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Abstract

We examine the endogenous choice between price and quantity be-

haviour in a duopoly supergame with product differentiation. We find

that (i) if cartel profits are evenly split between firms, then only sym-

metric equilibria obtains; (i) if instead the additional profits available

through collusion are split according to the Nash bargaining solution,

there are parameter regions where all subgame perfect equilibria are

asymmetric, with firms colluding in price-quantity supergames.
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1 Introduction

A large body of literature has examined the relative stability of collusion

in Bertrand and Cournot markets, parametrised over the degree of product

differentiation.1 Relatively few, instead, allow for the possibility that firms

be asymmetric in terms of their market variables, considering thus price-

quantity supergames (Lambertini, 1997; Albæk and Lambertini, 2004). In

Rothschild (1995) and Lambertini and Schultz (2001, 2003), the possibility

that firms optimally choose whether to be price- or quantity-setters in each

period is considered. Notwithstanding the fact that firms are allowed to select

different market variables, from none of these contributions there emerge

asymmetric cartels at the subgame perfect equilibria. Does this entail that

antitrust agencies must not worry about such types of collusive behaviour?

The underlying symmetry between firms, in terms of technology and product

differentiation, that is a consistent feature of the models belonging to this

stream of literature seems to provide an intuitive explanation for this result.

Moreover, neither Lambertini (1997) nor Albæk and Lambertini (2004)

investigate which market variable yields the highest profit to the implicit

cartel members for a given discount factor. Instead, they identify the lowest

discount factor compatible with a subgame perfect equilibrium where firms

stabilise collusion at the monopoly profits, being committed to set quantities

or prices in all phases of the infinitely repeated duopoly game. Then, under

the assumption that firms are able to collude along the frontier of industry

profits irrespective of the market variable(s) being set, a meta-game is intro-

duced, whereby firms choose market variables once and for all, the payoffs

1The number of contributions in this field is very large. See Deneckere (1983, 1984),

Majerus (1988), Ross (1992), Rothschild (1992), Albæk and Lambertini (1998) and Lam-

bertini and Sasaki (1999, 2002), inter alia.
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being the smallest discount factors needed for sustaining the monopoly out-

come in the repeated game given the market variable(s). In this meta-game

firms are supposed to prefer small discount factors. These papers show that

a prisoners’ dilemma may arise in the meta-game where firms choose the

market variable(s), i.e., that the latter may be inefficient.

The present paper nests into the existing literature on the stability of col-

lusion and its relation with product differentiation. We partly rely upon the

analysis carried out in Lambertini (1997) and Albæk and Lambertini (2004),

with a relevant departure from their line of research. That is, we still sup-

pose that the choice of any given market variable is a long-run commitment

to be taken at the outset in the meta-game, but we assume that the relevant

payoff in the meta-game are given by discounted profit flows. We shall ex-

amine two different setups: one where cartel profits are split evenly between

firms, and the other where, in asymmetric (i.e., price-quantity) supergames,

the additional profits attainable through collusion are split according to the

Nash bargaining solution. These two alternatives have largely different con-

sequences in terms of subgame perfect equilibrium outcomes. In the game

with equal split only symmetric equilibria arises, and firms collude along the

subgame perfect equilibrium path if and only if both of them are either price-

or quantity-setters. The outcome is significantly different if collusive profits

are split following a Nash bargaining solution in the asymmetric cases. If so,

there exist parameter ranges (where product differentiation as well as firms’

discount factors are sufficiently low) in which firms are indeed able to sta-

bilise price-quantity cartels at the pure-strategy subgame perfect equilibria.

That is, asymmetric market behaviour, if combined with Nash bargaining

over cartel profits, helps firms collude in such a way that, when a priori sym-

metric firms are unable to sustain either Bertrand or Cournot cartels, they
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may nonetheless activate price-quantity cartels along the frontier of industry

profits.

The remainder of the paper is structured as follows. The demand system

id laid out in section 2. Section 3 describes the meta-game. the critical

discount factors for each possible supergame are listed in section 4. The

analysis of subgame perfect equilibria is in section 5. Section 6 contains a

few concluding remarks.

