).
The proof carries over with only notational changes. [

The next lemma provides conditions for uniformly consistent detection of
level shifts.

Lemma A5 Let Ap and ((-) be as in Lemma 1, {é;} be as in Lemma
A4, and & (é&;C) be as in (10). Then sup,, Sr; 6:(1 — 8(é;¢)) =
Op(T~=2)/2) and sup,,, 3,y |6:=6 (é4: Q) | = Op (T~ min{l/20=2)/2h),
provided that =7 | (1 — 6;) |&:[**' = Op (T).

PROOF. We write supy,. f (¢) for sup,c,. f(¢(2)), and similarly for
suprema involving the components of ¢ = (¢*,¢",¢%). First, as 0 <
¢ < T on Ag with P-probability tending to 1,
N GO P N G N TS A S R
1 6(6157() — (1 T)|:1 T + T ¢V (ét;ccf) }
2 ¢V(ét; CU)
Moy (e ¢7 +TCT)
T ¢\ 1/2 é2 \~(w+1)/2
- C_A<1+TC_"> (1+1/_<U)
42
é2 (v+1)/2
- (1 U TC“)>

)

where ¢, (e;a?) = ga= (1 + €2/(va?))~“+1)/2 has been inserted, g be-
ing a normalization constant independent of a. As supAT{(CA)_l(l +
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TC¢"/¢7) 2} = Op(T/?), we find that

Z iNec 1 62\ —(v+1)/2

S8 (erQ)) < Op(19)s, (14 Tt Gy T
28

)

maxy.s,—1 €¢ (v+1)/2

X<1+V(CU+TC77)>

Summing over ¢ and accounting for the assumption that Np = Op (1)
yields the evaluation

ming.s,—1 67 ) —(v+1)/2
v’

maxy.s,—1 é% ) (v+1)/2

v(¢7 +T¢")

T
S -8s0) < Op(r¥)(1+
t=1

X <1 +

Since sup,,. ¢“ = Op (1) and, by Lemma A.4, T~ miny.s,—; €2 is bounded
away from 0 in P-probability, we have (1 + (v¢?)~! mings,—1é?)"! <
T~ w¢) (T~  ming.s,—1 62)~1 < Op(T~') uniformly on Ar. Further,
maxy.s,—1 é; = Op (T) again by Lemma A.4, and as inf,,. ¢" is bounded
away from 0 in P-probability, it follows that v =1 (¢7+T¢") ! max.5,—1 €7 <
Op (1) uniformly on Ap. Combining the two conclusions yields

T .
sup 3 64(1 — 8 (84;¢)) = Op(T~=2/2)
Ap t=1

The order of magnitude of Zthl (1 —68;)6(&;¢) is addressed next.
By evaluating from below the denominator of (10), it can be concluded that

e T ¢y (é3¢7 +T¢
6(e;¢) < (1—T*1C>‘) b, (€4¢7)
_ T-1¢A ¢\ —1/2 & /2
- o TE) ()
é2 —(v+1)/2
(toermm)
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The contribution of the factors containing only ¢*, ¢ and ¢° is Op(T—3/?)
uniformly on A7, while the last factor does not exceed unity. Further, by ap-
plying to = = (v¢%)~1/2|¢,| the inequality (1 + %) +1D/2 < 20+D/2(] 1
|z|“T1), itis seen that (14 (v¢7) 1) HD/2 < 2041)/2 L Op (1) [&, v+
since sup,,.(¢?) "1 = Op (1). Hence,

(1=6.)6(6;¢) < T732(1—=6,)(0p(1)+0p (1) ]&]"T)(AT)
T - T
S (1=8)6(e50) < Op(T2) +0p(T732) Y (16 |es" ™,
t=1 t=1
where in the second line the inequality Zthl (1 —6;) < T has been used.
Under the hypothesis that S>7_ | (1 — &;) |&]" ! = Op (T)), we get

T
D (1= 60)8(é1;¢) < Op(T7?)
t=1
uniformly on Ap. This result and the first part of the lemma give
T

T T
SIe =8| = > (1-06)8n)+ Y 8u(1—5(e0))
t=1 t=1 t=1

< OP<T71/2)+OP(T7(1/72)/2)

on A7, again uniformly. l

Remark A.2. If é(-) are random functions satisfying the condition of
Remark A.1, and if also sup,cy, i (1 —8;) |é(y)|"* = Op(T),
then the conclusions of Lemma A.5 hold for sup, .)ev, xa, Z;‘le 61(1 —
6 (é(y): C(2))) and sup(y ey 2opy 18t — 6 (€:(y); C(2)) |- Again, the
proof is only notationally more involved. (I

Next, let d = (dy, ...,dr)" be a (continuous) R”-valued random function
with domain G (say). For instance, in the proof of Lemma 1, d will have
components d;(-) = 6(AXy;¢(-)) (t = 1,...,T) and domain G = Ar.
In the next lemma we consider as a function on Gt the de-jumped series
X¢ =X, -3 dAX (t = 1,...,T), Xf == X, (t = —k,...,0)
and, among other things, evaluate the distance between {Y;} and { X}
depending on how close d is to § = (61, ..., 67)'. The notation supg,, f :=
SUP,eg, f(w) is used.
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Lemma A.6 Let d be defined on a set G such that supg,, ST lde —
8¢| = Op(TP~1/2) for some B € [0,1/2). If max;<7 |z| = Op (T7), with
B+ 7 <1/2and § < 7, then:

a. SupG,.t<T |Xtd - Y| = OP<Tﬂ)v SUPG s¢t<T |X£1| = OPC(TI/Z) =
Op,(T7);

b. supg, Sopq |AXE — AYy| = Op(TP), supg, |AX{ — AY;| <
ardi+br with ar = Op(T’B) and br = Op(T’ngT*lm), and SUPG,t<T |AXtd| =
Op (T7);

C. supg, | DrX{—DrY{| < ardy+br with &; := 35 8¢y, ar =
Op(T?) and by = Op(T#T77Y2), supg,.gi<r | DrX{|| = Op (T7)
and supg,..o<¢<r X = Op; (T7).

d. supg, | ¢! Ye(X{=Y3)| = Op, (T*9), supg, || 1) VXH(Xf-
Y|l = Op,(T™P) and, if supg,. 31— 8:ldi — 8| = Op,(T71), then
supg, | Sy XX - Yy) — TY7| = Op, (TV/2+7+8), where Y7 :=
T (e 65AY)%

PROOF. Fort = 1,...,Twe have X; = Y; + T2 3! _| §sn,, and for such
t we find

t t
X =Y, = = X 8AY+ 3 (8 — d)(AY; + T'25,1,(A8)
s=1 s=1
AXT =AY, = —8AY;+ (6 — di)(AY, + T 26,m,), (A.9)

while for t = —k, ..., 0, X2 —Y; = 0. The first relation in (a) follows using
(A.8):

T
sup X7 —Yi| < 36, |AY] (A.10)
Gr;t<T s=1

T T
+[max |AY,| + TV 37 8 [n,| ] sup 3 |6:(A81)
s> s=1

T s=1
< Op(1)+[0p (T7) + Op(T"/?)]0p(T71/?)
= 0p(T") (A12)
with magnitude orders respectively from Lemmas A.2, A.1(b), A.2, and

from the hypothesis. Together with max,<r |Y;| = Op,(T*/?) (= Op,(TT)),
this implies the other relations in (a).
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The right side of (A.10) is a uniform upper bound for Zle IAXE —
AY;], see (A.9); hence, the first relation in (b). Again from (A.9), |AX{ —
AY;| fort =1, ..., T does not exceed

6u( maxx |AYy| + T2 max ] 320y 16, — d| )

T
+max|AYs[ D oy |65 — sl

from where, upon taking suprema, the definitions of a; and b7 in (b) are ob-
vious. Their magnitude orders follow as in (a). Further, supg,,...<r IAXE| <
supg,. <7 |AX{ — AY;| + maxi<p [AY;] = Op (T7) by the above eval-
uation, Lemma A.1(b), and the inequality 8 < 7.

A vector version supg,, | VX{ — VY|| < &zar + kbr obtains readily.
Together with (), it gives for Y; = (Y;, (VY,)) and X¢ = (X¢, (VX))
the first relation in (c). Since maxo<i<7 | DrY¢|| < maxs<p |T/2Y;| +
kmax;<7 |AY;| = Op (T7), it holds further that

sup  ||DrXd| < max |DrYe|+ sup ||DrX{ — DrYy|
Gr;0<t<T 0<t<T Gr;0<t<T
< Op (TT) + arNp + BT,

which is Op (T7) for g < 7. Similarly, max;<7 |Y;| = Op,(T7) leads to
maxo<i<7 || Y|l = Op, (T7) and supg,..o<i<r 1X¢) = Op,(T7).
Foritem (d), note that 7' Y, = (1 Vi, Yo 1 =Y, o, Yog g
Ys_1_k), so that
T-1 T-1 s—1
max |20 Yell < 20—y Yol 4+ max |55y Vil + 2k max(id3)
= Op,(T"?)

by the weak convergence of max<r |[T~%2 3 "1 V;| under Py, and by
Lemma A.1(b). Using (A.8), we find the decomposition ZtT;ll Y (XE
Y;) = Ki+T2Ko+ K3, where, first, Ky := — S (Y, YL, §:,AY;) =
— S TN 6, AY, ST Y satisfies

T-1 1/2
K| < Ny max [AY,] max |55, Yi|| = Op, (T ?)
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by Assumption S(a), Lemma A.2 and (A.13). Second, as Zle |65 —ds| <

Op(TP~1/2) on Gr, we see that Ky := 37 (Y, 24, 64(8s —ds)n,) =
ST 68565 — do)ny S Y ) satisfies

s=1
supg, [Kal| < (supg, 3o 16 — ds]) max |n,| max || 2/ Yi|
= OPf (Tﬁ)i
- . T-1 t _ - T-1
and similarly, Kz := >, 7 (Y > o 1(0s — do)AYy) = > .1 ((65 —

ds)AY, ST 1Y) satisfies
T T-1
supg, [Ksll < (supg, > 5o [6s — ds|) max |AYs| max |13 Yy
= OPf (TTJDB))

using Lemma A.1(b) and again (A.13). The first relation in (d) follows
by combining the above magnitude orders. The second relation obtains
upon partial summation; with X/ := (X, ..., X, ), so that VX{ =
X4 — X2 |, we find
T S
IS VXEXE =Yl < X I1XEy — Yo
+max | X7 o7 AXY - AY)

IN

di(|yd _
kr&%éi [ XP(IXry — Yo
+ i [AXE — AYY)

uniformly on G by (a) and (b). Finally, supg, | /' XH(X{ - Y;) —
1 (XE = Y3 = supg, | 25 Vi(XE = V)| = Op (TY*H) as
shown earlier, whereas, using (A.8), we can see that

supg, | SE (XY — Yi)2 — TYq| = Op, (TV/24749),
since TT - Til Zz:_ll(zizl 53AY:9)2 < NT max 5:55:1(A1/s)2 = OPf(l)a

T—1 t T t
(2 (6s — dy)AY,)? < mg;,((AYs)Q S (30 165 — ds])?
t=1 s=1 5> t=1 s=1
— OPf (T27+2,B)
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and

T-1 T t
T 3 (3 (8 = d)dsm,)? < max, ()T 32 (3 6l6: = da)* = Or, (1)

using Lemma A.2 and the assumed magnitude orders of >°_, |6 — d|
and 3.7 6|85 — ds|, while the magnitude orders of cross-products in the
expansion of (Xtd — Yt)2, summed over ¢, follow from the above three
evaluations and the Cauchy-Schwartz inequality. l

We conclude this sub-section with an important result on the proper-
ties of OLS estimators in the ADF regression based on X¢, with X¢ as in

Lemma A.6.

