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Abstract

We model the optimal behaviour of a multiproduct monopolist investing both

in process and in product innovation in a dynamic setting. Product innovation re-

duces the degree of substitutability between any two varieties. First, we find that

R&D efforts increase in both directions as the number of varieties grows. Second,

we characterise the relative intensity of R&D activities according to the reservation

price and the interaction between the number of varieties and the degree of prod-

uct differentiation. Finally, we show the existence of complementarity within the

R&D portfolio, i.e., decreasing marginal production cost prompts for an analogous

reduction of product substitutability, and conversely.
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1 Introduction

Casual observation suggests that firms activate R&D portfolios including several projects

aimed at either product or process innovation.1 In the vast majority of cases, the twin

issues of process and product innovation are treated separately. A turning point in the

approach to the analysis of the optimal design of R&D activities along several dimensions

at the same time can be perhaps identified in the attention recently devoted to the role

of complementarities (Vives, 1990; Milgrom and Roberts, 1990; Amir, 1996). This toolkit

has been used to investigate the presence of complementarities within R&D portfolios

in monopoly (Athey and Schmutzler, 1995; Lambertini and Orsini, 2000; Lambertini,

2003, 2004; Lin, 2004; Mantovani, 2005) or oligopoly (Bonanno and Haworth, 1998; Lin

and Saggi, 2002; Rosenkranz, 2003). The bottom line of this stream of research is that

R&D efforts in each direction boosts the firms’ incentive to carry out analogous effort

in the other direction. Others have stressed the difference between innovations and im-

provements, i.e., between technological breakthroughs and engineering refinements (see

Doraszelski, 2004).2

However, notwithstanding the fact that R&D is an inherently dynamic feature of a

firm’s activities, most of the aforementioned contributions are in fact of a static nature.

Accordingly, it would be desirable to characterise the interplay between process and prod-

uct innovation in a properly dynamic setup. To this aim, we model the optimal behaviour

of a multiproduct monopolist investing both in process and in product innovation. By

process innovation we mean that the firm invests in order to reduce the marginal produc-

1Two relevant examples are the contributions of Bhattacharya and Mookherjee (1986) and Dasgupta

and Maskin (1987).
2A related literature describes the dynamics of product and process innovation in connection with

technology life cycle. The common view emerging from this strand is that product innovation necessarily

precedes process innovation. See Abernathy and Utterback (1975, 1982), Klepper (1996) and Adner and

Levinthal (2001).
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tion cost which is assumed to be the same for all varieties, while by product innovation

we mean that the firm wants to increase the degree of differentiation between any two

varieties. This problem is built up as an optimal control model where the marginal cost

and the degree of differentiation (or substitutability) are state variables, with the firm

controlling output and R&D levels at any time over an infinite horizon.

The main results of our analysis can be outlined as follows. We identify the conditions

ensuring the existence of a unique steady state equilibrium, which is a saddle point.

The economic features of the model, describing the qualitative properties of the optimal

behaviour of the firm, are as follows. First, R&D efforts intensify in both directions as

the number of varieties increases. This is intuitively due to a cannibalization effect taking

place among product varieties as the product space become more and more crowded.

In order to safeguard its profitability, the monopolist has to invest higher amounts of

resources to lower both variable production costs and substitutability. The second result

has to do with the relative intensity of R&D efforts. To this regard, we prove that, if the

reservation price is sufficiently low, the firm finds it convenient to devote a larger amount

of resources to process rather than product innovation irrespectively of the extent of the

product range and the associated level of differentiation. This is driven by the fact that

the interval between the reservation price and marginal cost is too narrow. If instead the

reservation price is high enough, then the relative intensity of R&D efforts is determined

by the interaction between the number of varieties and the degree of differentiation, i.e.,

the cannibalization problem. If differentiation is low, then product R&D draws a larger

amount of resources than process R&D. Conversely, if differentiation is high, the allocation

of resources over the R&D portfolio also depends upon the number of varieties, so that

the firm may indeed invest more in process rather than in product innovation. The third

result holds irrespective of the demand level and the extension of the product range: we

show that there always exists complementarity within the R&D portfolio, i.e., decreasing

marginal production cost prompts for an analogous reduction of product substitutability,
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and conversely. This is true both along the optimal paths to the steady state and in

steady state.