2 Setup

Two firms, labelled i and j, supply the market with a single product each.

Firm i’s inverse demand function is

pi = 1− qi − γqj, (1)

where γ ∈ (0, 1] denotes the degree of substitutability between the two prod-
ucts. If γ = 0, firms are independent monopolists, therefore we shall exclude

this case in the remainder of the analysis.

The direct demand function faced by firm i is:

qi =
1

1 + γ
− 1

1− γ2
pi +

γ

1− γ2
pj. (2)

When instead firm i acts as a quantity-setter while firm j is a price-setter,

their respective demand functions are:

pi = 1− qi + γ(pj + γqi − 1); (3)

qj = 1− pj − γqi. (4)
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For the sake of simplicity, we assume firms operate at constant returns to

scale and, without further loss of generality, we normalise the marginal cost

to zero. Accordingly, each firm’s profit function corresponds to revenue,

πi = piqi.

3 The meta-game

The concept of extended game is due to Hamilton and Slutsky (1990; HS

henceforth). They consider the extension, out of real time, of the basic

duopoly game taking place in real time, in order to endogenise firms’ choices

as to the timing of moves in the market. This yields a two-stage game,

where the first stage concerns the timing, and the second describes market

subgames.2 Their approach can be adopted to investigate the choice of the

market variable as well.

To this aim, consider first an extended or meta-game where firms non-

cooperatively choose the market variable, knowing that the ensuing market

competition takes the form of a one-shot game G1. We shall adopt here

a symbology which largely replicates that in HS (1990, p. 32). Define

Γ1,1 = (N,Σ,Π) the extended game. The superscript indicates that both

the extension and the basic market game are one-shot. The set of players

(or firms) is N = {i, j} ; αi and αj are the compact and convex intervals

of R representing the actions available to i and j in the basic game. Π is

the payoff function. Payoffs depend on the actions undertaken in the basic

2HS consider (i) an extended game with observable delay, where firms declare the instant

at which they will move, without announcing any particular action; and (ii) an extended

game with action commitment, where firms must commit to a specific price or quantity

level. The meta-game we describe is conceptually similar to their game with observable

delay.
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(market) game, according to the following functions, πi : αi × αj → R and

πj : αj × αi → R. The set of market variables from which firms can choose

is V = {p, q}. The set of strategies for player i is Σi = {p, q} × Φi, where

Φi is the set of functions mapping V × V into αi (or αj). Let π
hk
i define the

one-shot Nash equilibrium profits for firm i, when it chooses market variable

h and the rival chooses market variable k, with h, k ∈ {p, q}. The reduced
form of the meta-game can be described as in Matrix 1.3

j

p q

i p πppi , π
pp
j πpqi , π

qp
j

q πqpi , π
pq
j πqqi , π

qq
j

Matrix 1: the one-shot meta-game

This is the game analysed by Singh and Vives (1984), using the demand

functions introduced in the previous section. Since πqpi ≥ πppi and πqqi >

πpqi for all γ ∈ (0, 1], they conclude that firms play the symmetric Cournot
equilibrium.

Consider now a meta-game Γ1,∞, where the extension is again a one-

shot choice over the set V = {p, q}, but market interaction takes place over
an infinite horizon, t ∈ [0,∞), giving rise to a supergame G∞. Denote

the individual (common) discount factor of players as δ ∈ [0, 1] .4 In this
3Notice that the extended game envisaged here maintains that firms commit to a strate-

gic market variable for the whole duration of the supergame. Alternatively, one could think

of a situation where agents can switch from one variable to the other depending upon the

profit incentives characterising each phase of the supergame, i.e., the collusive path, the

deviation phase and the punishment. This perspective is considered in Rothschild (1995)

and Lambertini and Schultz (2001, 2003).
4Although in line of principle players might have different time preferences, the assump-
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case, firms can collude in the relevant market variable(s), relying upon an

infinite Nash reversion to deter deviations from the collusive path (Friedman,

1971).5 That is, we assume that firms either fully collude along the frontier

of monopoly profits or play the one-shot Nash equilibrium in the relevant

market variable(s). Firms are able to sustain collusion iff

πhkiC
1− δ

≥ πhkiD +
δ

1− δ
· πhkiN (5)

where subscripts C, D, and N identify cartel, deviation and Nash profits,

respectively. Let δhk define the critical discount factor above which firms can

indeed collude in the repeated market game; then, the discounted flow of

profits accruing to firm i is:

