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1. Purpose of the paper.

The problem of determining the age at death by cranial suture
obliteration has been a topic of discussion since the past century;
nevertheless, the scientific debate still remains open and includes on
one hand positions that are totally critical, and on the other hand
more favorable contributions, however shoving much difficulty in
providing the definition of satisfactory indicators.

The low diagnostic power that has been revealed, up to now, by the
various works on different populations can be partly explained by the
lack on an appropriate use of the statistical reasoning when searching
for predicting rules.

Thus, an experimental control has been conducted on a sample of
221 skulls of adult individuals - from the age of 20 - (127 males and
94 females) originating from various regions of Italy,who died
approximately at the end of the last century. The sample is housed in
the “Museo Nazionale di Antropologia ed Etnologia” in Florence. The
age and sex have been recorded in the catalogue of the Museum and
were obtained from the Registry Office.

The reference methodology of collecting data is the one proposed
by Acsddi and Nemeskéri (1970) and later used by other authors; it is
based on the subdivision of the main vault sutures (coronal, sagittal
and lambdoid) into segments (sixteen segments on the ectocranial
side, on the basis of detectable morphological differences, according to
Vallois, 1937; sixteen segments of approximately equal length, on the
endocranial side) and on further evaluating the stage of obliteration
of each segment by the Ribbe's scale (1885), that we modified by
unifying the first two degrees (0 and 1). In this way a scale of four
degrees was obtained (1, 2, 3, 4). The reason for this modification is
the difficulty encountered in distinguishing between the two stages



on the skull, and it is our belief that it may not have a biological
meaning but may be a post-mortem artifact.

2. Tools for the Bayesian Analysis.

The aim of our work is to inquire how cranial suture obliteration
can be used to diagnose the age at death and whether it is a “good”
way to carry out such a diagnosis. In order to answer these questions
we will be referring to statistical tools of the classical Bayesian
Decision Theory (Berger, 1985).

In this section, our statistical approach will be deseribed and, so as
to make our expounding easier, the matter will be organized into two
subsections. Following, in subsection 2.1 we will give a rather
informal presentation of the Bayesian approach to the problem.
Whilst subsection 2.2 will be devoted to a thorough deepening of the
matter,

2.1. A sketch of the procedure.

Let us suppose that on the skull of the human H we observed - in
segment i of the ectocranial [endocranial] side - the “obliteration
degree” (OD) xj, 1 < xj <4 |y, 1<x; <4], i=1,.., 16, so that

(X1,00s X16, ¥1,---, ¥16) = (shortly) = (x,y)

is the global information about the OD of H's skull, that is H's
Global Obliteration (GO).
Then two questions will arise:

a) by (also) using the information (x,y), what is the number to be
chosen for H's age at death? And

b) is (x,y) a “good” piece of information so as to diagnose the age at
death?

Our aim is just to answer these questions. Then, let us call One the
person who carries out the diagnosis, and if H died during his Ath
year of life - i.e. after his Ath and before his (A+1)th birthday - we
define A the H's age at death,

A=20,21,.., 84, 85.

Then our procedure is arranged in the following steps:

A) Choosing among numbers 20, ..., 85 the “optimal” diagnosis,
when Ore is in the initial (or prior) state of information, i.e. before
learning the H's GO.

To do this, he assigns the initial (or prior) probabilities P(A)
thereby express;rslg his belief that “H died at age A”

(P(A)>0, I PlA)=1)
A=20

Moreover, One must also numerically evaluate the consequences
to be faced should his diagnosis A be incorrect, since he eomes to the
knowledge that the real age of H at death is A. Then One weighs the
possible consequences of each diagnosis with probabilities P(A) and
his optimal diagnosis will be, of course, the one which shows the most
favorable balance, Let us denote Ag as this “optimal” diagnosis and
Ro the numerical appraisal of the risk in choosing Ag.

In subsection 2.2 we shall discuss how One - in the present
circumstances - could numerically evaluate the consequences of each
diagnosis and how he could assign the initial probabilities P(A).