The outline of the paper is as follows. Section 2 illustrates the basics of the model.

the equilibrium analysis is in section 3. Section 4 concludes the paper.

2 The Model

We build an optimal control problem over continuous time t ∈ [0,∞) , where at any instant

a multiproduct monopolist chooses the quantity level for each of N product varieties and

the investment level in product and process innovation. Process innovation is formalized

as a reduction of the unit cost of production, while product innovation affects product

substitutability as perceived by consumers.

As in Spence (1976) and Singh and Vives (1984), the representative consumer’s in-

stantaneous utility function is defined in terms of the consumption of N differentiated

goods and the numeraire good m > 0, and is given by:

u(q(t),m) = a
NX
i=1

qi(t)−
1

2

Ã
NX
i=1

[qi (t)]
2 + s (t)

NX
i=1

X
j 6=i

qi (t) qj (t)

!
+m, (1)

where q(t) ≡ (q1 (t) , q2 (t) ...qN (t)) is the vector of quantities consumed at any instant

t, a is a positive parameter and s(t) ∈ [0, 1] . The state variable s(t) represents the

degree of substitutability between any two products. If s(t) = 1, products are completely

homogeneous. If instead s(t) = 0, products are independent and variety i’s price is

unaffected by the supply of any other variety. Constrained utility maximization for any

given price vector p (t) ≡ (p1 (t) , p2 (t) ...pN (t)) gives rise to the following demand system:

pi(t) = a− qi(t)− s(t)
X
j 6=i

qj(t) ∀i 6= j (2)

where at any time t, the production of output level qi(t) involves a linear cost function,

so that the instantaneous cost function of the monopolist is C (q (t)) = c (t)
PN

i=1 qi (t),
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where c (t) is the unit cost of production common to all varieties.

We assume that product differentiation can be affected by R&D investment in product

innovation. The dynamics associated to product innovation is described by the kinematic

equation:
ds(t)

dt
≡ ·
s = s(t) [−x(t) + δ] (3)

where x(t) represents the effort made by the firm at time t in order to increase product

differentiation through a reduction of s(t).3 Parameter δ ∈ [0, 1] indicates the depreciation

rate due to ageing of technology. Equation (3) can be rewritten as follows:

·
s

s(t)
= −x(t) + δ (4)

so as to highlight that the rate of change of product substitutability over time is linear in

the instantaneous investment efforts.

Moreover, the firm invests in process innovation; as a consequence, unit cost c (t)

evolves over time as described by the following:

dc(t)

dt
≡ ·
c = c(t) [−k(t) + η] (5)

where k(t) is the R&D effort for process innovation. Parameter η ∈ [0, 1] is the depre-

ciation rate. The rate of change of unit cost over time is linear in the instantaneous

investment effort, given that:
·
c

c(t)
= −k(t) + η. (6)

Equation (5) is indeed a dynamic version of the linear R&D technology employed by

Lambertini (2003, 2004) and Lin (2004).

The instantaneous cost of investing in product innovation and in process innovation

is respectively given by C (x (t)) = γ [x(t)]2 and C (k (t)) = β [k(t)]2, where γ and β are

3The idea that s depends upon firms’ investment decisions has been investigated in static models by

Harrington (1995), Lambertini and Rossini (1998) and Lambertini, Poddar and Sasaki (1998). Recent

contributions apply this idea to differential games, e.g. Cellini and Lambertini (2002 and 2004).
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positive parameters. Hence, investing in both types of R&D implies decreasing returns

to innovative activity.

Gross profits from sales are ψi (t) =
h
a− qi(t)− s(t)

P
j 6=i qj(t)− c (t)

i
qi(t) for each

variety i = 1, 2, ...N. Instantaneous profits are given by:

π(t) =
NX
i=1

"
a− qi(t)− s(t)

X
j 6=i

qj(t)− c (t)

#
qi(t)− γ [x(t)]2 − β [k(t)]2 (7)

The monopolist aims at maximizing the discounted profit flow:

Π(t) =

Z ∞

0

π(t) e−ρtdt (8)

w.r.t. R&D efforts x(t), k(t) and the vector of market variables q(t), under the constraint

given by the state dynamics (3) and (5). Therefore the problem features N + 2 controls

and two states. The discount rate ρ > 0 is assumed to be constant. The solution of the

monopolist’s maximization problem is illustrated in the next section.