LemmaA.7 Let (&g —1,%,) and (& —1,4")" be the OLS estimators from
the regressions X¢ = (a,~')X¢ ,+error; and Y; = (a, ') Y;_1-+errory,
and &gd and 62 be the corresponding residual variances. Under the as-
sumptions of Lemma A.6 with 5 = 0, it holds that:

a. supg, [|(T(éq — &), TV2(34 — 4),6% 4 — 62)| = Op, (TT1/2).

Furthermore, if additionally supg,,. Zstl bslds — 65| = Op,(T™1),
then:

b. supg,. [[(&a — s, (74 — 7)) + (@ = (ST T7" + i) 71| =
Op,(T™Y/2) and supg,. 62 4 = Op, (1), where (a,,7,) under Hy is de-
fined through the representation Y; = (&, 7,)Y+—1 + ¢ implied by (1),
ST =TT Y Y, and i = (1,014)"

PROOF. For a joint preparation for (a) and (b), we extend the definition of
(s, 7.) to Ho and H. by (ax,?7,) = (1,7,), so that o, = @, — /T
under Ho, H. and H, where ¢, is the true localizing parameter under H,,
and is zero otherwise. With this notation,

AY; = (s — 1,7) Y1 + &

and

AX{ = (G — 1L,7)XE | + &+ &,
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where &, := &; — (cx/T)Tx (L) Yi—1 and & := (s — 1) (Vo1 — X&) +
I, (L) (AX? — AY;). The representation of AX; obtains by inserting
AY; = AXE 4+ (AY; — AXf)and Y1 = X¢ | + (Y1 — X¢ ) into
that of AY;.
Define Dy := Dy, By := diag(T, T'/?) under Hy and H,, and Dy :=
Ik_|_1, BT = Iy under Hf With ST =71 Z?:Bl DTYt(DTYt),, Sfe =
S (DrY, 1)€t' R11 1= *IDT[Zf_f XX =315 Yi(Y) | Dr,
R =T "Dr YL (X4, ~Yi1)éand RTG .= T " ST (DrX¢ ))éy,
where h = 1/2 under Hy and He,and h =1 under H, we have

BT(&—@*,(’A}/—’_}/*),)/ = (S ) Sle: (A.14)
Br(da—aw, (74— 7)) = (S + RB{1) "' (Sie + Ri, + RitA-15)

We show that 7"1] i= Supg,,. HR || = Op.(T71/?), j € {1,e,V}, while
SUpPG,,. ||R —ii'Tr|, supg,, HR || and supg,,. HR + (@ — D)iYp|| are
Op; (TT—I/ ). Then we use the standard facts that, under P, S7; has a

positive definite, and S7, has a finite (zero, under Py) weak limit.
First,

IRl < (max | DrX{|| + max HDTYtH)(T Z IDrX{ — DrYyl)

under Hp and H., where the maxima are Op, (T7), and the summation is
bounded by T7-1/2 ST | X — V| + kYL | JAXE — AYy| < Op,(TV?),
all uniformly on Gr; see Lemmas A.1(b) and A.6 (with 3 = 0). Hence,
r1y = Op,(T7=Y/2). Under Hy, |TRT, — S0 X¢(X¢ — Y,)'| equals

T T
Ht;(Yt—X?)YiH < H;(Yt—Xf)YQH

T
+(;1HVXt VYi)) max [[Y4]

IN

OPf (T1/2)
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uniformly on Gz by Lemmas A.6(d,b) and A.1(b);
(3 (X, 00r) (XE — Y4)'| equals

S XX E-Y,) -

T-1 T-1
| X VXKL=Vl < | X VX =Y
d I d
+ mae VX 3 [VX{ - VY|

< OPf (TT)

uniformly on G by Lemma A.6(d,b), and || 7 (X &, 01 ) (X¢—Y,) —
i > XX - V)| equals

T-1 T
| X XHVXE = VY| < max|Xf] 32 IVXE - VY|l < Op, (T7)

by Lemma A.6(a,b). From the last three inequalities,
T-1
IRy = T7Hi - XP(X —Yy)| < Op, (T71?)
t=1

on Gr, and from Lemma A.6(d), supg,. || RY, —ii'Yr|| = Op, (T7+51/2),
Second, | RY,|| < T~ 000, (Xf =Yie)e+ T 2,0, (VXY —
VY;_1)é, where

SEXE ~Yie = (XE-Yr)(XL é)
ST Aaxg - A Y &)

by partial summation. Therefore, | Z;‘le(Xt‘{l —Y;_1)é] is bounded by

T -
(max | X7 = Y|+ Sy |AX] — AVi]) max | Y- &] < Op(T'/7)
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on Gy, since supg,.<p | X{ — Y;| and supg, 3 |AXS — AY;| are
Op (1) by Lemma A.6(a,b), and

t ~ t
I}glzszl és| < Itrglzszl €|

(L Kyl (es/T) (max| Yem1 Yl +0)
_ OP(T1/2),

with U = Op(1) denoting a contribution from initial values. Still by
Lemma A.6(b), and since

. _ .
g&gletl_Iglgaglstl+(1+k|!’v*||)(c*/T)rtnSajz<IY%! Op (T7)

we find that
IS (VXL = VYl < (S0 VXY - VYioa]) max &
< Op(l)Op (TT)

uniformly on G,. Combining the above evaluations gives supg,,. || R || =
OP(TT—1/2).
An evaluation of supg, . || R]¢|| can be obtained similarly:
T—

1 _
IT"Rly — (s — 1) Y- DrX{(Ye — XA < max [|DrX7|I(1+ k[|7.])
= 0<t<T

T
x S AXE — AY,
t=1

whichis Op(T™) by Lemma A.6. Under Hy and H, this shows that supg,. | B¢ || =
Op,(T7™=1/2). Under Hy, it gives together with Lemma A.6(d) that supg,, || RTo+
(@ — DiYr|| = Op, (T771/2),

We proceed with the proof of (a). From (A.14), (A.15) and the identity
(SH + Rt = (ST)~t — (SE + RE)~1RE (SE)~1 it follows that
(T(6q — &), TV?(34 — )')' equals

(ST) ™' (Bie + Riy) — (ST + BL) T RA(ST) 7 (ST + Rl + Riy).
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To evaluate this matrix, define the event Fr := {r7}||(SF) 7Y < 1}. As
L = Op,(T7/?) and ST, converges weakly to an a.s. positive defi-
nite matrix under F,, it holds that P. (Fr) — 1, and it suffices to study
outcomes in Fr. For such outcomes ||(SH + RE) 7Y < [1(SEH)~HI(1 —
IR IST) 1) 1,2 so that sup, (T (@u—a), T/2(3,—4)')|| is dom-
inated by

1TIHS%;II +rl +rly
1—rf|I(ST) |

(ST M e + rig) + 1(ST)HPr
_ OPC(T771/2)

by the first part of the proof, and since (S7;)~! and S{, are Op,(1). As to
residual variances,

T
64—02 = TP Y [(AX])? — (AYy)?)

_(T1/2 o — 1)7 &/)R{l(T1/2(& - 1)7 '3/),
=981 + Biy)

d
X(T"2(6a = &), (Fa = 4)')
—2(T(@a = &), (7 = 3)) (ST + L)@ - 1),7')'
Since
I T
| SSAXH? = AV < (max |AXY] + max |AY;]) 3 [AX] = AY|
t=1 t<T t<T =1
< Op(T7)

uniformly on G, see Lemmas A.1 and A.6(b), and since (T/2(a4—1),4/) =
Op,(1) is a well-known fact, from the previous argument it follows that
supg, |62 4 — 2| is dominated by an Op, (T7~/2)-sequence. This com-
pletes the proof of (a).

“It follows, e.g., from || (ST, + i) ~"|| = [[(ST1) ™" = (St + Riy) " Rix(S11) || <
IGST) "M+ 1Sty + RE) 7 IIRTII(ST) ™ by solving the inequality for (St +
Ri) -
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Next, (A.15) and the identity (ST, +RT) ™! = [lry1— (S +RT))~ (R
ii'Y7)] (ST 41 Y) ! yield (6 — @, (§q —7.)') + (@ — D)(SH YT +
ii")~li = Q1 + Q2, where

Q; = (ST, +ii'Y7) " YSL + RE, + RIG + (@ — 1)Y7i),

Q (S + R ) (Rll — 11 TT)(Sll + ii/TT) (Sle + R + R )
Using that || (ST, +ii'Y7) =] < [|(ST;) ||, we find that supg, . [|Qu ]| does
not exceed

1S HIISTN + supg,, [[RTe || + supg,, [ Ry + (@ — 1) Yri]])
= OPf(TT 1/2)7

as S7, converges to a positive definite matrix in Pg-probability, S7,
Op,(T~/2) by a CLT, and the suprema were found to be Op, (T7~1/2

)-
Further for outcomes in the set Gp := {(supg,. R}, — ii TT\|)||(S +
ii"Y7r) 71| < 1}, with Pr(Gr) — 1, we have

supg, (ST + R1) M < 1(ST) (1 = supg,, R} — it ol (ST) )~
OPf(l)v

so that supg,,. [|Qz|| is bounded by Op, (1) times

supg, | Bfy — Y| [[(STH) " I(ISTell + supg,, [|RT| +supg, | Rivll)
_ OP (TT—1/2)

similarly to supg,,. [|Qu||. This proves the first part of (b). Since 6 52 Zacan
be written as

