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Abstract

We take a differential game approach to study the dynamic behaviour of

labour managed (LM) firms, in the presence of price stickiness. We find that

the oligopoly market populated by LM firms reaches the same steady state

equilibrium allocation as the oligopoly populated by profit-maximising (PM)

firms, provided that the LM membership and the PM labour force are set

before the market game starts. The conclusion holds under both the open-

loop solution and the closed-loop solution. The result confirms the point

made by Sertel (1987) in a static framework.

JEL Classification: C73, D92, L13
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1 Introduction

The issue of the inefficient behaviour of labour-managed (LM) firms has been

long debated in the related literature (see, e.g., Ireland and Law, 1982, and

Moretto and Rossini, 2003, for exhaustive overviews). Distortions in the sup-

ply of output (Cremer and Crémer, 1992) and quality (Lambertini, 1997),

as well as in the investment in productive capacity (Futagami and Okamura,

1996; Lambertini and Rossini, 1998) or in R&D for process innovation (Lam-

bertini, 1998) have been highlighted, in comparison with the corresponding

behaviour of profit-maximising (PM) firms. In particular, the so called per-

verse reaction of LM firms to price changes materialises as a tendency to

restrict output (and membership) as compared to what a PM firm would do

all else equal, with a view to increase the value added accruing to those who

remain members at equilibrium.

A connected stream of literature highlights that such distortions are gen-

erated by the assumption that the amount of labour employed within the LM

firm is endogenously determined by its output or investment decisions. This

may well be unrealistic. If a market for memberships is properly modelled

(Dow, 1986; Sertel, 1982, 1987), then the LM firm turns out to behave similar

to a PM one. Specifically, if one takes into account that, for any given list

of members, the partnership itself is not a choice variable, but constraints to

entry and exit are operative, then the perverse behaviour of LM disappears.

In this literature (Sertel, 1982, 1987; Fehr and Sertel, 1993), LM firms are

relabelled as workers’ enterprises (WE). Provided that the size of the mem-

bership (i.e., the number of participants) is decided upon prior to investment

and output decisions, the WE firm ultimately replicates the performance of

a PM firm irrespective of the intensity of market competition (Sertel, 1991,
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1993).

In this paper we consider a dynamic setting in which oligopolistic firms

compete, in the presence of sticky market prices, à la Simaan and Takayama

(1978). Since the alleged perversity of LM firms is supposed to take the form

of a peculiar reaction to price changes, the choice of this setup seems to be

particularly appropriate to deal with this issue. We show that, once we have

considered the proper constraint to the size of the membership, the alleged

perverse behaviour of labour-managed firm, compared to PM firms, does not

appear in the long-run equilibrium allocation. Since we are going to consider

labour-managed firms in which the membership is given, we call them WE.

In solving the dynamic games at hand, we take into account both the case

in which the information structure is of the open-loop type, and the case in

which feedback effects are present. In both frameworks, we compare the

steady state equilibrium allocations under the cases that all firms are either

WE or PM. We find that the objective function of the firm (profits vs individ-

ual value added) has no bearings upon the steady state equilibrium. These

results closely replicate Murat Sertel’s findings concerning several static ver-

sions of the problem at hand.

The structure of the paper is as follows. Section 2 presents the setup.

Section 3 solves the models under the open-loop information structure while

Section 4 provides the solution under a closed-loop information structure.

Conclusions are in Section 5.

2 The setup

We investigate an oligopoly game with n firms competing over continuous

time t ∈ [0,∞) in a market for a homogeneous good. The output produced by
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any firm i at any time t is qi (t) . At each instant, market demand determines

the “notional” level of price, bp(t) = A−BPN
i=1 qi(t). In general, however, bp(t)

will differ from the current level of market price p(t) due to price stickness,

as in Simaan and Takayama (1978) and Fershtman and Kamien (1987).1

Market price moves according to the following equation:

dp(t)

dt
≡ ·
p(t) = s {bp(t)− p(t)} (1)

Notice that the dynamics described by (1) establishes that the price ad-

justs proportionately to the difference between its notional level, given by

the inverse demand function, and its current level; the speed of adjustment

is determined by the constant s, with s ∈ [0,∞). The lower is s, the stickier
is market price. This amounts to saying that the price mechanism is sticky,

that is, firms face menu costs in adjusting price to the demand conditions

deriving from consumers’ preferences.