B) Choosing - as in A) - the “optimal diagnosis, when H's GO is
known to be (x,y).

Then, first of all, Ore should update his initial probabilities P(A)
with final (or “a posteriori”) probabilities P(A|x,y). In order to make
such an updating, Ore assigns the probability to “H's GO is (x,y)”
conditional to each hypothesis “H died at age A”. These probabilities
(also called likelihoods) will be denoted P(x,y | A).

In subsection 2.3 a way of assigning them will be suggested . After
this assignment, final probabilities P(A | x,y) result by compounding



initial probabilities P(A) and likelihoods P(x,y | A} according to Bayes'
theorem.

At this point One could choose the “optimal” diagnosis by repeating
step A but, obviously, using probabilities P(Alx,y) instead of
probabilities P{A). Let Ax,y be the “optimal” diagnosis and -
analogously with step A - R(x,y) the risk One faces when choosing it.

C) It should be noticed that in step B One's information about H's
GO is assumed to be only hypothetical - this is the reason why we
have often used the conditional verb. Indeed, inquiring on GO’s
effectiveness for diagnosis of H's age at death assumes a concrete
significance only if One has not yet decided whether H's skull is going
to be surveyed or not; so that, the evaluation of its effectiveness can
be done only simulating that the GO's result (x,y) is known. Therefore
step B should be ideally reiterated for all possible GO results.

Then, let us call {X,Y} the set of possible results: by reiterating
step B we obtain the corresponding set {Ax,y} of the possible “optimal”
diagnoses and the set {R(x,y)} of the possible risks. Clearly, the
probability that One faces the risk R(x,y) is just the probability One
assigns to “the GO's result (x,y) will be observed unconditional to any
hypothesis on H's age at death™ we denote P(x,y) such probability,
(x,y) varying in the set (X,Y).

Then, so to appraise prospectively the effectiveness of GO in age at
death diagnosis One has - first of all - to weigh the possible
consequences of using GO - i.e. the risks in the set {R(x,y)} - with
probabilities P(x,y) of the correlative set {X,Y]. Now, let us denote R1
the numerical result of this balance among the risks, as in step A we
have called Rg the initial risk. It is natural to think that the

judgment on the effectiveness of GO rises from the comparisen
between Rg and R;. The simplest way to make this is to calculate

Ro-Rq _ R

A=——1_y

Ro Ro

that we call Expected Relative Improvement (ERI). It is easily
perceived that ERI varies between 0 and 1. In subsection 2.2 we will
describe ERI a little more formally and we will outline the way we
propose to estimate it empirically but reliably, will be outlined.

D) Let us briefly return to step B, where it was mentioned t:hat, in
order to update probabilities P(A) with probabilities P(Alx,y), One
needs to assign - or to elicitate - likelihoods P(x,y | A). To make such
assignments - or elicitations - our sample of skulls will be used;
although the procedure followed is the standard Bayesian one, its
deseription involves some formal complications that will take place in
subsection 2.2, step D. On the other hand, these likelihood elicitations
make the search of the optimal diagnesis Ax,y rather tedious. In other
words if One observes H's GO (x,y} and - following step B - wants to
reach Ax,y, he will encounter some practical difficulties in the
calculations. So as to aveid them, we propose that One, after learning
GO (x,y), diagnoses H's age at death by using an approximate tool
which has been empirically proved to work well; here we roughly
explain such an approximate tool.