5 d — =T tzl(AXd) (&d - 17;7/:1)(5{1 + Rfl)(ééd - 17;>/d)/'

itis not hard to see that supg,, [62 ;— (771 32/ (AY;)? AT)’—Opf(l),
where, with (&3 — 1, (§3°)) := (@ — 1, 7%) — (aw — DI (SH Y +ii) 7,

Ar = (&F - L GP))(SH + W Tr)(@aF - L (5F))
— (@ — 1L,30)8T (@ — 1,32 — (an — D2/(X5! +1(Sh) 7).
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AST L (AY)? — (8 — 1,708 (@ — LF,) %o and (17 +
i'(ST)71)~! < Y1 = Op,(1), we conslude that supg,. 62 ; = Op,(1).
=

A.3.2 Proof of Lemma 1

We verify that, for 3 < v < r — 1, & = AX, satisfies the hypotheses of
Lemmas A.4 and A5. First, max;<r|e;| = Op (T7) with 7 = r~1 <
1/4 in view of Assumption M(b), and max;<7 |AY:| = Op (1I7) by
Lemma Al(b) Hence, maxi<i<T ’AXt —E&t— 6t0t| = max1<i<T |AY2 —
gt] = op(T"?) as required in Lemma A4 for ¢, = AX, (from here
and Lemma A.2, it is seen that max;<;<7 |AX;| = Op(T"?), which
will be used below). Second, (1 — &;) [AX, "1 = (1 — §,) |AY;|[**! and
ST (1= 6) |AX [+ < ST |AYYH! = Op(T) by Lemma A.1(c),
since v + 1 < r, and hence, also Lemma A.5 is applicable to é; = AX;.
Lemma A.5 yields item (a) of Lemma 1 (recall that 6;(¢) := 6(AXy;¢)),
from where the relation for <I>:} in (b).
The relations for ®. and ®. in (b) also obtain using (a):

(@2, ) — 7! é (60,1~ 6,) (AX,)?]
— Var f:l (6, — 5 (O)(AX)

<7t max. (AXy)? i |61 — A Q)1
t=1
< Op(T71/2)

uniformly on A7 since max; <i<7 |AX;| = Op(T?). As (1 — &;) (AX;)? =
(1—6;) (AY;)? and 6; AX; = 6;(AY; + T'/21,), we can insert

7! ij (64,1 — 6¢) (AX})? = (Hp, T71 ij(AYt)?) +op(1)

in the above display; hence, the relations. .
Item (a) and Lemma A.7 with G = Ap and di(-) = 6(AXy;¢(4)),
t=1,..,T, imply (c).
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Consider now the Jacobian 81 (s) /8¢ = T~ S 6: (<) (1=5 (s))wyv),
where
__
ML —=¢MT)
06, (AX,i s + T67)

Ut

ogn
Oln[o, (AXy; 67 +T6) /b, (AXy;67)]
os?

and w; := (T, (AX¢)?, —(AX;)?)". It can be evaluated as follows:

0% () -1 L z
— < — . .
1= I'= masg lluell mase (1T well 22 &1 () (1 =8¢ (<)) (A16)
We discuss the factors on the right side separately, starting from the com-
ponents of v;. First,

0ln ¢, (AXy; 67 + 1) 1 1 E? (T)
— = 1— (v + 1) —L ,
A(s",57) s a0 +Et2] 1

where E? = (AX)2[v(s” + T<")] L. Asimilar expression (with a differ-
ent £2) obtains for 9[In ¢, (A Xy;5%)]/0s%. Using that E2/(1 + E?) < 1,
it follows that

’81n¢u(AXt;<"+T<”)’ < u2 51H¢V(AXt;<“+T<”)‘<V_+2(A.17)

ogn 2¢M PS4 269
‘31n¢u(AXt;<”) | < V42
lSd 260 *

Upon evaluation at (¢",<%) = (¢"(2),¢?(2)), all right sides in (A.17) are
Op (1) uniformly on Ag. Also sup,, {(¢*)7H(1 —T71¢M) 71} = Op (D).
Hence, sup,ca,.1<i<7 [|Vtlc=¢(z)ll = Op (1). The other terms on the right
side of (A16) are maxj<¢<r ||T_1wt|| <1+ 271 maxlgtST(AXt)g =
Op (1) (see paragraph one of the proof) and S°7_, 6; (¢) (1 — 6 () <
S°T 1 |6 —6¢ (<) |, which upon evaluation at ¢ (z) is Op(T~/2) uniformly
on Ar (see item (2)). Item (d) follows by inserting the obtained orders of
magnitude into (A.16). B

58



A.3.3 Proof of Theorem 2

EXISTENCE. To be able to use a standard fixed-point theorem, we set up an
auxiliary fixed-point problem for a self-map of a compact. For the auxiliary
map, defined by centering, normalizing and truncating ®, existence of a
random fixed point is classical, and this point turns to be a fixed point of
®7, with P-probability tending to one.

Let A} = [-1/2,1/2], AT := [1/2,3/2], A = [0%/2,20%] and
A = Ay x Al x AZ. With ¢ : A7 — R3 acting on z = (23, 27, 27/
according to ¢ (z) = (2 + Np, Hpz",2°), let O = (1o &7 o (.
As Hp # 0 P-as., Op is well-defined P-a.s. Further, let @E‘,’i A —
Aq be defined component-wise: for v € {\, 7,0}, O (2) := OU (2) if
0Y () € AL, O (2) := min A% if O (2) < min A% and O (2) :=
max AY. if ©%. (z) > max AY.. Since ©F is continuous and A7 is a convex
compact, ©% admits a random fixed point zr € Ar. This is guaranteed,
e.g., by Theorem 10 in Bharucha-Reid (1976).

For outcomes such that O7(zr) € A, we have zr = OF(zr) =
Or(2r), i.e., (p = ((zr) is a fixed point of ®7. Since, in view of Lemma
1(b), @T(ZT) = C71(<NT, Hrp, J%/)/ +op (1)) = (O, 1, U%/)/ +op (1), and
since (0,1,0%) is an interior point of A, it follows that P(©7(zr) €
A7) — 1. Hence, ( is a random fixed point of &7 with P-probability
approaching one, and by the choice of A7, (1 is bounded and bounded
away from zero in P-probability.

UNIQUENESS. We use a contraction argument. Let ¢ have the properties
of { from the existence part of the theorem. Fix ¢ > 0. Since Np, Hr
(by Lemma A.4(a) for n, and n, 1), ¢+ and ¢7 are bounded and bounded
away from 0 in P-probability, there exist constants ¢, > 2¢; > 0 and a
set .A; with P (A1) > 1 — ¢/5 such that, for outcomes in Ay, Ny < gp,
2qp < Hr < qn, 13 < (p < qpl3 and 13 < ¢ < g13, where the
inequalities for (- and ¢ are component-wise. Define the compact K :=
(min{q;, 1/2}, 2qp] x [1, 2qp] < [min{o%, /2, qi}, max{20%,, ga}]. Then, for
outcomes in Ay, first, (1, s € K, and second, the point (N, Hr, 0%)" is
interior for K, and at distance from the boundary of K bounded from below
by a positive constant. From the latter and Lemma 1(b), with K in place
of Ap and with ¢(-) equal to the identity function, it follows that on some
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Az C Ay, with P (Az) > 1—¢€/4,and for T' > Ty (say), &7 (K) C K. By
Lemma 1(d), there exist 75 > T5 and A3 C As, with P (A3) > 1 —¢/2,
such that for 7' > T3 and on A3, sup,ck || (®r),|| < 1/2. Since (@)’ is of
dimension 3 x 3, under the same conditions, sup,, , .cx [[(®1)} |z 251 <
V/3/2, where the ith row of (®7)’, is evaluated at z; (i = 1,2,3). By the
mean-value theorem for ® on K, we see that for outcomes in A3 and for
large T', @ is a contraction on K, and has a unique (per outcome) fixed
point on K by Banach’s fixed point theorem.

Consider finally 7y and A4, with P (A4) > 1 — €/2, such that for
T > T, and outcomes in A4, @7(¢(r) = (p and ®7(s7) = <. This
is possible by the choice of {; and ¢7. Then, for outcomes in A3 N Ay
and 7" > max (13,Ty), ¢+ € Kand ¢p € K must be equal to the unique
fixed point of &7 on K. Since P (A3N.A4) > 1 — e and € is arbitrary,
P =¢r) — 1. -
COMPUTABILITY. A contraction argument is used again. Let K := K U {{7q}.
As in the proof of uniqueness, on some event By C A;, with P (B;) >
1 —€/2, and for T > T) (say), O is a contraction of K onto K C K,
and ¢+ € K. Further, from the proof of existence, ®7(() = ( on
some By with P (By) > 1 — ¢/2, and for T > T5 (say). By Banach’s
fixed point theorem, for 7' > max (71, 75) and outcomes in B N B, with
P(B1NBy) > 1—¢, the sequence of iterates of &7 converges to the unique
(per outcome) fixed point ¢ of &7 on K.
CONSISTENCY. This part of Theorem 2 follows from Lemma 1(a,b) by
evaluating the functions there at zr € Ar, with zr, ¢(-) and A as in the
proof of existence.

A.3.4 Proof of Theorem 3

Under Hy and H,, the result for ADFg is direct from (2) and Lemma 1(c),
with the functions there evaluated at z; € A and with {(-) as in the proof
of existence in Theorem 2. For ADF;S , In addition to these results, also
the conclusion that S%, + RY, (¢(27)) = SE + op.(1) is invoked to ensure
asymptotic equivalence of the standard errors based on Xf and on Y;; see
the proof and the notation of Lemma A.7.

Let the OLS estimators of a, y and o2 from the ADF regression for X{
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be as, 75 and 62 5, and let I := 1/(1 + Yri’(S;) 1) € (0,1]. After
some algebra, it obtains from Lemma A.7(b) (upon evaluation at z7 with
¢(-) as above) that, under the hypothesis Hy,

(as,75)" = V7 (0, 74) + (1 = 97) (1, S5 (S5%%%) ) + op, (1),

where S§y and Sy are the Py-probability limits respectively of
T AY(VY, 1) and TP 21 VY, (VY1) Since, under
Hf, Ay = (a* - 1)F*(1) +1 < 1and TTi,(Sﬂ)_li g Opf(l), we

find that Py(@s < 1) — 1, and T(Gs — 1) ~5 —oc. Since 625 =
Op,(1) and (ST, + R} (C(27))) ™" = Op;(1) by Lemma A.7(b) and its

proof, it follows that ADF) " . Further, note that S5 (S%%) !
is the P¢-probability limit of the OLS estimator of « from the regression
AY; = 'VY,_i+errory. As AY; is stationary, 1 — (‘)’%(S%OV)*llk > 0.
Since also 1 — 4,1, = T',(0) > 0 as a consequence of Assumption M,
we find that Py(1 — 451, > 0) — 1. As 45 = Op(1), it follows that

ADFS = T(as — 1)/(1 - 751) & —co.