Firms use the constant returns to scale technology defined by

qi (t) =
p

iki (t), (2)

where i is a fixed labour input and ki (t) is a (non-labour) input, labelled as

“tangible asset”, chosen by firm i at time t.2

In particular, the assumption that i is exogenously given and remains

constant throughout the game amounts to saying that the membership of any

1See also Tsutsui and Mino (1990) and Cellini and Lambertini (2004), where open-

loop, memoryless closed-loop and feedback equilibria are charaterised for the Cournot

oligopoly with profit-seeking firms. The finite horizon case in in Fershtman and Kamien

(1990). Trade policy issues are investigated by Dockner and Haugh (1990, 1991) in the

same setup.
2For instance, ki (t) may measure the amount of raw materials or intermediate goods

used by firm i at time t in producing the final good.
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firm is decided upon before the firm itself starts its productive activity. For

this reason -as we already mentioned- we label these LM firms as WE firms.

This assumption is consistent with the hypothesis that constraints to enter

and exit the membership i become operative due to binding agreements

taken before the firm start producing, as suggested by Sertel (1987).

Total costs correspond to the remuneration of the tangible asset input

and the labour input, so that the instantaneous cost function of firm i is:

Ci (t) = w i + cki (t) (3)

where w > 0 is the wage rate and c > 0 is the unit price of input k. Of

course, function (3) is relevant to a profit-seeking firm, whose instantaneous

profits are defined as follows:

πi (t) = pqi (t)− w i − cki (t) = p (t)
p

iki (t)− w i − cki (t) (4)

while the objective of a labour-managed firm is to maximise value-added per

worker:

vi (t) =
p (t)

p
iki (t)− cki (t)

i
(5)

with vi (t) ≥ w in order for the participation into the labour-managed firm

to be attractive.

Irrespective of the firm’s objective function, the (individual) control vari-

able is ki (t) while the (common) state variable is p (t) . Hence, the problem

of firm i, when it is a profit-maximising unit, is:

max
ki(t)

Ji =

Z ∞

0

e−ρt
h
p (t)

p
iki (t)− w i − cki (t)

i
dt (6)

subject to (1) and to the conditions p(0) = p0, and p(t) > 0 for all t ∈ [0,∞] .
Otherwise, if the firm is a workers’ enterprise, its objective is:

max
ki(t)

Ji =

Z ∞

0

e−ρt

h
p (t)

p
iki (t)− cki (t)

i
i

dt (7)
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subject to the same set of constraints.

In what follows, we solve the game adopting, in turn, the open-loop so-

lution concept and a closed-loop concept. These two solution concepts can

be interpreted as two different choice rules, corresponding to different infor-

mation sets. Under the open-loop rule, the players choose the optimal plan

at the beginning of time, that is, at t = 0, and stick to it forever, regardless

of the feedback effects generated by rivals during the game. Generally, the

resulting equilibrium is only weakly time consistent. Under the closed-loop

rule, players do not precommit on any path and their strategies at any in-

stant of time depend on all the preceding history, generally summarised by

the current level of the state variable(s). The resulting equilibrium is strongly

time consistent.3

3 The open-loop Nash solution

Under the open-loop solution concept, firms choose the optimal dynamic plan

at t = 0 and stick to it forever, regardless of the feedback effects generated

by rivals during the game. We consider first the WE oligopoly.