After using - as it was earlier mentioned - the sample to elicitate
likelihoods, we have diagnosed the age at death of each individual
following step B. Let us call A(xjyj} the diagnosis for the jth
individual, being (x;,yj) his GO. We will see in subsection 2.3 that
vectors xj and yj can be reduced to vectors (nyj,..,ngj) =n; and,
respectively, (mnyj,...,m4;j) = mj, where nkj [mg;l is the number of the
ectocranial [endocranial] segments whose OD is k, k=1,....4, so that

4 4
anj= kaj=16
k=1 k=1

Having said this, we have ascertained that the regression of
A(x;,y5) on (nj,m;) is most satisfactory. Therefore, for the reasons that

will be explained in subsection 2.2 step E, One, by being aware that
on the ectocranial (endocranial) side of the jth skull ngj (mk;j)

segments have OD k (k=1,...,4) is able to quickly diagnose H's age at



death using a linear form in (njj,..,ng4j) and (my;,...,mgj) whose
coefficients are given in section 3,

2.2. More Details

Here we state formally the exact diagnostie procedure - and how to
appreciate its effectiveness - described roughly in the previous
subsection 2.1. Even now the matter is arranged in steps and in each
of them we deepen the topies sketched in the corresponding ones of
2.1,

A) As it was noticed in step A of 2.1., if One chooses diagnosis A
and then learns that the true H's age at death is A, he faces some
disagreeable consequences; such consequences are more and more
disagreeable as |A-Al increases. It is well known that there is a
suitable way to express numerically the comparison among degrees of
disagreeableness, that is to say the quadratic loss:

k (A-A)2 ‘ (2.1.1)

being k a constant (which is unessential, as we shall see).

On the other hand , suppose One has assigned the initial (or prior)
probability P(A) to “H died at age A”. Then, if he chooses diagnosis A,
he faces the random consequence k(A-A)2 whose probability
distribution is determined in an obvious way by probabilities P(A), A
= 20,...,85. According to von Neumann-Morgenstern theory the
consistent tool to synthesize random consequences is to calculate the
Expectation or Risk, i.e. in our case:

85
R(A) = E k (A-A)2 P(A) (2.2.2)
A=20

and R(A) is One’s risk when he chooses diagnosis A. Of course the
least disagreable consequence is the one minimizing the risk (2.2.2).
It is an easy matter to realize that such an “optimal” diagnosis is

6

Ag = the integer nearest to expectation Eg ' (2.2.3)

where expectation Eg is

85

Eo= Y APA) ©(22.4)
A=20

Then the least risk in the initial state of information - i.e. before
learning H’s GO obliteration - is

85
Ro=RAg= Y k(A-Ag? PA) (2.2.5)
A=20

Now let us proceed to the evaluation of prior probabilities P(A), A
= 20,...,85. As we have already said P(A) is the probability One
assigns to “H’s age at death is A” in his initial state of information,
i.e. before knowing that H's GO is (x,y). This means that One’s
opinions on the age at death of H have been formed on other
information. Therefore the evaluation of P(A) appears to be a rather
elusive problem since it is obviously unrealistic to suppose that all
who have to diagnose the H's age at death know exactly the same
things. However this question becomes clear if we put it in the
context of our search for the effectiveness of GO for diagnosing age at
death. In fact our answer is based - see step C in 2.1 - on the Expected
Relative Improvement, (ERI), i.e. on the comparison between initial
risk Rg in Eq. (2.2.5) and final risk we will exhaustively describe in
the next step. Then suppose that One’s initial state of information is
very poor. It is easy to realize that in such a situation the information
about H's GO has the greatest efficiency for the age at death
diagnosis, so that it is possible to evaluate GO’s effectiveness when it
works in the more favorable conditions. On the other hand it is
realistic to assume that in a “very poor” state of information One at
least knows - approximately, perhaps - when and where H died. It is
hard to believe that in a real situation he knows less of this! Indeed,



let us accept this view; remember, also, that G{’s effectiveness will be
tested by means of a sample of skulls of Italian adults dead towards
the end of the last century (see section 1). Then we assume the prior
probabilities to be:

P(A) = ;;A A=20,.85 (2.2.6)

Y fa)

A =20

where f(A) is the number of Italian who died at age A during the
period 1880-1890. (Source: Istituto Centrale di Statistica - ISTAT).
On the other hand, it is instructive to point out that the shape of the
resulting frequency polygon is typically lexian; therefore values
(2.2.6) are a “good” elicitation of the initial probabilities for any
“normal” or “standard” population.