A.4 Proof of Theorem 4 and related results

Let p > 0 be a real number that we will choose as small as convenient.
The compact A7 from the proof of Theorem 2 is replaced here by Dy C
RT+k+4 defined as Dy := Y x Ap, with

Y7 := DS x D& x DY, Ar = D3 x DI x DY,

D = {2’ € RT: S0, [af| < TP712), D = (a0 € [-TP1/2, TP 112},
D} = {27 e RF: |27 —~,| < 1}, D} = {z* € [-1/2,1/2]},

D7 = {a" € [1/2,3/2]}, DG := {27 € [02,/2,202%,]}.

A.4.1 More lemmas
The point at which U is evaluated is specified as &(z),

T = (x‘s’,xa,x“*’,xA,x",x")' € Dy,
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where ¢ : Dy — RT+++4 s the random function with components €9 (%) =
2+ (81,...,67), EMNa?) = 2> + Np, €7 (2) = Hpa", and €2, €7, €7 are
the identity functions respectively on D%, D7 and DF.. It will be shown that
there exists a random sequence z7 € Dp such that P.((¥r o &)(z7) =
&(xr)) — 1. The proof uses properties in the spirit of Lemma 1 that are
worked out next. The argument of & and its components is subsumed; the
notation supy, . f (£) is employed for sup,cp.. f (£ (v)), and similarly for
the components.

Upon substitution of d = (dy, ..., d7) by £° in the definition of X¢ (t =
1,...,T), the de-jumped series X¢ := X; — >t €A X, obtains; we treat
it, as well as the associated residual series ef = AX— (&%, (g‘*)’)DTXf_l,
as a function on Y7. Similarly, the updated de-jumped series X;¥ :=
Xy — YL W (&)AX, and residuals ef = AX; — U3 (&) DrX)
are functions on Dy. Then W5, (&) = 5(6;5; A en o),

LemmaA8 If3 < v < r—1,20(r+1) < 1 and max;<r|et] =
Op, (T7), then:

a. supp, > 160 — U5 (O)] = Op(T~Y2), supp, S/, 6¢(1 —
W5, () = Op (T~ ¥=2/2);

b. supy,, [[€57(€) — (TH2(a = 1),4)|| = Op(T™71), with &, 7 as
in Lemma A.7;

C. supp,.1.5,—0 lef/| = Op.(T7) and SUPp . 1<t<T lef| = OPC(Tl/z);

d. supp,, [(W7(6) — Hr, §() — 02| = Op.(T77/),

PROOF. Without loss of generality, we take 7 < 1/4, since £ |51|4 < 00
under P.. Note also that p < 1/8 under the hypothesis of the lemma (this
represents no restriction on the model).

For item (a), we check that Lemma A.5 (as stated in Remark A.2) is
applicableto é;(-) = ef. First, we evaluate ef —et—010r—(7.— &) VY4
on Y. Under Hy and H,, they equal

(=T e, = T7H2%%)Y,y — (€%, ) Dp(X5_ — Yi1),

where supy, [€%] = O(T*~'/?), supy, €7 = O(1), max;<r |Vy| =
Op,(T'/?), and Lemma A.6(c) with d(-) = €°(-),Gr = Yrand 3 = p
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is applicable to supy, . HDT(Xf_1 —Y,_1)||- By collecting the magnitude
orders,

supy, |ef — et — 860y — (7, — €Y'VY,| = Op, (I7) 6,1 (A18)
+OPC(Tp+T_1/2).

Thus, supy,.;<t<r \ef —e1— 0404 = oPc(Tl/Q) as required in Remark A.1,
since supy,. |7, — €7 = 1, maxi <=7 [ VYs-1]| = Op, (T7) by Lemma
Al(c),and p+ 7 < 1/2.

Second, we verify that supy, S°7_, (1 — &) |§[**! = Og, (T). In-
deed, in consequence of (A.18) and the inequalities p (v + 1) < 1/2, p +
T < 1/2,itholds that (1 — &) e}]*+! <

(1 =80 4" [lee]" T + ||y = I THIVY e VT (AL9)
+(8:1)" op, (TYV?) 4 op, (1)]

uniformly on Y. Further, for v + 1 < r, we have E|e;|**! < oo, so that
iy lee Tt = Op (T) and 320, VY| = O, (T) by Lemma
A1(c), while supy, [|v, — £7]| = 1and {8, 1)+ < (kNp)*+! =
Op, (1). These imply the asserted uniform order of ZtT:l (1—46y) |ef|”+1.
Having checked the conditions of Remark A.2, we obtain item (a).

Item (b) follows from (a) and Lemma A.7 with d(-) = ¥5.(£(+)), Gr =
Dr. Further, (b) together with the standard properties & — 1 = Op, (T~ 1)
and ~,—4 = Op, (T~/2) imply that supy,, |04 = Op, (T71/2), supp, ||7.~
Y|l = Op,(T7Y/2) and supp,, | T3] = Op, (1). These are useful in a
derivation similar to that of (A.18), but this time invoking for supy, . | D (X, —
Y 1)|| Lemma A.6 with d(-) = ¥5.(£(+)), Gr = Dy and 8 = 0, the latter
by (a):

sup |ef — e, — TY26,m,|
Dy

Op, (1)8,_1 + Op,(T7/?)

IN

sup 1ye = 2l max VY el

= Op, (1)8;_1+ Op,(T7"1/?), (A.20)

since maxj<;<7 ||VY:_1]| = Op.(T7) by Lemma A.1(b). From here and
Lemma A.2, (c) follows.
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Finally, item (d) can be derived starting from

sup [|(W7(6), W(€) — T~ 2oy (61,1 60) ()]

Dy

=27 ! sﬂ;lp | S (U (8) — 6)(ef)?

<V2I7! sup <e?>2s§pzle|\v%t<o—6t|
T

Dy, 1<t<T

= Op,(T7'7?)

by (a) and (c). Next, by applying to v = e and v = &; + T"/26;n, the
inequality [u? — v?| < |u — v|* + 2 |u — v| |v|, and then (A.20) to evaluate
|u — v|, we see that

o TS0 (661 = 60 [(e])? = (o0 + TV?6m,)?)|| = Op.(T7172),
T

7 < 1/4. Inserting T 57| (64,1 — 6;) (e4+TY26m,)? = (Hp, T S0 €2)+
Op,(T~1/2) and combining with the previous display completes the proof
of item (d). H
Next, for use in contraction arguments, we evaluate the Jacobian matrix
of Up. For amatrix A = (a;5), introduce [[Al[y := >_, ; [a;;] and [[A]|, :=

max; » ; |ai;l.

Lemma A.9 Let each row of the Jacobian matrix (7). = (Ur(s)). be
evaluated at some point of the form £ (z), with = possibly varying across
rows, and let (¥'7), denote the resulting matrix as a function on DL+,
Suppose that Assumption M(b) is satisfied for some » > 5, and that 4 <
v < r — 1. Then there exists a p > 0 such that SUP T 54 IRZBMIA

op,.(1).

PROOF. In the proof of Theorem 2 we used that, if sup,cg [[(®7),]| =
op(1) for some set K, then uniform infinitesimality holds also when each
row of (®7)’, is evaluated at a different point in K. The fixed dimension
of @ is crucial for this implication. In the case of (¥'7)., we can parti-
tion it into (\1;5T)'<, with 7" rows, and into k + 4 rows containing the partial
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derivatives of components of W other than .. Since the dimension of
(\II‘ST)’g depends on T, to obtain uniform infinitesimality upon evaluation of
its rows at possibly different points of Iy, we cannot use the same indi-
rect approach as for (®r)”; instead, we introduce different points of Dp
directly. As to the remaining rows of (¥7)’, since their number is fixed, it
suffices to evaluate them at one and the same point of D, and as for (®1)’,,
infinitesimality carries over to points varying across rows. Thus, to prove
Lemma A.9, it is enough to find a p > 0 such that:

(@) 5Py, . wpyent maXwew Yyy [|(Why)uli=e (e | = 0r. (1), where
W = {ds,a,7,\,n? 0% :t =1,..., T} collects the components of ¢, and

(b) supep,. [(Y1)cle=¢() ln = op. (1).

For part (a) we need some notation, and some strengthening of earlier
evaluations from Dr to DL, For ys € Y7, zs € Ap and x5 == (v, 2.)
(s = 1,..,T), we write gs €53 etc. for £(xy), €°(x?) etc., and define
X5 = Xt S €05AX, and €5° i= AX, — (€%, (€7°)) DrX5S,
as Xg and ¢ evaluated at y,. Then W3, (£°) = §(e5%; C(2,)), with ¢(2) =
(Z + Np, Hpz", ZU)I

Now, under the conditions and with the notation of Lemma A.8, we
argue for the following relations in place of Lemma A.8(a):

T
sup > |8 —Wh(&)| = Op(T7Y?),  (A21)

(x1,-.,er)EDE =1

swp S S(1-Uh(€h) = Op(T0DI2);(A22)

(x1,-..,ep)EDT t=1
T
sup 3G W (E)(1 - Wh(€)) = Op (1m0 gN3y)

(z1,27)EDT 11

where 6;_1 := Zle 6+_;. They rely on a strengthening of Remark A.2:
REMARK A.1. If é(-) are random functions satisfying the condition of Re-
mark A.1, and ifalsosup,, . jeyr ST (1= 68) |é(ye) "' = Op (T),
then the conclusions of Lemma A.5 hold for

T

sup > 81— 6 (eu(ye); C(=0)))
{(yt,Zt)EYT XAT:lgtST} =1
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and
T ~
sup Z 66 — 6 (E(we); C(21)) |-

{(yt ,Zt)EYT XA :1§t§T} =1

The proof of Lemma A.5 requires only notational changes. [

Given that in the proof of Lemma A.8 we have checked the condi-
tion of Remark A.1, to obtain (A.21) and (A.22) it remains to verify that
SUD(y, . yr)eYT ZtT:1 (1—6,) |4 |”t1 = Op, (T). Indeed, in consequence
of (A.18) and the inequalities p (v + 1) < 1/2, p+ 7 < 1/2 (see the con-
ditions of Lemma A.8), it holds that (1 — &) ]ef’t]”“ <

(1 —80) 4" [lee) T+ Iy, — EH VY a7 (A24)
+(8¢-1)"op, (TY?) + op, (1)]

uniformly on Y%. Further, for v + 1 < r, we have E|»st]”+1 < 00, S0 that
Sy led" ™ = Op (T) and 1, VY1 [|“+ = Op, () by Lemma
A.L(c), while supyy |7, — €| = Tand 32, (§¢-1)" ! < (kNp)“H! =
v+1

Op, (1). These imply the asserted uniform order of Zthl (1—6) et
and hence, (A.21) and (A.22).