3 Optimal Process and Product Innovation

Using the state dynamics (3) and (5) and the expression of the instantaneous profits (7),

we may write the current value Hamiltonian function of the firm as follows:

H(t) = e−ρt
h
π(t) + λs(t)

·
s+ λc(t)

·
c
i

(9)

where λs(t) = µs(t)e
ρt, λc(t) = µc(t)e

ρt, µs (t) and µc(t) being the co-state variables

associated to s(t) and c(t), respectively. The first order conditions (FOCs) on controls

are:4

∂H(t)
∂qi(t)

= a− c (t)− 2
Ã
qi (t) + s (t)

X
j 6=i

qj (t)

!
= 0⇒ q∗i (t) =

a− c (t)− 2s(t)
P

j 6=i qj(t)

2

(10)
4For the sake of brevity, in the remainder we omit the indication of exponential discounting. Moreover,

second order conditions are also omitted throughout the paper. They are always met, as it can be verified

using different methods (see Mangasarian, 1966; Arrow, 1968; Stalford and Leitmann, 1973).
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∂H(t)
∂x(t)

= −2γx(t)− λs(t)s(t) = 0⇒ x∗(t) = −λs(t)s(t)
2γ

(11)

∂H(t)
∂k(t)

= −2βk(t)− λc(t)c(t) = 0⇒ k∗(t) = −λc(t)c(t)
2β

(12)

The corresponding co-state equations are:

−∂H(t)
∂s(t)

=
·
λs − ρλs(t)⇒

·
λs =

NX
i=1

qi(t)
X
j 6=i

qj(t)− λs(t) [δ − ρ− x(t)] (13)

−∂H(t)
∂c(t)

=
·
λc − ρλc(t)⇔

·
λc =

NX
i=1

qi(t)− λc(t) [η − ρ− k (t)] (14)

along with the transversality condition:

lim
t→∞

µs (t) s (t) = 0; lim
t→∞

µc (t) c (t) = 0. (15)

Now, from (11) we have:

λs(t) = −
2γx(t)

s(t)
(16)

as well as the expression of the optimal x(t), which can be differentiated w.r.t. t:

·
x = − 1

2γ

∙
·
λs (t) + λ(t)

·
s

¸
. (17)

Following an analogous procedure with (12), we obtain:

λc(t) = −
2βk(t)

c(t)
(18)

and
·
k = − 1

2β

∙
·
λcc(t) + λc(t)

·
c

¸
. (19)

For intuitive reasons, without loss of generality we can impose symmetry on output levels,

so that qi (t) = q (t) for all i = 1, 2, ...N. Then, using (3) and (5), together with (13-14)

as well as (16) and (18), we can rewrite (17) and (19) as follows:

·
x = ρx− N (N − 1) [q(t)]2 s (t)

2γ
(20)
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·
k = ρk − Nq (t) c (t)

2β
. (21)

The next step consists in solving (10) w.r.t. q (t) :

q∗ (t) =
a− c (t)

2 [1 + s (t) (N − 1)] (22)

which can be substituted into (20-21):

·
x = ρx− N (N − 1) [a− c (t)]2 s (t)

8γ [1 + s (t) (N − 1)]2
(23)

·
k = ρk − N [a− c (t)] c (t)

4β [1 + s (t) (N − 1)] . (24)

On the basis of the above differential equations describing the rates of change of R&D

controls, we find a relevant property:

Proposition 1 The paths of R&D investments are characterised by strategic complemen-

tarity at any point in time.

Proof. Examine the following partial derivatives:

∂
·
x

∂c (t)
=

N (N − 1) [a− c (t)] s (t)

32
©
γ [1 + s (t) (N − 1)]2

ª2 > 0
∂
·
k

∂s (t)
=

N (N − 1) [a− c (t)] c (t)

4β [1 + s (t) (N − 1)]2
> 0

(25)

These suffice to prove that any decrease in marginal cost (resp. product substitutability)

triggers an increase in the instantaneous rate of change of the R&D activity for product

(resp., process) innovation. This proves the claim.