B) According to step B in 2,1, suppose One learns that H’s GO is
(x,y). Then he updates prior probability P(A) with posterior (or final)
probability P(Alx,y) compounding P(A) and likelihood P(x,y | A) - see
(2.1.1) - via Bayes' theorem, Indeed, he puts:

PA) P(x,y | A)

PAlxy) =—¢ A =20,..,85 (2.2.7
Y PA) Pxyl A)
A=20
being:
85
Pxy)= 3 P(A) P(x,ylA) (2.2.8)
A=20

the {unconditional) probability that One must assign to the event
“on H’s skull GO (x,y) will be observed”.

Of course, now One shall revise his diagnosis; to do this he
replaces P(A) with P(Alxy) in Eq. (2.2.2); therefore his “new” risk
choosing A is:

-~ 85 -
RAxy) = T kA-A2ZPAlxy)
A=20

and, consequently his “new” diagnosis is

Ax,y = the integer nearest to Ex,y (2.2.9)
where
85
Exy= 2 APAlxy)
A=20

Obviously, One’s risk for diagnosis Ay y, becomes:

85
RiAgyxy)= Y k(A-Ayg 2 PAlxy) (2.2.10)
A=20

Notice that we need to evaluate P(Alx,y) to reach Eq. (2.2.10). For
doing this the likelihoods P(x,ylA), A = 20,...,85 are essential;
therefore it is a very important matter to express them using sample
data. All this will be discussed in step D,

C) As it was already pointed out (C step in 2.1), testing GO
effectiveness implies that we have to imagine step B is reiterated for
all of the possible GO results, forming the set {X,Y}.

Then their correlative possible diagnoses and possible risks form
respectively the sets {A(X,Y)} and {R(X,Y)}. That is, One - if he decides
to survey H’s GO - faces the random risk R(X,Y) and the probability
that his/her actual risk is R(x,y) obviously coincides with probability
P(z,y) in Eq. (2.2.8). In other words R(X,Y) is a random consequence,
governed by the probability distribution {P(x,y); (x,y)e (X,Y)]. Again,
according to von Neumann-Morgenster theory, the Expected Risk:

Ri= 3 RAgy; xy) Pxy) (2.2.11)
(x,y)e X,Y)



synthesizes perspectively what Ore should face diagnosing H's age
at death, having to survey H's GO, but before knowing its result.
Then it is obvious that ERI in (2.1.3) can be written:

acBcl Y Rapp, 2.2.12)
xyle (XY)

Direct computation of (2.2.12) involves a lot of calculations,
because the set {(X,Y)) is a big one indeed. But we have the sample of
skulls described in section 1, which is large enough and with a wide
assortment of ages at death. Therefore it is possible to estimate ERI
in a satisfactory way and with relatively little effort.

Let us denote AT (AT20) the number of skulls that in our sample
are humans died at age A (A = 20,...,85) and (xj,yj) the GO of the jth of
them (j = 1,2,...,AT).

Then , if Ax;,yj is the age at death that One - according to (2.2.9) -
should diagnose, put

AT
3 (A-Axyp2

QA) = ‘]=—1—AT—-' when AT>0

QA =10 when AT =0

It is easy to realize that

85
Y Q) pa)
A=20

is a “good” estimate of risk Rj, as defined in (2.2.11). Then,
agreeing again on the evaluations of P(A) in Eq. (2.2.6), we put

10

85
Y Quarfa)
Q = A = 20

85 (2.2.13)
Y fa)
A=20
so that :
D=1- 1% (2.2.14)

is a satisfactory estimate of ERI.

D) As it was pointed out (D step in 2.1) elicitation of P(x,ylA)is
necessary for updating P(A) with P(A1x,y), A = 20,...,85. Now we take
up such matter.