Asto (A23),0 < ST 6:0: 1U5, () (1 — TG, (1) < kST, 6:(1—
e, (€) < Op, (T~»=2)/2) on DX, according to (A.22), and it remains to
evaluate Y/, (1—64)8; 105, (6) (1= 05, (6") < >0/, (1—6,)8, 1T,
Equation (A.7) holds for W%, (¢*) and €5 in place of 8(é; ¢) and é;, with
magnitude orders uniform on DZ.. By multiplying this equation with &;_4
and summing over ¢, >/, (1 — §,)8;—1 %, (') is seen not to exceed

v+1

)

Op. (T3 ST (1= 8,) 8—1 + Op (T3 T (1 — 6:) 81}

the evaluation being uniform on ]D)%. Above Zle (1 —=6¢)64—1 < kNp =
Op. (1) and, in view of (A.24), "7 (1 — 6;) 8;_1]e>"[**1 is dominated
on DT by 4¥k Ny times
max |e;|"" +sup ||y, — )" max [[VY, "

t:0¢-1>0 ]ID} t:6;-1>0

+(kN7)"Mop (TY?) + op, (1),
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which is op, (T''/2); see Lemma A.2 with I;5, ,~qy in place of 5;. Com-
bining the above orders of magnitude gives (A.23).

PROOF OF LEMMA A.9. We use the symbols (), and 9(-)/0w inter-
changeably for Jacobian matrices. Assumption M(b) with » > 5 implies
that max;<7 |e;| = Op, (T7) with 7 < 1/5. To apply Lemma A.8, we take
20 <1/(v+1).

For the proof of

(@) SuP(y, . opyent Maxwew 3oy (U5 le=e(an |l = op. (1),
define 7§, := W5, (1-0%,); by (A.23), Ty := Y1, 75, (€4) = Op (T~1/?)
on DZ (this and all convergence orders in what follows are uniform).

As (U5, )\ = 75, T/(TA — \?), we have

IN

T
> 1G5 et I sup[T/(TE — (£4)%)]
t—1 D

= Op(T7'?)
on }D)E;. Next, for an argument w different from A,

(\I’éTt);u = (In fz/);u(ﬂéTt)v (A.25)

where f, := ¢, (ef; 0% + T1?) /6, (ef;0°). Forw € {07}, (In f,),, =
Op. (1)on DL asin (A.17), and thus, 3=/, |(¥5,)1,]_¢t| < Op, (1) Iy =
Op.(T~/?) on DL. For w = (a,v, d'),

0. f ),y = (2 + 1) [, v0?) = h(ef, v(0® + Tn*)))(e]) g )

where & (z,y) = x/(y + 22) " satisfies |k (z,y)| < (4y) Y2, y > 0.
Hence, upon evaluation at ¢, the factor in front of (egl)’(a .y 1S bounded
by (v + 1) {(v€7H) =12 4 [p(¢7t + TE™)]~1/21 /2 in absolute value, and
on DT does not exceed the constant K := 2 (v + 1) /(\/Voe«), Whereas

(#)I(a,y) =DrX{, and (), = (T7"%a,7 )L AX,,
(A.26)
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s =1,..., T, with I, the vector of indicators (Is<; 1y, [s=—1}, -+ Lgs=t—k})"-
Recalling (A.25), we find

(%) (g lemetln < KTy sup [ DX§_ |1 = Op (I7712)
1 Yr;1<t<T

M=

t

on DZ, since, by Lemma A.6(c) with 3 = p, the supremum is Op, (7).
Still by (A.25) and (A.26),

T T
6 6 t —1/2|¢a,t
e 3 (8 ] < K e (3 (€072 )

k
+||£%t|| ;H{s:t—i}] |AXS|}
a,t -1/2
< K [IIz[¢ | max |TFAX| (A.27)
R T
+1€7 H;Wﬂ(ﬁ) > 1AX]).

s=t—k

From the proof of Lemma 1, max;<s<7 |AX,| = Op,(T?). Further,
|€vt) < TP=1/2 and T = Op,(T~'/2) on DZ, so that in (A.27) the first
term in brackets is Op, (T*~1). As AX, = AY, + T'/26,n,, we also have

t—1
Z IAX,| < kmax|AY|+TY28, 1 max |n,]
Ik t<T t:6:=1

= Op, (I7) + 6¢-10p,(T"/?)

by Lemmas A.1 and A.2, so that
T t—1
S wh(€) Y 1AX] < Op (TT)Tp
t=1 s=t—k

T
+Op,(TY?) Y~ 811y (€)

t=1
= Op(T™'?)
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by (A.23) and since v > 4. Therefore, max;<,<7 >.i, ](\I/5Tt){is|g:§t\ =
Op.(T™1/2) on DT.

Summarizing, the largest magnitude order on DZ. of Z;‘le y(\IﬁTt);Uyg:gt |,
for w € W and small p > 0, is Op, (T7~'/2); hence, statement (a).

Later we use also that maxyew 3y 8¢l| (P8, )1yl —etll1 = Op. (T71/2)
on DZ; this follows by replacing T = S°7 | 74, (¢%) = Op.(T~1/?) with
D1 0y (€) < 30y (1 = Uy (€) = Op(T272), v > 4,in
the evaluations above; see (A.22).

(b) supgen, [[(¥7)clc=¢@) lln = op. (1).

We partition (¥7),|c—¢() into blocks whose number does not depend
on T, and show that, by choosing a small p > 0, the h-norm of each block
can be made op, (1) on Dy.

1. Derivatives of WS : [|(¥9)!|_¢)lln = Op,(T7"/2) by setting
1 = ...=2IT in (a)

2. Derivatives of U3 = ST | W8, .

T
1(92) ! e—e(@lln < max > TG
t=1

1(P5)! ey lln = Op.(T7?)

as just shown.
3. Derivatives of ¥7:". Note that

T T
WY =Y DX (DrX) Y DeXE L AXY
t=1 t=1

depends on ¢ only through W4.. With SE := ST Dy XY | (Dr X} )
and with derivatives 9(.)/dd that here happen not to depend on the point
where they are evaluated, it is checked that (U/:7)", equals [S5]~! post-
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multiplied by

Dy zT; i{axf—l [AXY — (DrX{ ) w57
P e L ! T

v 0AXE  HDrX¢_y) -aryy 05,
+ Xt — VP

T T
=Dr 2 { 3 [Ls [(DrXiy) 97" — AXY']
s=1 t=s+1
v a,y U ows
+ Xyl D] = Xy JAX =5
(a prime denotes transposition). Since T-1SE (like ST, + RT; in the proof
of Lemma A.7) converges uniformly to the same non-singular limit as S%,

the magnitude order of (U7:7)!, is determined by 7! times the expression
above. If Z, is the term in braces, it follows that

T
12l < Op(T7H) 2 12611 |AXs| 107l wew,
s=

(A.28)
where
T
1Zdh < 20 Y Drlia(DrXE ) [ w5” s
t=s+1
T
+H Y Dl AXY |1 + [ DrXY I,
t=s+1
T T
> Drlis(DrXEy) = (T72 % 0 XL XY X<y -
t=s+1 t=s+1

X k1l r—1<1y) Dr

has 1-norm bounded by (T'/2 + k) max;<s<7 || D XY |1, and the 1-norm
of
T
> DrluAX! = (T7V3X7 — X, AXI T ery,
t=s+1
o AX T g ery)
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is < (2 + ]{7) maxi<s<T ||DTX;II||1 Using that ||\I/%’7H = Opc (1) on D
by Lemma A.8(b), we find that

Jnax 1 Zs]l1 < Op, (T1/2) max HDTX 1.
Inserting this into (A.28) together with |AX | < |AY,| + T/26,|n,| gives
that [|(¥7:7)},|c—¢ (2 |1 does not exceed Op, (T-1/2) maxo<s<r | DrX¥ |1
times

T
max [AYs| 3 [[(Wh)lyle=ea I + T max || Z 8l (W) lo=e (a1
s<T s—1 s:65=

As maxo<s<T ||DTX;I’||1 = OpC (TT) on Dy (by Lemma A6(C) with
B = 0), maxs<7 |AYs| = Op, (T7) (by Lemma A.1) and max,.s,—1 |1,| =
Op, (1) (by Lemma A.2), while [[(U4)!]c—¢()lln = Op.(T7~Y/2) and
maxpew 3oy 8sll (U5 )i lee(a) 1 = Op.(T~1/?) (see the proof of (a)),
it obtains that || (7:").|c—¢()|n _Opc(TT 172y,

4. Derivatives of \I/’7

T
=T (¥ 24 or- IZ\IJTtet (el)!,
t=1 t=1
where
L EAY) L 6y
manc | 32 (W) (e)*l] < mmax (e?)” max 32 [|(W, )11, and
s | 3 W (L < s |V W) eVl

Using the relations || (W5.).|.—¢()lln = Op(T77Y/2) and 31, U4, (¢) =
Nr + ZL(\IJ% (&) — 6y), together with Lemma A.8(a,c), we find that on
Dp

T—1/2 —-1/2 v
IO =ty lln < On(TT712) + Op(T71%) | _max (e Vule=e(o -
(A.29)
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Thus, it remains to study (e}’),, = >, ey (ef),(¥5),,, where W/ :=
{dy,a,v' : t = 1,...,T}, and (ef)! are the derivatives (A.26) evaluated
atd = (\I/5Tl,...,\I/TT) and (a,7') = ¥37. Forany w € W, with (¥7.);
denoting the ith component of \Il}, (i = 1, ..., k), we find

T
| 2_)1(653)&“(\1’5 Yl = 1771204 Z AXu(WTy )1

+ Z (U3 e—u A X0 (T, )01
=max(t—k,1)