3.1 The WE oligopoly

The Hamiltonian function of firm i is:

Hi(t) = e−ρt


h
p (t)

p
iki (t)− cki (t)

i
i

+ λi(t)s

"
A−B

nX
j=1

q
jkj (t)− p(t)

#
(8)

3In the jargon of differential game theory, strong time consistency is equivalent to

subgame perfection. For further details, see Başar and Olsder (1982) and Dockner et al.

(2000).
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where λi(t) = µi(t)e
ρt, and µi(t) is the co-state variable associated to p(t).

In the remainder of the paper, superscript OL indicates the open-loop equi-

librium level of a variable.

The outcome of the game is summarised by:

Proposition 1 The open-loop game between n WE firms produces a unique

steady state equilibrium where:

pOL =
A [Bs + 2c (s+ ρ)]

2c (s+ ρ) +B [s+ n (s+ ρ)]
,

kOL =
A2 (s+ ρ)2

[2c (s+ ρ) +B (s+ n (s+ ρ))]2
,

which is a saddle point.

Proof. The first order condition w.r.t. ki (t) is:
4

∂Hi(t)

∂ki(t)
=

ki (t)
n

i [p(t)−Bs iλi (t)]− 2c
p

iki (t)
o

2
q
[ iki (t)]

3
= 0 (9)

which yields:

λi (t) =
ip(t)− 2c

p
iki (t)

Bs 2
i

(10)

and

ki (t) =
i [p(t)−Bs iλi (t)]

2

4c2
. (11)

The above expression can be differentiated to obtain the dynamic equation

of the control variable:

dki(t)

dt
≡

·
ki(t) =

i [p(t)−Bs iλi (t)]

·
·
p(t)−Bs i

·
λi(t)

¸
2c2

. (12)

4Here, as well as in the remainder of the paper, for brevity we drop the indication of

exponential discounting in deriving the first order conditions.
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The co-state equation is:

−∂Hi(t)

∂p(t)
=

∂µi(t)

∂t
⇒

·
λi(t) = λi(t)(s+ ρ)− ki (t)p

iki (t)
, (13)

and the transversality condition is:

lim
t→∞

µi (t) p (t) = 0. (14)

Now, using (10) and (13), we can rewrite (12) as follows:

·
ki(t) =

2c (s+ ρ) ki (t)−Bs i (n− 1) ki (t) + [As− (2s+ ρ) p (t)]
p

iki (t)

c
(15)

which entails that
·
ki(t) = 0 in:

5

ki1 = 0; ki2 =
i [As− (2s+ ρ) p (t)]2

[Bs i (n− 1)− 2c (s+ ρ)]2
. (16)

For obvious reasons, we can disregard the solution ki1 = 0. Then, we can

impose the simmetry conditions i = and ki = k for all i, and plug ki2 into

the state equation (1). Hence, imposing the stationarity condition
·
p = 0, we

obtain the steady state level of price:

pOL =
A [Bs + 2c (s+ ρ)]

2c (s+ ρ) +B [s+ n (s+ ρ)]
. (17)

Therefore, the optimal tangible asset endowment is:

kOL =
A2 (s+ ρ)2

[2c (s+ ρ) +B (s+ n (s+ ρ))]2
. (18)

Of course, the Nash equilibrium output per-firm is qOL =
√

ikOL. The cor-

responding steady state equilibrium level of the value-added per worker is:

vOL =
A2 (s+ ρ) [B s+ c (s+ ρ)]

[2c (s+ ρ) +B (s+ n (s+ ρ))]2
(19)

5We drop the indication of time in the remainder of the subsection, for the sake of

brevity.
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which must be higher than w.