With reference to the result stated in Proposition 1, which reveals the existence of

dynamic strategic complementarity between R&D activities, one may wonder whether

this property characterises the equilibrium efforts as well. This is going to be verified

below.
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Now, imposing the stationarity conditions
·
x = 0 and

·
k = 0, we find the optimal

investment levels in terms of states, the number of products and the parameters of the

model:

x∗ =
N (N − 1) [a− c (t)]2 s (t)

8γρ [1 + s (t) (N − 1)]2
; k∗ =

N [a− c (t)] c (t)

4βρ [1 + s (t) (N − 1)] . (26)

A natural question that springs to mind is whether the firm has a higher incentive to

invest in process or product R&D, and under what circumstances either effort is larger

than the other. To this regard, we can prove:

Proposition 2 Consider optimal investments x∗ and k∗. The following holds:

• suppose a ∈
µ
c,
(β + 2γ)

β
c

¸
. If so, then k∗ > x∗ always;

• now suppose instead a >
(β + 2γ)

β
c. In such a case, then: (i) if s ∈ [0, 1/2) ,

then k∗ > x∗ for all N ∈
∙
1,
2γc (1− s) + βs (a− c)

[β (a− c) + 2γc] s

¶
; and k∗ < x∗ for all N >

2γc (1− s) + βs (a− c)

[β (a− c) + 2γc] s
; (ii) if s ∈ [1/2, 1] , then k∗ < x∗ for all N ≥ 1.

Proof. From (26), we have

x∗ > k∗ ⇔ N [β (a− c) + 2γc] s > 2γc (1− s) + βs (a− c) . (27)

Note that the r.h.s. is always positive, while the l.h.s. may take either sign. If a <

(β + 2γ) c/β, which is an admissible case as (β + 2γ) /β > 1, then surely x∗ < k∗. Oth-

erwise, the sign of x∗ − k∗ depends upon the value of N and s. In particular, provided

a > (β + 2γ) c/β, we have x∗ > k∗ if

N >
2γc (1− s) + βs (a− c)

[β (a− c) + 2γc] s
, (28)

with
2γc (1− s) + βs (a− c)

[β (a− c) + 2γc] s
> 1∀ s ∈ [0, 1/2) . (29)
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Therefore, if s ∈ [1/2, 1] ,
2γc (1− s) + βs (a− c)

[β (a− c) + 2γc] s
< 1 (30)

and, as a consequence, k∗ < x∗ for all N ≥ 1.

The above result can be given the following intuitive explanation. When the reserva-

tion price is comparatively low, then the monopolist finds it convenient to devote a larger

amount of resources to process rather than product innovation for any level of both N

and s, because the distance between the reservation price and marginal cost is too narrow.

Otherwise, if a is high enough, the relative intensity of R&D efforts depends upon the

interplay between the extension of the product range and the degree of substitutability

between any two varieties. This interaction accounts for a crowding effect in the prod-

uct space which is intimately connected to cannibalization. When s is large, the lack of

differentiation calls for a higher investment in this direction. When instead s is already

low enough, then the relative weight of process and product innovation in the firm’s R&D

portfolio is also determined by the number of varieties being supplied. If such a number

is larger than the critical threshold highlighted in the proposition, then cannibalization

drives the result that x∗ > k∗.

The expressions (26) can be used to carry out comparative statics on optimal R&D

efforts. In particular, the following properties can be easily singled out:

∂x∗

∂s (t)
∝ − [s (t) (N − 1)− 1] , (31)

so that ∂x∗/∂s (t) > 0 iff s (t) < 1/(N − 1) ≡ bs. Note that bs ∈ [0, 1] iff N ≥ 2. Moreover,

∂bs/∂N < 0 always, with limN→∞ bs = 0. As to the investment in process innovation,

∂k∗/∂s (t) < 0 always. Therefore, we may claim:

Proposition 3 The interval wherein ∂x∗/∂s (t) > 0 is monotonically decreasing in the

number of product varieties. The incentive to carry out process innovation increases mono-

tonically in the degree of product differentiation.
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What the Proposition says is that the R&D effort for product innovation is increasing

in the level of product substitutability if the latter is below a threshold value which, in

turn, is negatively correlated with the number of varieties. The intuition can be found in

the balance between three factors. The first is that, all else equal, if s (t) is large, then

the firm has a clear-cut incentive to reduce it by increasing x∗. The second is that the