~1/2
< max [AX,|[T7VF 05 !E 10%5)5 12

L2 PR DR (¢ 23N
u=max(t—k,1)
Asmax,<7 |AX,| = Op,(T"/2) and, by Lemma A.8(b), supp,, (| U%(€)|+
%7 (E)l1) = Or, (1),

max ||z<et> S el < Op(TY2) sup(|T4:(6)]

weW;1<t<T D
HIPHE ) X (P |e=gw) In
< Op(T7). (A30)

In view of (A.29) and the expression for (e})! given after (A.29), we con-
clude that on D

I iolln < OR(T™2) s (e (5ol 030
+O0p, (TT*1/2),

where (ef)’( .,y should be read as a row vector. The maximumis Op, (T?7-1/2)
on Dy since it does not exceed ||(W7").|c—¢(x) ln maxi<¢<r || Dr X |1,
see (A.26), and the two factors are respectlvely Op,(T7"Y/2)and Op, (T7)

on Dy, the latter by Lemma A.6(c). Hence, [|(¥7).[c_¢(|ln = Op. (T 1+
TT—1/2) — OPC (TT—l/Q).
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5. Derivatives of . Now (05), = —T-'S°7 (W8,). (ef)? +
21T (1 \115Tt)e;1’(et )!, and the first normalized summation has
already been shown, upon evaluation at &(x), tobe Op,(T7~1/2) on Dy in
h-norm. For the second one, it can be used that

IIé( = Uo)ey' (€ )ullr < max [(1— Why)e) I(Z (e iull)-

1<t<

Instead of (A.30), now max,ew S iy | S0, (ed), (\I/5Tu) le—g(a 1 i
bounded on D7 by

Op.(T"?)supp,. [TY2W5(E)] + kWO (YT c=¢(w) In = Or.(T7).

Next, maxi<;<r |(1- W5, (€))ef’ | < maxes,—o leff |+(maxi<i<r [} [) S, 16—
e, (&) < Op, (TT) on Dy by Lemma A.8(a, c) Thus, instead of (A.31),

I(¥F)le=¢@lln < Or(TT" 1)H163X2H(€t)a'y)( Mwle=¢@h

O (T2’T 1)
< TN eleme(@In (T~ Z 1D X4 1)
+O (T2T 1) OPC(TQT 1/2)7

since 37y [ DXl < 0y [DrY el + 01X = Yeal +
kL |AY; — AXY| < Op, (T) by the standard properties of Y; and
Lemma A.6(a,b) with 5 = 0.

Summarizing, among the considered finitely many blocks of (¥7).,
for small p > 0 the largest magnitude order is Op, (T27~1/2), which for
T7=1/5isop, (1). A

A.4.2 Proof of Theorem 4

The argument is similar to that for Theorem 2. For £(-) defined in the
introduction to section A4, let Zp = ¢ o Uy o &; it is well-defined
P.-a.s.
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Let p > 0 be chosen such that the conclusions of Lemmas A.8 are
applicable; this choice is possible under the conditions of Theorem 2. Fur-
ther, let % : Dy — Dy be obtained from = by truncating it as follows:
(E4)(x) = Zp(x) it Z(2) € DY and ()P (2) = TP~ V22 (2) /ST | By ()]
otherwise, (24)7(z) := =) (x) if Z}.(z) € D} and (EY)7(z) == ~, +
(Z}(x) —7.)/|E4(x) — 7. otherwise, and (=), (27)%, (E4)", (2F)°
defined similarly to the components of ©% in the proof of Theorem 2.
Then =% has a random fixed point s« on Dz by Theorem 10 in Bharucha-
Reid (1976). Similarly to the proof of Theorem 2, but invoking Lemma
A.8(a,b,d) instead of Lemma 1, we conclude that P.(Vr(&(ser)) = £(3e7)) —
1. The sequence &, whose existence is asserted in (i) can, accordingly, be
defined as £ := &(ser).

Item (ii) follows from Lemma A.8 since sep € Dp. Item (iii) follows
once noticed that the ADF statistics based on the de-jumped series are

ADFY = T"?W4 (¢7) (1 - 197 (&r) 7!
and
ADFY = T7Y2% (¢7) (0, (&7) vin) "2,

where o2, (&7) is the residual variance from (13), and vy is the first entry
of the matrix Y7, X , (X} ,)’]", both evaluated at £ .. As ser € Dr,
Lemma A.8 allows us to invoke Lemma A.7(a), and to obtain the limiting
distributions of the statistics as in the proof of Theorem 3.

In the rest of the proof we assume that » > 5, so that we can apply
Lemma A.9.

Uniqueness is established next. Fix an ¢ € (0,1/2). Since Dr is
convex, for every x1,x9 € Dp by the mean-value theorem ¢ (z1) —
Er (x2) = (Ep).(z1 — x2), where (Z7)., is the Jacobian matrix (Z7)’,
with each row evaluated at some point in Dy, possibly varying across rows
and also with x1, z2. We have

sup [[(Er)illn < max(Hr, Hp') sup [[(97). ]

T+k+4 T+k+4
]D)T ]D)T

= op, (1)
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in view of Assumption S(b) and Lemmas A.2 and A.9, where (¥'1) isasin
Lemma A.9. Therefore, we can find a set 51, with P.(B;) > 1 — €/4, such
that for 7 > Ty (say) and outcomes in By, ||(E7),|ln < 1/2 on DL+,
Further, [|Zz (21) — Zr (22) [k < [lz1 = zollisupprenea [[(Er)illn <
(1/2)||x1 — x2||1, i.e. Eg is Lipschitz on Dy with modulus 1/2. On the
other hand, in view of Lemma A.8(a,b,d), there exist a set B, C B1, with
P.(B3) > 1—¢/2,and an integer 75 > T3 such that, on By and for " > T,
Er(Dr) € Dp. Thus, for T > T, and outcomes in By C By, E7 is a con-
traction on D7, and by Banach’s fixed point theorem, =7 has a unique (per
outcome) fixed point on .

Further, if - and ¢ satisfy item (i), there exists a set B3, with P.(B3) >
1—e¢/4, such thaton Bs and for T" > T3 (say), Ur(ép) = Erand Yp(sr) =
¢p. If they also satisfy items (ii) and (iii), so that U (1) = €(r0) +
op, (1) and U7 (s7) = €(540) + op, (1), With s, := (0741,7%,0,1,02,)
and with convergence at rate faster than the shrinkage rates of D4, and D%
for the respective components W5, (¢1), W8.(s7) and ¥4 (&), W (s7), then
on some set By C Bs with P.(By) > 1 —¢/2,and for T > T, > T3
(say), £ (&) € Dy and €7 1(¢p) € Dy. On By C Bz and for T > Ty,
¢ 1(¢r) and €71 (sr) are fixed points of Z¢ on Dz, while on By N By
with P.(Bo N By) > 1 — e and for T > max(T»,Ty), we must have
£ YEr) = €Y (sr). As eis arbitrary, unigueness of £, with P.-probability
tending to 1 follows.

Finally, consider computation. From the proofs of Theorems 2 and

3, 70 = & 1 (Epp) 25 54 at a faster rate than the shrinkage rates of
DS and D% for 25, and x%, respectively. Thus, z79 € Dy on some Bs
with P.(Bs) > 1 — ¢/2, and for T" > T5 (say). By Banach’s fixed point
theorem, on By N By and for T' > max(7%, T5), the sequence defined by
x; = E(xr,-1), ¢ > 1, converges as i — oo to the unique (per outcome)
fixed point of Z¢ on Dy, which on B> N B4 N By equals 5‘1(§T). Since
P.(BaNB4NBs) > 1—2¢, we obtain the convergence {; = {(xr;) — &
as i — oo with P.-probability tendingtolas T — oco. B
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S Appendix: Supplementary Monte Carlo results

S.1 Comparisons with tests based on traditional level shift esti-
mation method

Here we compare our tests with two further proposals: using our de-jumped-
based tests with the level shift dates estimated using traditional level shift
detection methods. Specifically:

— Chen-Tiao [CT] ADFg,ADFt‘s: unit root tests based on Chen and
Tiao’s (1990) additive shift detection procedure and on de-jumping under
the null. We have used 2.8 as critical value for shift detection, which Chen
and Tiao suggest as the most liberal choice; choosing a more conservative
value doesn’t improve the size/power properties;

— Chen-Liu [CL] ADF{, ADF?: unit root tests based on shifts de-
tected as above and on de-jumping under the general model (i.e., without
imposing a unit root). Specifically, de-jumping is performed according to
equation (20) in Chen and Liu (1993, p.287), as they suggest at step 1.1 on
p.287.

We show in Table S.1 the results obtained through Monte Carlo simu-
lation in the four level shift model (cf. Section 5). Overall, our method (in
particular, the “finer’ de-jumping method, see Section 4) delivers the most
accurate sizes for all the sample sizes considered. Note that the largest size
distortions occur with the use of CL, which confirms the importance of de-
jumping under the null hypothesis for controlling test size. Further, our
“finer’ de-jumping method appears to be the best method also in terms of
power. Tests based on CL also have, in general, good power properties but
recall their failure to control size.

Notice that a further drawback, or rather, inconvenience of standard
methods is that they require the practitioner to choose a threshold value
for the sequence of test statistics associated with the presence of outliers.
Suggested thresholds are typically simulated and depend on the DGP. In
contrast, in our proposal the only parameter that has to be chosen is the de-
grees of freedom v of the smoothing ¢-densities, and we suggest to choose
it arbitrarily large; see section 5 for some Monte Carlo comparisons.
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S.1 Comparisons with tests based on a ‘binary’ level shift date
estimator

As we discuss in the new Remarks 3.1-3.2, in our framework a 0-1 estima-
tor with the interpretation of a standard outlier detection estimator can be
constructed as follows:

by =

9

1 ifés >k
0 otherwise

where &, is our smooth estimator and x € (0,1). We have carried out
Monte Carlo experiments over a grid of values of x, and found no im-
provements either under the null hypothesis or under (local and non-local)
alternatives. See Table S.2 for k = 0.5, where a small power deterioration
can be observed when the binary version of the level shift estimator is used.

Notice, finally, that tests based on the binary estimators typically per-
form better than tests based on CT and CL, see section S.1.

S.1 Student ¢t innovations: extended tables

In Tables S.3 and S.4 we report some extended Monte Carlo results ob-
tained for all the 3 models considered in the paper (see section 5). Results
are qualitatively similar to those reported in Section 5.