Suppose that it is known that H died at, age A, Then let us describe
the survey of H's GO with a very simple model. Namaely:

X = (X1,...,%j,..-,X16)
(i.e. the OD on the sixteen ectocranial sections) is obtained as if

sixteen drawings have been made with replacement from urn ECA /A

in which the ratio of balls labelled | - where 1 is obliteration degree 1 -
is Ap] (I=1,...,4).
Likewise, the outcomes

Y = (¥1,.¥i5--¥16)

(i.e. the OD on the sixteen endocranial sections) are described with

a wholly analogous model, but urn g\l is replaced with urn

EN\4 in which the ratio of balls labelled 1 is Aq (= 1,...4), possibly
different from ap. Put:

AD = (AD1.--,AP4), AQ = (AQ],.--,AQ4)

11




and denote
nj, mj (1=1,..,4) (2.2.15)

the number of the ectocranial and, respectively, endocranial
sections on which OD is 1, so that

4 4
Z n= 2 m) = 16
1=1 1=1
Then the hypothesis that Ap, oq and age at death A are known,
our models give probability P(x,y | A, Ap, Aq) of “H’s GO is(x,y)” and it
results:

4 4
P(x,ylA, A, AQ) = il ngl 1|=I1Apl my .. mgl ]|=|1 Aap™ (2.2.16)

(i.e. the product of twe multinomial distributions).

But there is no doubt that One is uncertain on both zp and Agq; so
they are random vectors which are supposed to be continuos. Then
denote @(Ap,Aq) the personal probability density function (p.d.f.) One
gives them. On the other hand, the sample of T skulls we have
already described in section 1 is available. Then there are the
following information:

AT

(AX,AY) = (AX1.AY1 ... ; AXj,AYS; - 5 AXTAAYTA) (2.2.17)

i.e. the number of skulls belonging to humans who died at age A
and respectively the GO of each of them. It will be thanks to this
information that Ore is able to update the initial opinion on AD, AQ in
the light of new information. Indeed, since the knowledge of the
relation between obliteration and age is very vague, it seems very
realistic in the present situation to suppose that the sample
information (5x,Ay) is able to wield the greatest possible influence on

12

the final p.d.f. o{sp,aql A; AX,AY). Then to render this task precise,
assume that Ap and aq are stochastically independent, so

i(Ap,Aq) = j1(Ap) j2(Aq) (2.2.18)

and both ¢ and ¢; are uniform.

Using the “vague” prior (2.2.18) information, (ax,Ay) are
determining factors of the p.d.f. ®(AP,AQIA; AX,AY). On the other hand
let us accept for sample information (AX,AY) in (2.2.17) our urn-
models. Then, after denoting - analogously t0(2.2.15) -

Anjl, Amyl J=1,. AT 1=1,..4

the number of ectocranial and, respectively, endocranial sections of

jth skull among the AT ones whose OD is I, we have;

P(Ax,ay A, AD, AQ) =

AT 16! 16! 4
= . : AN, AN
Jl=_Il Anjl! Anj4! Amj}_! . Amj4' ]I.__IlApl Adl {2.2.19)
or, putting:
AT AT
2 Anjl = AN 3 Amj = AM) (2.2.20)
i=1 j=1
Plax,ay| A, Ap, AQ) =
16! 16! 4
= : : ANL, _AM]
AN1! .. ANg! AM7! . AMy! it 1Apl Aq (2.2.21)

Then, the non informative p.d.f. (2.2.18) and likelihood (2.2.21)
give -via Bayes theorem - the updated p.d.f. for (Ap, AQ):

13



4

Wipaal A axay) =h | ] spaMN 4qaM (2.2.22)
1=1

heing h a normalizing constant,

Now it only remains to make the last step to have our wanted
prbability P(x,y | A}, averaging the conditional probability (2,2.16) by
Means of the (updated) p.d.f. (2.2.22). Standard caleulations give:

B(n+aN) Blm+aM)

Pfx,ylA) = B(AN) B(sAM) (2.2.23)
where:
iz (ny,...,n4) m = (my,...,mg) (2.2.24)

being n] [m)] the number of ectocranial [endocraniall sections of
Hiskull whose ODis L, 1=1,. 4 and

AN={aN1,...aNy AM = (AM;,... AMy)
with AN] and AM; (1 = 1,..'4) defined in (2.2.19) and at last
4
Iz
_1=1

4
(Y
=1

Bg) (2.2.25)

for z = 0+ AN or m+AM or 4N or AM.