Ψhk
i ≡

πhkiC
1− δ

if δ ≥ max©δhk, δkhª ;
Ψhk
i ≡

δ

1− δ
· πhkiN if δ ≤ max

©
δhk, δkh

ª
.

(6)

Accordingly, the reduced form of the extended or meta-game Γ1,∞ is a

2× 2 matrix analogous to Matrix 1, with either πhkiC/ (1− δ) or δπhkiN/ (1− δ)

replacing πhki as appropriate. The list of admissible outcomes is defined by

Λ ≡ {(p, p), (p, q), (q, p), (q, q)} . Given the symmetry of the model, one of
the following situations must arise:

• any admissible outcome of the reduced form of Γ1,∞ is an equilibrium;
tion of common time discounting involves no loss of generality. If we assumed δi 6= δj ,

then min {δi, δj} would determine whether any given cartel is sustainable or not.
5In line of principle, the use of optimal punishments à la Abreu (1986) and Fudenberg

and Maskin (1986) would be preferable, but this is prevented by the analytical difficul-

ties associated with characterising optimal punishments in asymmetric games with price-

and quantity-setting. For supergames with optimal penal codes, see Häckner (1996) and

Lambertini and Sasaki (1999, 2002), inter alia.
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• Γ1,∞ is a coordination game, with equilibria (p, p) and (q, q);

• Γ1,∞ is a chicken game, with equilibria (p, q) and (q, p);

• Γ1,∞ has a unique equilibrium, either (p, p) or (q, q). If so, two subcases

are possible. Either the unique equilibrium is Pareto-efficient, or not,

i.e., the game is a Prisoners’ Dilemma.

• no pure-strategy equilibrium exists.

The subgame perfect equilibrium outcome(s) will of course depend upon

the value of parameters γ and δ.

4 The critical discount factors

Consider the market supergame G∞. Since we rely upon “grim” strategies

(Friedman, 1971) to model the supergame, we may borrow from Deneckere

(1983, 1984) the following discount factors characterising the Cournot and

Bertrand settings, respectively:

δqq =
(γ + 2)2

γ2 + 8γ + 8
; δpp =

(γ − 2)2
γ2 − 8γ + 8; γ ∈

³
0,
√
3− 1

´
, (7)

δqq =
(γ + 2)2

γ2 + 8γ + 8
; δpp =

(2− γ)2(γ2 + γ − 1)
(2− γ)2(γ2 + γ − 1) + γ4

; γ ∈
h√
3− 1, 1

i
,

where superscript qq (pp) indicates that both firms set quantities (resp.,

prices). The threshold value γ =
√
3−1 identifies the level of substitutability

above which deviation from the collusive path drives a loyal price-setting firm

out of business.

As δqq < δpp for all γ ∈ (0, 0.96155) , Deneckere (1983) concludes that
Cournot behavior ensures greater stability of the cartel agreement than does
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Bertrand behavior, unless products are very close substitutes. However, ob-

serve that δqq is everywhere increasing in γ, while δpp is non-monotone in

γ, with a maximum at γ = 2
¡√
10− 2¢ /3 ' 0.774852. This means that a

cartel in quantities becomes less stable as product substitutability increases,

while, over most of the relevant range of γ, the opposite holds for a cartel in

prices. As stressed in previous literature (Deneckere, 1983; Lambertini and

Sasaki, 1999, 2002), this depends on the fact that the balance between the

temptation to deviate and the harshness of the punishment goes in opposite

directions in the two cases. The performance of δpp is also noteworthy in

relation with the corresponding critical threshold emerging from Hotelling

models, where the minimum discount factor required to stabilise price col-

lusion increases as product differentiation decreases (see Chang, 1991, 1992;

Ross, 1992; Häckner, 1996). This is due to the assumption, usually adopted

in Hotelling models, of a price-inelastic market demand, whereby the overall

number of consumers being served in each phase of the supergame is inde-

pendent of the pricing behaviour of firms in that particular phase.