S.1 Power against fixed alternatives: further results

In this section we briefly investigate the power properties of the tests for
finite T and alternatives further away from the null hypothesis. In Figure 1
we report the size-adjusted power of the tests (both the basic version, long
dashed line in the figure, and the finer version, thick line in the figure), for
the DGP Sy (four level shifts at fixed dates), under T = 100, 200, 400,
v = —0.5,0,0.5 and « ranging from 1 to 0. When simulating the data, the
errors u,; have been normalized in order to have Var (AY;) constant across
different values of « and ~; this is done in order to make the size of the level
shifts, relative to the variance of AY;, independent of « and . The tests are
also compared with a test based on de-jumping combined with level shift

77



dates estimated through Bai and Perron (1998) break date estimator (short
dashed line in the figure).

The following conclusions can be drawn from the inspection of the fig-
ure:

1. The finer version of our test dominates the basic version. Hence, for
alternatives far from the null it is preferable to jointly estimate the
level shift indicators and the autoregressive parameters, as suggested
in section 4.

2. The size-adjusted power is not monotonic in «. Nevertheless, and
especially for the finer de-jumping test, power tends to stabilize as
« declines. Fortunately, there is no evidence that, for values of « far
from the null, the power becomes very small. The important message
that comes from this Monte Carlo exercise is that the finer version
of the tests should be preferable to the tests based on the basic de-
jumping method.

3. As T increases, power increases for all considered values of «, hence
confirming the consistency result provided in Theorem 3.

4. The implementation of the Bai-Perron (1998) break date estimator
algorithm leads to higher power for some configurations of v and T’
if « is sufficiently far from the null hypothesis. This test seems to
be an interesting complement to our tests, especially for moderate
sample sizes and alternatives far from the null.
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Table 6. Size and size-adjusted power of various unit root test under a single level shiftat |77'], 7 = 0.5. Raw data

Size (a = 1)
T ¥ ADF, ADF, ADF! ADF} ADFY ADF' ADFFV ADFFPE ADFF ~ ADFFE

100 —0.5 4.1 4.2 4.9 5.1 6.4 6.6 9.0 14.6 5.6 6.6
0.0 4.9 4.9 5.2 5.3 6.3 6.3 5.8 12.0 5.5 6.7
0.5 44 44 4.7 4.8 5.6 5.5 4.2 7.3 5.5 6.5
200 —0.5 4.3 4.3 5.0 5.0 5.5 5.4 9.8 11.6 5.3 5.6
0.0 5.1 5.0 5.2 5.1 5.5 5.4 6.5 9.8 5.4 5.7
0.5 4.4 4.3 4.8 4.7 5.2 5.1 4.1 5.7 5.6 5.8
400  —0.5 4.1 4.3 4.9 4.9 5.1 5.0 10.9 10.0 5.0 5.3
0.0 5.3 5.3 5.0 5.0 5.1 5.1 7.0 8.4 5.0 5.4
0.5 4.7 4.8 5.1 5.0 5.3 5.1 5.0 5.0 5.1 5.6

Size-Adjusted Power (o = 1 — ¢/T)
T v ADF, ADF, ADF! ADF® ADFY ADFY ADFFY ADFFPR ADFE. ADFFR

100 —0.5 2.6 2.4 18.7 18.7 24.8 25.1 20.0 18.6 25.5 41.8
0.0 12.2 12.1 32.6 32.3 30.6 30.9 17.0 24.7 25.1 45.0
0.5 31.3 30.8 37.2 36.8 38.3 38.4 12.0 34.3 23.3 43.6
200 -0.5 2.3 2.2 35.9 35.6 40.4 40.3 18.9 18.2 24.2 45.7
0.0 12.2 12.2 43.2 43.5 43.5 43.3 15.4 26.1 24.5 477
0.5 32.2 32.0 44.2 45.2 44.6 45.9 11.0 37.6 22.5 44.9
400 —0.5 2.1 2.0 44.6 45.2 45.1 45.9 18.4 18.1 25.6 48.0
0.0 11.0 10.6 47.9 48.5 48.0 48.6 15.0 26.6 25.8 49.5
0.5 31.5 31.5 46.8 47.9 46.5 47.5 8.7 39.6 25.1 48.3

Size-Adjusted Power (o = 0.9)
T v ADF, ADF, ADF} ADF} ADFY ADF' ADF'Y ADFFPE ADFF ~ ADFFE

100 —0.5 0.9 0.9 24.4 23.9 35.3 35.3 33.3 28.3 43.0 61.0
0.0 11.4 11.2 43.8 43.4 43.6 44.1 27.5 38.4 40.8 66.8
0.5 40.9 40.6 53.1 52.6 55.0 55.2 19.2 50.5 35.5 64.2
200 —0.5 0.0 0.0 1.7 70.9 85.5 85.1 79.1 74.2 91.7 95.2
0.0 6.6 6.4 92.1 91.5 93.1 92.6 71.3 86.7 89.6 98.6
0.5 68.2 65.9 94.8 94.6 96.7 96.4 53.0 93.9 81.8 98.1
400  —0.5 0.0 0.0 97.3 97.1 98.9 98.8 99.9 98.0 100.0 99.8
0.0 1.7 1.5 99.7 99.7 99.8 99.8 99.8 100.0 100.0 100.0
0.5 93.4 90.7 100.0 100.0 100.0 100.0 97.5 100.0 100.0 100.0

Size-Adjusted Power (o = 0.9), [xed level shift size
T 5 ADF, ADF, ADF! ADF}! ADF} ADF® ADFFV ADFP® ADFF ~ ADFEFE

200 —-0.5 4.1 3.6 40.8 40.5 57.9 57.5 72.9 82.3 91.7 95.2
0.0 47.2 46.4 78.8 7.7 79.9 79.3 63.8 91.2 89.6 98.6
0.5 87.1 86.8 92.1 91.7 93.4 93.0 50.6 95.0 81.8 98.1
400 —0.5 68.5 63.5 81.1 78.3 88.1 86.6 99.8 99.9 100.0 99.8
0.0 99.2 98.0 98.6 98.1 98.9 98.4 99.2 100.0 100.0 100.0
0.5  100.0 99.9 99.8 99.8 99.9 99.9 97.1 100.0 100.0 100.0

Notes: ADF{.’ + denotes Perron (1990) unit root test (known level shift date). ADF{ - denotes the same test but with GLS
detrending instead of OLS detrending. ADF{) V' denotes Perron-Vogelsang (1992) unit root test (unknown level shift date).
ADFtP R denotes Perron-Rodriguez (2003) GLS-based unit root test (unknown level shift date). Local power is evaluated
at a=10c/T with ¢=7. See also Table 1.
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Table S.1. Comparison betweet test based on our methods and tests based on traditional level shift
detection methods (in italics). Size and size-adjusted power against local and non-local alternatives

traditional shift estimation methods

Size (a = 1) Chen-Tiao Chen[Liu

T v ADFs ADF, ADF) ADF® ADFY ADFY ADFS ADF! ADFY! ADF}
100 —0.5 3.0 3.2 3.9 4.0 6.5 6.9 7.4 7.5 10.9 11.1
100 0.0 4.9 4.9 5.5 5.3 6.9 6.7 9.3 9.2 12.1 12.0
100 0.5 3.6 3.7 4.0 3.8 5.5 5.4 7.1 6.7 9.3 9.3
200 —0.5 2.6 2.7 4.9 5.0 5.8 5.9 5.0 5.7 7.5 7.4
200 0.0 4.8 4.9 5.0 4.8 5.4 5.3 6.4 6.4 10.2 10.1
200 0.5 3.4 3.4 4.5 44 5.3 5.3 6.5 6.3 8.3 8.2
400 —-0.5 2.5 2.7 4.8 4.8 5.1 5.1 5.2 5.1 6.1 6.1
400 0.0 4.6 4.7 5.3 5.3 5.5 5.6 6.5 6.5 9.4 9.3
400 0.5 3.5 3.5 5.2 5.3 5.4 5.4 6.8 6.8 8.2 8.4

traditional shift estimation methods

Size-adjusted power (a = 1 — ¢/T) Chen-Tiao Chen[Liu

T v ADF, ADF, ADF! ADF?® ADFY ADFY ADF! ADF} ADFY ADFY
100 —0.5 0.0 0.0 10.1 9.6 12.8 12.9 11.4 11.2 10.1 10.0
100 0.0 0.1 0.2 19.1 19.1 194 20.1 14.8 14.9 11.5 11.4
100 0.5 11.0 10.9 27.5 27.9 30.0 30.6 29.9 30.6 27.3 28.5
200 —0.5 0.0 0.0 20.3 20.7 27.0 27.9 24.1 23.9 22.8 23.5
200 0.0 0.2 0.2 35.6 36.6 36.2 37.4 28.8 28.4 19.4 20.4
200 0.5 11.7 11.2 39.7 39.8 40.9 42.3 38.3 38.7 35.1 36.0
400 —-0.5 0.0 0.0 38.1 38.0 39.3 39.7 27.3 27.6 27.7 28.7
400 0.0 0.1 0.1 42.4 42.5 42.1 42.5 29.5 29.5 21.7 22.2
400 0.5 10.6 10.4 43.6 44.0 44.1 45.0 38.8 38.8 36.7 37.1

traditional shift estimation methods

Size-adjusted power (o = 0.9) Chen-Tiao Chen[Liu

T v ADF, ADF, ADF! ADF’ ADFY ADFY ADF! ADF}! ADFY ADFY
100 —0.5 0.0 0.0 11.9 11.3 15.4 15.2 14.2 14.1 14.1 14.1
100 0.0 0.0 0.0 24.6 24.4 25.1 25.8 19.8 20.1 16.0 16.0
100 0.5 7.5 7.8 34.9 35.4 39.7 39.8 40.2 41.0 36.9 36.9
200 —0.5 0.0 0.0 38.7 38.4 56.3 56.0 50.0 49.5 53.9 53.9
200 0.0 0.0 0.0 72.2 71.8 4.7 4.5 60.9 60.4 52.4 52.4
200 0.5 3.5 3.4 83.4 83.0 89.1 88.9 85.5 85.4 85.0 85.0
400 —-0.5 0.0 0.0 84.3 83.4 90.2 89.9 63.7 63.3 70.4 70.4
400 0.0 0.0 0.0 98.1 97.8 98.4 98.1 74.8 73.7 70.3 70.3
400 0.5 0.7 0.6 99.7 99.6 99.9 99.9 97.0 96.8 98.3 98.3




Table S.2. Comparison between tests based on continuous & and tests
based on the binary estimator  (0.5) =round(8)

Size (a = 1)
continuous § & =round(d)