B) Therefore to make optimal diagnosis of H's age at death after
leaming her/his GO (x,y), firstly (x,y) is reduced to n = (ny,...,ng), m =
(my,..,m4) according to (2.2.24), Then, using (2.2.23) likelihoods
PiylA) are obtained for A = 20,...,85. Inserting such values and
initig] probabilities (2.2.6) in (2.2.7) One obtains updated probabilities
PlAlx,y), A=20,....85; then Eq. (2.2.9) gives P(Alx,y), A=20,...,35.
Legly, (2.2.9) gives optimal diagnosis Ax,y.
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Such procedure needs tedious calculations because of the
evaluation just of the likelihoods; so there is some good reason to
simplify it.

For this aim, consider again the reduction (n,m) in (2.2.24) of H's
GO (x,y). Then define the “linear” diagnosis: .

4 4
Ax,y(ap,0,B) = zu;)+l zla]n1+]21131m1 (2.2.26)

where ag, a = (a3,...,04), B = (By,....p4) will be chosen so that when
replacing the optimal diagnosis Ax,y with Ax,y(ag,0,B) the Expected
Relative Improvement (ERI) (2.2.12) decreases as little as possible.
Formally, let us denote

(n1(x),...,n4(x); my(y),....my(y); (x,¥) € XY) =

= {n(x), m(y); (x,y) € (X,Y)} 2.2.27

the set of the “reductions” of all possible GO's results (x,y)e (XY
Then the ERI using Ax,y(ag,,p) is:

Aag,ap)=1- 3 RiAx y(ag,a.p)l Px,y) (2.2.28)
Ro
xy) e(X.Y)

Then the problem is to choose ag,0,B so that on comparing (2.2.12)
and (2.2.28) it results, for ag”,o" p™:

0< A—A(ao*,a*,ﬂ*) = minimum (2.2.29)

Since quadratic loss is used, it is easy to realize that Eq. (2.2.28) is
equivalent to:

4 4
2 Aya*- Y ' mm - Y BT mOI2 Py = (2230
(x,y¥) e XY) 1=1 1=1

15



= minimum with respect to any choice of (ag,0.,p).

Now denote p2 the squared multiple correlation index computed
between “dependent” variable Ay v and “independent” or “explaining”
variables n(x), m(y) with (x,y) € (X,Y). then it could be easily shown
that the minimum (2.2.29) is equal to 1—p2. On the other hand, it is
possible to obtain a good evaluation of ag™,a” p* using the sample of
skulls we have already described, i.e. minimizing with respect to
aq,o,f the quantity:;

T 4 4
2 1A,y - ap- Z a] nj) -~ EBl mj}?
i=1 =1 1=1

where A(x;,y;) is the “optimal” diagnosis for the ith skull whose GO
is (xj,y;) and (nj,m;) the corresponding “reduction” (i=1,...,T). Likewise,
the same sample data can be used in an obvious way to evaluate p2.

2.3. Results.

Following the procedure outlined in 2.1 and specifically stated in
2.2, the age at death of each member of the sample was diagnosed.
Therefore each diagnosis was made using the summarized data njj,
mjj i = 1,...,4, where nij [mjj] is the number of the ectocranial
[endocranial] segments of the jth skull whose OD is i.

All diagnosed ages are recorded in the third column of table 1 and
each one of them can be immediately compared with the
corresponding real age that is recorded in the second column. Such
comparisons should suggest that GO is only acceptable to diagnose
the youngest ages and the senile ones, while it appears to be
disappointing when considering the central ages.