When firms use different market variables, the demand functions are (3)

and (4). Straightforward computations yield the following Nash equilibrium

profits:

πqpiN =
(γ − 2)2(1− γ2)

(3γ2 − 4)2 ; πpqjN =
(γ − 1)2(γ + 2)2
(3γ2 − 4)2 (8)

where firm i is a quantity-setter, while firm j is a price-setter. The max-

imization of joint profits requires qiC = 1/(2(1 + γ)) and pjC = 1/2. This

pair of strategies yields total cartel profits equal to monopoly profits, πM =

1/(2(1 + γ)) with each firm being entitled to half the cartel profits, i.e.,

πqpiC = πpqjC = πM/2.

As to the deviation phase, the individually optimal deviation output
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(price) when the other firm sticks to the collusive price (output) corresponds

to qiD = 1/(2γ) and pjD = (2+γ)/(4(1+γ)). Notice that qiD coincides with

the monopoly output, given only one firm on the market, since the deviation

by the quantity setting firm drives the price setting firm completely out of

the market. The corresponding deviation profits are:6

πqpiD =
2γ − 1
4γ2

; πpqjD =
(γ + 2)2

16(1 + γ)2
(9)

yielding the following profits for the firm being cheated:

πpqj = 0; π
qp
i =

2 + 2γ − γ2

8(γ + 1)2
(10)

Since πqpiD > πqpiC > πqpiN > πqpi , and πpqjD > πpqjC > πpqjN > πpj hold for the

quantity-setter and the price-setter, respectively, the mixed situation where

firms optimize in different variables reproduces the Prisoners’ Dilemma. As

in the pure price or quantity games, a Pareto-improvement on the non-

cooperative outcome can be reached in the repeated game over an infinite

horizon, if firms i and j ’s discount factors are at least as high as the critical

thresholds, defined as:

δqp =
πqpiD − πqpiC
πqpiD − πqpiN

; δpq =
πpqiD − πpqiC
πpqiD − πpqiN

, (11)

where superscript qp (pq) indicates that the discount factor is computed for

the quantity-setter (price-setter), and πqpiC = πpqiC = πM/2. After some simple

albeit tedious calculations, one finds that the individual discount factors must

satisfy the following inequalities:

δi ≥ δqp =
(3γ2 − 4)2

(γ − 2)2(8− 7γ2); γ ∈
³
0,
√
3− 1

´
, (12)

6For further details on the calculations concerning the asymmetric cases, we refer to

Lambertini (1997) and Albæk and Lambertini (2004).
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δi ≥ δqp =
(3γ2 − 4)2(γ2 + γ − 1)

(4γ7 + 6γ6 + 5γ5 − 29γ4 − 24γ3 + 40γ2 + 16γ − 16); γ ∈
h√
3− 1, 1

i
.

δj ≥ δpq =
(3γ2 − 4)2

(γ + 2)2(8− 7γ2); γ ∈
³
0,
√
3− 1

´
, (13)

δj ≥ δpq =
(3γ2 − 4)2

(γ + 2)2(8− 7γ2); γ ∈
h√
3− 1, 1

i
.