Now we can check the stability properties of the dynamic system formed

by (1) and (15). Its Jacobian matrix is as follows:

J =


∂
·
p

∂p
= −s ∂

·
p

∂p
= −B ns

2
√

k

∂
·
k

∂p
= −(2s+ ρ)

√
k

c

∂
·
k

∂k
=

Ψ+ 4c (s+ ρ) k − p (2s+ ρ)
√

k

2ck


(20)

where Ψ ≡
h
A
√

k + 2B (n− 1) k
i
s. The trace and determinant of the

above 2× 2 Jacobian matrix are:

T (J) =
2k [c (2s+ ρ)−B (n− 1)] + [As− p (2s+ ρ)]

√
k

2ck
; (21)

∆ (J) = −
s
h
k (4c (s+ ρ) +B (nρ+ 2s)) + (As− p (2s+ ρ))

√
k
i

2ck
. (22)

In correspondence of
©
pOL, kOL

ª
, the determinant is:

∆ (J) = −s [2c (s+ ρ) +B (n (s+ ρ) + s)]

2c
< 0. (23)

Therefore,
©
pOL, kOL

ª
is a saddle point.

3.2 The PM oligopoly

If the n players are profit maximising firms, then the Hamiltonian function

of firm i is:

Hi(t) = e−ρt{p (t)
p

iki (t)− w i − cki (t) +

λi (t) s[A−B
nX

j=1

q
jkj (t)− p(t)]} (24)

The first order condition w.r.t. ki (t) is:

∂Hi(t)

∂ki(t)
=

i [p(t)−Bsλi (t)]− 2c
p

iki (t)

2
p

iki (t)
= 0 (25)

8



from which we obtain:

λi (t) =
ip(t)− 2c

p
iki (t)

Bs i
(26)

and

ki (t) =
i [p(t)−Bsλi (t)]

2

4c2
. (27)

Expression (27) can be differentiated w.r.t. t, to obtain the differential equa-

tion describing the evolution of the control variable over time:

·
ki(t) =

i [p(t)−Bsλi (t)]

·
·
p(t)−Bs

·
λi(t)

¸
2c2

. (28)

The co-state equation is:

−∂Hi(t)

∂p(t)
=

∂µi(t)

∂t
⇒

·
λi(t) = λi(t)(s+ ρ)−

p
iki (t) , (29)

and the transversality condition coincides with (14).

Using (26) and (29), and imposing the symmetry conditions by which

ki (t) = k and i = for all i, we can establish that

·
k ∝ 2ck (s+ ρ) + [As− p (2s+ ρ)]

√
k −Bs (n− 1) k. (30)

Accordingly,
·
k = 0 in

k1 = 0; k2 =
[As− (2s+ ρ) p]2

[Bs (n− 1)− 2c (s+ ρ)]2
, (31)

which clearly coincide with the solutions in (16). Given that the state equa-

tion and the demand function are the same in the two games, this suffices to

prove the following:

Proposition 2 The open-loop game between PM firms reaches the same

steady state as the corresponding game between WE firms, in terms of optimal

input, output and price.
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The steady state profits of any given firm are:

πOL =

½
A2 (s+ ρ) [B s+ c (s+ ρ)]

[2c (s+ ρ) +B (s+ n (s+ ρ))]2
− w

¾
(32)

which is positive iff

w < vOL (33)

as it can be easily ascertained by comparing (32) with (19). That is, the

viability condition for a generic PM firm also ensures that the equilibrium

individual value added inside any WE firm be incentive compatible.

3.3 Price stickiness and market allocations

With reference to the amount of the tangible asset used by the individual

firm in steady state (see equations (18) and (31)), it is immediate to check

that
∂kOL

∂s
= − A2 2Bρ (s+ ρ)

[2c (s+ ρ) +B (s+ n (s+ ρ))]3
< 0. (34)

Since qOL =
p

kOL, the derivative (34) means that the steady state equi-

librium level of the production of any firm decreases (and price increases),

else else equal, as s increases. More explicitly, the higher is the level of price

stickiness (i.e., the smaller is s), the larger is the steady state production.