R&D effort involves a cost which is quadratic in the effort itself. The third factor has to

do with internal fund raising to finance R&D, i.e., the fact that innovation expenditure is

paid for by using gross profits obtained from sales, which are decreasing in the degree of

substitutability.5 The first factor clearly exerts a positive effect on x∗, while the opposite

holds for the second and the third one. If the cost and sales effects overcome the pure

incentive to invest in product differentiation, then, overall, x∗ slopes downward as s (t)

becomes larger. The second claim in Proposition 3 reveals that there exists complemen-

tarity between process and product innovation. An intuitive reason is that any increase

in product differentiation involves larger internal funding to be used to finance also R&D

in the other direction.

Now we turn to examine the effect of a change in marginal production cost on the

R&D incentives measured by (26). First, note that ∂k∗/∂c (t) ∝ a − 2c (t) > 0 for all

c (t) ∈ [0, a/2) . Then, ∂x∗/∂c (t) ∝ − [a− c (t)] < 0 always. These partial derivatives

yield:

Proposition 4 The R&D effort for process innovation is concave and single-peaked w.r.t.

marginal production cost. The incentive to carry out product innovation decreases mono-

tonically in the level of the marginal production cost.

5Indeed, sales profits for each variety are given by the expression

ψi (q
∗) =

[a− c (t)]2

4 [1 + s (t) (N − 1)]

which is clearly decreasing in s (t) .
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Obviously, the second part of the above Proposition confirms the presence of comple-

mentarity between the two R&D activities. This result is qualitatively close to previous

research carried out in static models of product and process innovation (Lin and Saggi,

2002; Lambertini 2003, inter alia), although, in the present case, complementarity between

the two activities is the outcome of dynamic optimization rather than the backward induc-

tion method typically employed in multistage static games. In other words, the presence

of complementarity at equilibrium, highlighted in Proposition 3-4, is nothing but the

natural outcome of the dynamic complementarity illustrated in Proposition 1.

The next step consists in analysing what happens to optimal investments as a result

of a change in the extent of the product range:

∂x∗

∂N
= − [a− c (t)]2 [1− s (t)−N (2− s (t))] s (t)

8γρ [1 + s (t) (N − 1)]3
> 0;

∂k∗

∂N
=
[a− c (t)] c (t) [1− s (t)]

4βρ [1 + s (t) (N − 1)]2
> 0.

(32)

Both features can be explained on the basis of the cannibalization effect obtaining as

N increases, whereby introducing any additional product variety generates a negative

externality on the existing ones, whose profitability declines as a result of a congestion of

the product space.6 Accordingly, we can state:

Proposition 5 Any expansion of the product range calls for more intense R&D efforts

in both directions.

Using (26) and imposing stationarity in turn on state equations, we find the following

expressions for the state variables:

s∗ (c) =
N (a− c)2 − 16δγρ− (a− c)

q
N
£
N (a− c)2 − 32δγρ

¤
16δγρ (N − 1) (33)

6Also N could be endogenously determined as a state variable requiring its own investment. For a

(static) model where the monopolist invests to increase the number of varieties while taking as given the

degree of substitutability, see Lambertini (2003, 2004) and Lin (2004).
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c∗ (s) =
aN −

p
N [a2N − 16βηρ (1 + s (N − 1))]

2N
(34)

Provided that s∗ (c) and c∗ (s) belong to R, then also s∗ (c) ∈ [0, 1] and c∗ (s) ∈ [0, a] .

However, note that

s∗ (c) ∈ R iff ρ <
N (a− c)2

32δγ
(35)

c∗ (s) ∈ R iff ρ <
a2N

16βη (1 + s (N − 1)) (36)

Therefore:

Lemma 6 If

ρ ∈
"
0,min

(
N (a− c)2

32δγ
,

a2N

16βη (1 + s (N − 1))

)!
then there exists an internal solutions along both dimensions of the monopolist’s R&D

activity.