Alternatively, in the price-quantity case, firms could split evenly the ad-

ditional profits made available by collusion, in the light of the asymmetry

between non-cooperative profits:

bπqpiC = πqpiN +
πM − πqpiN − πpqjN

2
; bπpqiC = πpqiN +

πM − πqpiN − πpqjN
2

, (14)

where:

bπqpiC > πqpiC ; bπpqjC < πpqjC ∀ γ ∈ (0, 1] . (15)

If rule (14) is adopted, the critical discount factors are defined as follows:

bδqp = πqpiD − bπqpiC
πqpiD − πqpiN

; bδpq = πpqiD − bπpqiC
πpqiD − πpqiN

. (16)

Again, routine calculations are required to find that the individual discount

factors must satisfy the following inequalities:

δi > bδqp = 16− 16γ − 8γ2 + 16γ3 − 7γ4
(γ − 2)2(8− 7γ2) ; γ ∈

³
0,
√
3− 1

´
, (17)

δi ≥ bδqp = 4γ7 + 9γ6 + 5γ5 − 33γ4 − 24γ3 + 40γ2 + 16γ − 16
4γ7 + 6γ6 + 5γ5 − 29γ4 − 24γ3 + 40γ2 + 16γ − 16; γ ∈

h√
3− 1, 1

i
.

δj > bδpq = 16 + 16γ − 8γ2 − 16γ3 − 7γ4
(γ + 2)2(8− 7γ2) ; γ ∈

³
0,
√
3− 1

´
, (18)
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δj ≥ bδpq = 16 + 16γ − 8γ2 − 16γ3 − 7γ4
(γ + 2)2(8− 7γ2) ; γ ∈

h√
3− 1, 1

i
.

Having derived the critical threshold of discount factors for each su-

pergame, we may proceed to investigate the upstream stage of the game.

5 The upstream stage

We are now in a position to fully characterise the subgame perfect equilibrium

behaviour of firms in the game Γ1,∞. The normal form of the upstream stage

of the game is described by Matrix 2:

j

p q

i p Ψpp
i ,Ψ

pp
j Ψpq

i ,Ψ
qp
j

q Ψqp
i ,Ψ

pq
j Ψqq

i ,Ψ
qq
j

Matrix 2

where Ψhk
i is given by either πhkiC/ (1− δ) or δπhkiN/ (1− δ) , depending on

δ T max
©
δhk, δkh

ª
. We first investigate the case where firms split cartel

profits evenly.

5.1 The game with equal split

A first result immediately obtains with bo need of a formal proof:

Lemma 1 If δ ≥ max {δqp, δqq, δpp, δpq} , firms are always able to stabilise
collusion, irrespective of the market variable(s) being chosen. Otherwise, if
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δ < min {δqp, δqq, δpp, δpq} , firms are completely unable to collude. In such a
case, non-cooperative quantity-setting is a dominant strategy and firms play

à la Cournot-Nash forever.

The first claim in the Lemma also entails that, if δ is sufficiently high,

the choice of the market variable is indeed immaterial to firms, since they

always obtain their share of monopoly profits. The second claim summarises

the main result obtained by Singh and Vives (1984).

Now examine all the intermediate cases where

δ ∈ [min {δqp, δqq, δpp, δpq} ,max {δqp, δqq, δpp, δpq}) . (19)

The relevant sequence of the critical discount factors is:

δqp > δpp > δqq > δpq for all γ ∈ (0, 0.96155) ,
δqp > δqq ≥ δpp > δpq for all γ ∈ [0.96155, 1] .

(20)

Suppose γ ∈ (0, 0.96155) , and:

δqp > δ ≥ δpp > δqq > δpq. (21)

If so, the relevant matrix is:

j

p q

i p
πM

2 (1− δ)
,

πM
2 (1− δ)

πpqiN
1− δ

,
πqpiN
1− δ

q
πqpiN
1− δ

,
πpqiN
1− δ

πM
2 (1− δ)

,
πM

2 (1− δ)

Matrix 3

Matrix 3 represents a coordination game whose pure-strategy equilibria

are (p, p) and (q, q) , with firms colluding symmetrically, either in prices or
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in output levels. Of course, there also exist a mixed-strategy equilibrium as

well as a correlated one.