This result is very well-known in the available literature on profit maximis-

ing firms (see, e.g., Fershtman and Kamien (1987); Cellini and Lambertini

(2004)). A rough intuition for this result is provided by the following ar-

gument: when prices are sticky, the current production levels of firms are

weakly effective in moving current prices; this fact leads firms to high levels

of current and future production. On the contrary, when prices move largely

in response to production decisions, firms choose to shrink the output levels.
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Moreover, with reference to the steady state level of individual surplus

obtained by any WE firm, the following holds:

∂vOL

∂s
=

A2B2 2ρ [s(n− 1) + nρ]

[2c (s+ ρ) +B (s+ n (s+ ρ))]3
> 0 (35)

which menas that the individual surplus in the steady state equilibrium al-

location increases as prices become less and less sticky. Intuition is clear: as

prices become elastic, the production level of each individual firm shrinks;

this involves a higher price and ultimately leads to a higher level of value

added per worker, provided that the size of membership is kept constant.

4 The closed-loop Nash solution

Under a closed-loop solution information structure, firms do not stick to any

given plan designed at the outset for the entire time horizon. On the contrary,

each of them takes into account the strategic effects exerted by the rivals’

behaviour at any point in time. Among the different closed-loop solution

concepts, we rely on the so-called memoryless closed-loop, in which the only

feedback effect to be taken into account is the effect of the rivals’ choices

upon the current value of the state variable(s).6 The Hamiltonian functions

for the WE oligopoly case and the PM oligopoly game remain defined as in

(8) and (24), respectively. The difference in the solution procedure concerns

the adjoint equations pertaining to the dynamics of co-state variables. In

such adjoint equations, the feeback effects have to be duly accounted for.

In the present case, the feedback effects are non-nil so that the closed-loop

6In principle, the proper feedback solution would be given by the Bellman equation.

However, since in the present case the problem of the representative firm is not linear

quadratic, there exist no obvious functional form for the value function.
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solutions indeed differ from the open-loop ones.7

4.1 The WE oligopoly

The outcome of the game is summarised by the following:

Proposition 3 The steady state equilibrium of the game between n WE

firms, under the memoryless closed-loop information structure, is:

pCL = A− nB
√
k , (36)

kCL =
A2 [B (n− 1)s+ 2c (s+ ρ)]2

[B2 2(n− 1)ns+ 4c2 (s+ ρ) + 2nBc (2s+ ρ)]2
, (37)

which is a saddle point.

Proof. See the Appendix.

Also in this case, the steady state levels of the intangible asset, kCL, and

production, qCL =
√

kCL, turn out to be decreasing in the speed of price

adjustment, s. The value added per worker in steady state is:

vCL =
A2c [B s (n− 1) + 2c (s+ ρ)] [B s (n+ 1) + 2c (s+ ρ)]

[4c2 (s+ ρ) +B n (B s (n− 1) + 2c (2s+ ρ))]2
(38)

which must be higher than the labour market wage w.

4.2 The PM oligopoly

In the light of the foregoing analysis, the closed-loop game among profit-

seeking firms can be quickly dealt with, its outcome being summerised by:

7There exist special classes of differential games where closed-loop solutions coincide

with open-loop solutions. To this regard, see, e.g., Dockner et al. (2000, ch. 7).
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Proposition 4 The closed-loop game between PM firms reaches the same

steady state as the corresponding game between WE firms, in terms of optimal

tanglible asset input, outputs and price.

Proof. See the Appendix.

Once again, it can also be easily shown that the steady state qualifies

as a saddle point. The steady state profits associated with the closed-loop

equilibrium are:

πCL =

½
A2c [B s (n− 1) + 2c (s+ ρ)] [B s (n+ 1) + 2c (s+ ρ)]

[4c2 (s+ ρ) +B n (B s (n− 1) + 2c (2s+ ρ))]2
− w

¾
(39)

with πCL > 0 for all w < vCL.

Moreover, the steady state level of production, q, decreases as the speed

of price adjustment s increases. The reason is the same as in the case of

open-loop equilibria.