Finally, we come to the evaluation of the stability properties of the model. Given that

the Jacobian matrix is 4× 4, one cannot draw the phase diagram. The Jacobian matrix

is:

J∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
·
s

∂s
= δ − x

∂
·
s

∂x
− s

∂
·
s

∂c
= 0

∂
·
s

∂k
= 0

∂
·
x

∂s
=
(a− c)2N (N − 1) [s (N − 1)− 1]

8γ [1 + s (N − 1)]3
∂
·
x

∂x
= ρ

∂
·
x

∂c
=
(a− c)N (N − 1) s
4γ [1 + s (N − 1)]2

∂
·
x

∂k
= 0

∂
·
c

∂s
= 0

∂
·
c

∂x
= 0

∂
·
c

∂c
= η − k

∂
·
c

∂k
= −c

∂
·
k

∂s
=

c (a− c)N (N − 1)
4β [1 + s (N − 1)]2

∂
·
k

∂x
= 0

∂
·
k

∂c
= − (a− 2c)N

4β [1 + s (N − 1)]
∂
·
k

∂k
= ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

whose characteristic equations yields four eigenvalues. Unfortunately, assessing the sign

of such eigenvalues analytically is not feasible as their expressions are cumbersome. More-

over, we cannot obtain the explicit solutions for c∗ and s∗ as a function of parameters
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only, as the system

c− c∗ (s) = 0

s− s∗ (c) = 0
(38)

is made up by equations whose degree is higher than four.

However, we may resort to numerical calculations, which can be performed as follows.

We use the solutions:

x∗ = δ ; k∗ = η (39)

and set the numerical values of parameters:

a = 1;β = γ =
1

2
; δ = η = ρ =

1

20
;N = 3. (40)

Then, we may (i) solve the system (38) numerically, and (ii) compute the eigenvalues

{ζ1, ζ2, ζ3, ζ4} of J∗. Given (40), we have:

c∗ ' 0.00167 ; s∗ ' 0.00168 (41)

ζ1 ' −0.0309 ; ζ2 ' 0.0809 (42)

ζ3 ' −0.0307 ; ζ4 ' 0.0807.

Using instead:

a = 2;β = γ =
1

2
; δ =

1

20
; η =

1

30
; ρ =

1

40
;N = 5, (43)

we obtain:

c∗ ' 0.00017 ; s∗ ' 0.00006 (44)

ζ1 ' −0.0251 ; ζ2 ' 0.0503 (45)

ζ3 ' −0.0188 ; ζ4 ' 0.0440.

In general, repeating the same exercise for admissible parameter values, one can verify

that the outcome is regularly ζ1, ζ3 < 0 while ζ2, ζ4 > 0. Therefore, the equilibrium is a

saddle point. Accordingly, we may state our main result as follows:
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Proposition 7 The steady state equilibrium identified by {c∗ (s) , s∗ (c) , x∗ = δ, k∗ = η}

is a saddlepoint.

4 Concluding Remarks

In this paper we have considered an optimal control model to study the dynamic behaviour

of a multiproduct monopolist investing both in process innovation to reduce the marginal

production cost and in product innovation to increase the degree of differentiation between

any two varieties.

We have identified the conditions ensuring the existence of a unique steady state equi-

librium, which is a saddle point. As for the economic features of the model, we have

highlighted three results. First, we have found that firms face a higher incentive to invest

both in process and in product innovation as the number of varieties increases. This is

intuitively due to a cannibalization effect taking place among product varieties as the

product space becomes progressively more crowded. Second, we have studied the com-

position on R&D portfolio to understand which activity draws more resources. We have

showed that, if the reservation price is sufficiently low, the firm finds it convenient to

devote a larger amount of resources to process rather than product innovation irrespec-

tively of the extent of the product range and the associated level of differentiation. If

instead the reservation price is high enough, then the relative intensity of R&D efforts is

determined by the interaction between the number of varieties and the degree of differen-

tiation, reflecting thus the cannibalization problem. Third, irrespectively of the demand

level and the extension of the product range, we have proven that there always exists

complementarity within the R&D portfolio, i.e., any decrease in marginal production cost

prompts for an analogous reduction of product substitutability, and conversely. This is

true both along the optimal paths to the steady state and in steady state.
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