Again for γ ∈ (0, 0.96155) , suppose:

δqp > δpp > δ ≥ δqq > δpq. (22)

The reduced-form matrix becomes:

j

p q

i p
πppiN
1− δ

,
πppiN
1− δ

πpqiN
1− δ

,
πqpiN
1− δ

q
πqpiN
1− δ

,
πpqiN
1− δ

πM
2 (1− δ)

,
πM

2 (1− δ)

Matrix 4

In this case, firms collude only if both set quantities, and the game

produces a unique equilibrium in dominant strategies, (q, q) , which is also

Pareto-efficient for firms.

If δqp > δpp > δ ≥ δqq > δ ≥ δpq, firms are unable to collude irrespective of

the market variables being chosen, and the equilibrium outcome is the same

as in Singh and Vives (1984), with (q, q) representing the unique equilibrium

(in dominant strategies), which is also Pareto-efficient.

Now suppose γ ∈ [0.96155, 1] . To begin with, examine the case where:

δqp > δ ≥ δqq ≥ δpp > δpq. (23)

This situation is qualitatively analogous to that described in Matrix 3, so

that there are two pure-strategy equilibria, (p, p) and (q, q) , where firms can

sustain collusion. However, in mixed strategies they can be driven off the

collusive path and play one-shot asymmetric Nash equilibria.
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If instead:

δqp > δ ≥ δqq ≥ δ ≥ δpp > δpq, (24)

the relevant matrix is:

j

p q

i p
πM

2 (1− δ)
,

πM
2 (1− δ)

πpqiN
1− δ

,
πqpiN
1− δ

q
πqpiN
1− δ

,
πpqiN
1− δ

πqqiN
1− δ

,
πqqiN
1− δ

Matrix 5

This game has also two equilibria in pure strategies, (p, p) and (q, q) , but

firms collude if and only if the are price-setters. Finally, if δqp > δ ≥ δqq ≥
δpp > δ ≥ δpq, firms never collude, ending up playing a Cournot-Nash equi-

librium forever.

The foregoing discussion is summarised by:

Proposition 2 In the game with equal split, if δ < max {δqp, δqq, δpp, δpq} ,
then only symmetric equilibria may arise. Price-quantity supergames are

never part of the subgame perfect equilibrium path.

The relative stability of Cournot and Bertrand implicit cartels is non-

monotone w.r.t. the degree of product substitutability, as it is well known

from previous literature and further stressed here, e.g., by comparing Ma-

trices 4 and 5. However, the relative profitability of price and quantity be-

haviour is such that collusion between a price- and a quantity-setter is never

to be observed along the subgame perfect equilibrium path.
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5.2 The game with Nash bargaining

Here we consider the situation where firms split additional collusive profits

as in (14), so that the relevant critical discount factors characterising the

asymmetric market supergames where one firm is a price-setter and the other

is a quantity-setters are given by (16). The equivalent of Lemma 1 also holds

here.

Then, although δqp > bδqp and bδpq > δpq, the sequence of critical discount

factors remains the same as under equal split:

bδqp > δpp > δqq > bδpq (25)

for all γ ∈ ¡0,√3− 1¢ . In this range, the upstream stage of the game Γ1,∞

has exactly the same qualitative features as in the game with equal split.

Therefore, firms may collude only if they use the same market variable.

Things modify significantly when γ ∈ £√
3− 1, 1¤ . In this parameter

region, the following sequences hold:

bδqp > δpp > δqq > bδpq for all γ ∈ h√3− 1, 0.87311´ , (26)

δpp ≥ bδqp > δqq > bδpq for all γ ∈ [0.87311, 0.93600) , (27)

δpp > δqq ≥ bδqp > bδpq for all γ ∈ [0.93600, 0.96155) , (28)

δqq ≥ δpp > bδqp > bδpq for all γ ∈ [0.96155, 1] . (29)

When γ ∈ £√3− 1, 0.87311¢ so that (26) holds, and:
bδqp > δ ≥ δpp > δqq > bδpq, (30)

we have a coordination game, as in Matrix 3. If instead:

bδqp > δpp > δ ≥ δqq > bδpq, (31)
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(q, q) is the unique (collusive) equilibrium in dominant strategies, as in Matrix

4. Otherwise, if δ ∈
³
δqq,bδpqi firms are unable to collude and play the

Cournot-Nash equilibrium forever.