At this point, it is more interesting to note that the steady state levels

of intangible asset (and hence production) turn out to be larger under the

closed-loop information structure, than under the open-loop one, as the com-

parison between equations (31) and (53) makes clear. Both levels are larger

than the production of the static Cournot game. This fact is explained on the

following grounds. The closed-loop output level is higher than the open-loop

output level because, taking into account feedback effects, each firm tries to

preempt the rivals. Since this holds for all firms alike, the outcome is that

the closed-loop steady state production exceeds the open-loop steady state

production. In turn, the open-loop steady state output exceeds the static

output because in the static game, by definition, there is no time for ad-

justment and therefore firms have no way of trying to overproduce in order

to preempt the rivals. These considerations hold for all finite values of s,
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while taking the limit of qOL for s → ∞, one obtains the static equilibrium

output level (the Appendix provides the solutions of the static problems).

This result is known in the existing literature, though focussing so far only

on PM firms (see Fershtman and Kamien, 1987; and Cellini and Lamber-

tini, 2004): the static problems produce the same equilibrium allocation and

profits as the steady state of the corresponding open-loop dynamic problem

with sticky price, under the proviso that the value of the price adjustment

coefficient tends to infinity, that is, price adjustment is immediate.

As a consequence, from the firms’ viewpoint, the static situation is the

most profitable one. On the contrary, the steady state allocation in the

closed-loop equilibrium is socially preferred both to the open-loop steady

state and to the static equilibria, given that production levels are higher

and market price is lower. It remains true, however, that the open-loop

solution is not subgame perfect in this calss of models; therefore firms should

consistently choose closed-loop plans in order to produce subgame perfect

equilibria.

5 Concluding remarks

In the present paper we have taken a differential game approach to study the

behaviour of labour-managed firms over time, when prices are sticky.

Our main interest has been to check whether, provided that the member-

ship of labour managed firms is given (so that these firms can be labelled

as workers’ enterprises as suggested by Murat Sertel) , the steady state equi-

librium allocation reached by an oligopoly populated by these firms is the

same as in an oligopoly populated by profit-maximising firms. The answer is

positive, and the result holds under both the open-loop information structure
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and the memoryless closed-loop information structure.

This finding closely reflects the point made by Sertel (1987) regarding

the static allocation reached by a workers’ enterprise: once we take into ac-

count that the membership is not endogenously determined when choosing

the output level, but it is set before the market game starts, then the alleged

perverse beaviour of LM firms, as compared to profit-maximising firms, in-

deed disappears.

Appendix

Proof of Proposition 3. The Hamiltonian function corresponding to the

problem of firm i is the same as in (8). Likewise, the first order condition

w.r.t. ki (t) is the same as (9) which yields (10) and (11); the differentiation

of the latter w.r.t. time gives (12).

The co-state equation under the closed-loop information structure is:

−∂Hi(t)

∂p(t)
−
X
j 6=i

∂Hi(t)

∂kj(t)

∂kj(t)

∂p(t)
=

∂µi(t)

∂t
(40)

Notice that the sum
P

j 6=i
∂Hi(t)
∂kj(t)

∂kj(t)

∂p(t)
appearing in the above condition takes

into account the feedback effects, that are absent by definition under the

open-loop solution. Since µi(t) = λi(t)e
−ρt, condition (40) rewrites as

·
λi (t) = −∂Hi(t)

∂p(t)
−
X
j 6=i

∂Hi(t)

∂kj(t)

∂kj(t)

∂p(t)
+ λi(t)(s+ ρ). (41)

The transversality condition is:

lim
t→∞

µi (t) p (t) = 0. (42)
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To build up the expression describing the feedback effects, consider that8

∂Hi

∂kj
= − λisB j

2
p

jkj
(43)

∂kj
∂p

=
j(p−B jλjs)

2c2
. (44)

Now, using the above expressions, under the symmetry conditions i =

and ki = k for all i, we can write the dynamics of k as follows:

·
k =
−B (n− 1)ps√ k + 4c2k(s+ ρ) + 2c(As− p(2s+ ρ))

√
k

2c2
(45)

and the price dynamics:

·
p(t) = [A−B

√
k −B(n− 1)

√
k)− p]s (46)

so that, apart from the solution k = 0, the steady state turns out to be the

allocation given by

pCL = A− nB
√
k ,

kCL =
A2 [B (n− 1)s+ 2c (s+ ρ)]2

[B2 2(n− 1)ns+ 4c2 (s+ ρ) + 2nBc (2s+ ρ)]2
.