T v ADF! ADF} ADFY ADFY ADF) ADF) ADFY ADFY
100 —0.5 3.9 4.0 6.5 6.9 3.6 3.8 5.3 5.3
100 0.0 5.5 5.3 6.9 6.7 5.2 5.3 6.2 6.3
100 0.5 4.0 3.8 5.5 5.4 4.0 3.9 5.1 5.0
200 —0.5 4.9 5.0 5.8 5.9 4.9 4.9 5.5 5.6
200 0.0 5.0 4.8 5.4 5.3 5.0 4.8 5.2 5.1
200 0.5 4.5 44 5.3 5.3 4.6 4.5 5.0 5.0
400 —-0.5 4.8 4.8 5.1 5.1 5.0 4.9 5.0 4.9
400 0.0 5.3 5.3 5.5 5.6 5.1 5.0 5.3 5.2
400 0.5 5.2 5.3 5.4 5.4 4.8 4.8 4.9 4.9

Size-adjusted power (v = —7/T)
continuous § & =round(d)

T v ADF! ADF} ADFY ADFY ADF: ADF) ADFY ADFY

100 —-0.5 10.1 9.6 12.8 12.9 10.1 10.0 11.6 12.0

100 0.0 19.1 19.1 19.4 20.1 19.2 19.3 19.5 19.4
100 0.5 27.5 27.9 30.0 30.6 25.7 25.5 27.9 28.4
200 —0.5 20.3 20.7 27.0 27.9 20.2 20.5 26.1 26.0
200 0.0 35.6 36.6 36.2 37.4 36.1 37.0 35.9 36.6
200 0.5 39.7 39.8 40.9 42.3 38.0 38.3 40.3 40.6
400 —-0.5 38.1 38.0 39.3 39.7 35.9 36.0 37.0 37.3
400 0.0 42.4 42.5 42.1 42.5 42.1 43.2 414 42.7
400 0.5 43.6 44.0 44.1 45.0 46.1 46.5 46.4 46.4

Size-adjusted power (o = 0.9)
‘ continuous & 5 =round(é)
T v ADF! ADF}! ADFY ADFY ADE! ADF® ADFY ADFY

100 -0.5 11.9 11.3 15.4 15.2 11.6 11.2 11.2 13.8
100 0.0 24.6 24.4 25.1 25.8 23.4 23.2 23.2 23.9
100 0.5 34.9 35.4 39.7 39.8 33.3 33.1 33.1 37.6
200 -0.5 38.7 38.4 56.3 56.0 36.5 36.5 36.5 53.9
200 0.0 72.2 71.8 4.7 74.5 72.8 72.4 72.4 73.8
200 0.5 83.4 83.0 89.1 88.9 81.0 80.5 80.5 86.9
400 0.5 84.3 83.4 90.2 89.9 85.4 84.5 84.5 88.5
400 0.0 98.1 97.8 98.4 98.1 97.3 97.0 97.0 97.3
400 0.5 99.7 99.6 99.9 99.9 99.6 99.5 99.5 99.7




Table S.3. Size and size-adjusted power of standard ADF tests (ADF’) and of the modil'ed ADF tests
(ADF? and ADFY) with v = 8 and v = co. Model Sy with standardized ¢ (10) innovations

Size v=2_8 V=00

T v ADF; ADF, ADF) ADF}) ADFY ADFY ADF} ADF} ADFY ADFY
100 —05 5.2 5.2 5.1 5.2 5.3 5.4 5.1 5.0 6.5 6.6
100 0.0 5.0 5.1 5.1 5.0 5.1 5.2 5.3 5.2 6.3 6.3
100 05 5.4 5.2 5.4 5.2 5.5 5.4 5.4 5.3 6.2 6.0
200 —0.5 5.1 5.2 5.0 5.2 5.1 5.2 5.0 5.0 6.0 6.0
200 0.0 4.9 4.9 4.8 4.9 4.9 5.0 5.1 5.2 5.7 5.6
200 0.5 5.3 5.3 5.3 5.2 5.3 5.2 5.0 4.9 5.4 5.4
400 —0.5 5.0 5.0 5.1 5.0 5.2 5.1 5.2 5.0 5.9 5.9
400 0.0 5.0 4.8 5.0 4.8 5.0 4.8 5.0 5.1 5.3 5.4
400 0.5 5.1 4.8 5.1 4.8 5.1 4.8 4.9 4.9 5.2 5.1
Local power v=2_, V=00

T v ADF; ADF, ADF! ADF’ ADFY ADF® ADF! ADF} ADFY ADF!
100 —0.5 495 50.6 498 496 49.7 498 404 416 35.6 35.2
100 0.0 491 497 485  49.1 48.3 498 378 385 37.0 36.9
100 05 425 446 430 442 42.7 44.4 398 402 38.9 39.5
200 —0.5  49.0  49.2 491 489 48.9 49.3 409 406 36.1 36.6
200 0.0 497 496 495  49.0 49.5 49.1 397 391 39.3 39.6
200 05 459 457 461 46.0 46.1 46.1 444 452 44.3 44.1
400 —0.5 493 501 49.0 498 48.7 494 383 395 34.9 35.9
400 0.0 492 504 492 50.5 48.9 50.6 416 40.9 41.7 42.0
400 0.5 474 493 474 498 47.8 498 465 473 45.5 46.5




Table S.4. Size and size-adjusted power of standard ADF tests (ADF’) and of the modil'ed ADF tests
(ADF? and ADFY) with v = 8 and v = co. Model Sy with standardized ¢ (10) innovations

Size v=2_ V=00

T v ADF, ADF, ADF! ADF? ADFY ADFY ADF) ADF} ADFY ADFY
100 —0.5 2.5 2.8 2.7 3.0 3.1 34 4.2 4.3 7.2 7.2
100 0.0 4.6 4.8 4.8 4.8 5.0 5.0 5.2 5.2 7.1 7.0
100 0.5 3.6 3.6 3.8 3.9 4.0 4.1 4.1 3.9 5.7 5.3
200 —0.5 2.8 2.9 34 3.5 4.3 4.5 4.4 44 6.2 6.3
200 0.0 5.0 5.1 4.7 4.9 5.3 5.3 4.9 4.7 5.8 5.6
200 0.5 3.6 3.6 3.8 3.8 4.2 4.2 4.5 4.5 5.4 5.4
400 —0.5 2.4 2.5 4.1 4.2 5.2 5.2 5.1 5.0 6.0 6.0
400 0.0 4.6 4.8 5.4 5.6 5.7 5.8 5.0 5.1 5.5 5.5
400 0.5 34 34 44 4.5 5.0 4.9 4.6 4.8 5.0 5.0
Local power v=2_ vV =00

T v ADF, ADF, ADF} ADF? ADFY ADFY ADF, ADF} ADFY ADFY
100 —0.5 0.0 0.0 0.2 0.2 0.4 0.4 9.4 9.8 11.5 11.8
100 0.0 0.2 0.2 1.3 1.3 1.5 1.4 18.8 19.3 18.8 18.6
100 0.5 10.2 9.7 12.2 12.0 13.2 12.7 25.5 26.2 29.1 30.2
200 —0.5 0.0 0.0 1.7 1.8 3.9 4.0 20.3 20.6 23.3 23.5
200 0.0 0.2 0.2 9.7 9.2 9.6 9.8 30.9 32.0 31.3 314

200 0.5 10.1 9.7 17.5 18.3 20.8 21.4 38.5 38.5 39.7 39.5
400 —-0.5 0.0 0.0 15.1 14.9 26.0 25.9 31.3 31.1 29.8 29.1
400 0.0 0.1 0.1 33.3 33.7 33.2 33.5 38.0 37.7 38.6 38.7
400 0.5 11.5 11.1 36.4 36.6 40.3 41.0 45.6 45.5 45.8 45.7




Table S.5. Size and size-adjusted power of standard ADF tests (ADF’) and of the modil'ed ADF tests
(ADF® and ADFY) with v = 8 and v = co. Model S, with standardized ¢ (10) innovations

Size v=2_8 V=00

T v ADF; ADF, ADF) ADF}) ADFY ADFY ADF} ADF} ADFY ADFY
100 —05 3.9 3.9 3.9 3.9 4.2 4.1 3.9 3.9 6.6 6.8
100 0.0 5.2 5.2 5.4 5.4 5.7 5.7 5.3 5.4 7.1 7.0
100 05 3.8 3.7 3.8 3.7 4.0 3.9 4.2 4.2 6.0 5.8
200 —0.5 3.8 3.7 4.0 4.0 4.7 4.7 4.3 4.4 6.1 6.3
200 0.0 5.2 5.3 5.3 5.4 5.7 5.7 5.1 5.1 5.9 6.0
200 0.5 3.9 3.9 3.9 3.8 4.3 4.2 4.9 4.8 5.6 5.6
400 —0.5 4.1 4.0 4.4 4.4 5.5 5.5 5.1 5.2 5.9 5.8
400 0.0 4.8 4.8 4.8 4.7 5.0 5.0 5.0 5.0 5.3 5.3
400 0.5 3.3 3.3 4.3 4.3 4.9 4.8 4.7 4.7 5.1 5.0
Local power v=2_, V=00

T v ADF; ADF, ADF! ADF’ ADFY ADF® ADF! ADF} ADFY ADF!
100 —05 9.0 9.1 9.5 9.6 9.7 98 127 126 13.6 13.6

100 0.0 13.3 13.2 13.4 13.4 13.5 13.3 18.9 18.6 20.0 20.1
100 0.5 23.1 23.1 24.3 25.0 24.7 25.4 27.4 27.7 28.4 29.0
200 —-0.5 8.8 8.9 10.0 10.4 11.4 11.6 22.5 22.0 24.4 24.2
200 0.0 12.6 12.2 17.5 17.5 17.7 17.7 31.3 31.7 31.5 32.0
200 0.5 22.1 22.8 25.3 25.2 26.5 26.9 35.6 36.3 38.2 38.3
400 —-0.5 8.3 8.3 17.7 17.6 24.9 25.1 30.8 30.2 29.4 29.2
400 0.0 13.8 14.0 36.3 36.2 36.0 35.9 38.2 38.4 39.0 39.0
400 0.5 24.1 24.4 36.5 37.0 40.7 41.0 45.3 45.8 45.1 45.7
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Figure 1: Size adjusted power of the basic de-jumping ADF? test (long
dashed line), of the [ner de-jumping ADF) test (thick line) and of the
ADF, test based on de-jumping and Bai-Perron (1998) break date estima-
tor (short dashed line).