This conclusion is confirmed by the ERI evaluation: according to
Eq. (2.2.5), (2.2.13), (2.2.14) we have:

16

Least risk in the initial state of information

Rg = 380.9
Estimated Expected Risk
Q=1713
Estimated Expected Relative Improvement

D =0.53

that is, in a “standard” population - i.e. in a population whose
death distribution is Lexian - learning about the skull GO reduces the
risk of misdiagnosis to a half; it is easy to realize that this unpleasant
matter is due to the heavy influence of the GO's diagnostic
unreliability just concerning the central ages.

In 2.2, step E, it was said that an high value of the squared
multiple correlation coefficient p2 between (nj,mj i= 1,...,4) variables
and the diagnosed ages allows to replace the exact but painful
diagnosis with a linear approximation (see, in particular, 2.2.31).

We actually find:

p? = 0.915

so that, if on the H's skull (x,y) GO was observed, then it seems

justified to diagnose the H's age at death using the “reduced”
information {ni,...,n4; my,...,mg} in the linear form:

Alag,0,B) = ap+oyni+agngrogng+asngtBim+Bema+Bama+Bamy
(3.1

where the values of the coefficients have been evaluated by means
of the sample, and result:

17



ap = 74.35
o] =-1.64
og =—0.80
ag = -0.55
oy = —0.20

In literature the multiple regression has been already used to
solve diagnosis problems using GO. We point out that our linear
approximation rests on the sound foundations of the Bayesian

p1=-1.68
Bo = ~0.47
Bg=-0.22
Be =0.82

Statistical Decision Thecry.
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Table 1: age-at-death diagnosis for each individual

n individual No.;

a observed age at death;

b optimal diagnosis;

c estimated “linear” diagnosis;

d,...g number of ectocranial sections

whose OD is, respectively, 1,..,4;
h,...k number of endocranial sections
whose OD is, respectively, 1,..,4.
n a b ¢ d e f E h i j
1 20 27 312 13 3 0 0 10 5 1
2 20 27 3441 15 1 0 0 6 0 0
3 20 28 219 15 1 0 0 16 0 0
4 20 27 223 lé O 0 0 15 1 0
5 20 24 259 16 0 ] 0 12 4 0
6 20 25 256 15 1 0 0 13 3 0
7 20 25 24.7 16 ¢ 0 0 13 3 0
8 21 43 42.8 6 7 3 0 9 4 3
9 21 26 235 6 0 0 0 14 2 0
10 21 28 337 14 2 0 0 7 9 0
11 22 29 211 16 0 0 0 16 0 0
12 22 25 273 13 3 ¢ 0 13 3 Q
13 22 31 364 14 2 0 0 5 10 1
14 22 43 454 11 4 0 1 1 10 5
15 22 20 211 16 0 0 0 16 0 0
16 23 25 29.6 16 0 0 0 9 Fi 0
17 23 34 404 10 3 1 2 7 6 3
18 23 36 383 9 6 1 0 8 7 1
19 23 33 3718 15 1 0 0 4 7 5
20 23 60 41.8 13 3 0 0 1 5 0
21 23 B3 454 8 8 0 0 2 12 2
22 23 25 273 13 3 0 0 13 3 0
23 23 40 45.2 8 8 0 0 4 5 6
24 23 56 bHI7 8 10 0 0 0 2 9
25 23 26 31.3 14 2 0 0 9 7 0
26 23 26 244 15 1 0 0 14 2 0
27 23 25 308 18 0 0 0 8 8 0
28 23 24 280 15 1 0 0 11 5 0
29 23 28 228 14 2 0 0 16 0 ]
30 24 55 415 12 4 0 0 2 14 0
31 24 25 304 15 1 0 0 9 7 0
32 24 34 375 11 5 0 0 6 0 0
33 24 27 321 13 3 0 0 9 ki 0
34 24 25 273 13 3 0 0 13 3 ]
19
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39.9
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57.3
36.7
40.0
31.2
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31.2
36.3
45.7
56.3
394
240
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41.6
41.2
26.4
39.0
21.1
24.4
34.2
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223
29.1
59.7
37.5
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47.1
36.3
53.1
33.3
60.5
53.3
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39.3
38.4
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