It is easy to check, also in the present case, that the corresponding steady

state equilibrium level of the value-added per worker is larger than the wage

rate. Moreover, the equilibrium
©
pCL, kCL

ª
is a saddle, since the determinant

of the corresponding Jacobian matrix is negative. The details are omitted

for brevity, as the prof of stability is technically analogous to that provided

in the proof of Proposition 1.¥

Proof of Proposition 4. If the n players are profit maximising firms, from

the Hamiltonian function (24), one obtains the first order condition (25) and

8Again, for brevity we omit the indication of time henceforth.
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hence (26) and (27). Expression (27) can be differentiated w.r.t. t, to obtain

the differential equation describing the evolution of the control variable over

time:

·
ki(t) =

i [p(t)−Bsλi (t)]

·
·
p(t)−Bs

·
λi(t)

¸
2c2

. (47)

The co-state equation under the closed-loop information structure is:

−∂Hi(t)

∂p(t)
−
X
j 6=i

∂Hi(t)

∂kj(t)

∂kj(t)

∂p(t)
=

∂µi(t)

∂t
(48)

The usual transversality has to be considered. Each feedback effect can be

build using the following expressions:

∂Hi

∂kj
= − λisB j

2
p

jkj
(49)

∂kj
∂p

=
j(p−B jλjs)

2c2
. (50)

On these bases, and imposing the symmetry conditions ki (t) = k and

i = for all i, from (48) we obtain:

·
λ = −

√
k + λ(ρ+ s) +

B 2λ(n− 1) [p(t)−Bsi (t)] s(p−Bλs)

4c2
√

k
. (51)

Hence,

·
k =

k[−(n− 1)B 2ps+ 4c2
√

k(ρ+ s) + 2c (As− p(ρ+ 2s))]

2ρ2
√

k
(52)

Accordingly,
·
k = 0 in

k = 0; k =
A2 [B (n− 1)s+ 2c (s+ ρ)]2

[B2 2(n− 1)ns+ 4c2 (s+ ρ) + 2nBc (2s+ ρ)]2
(53)

which clearly coincide with the solutions in (37). Given that the state equa-

tion and the demand function are the same in the two games, this suffices to

prove the proposition.¥
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Solution of the static problems. In a static framework, the i − th firm

operating in a WE industry faces the problem:

max
ki

h
A−B

Pn
j=1(

p
jkj)

i√
iki − cki

i
(54)

The first order condition is:

−B i

P
j 6=i(

p
jkj) + 2(B i + c)

√
iki −A i

2 i

√
iki

= 0 (55)

Under symmetry conditions, the equilibrium value of k is:

k =
A2

[B (n+ 1) + 2c]2
(56)

The static version of the PM oligopoly is as follows. Firm i solves the

problem:

max
ki

"
A−B

nX
j=1

(
p

jkj)

#p
iki − w i − cki (57)

The first order condition is:

−
B i

h
A−B

P
j 6=i(

p
jkj)

i
2
√

iki
+

A i

2
√

iki
−B i − c = 0 (58)

Under symmetry conditions, the equilibrium value of k is:

k =
A2

[B (n+ 1) + 2c]2
(59)

Notice that the equilibrium value of k (and hence the production level)

is the same, in the PM oligopoly and in the WE oligopoly alike. It is also

immediate to check that this value coincides with the limit of expression (18)

as s→∞.As mentioned in the main text, this means that the static problems

provide the same results as the steady state of the dynamic problems with

sticky price, under the particular case that the price adjustment coefficient

tends to the infinity.¥
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