Now suppose γ ∈ [0.87311, 0.93600) , with the relevant sequence being
(27). If

δpp ≥ δ ≥ bδqp > δqq > bδpq, (32)

both firms choose strategy q and collude. they are able to collude also when

one sets the price and the other sets the output level, but, by dominance,

a Cournot cartel emerges as the unique equilibrium. The same equilibrium

outcome also obtains if δpp ≥ bδqp > δ ≥ δqq > bδpq, where the reduced form
appears as in Matrix 4. If δ is even lower, than firms play à la Cournot-Nash.

Then, consider γ ∈ [0.93600, 0.96155) and (28). If δpp > δ ≥ δqq ≥ bδqp >bδpq, firms always collude except in the Bertrand supergame. Dominance

establishes that (q, q) is the unique (collusive) equilibrium. If instead δpp >

δqq ≥ δ ≥ bδqp > bδpq, the reduced form of the upstream stage is:

j

p q

i p
πppiN
1− δ

,
πppiN
1− δ

bπpqiC
1− δ

,
bπqpiC
1− δ

q
bπqpiC
1− δ

,
bπpqiC
1− δ

πqqiN
1− δ

,
πqqiN
1− δ

Matrix 6

Since bπqpiC > πppiN and bπqpiC > πqqiN , Matrix 6 describes a chicken game with two

pure strategy equilibria where firms collude, (p, q) and (q, p) , plus of course

a mixed strategy equilibrium and a correlated one. If δ ∈
³bδqp,bδpqi , Singh

and Vives’s (1984) result applies.
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Finally, if γ ∈ [0.96155, 1] and sequence (29) holds, then the reduced
form of the upstream stage is a chicken game if either δ ∈ (δqq, δpp] , sincebπqpiC > πM/2, or δ ∈

³
δpp,bδqpi , where firms play à la Cournot- and Bertrand-

Nash along the main diagonal, while they collude otherwise.

The analysis carried out above is summarised by:

Proposition 3 In the game with Nash bargaining, if δ < max
nbδqp, δqq, δpp,bδpqo ,

any admissible outcome can be an equilibrium, depending upon the value of

parameters δ and γ. In particular, if products are sufficiently close substi-

tutes and firms’ discount factor takes intermediate values, the game produces

two asymmetric equilibria in pure strategies, with firms playing a collusive

price-quantity supergame.

The reason for this result is to be found in the fact that Nash bargaining

over the cartel profits, by increasing (respectively, decreasing) the collusive

profits accruing to the quantity-setter (resp., price-setter) indeed makes col-

lusion in price-quantity settings easier to sustain than it is under equal split.

6 Concluding remarks

We have revisited the long-standing debate about the stability of collusion in

differentiated duopolies, by nesting the supergame in an extended game with

observable delay, in which firms non-cooperatively select the market variable

in a pre-play stage, in view of the discounted profit flows generated by the

ensuing market supergame.

The analysis of the game where cartel profits are evenly split between

firms has shown that collusion is part of the subgame perfect equilibrium if

and only if both firms are either price- or quantity-setters. Conclusions may
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be drastically different if collusive profits are distributed between firms using

a Nash bargaining solution. In such a case, when product differentiation is

relatively low and firms are sufficiently myopic, the sustainability of symmet-

ric cartels becomes too demanding and there emerge pure-strategy equilibria

where firms stabilise price-quantity cartels. Therefore, it appears that asym-

metric market behaviour, coupled with Nash bargaining over the additional

cartel profits made available through collusion, can help firms build up stable

cartels. This is an additional reason for antitrust agencies to worry about

implicit collusion, as it adds up to the established theoretical wisdom on the

matter a further source of collusive behaviour that previous literature had

either neglected or simply regarded as a lesser evil. Indeed, this may be due

to the idea that an a priori symmetric duopoly should generate, if at all,

symmetric cartels. the foregoing analysis shows that there are circumstances

where this may not be the case.
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