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Abstract

This paper analyses the time consistency of open-loop equilibria, in the cases

of Nash and Stackelberg behaviour. We define a class of games where the

strong time-consistency of the open-loop Nash equilibrium associates with

the time consistency of the open-loop Stackelberg equilibrium. We label

these games as ‘perfect uncontrollable’. We provide one example based on a

model of oligopolistic competition in advertising efforts. We also present two

oligopoly games where one property holds while the other does not, so that

either (i) the open-loop Nash equilibrium is subgame perfect while the stack-

elberg one is time inconsistent, or (ii) the open-loop Nash and Stackelberg

equilibria are only weakly time consistent.

JEL classification: C72, C73

Keywords: differential games, open-loop equilibria, time consistency,

subgame perfection



1 Introduction

The existing literature on simultaneous-move differential games devotes a

considerable amount of attention to identifying classes of games where ei-

ther the feedback or the closed-loop equilibria degenerate into open-loop

equilibria. The degeneration means that the Nash-equilibrium time paths

of the control variables coincide under the different solution concepts, that

is, the optimal paths of control variables depend only on time (and not on

states) also under the closed-loop or feedback solution concepts. The in-

terest in the coincidence between the equilibrium path under the different

solution concepts is motivated by the following reason. Whenever an open-

loop equilibrium is a degenerate closed-loop equilibrium, then the former is

also strongly time consistent (or Markovian, or subgame perfect). Therefore,

one can rely upon the open-loop equilibrium which, in general, is much eas-

ier to derive than closed-loop or feedback ones. Classes of games where this

coincidence arises are illustrated in Clemhout and Wan (1974); Reinganum

(1982); Mehlmann and Willing (1983); Dockner, Feichtinger and Jørgensen

(1985); Fershtman (1987); Fershtman, Kamien and Muller (1992).1

Unlike open-loop Nash games, which always generate time consistent (al-

though only weakly) equilibria, Stackelberg open-loop games usually gener-

ate time inconsistent equilibria. This has been known ever since Simaan and

Cruz (1973a,b).2 By this, it is meant that, at any intermediate date dur-

1For an overview, see Mehlmann (1988) and Dockner, Jørgensen, Long and Sorger

(2000, ch. 7).
2See Başar and Olsder (1982, 19952, ch. 7) and Dockner, Jørgensen, Long and Sorger

(2000, ch. 5) for exhaustive overviews.
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ing the game, the leader finds it optimal to modify the plan chosen at the

outset. This has yielded a large body of literature with economic applica-

tions, in particular those concerned with the time inconsistency of optimal

monetary or fiscal policy.3 In a recent contribution, Xie (1997) singled out a

property ensuring the time consistency of open-loop Stackelberg equilibria,

labelling the games satisfying such a property as uncontrollable, in the sense

that the leader cannot manipulate the equilibrium at will through his/her

control variable.

A striking feature of these two lines of economic research - the time con-

sistency of open-loop Nash equilibria and the time consistency of open-loop

Stackelberg equilibria - is that, so far, they haven’t overlapped at all. That is,

researchers have looked either for those classes of games yielding strongly time

consistent open-loop solutions, or for those yielding time consistent Stack-

elberg open-loop solutions, but not for both at the same time. Of course,

this may depend upon the fact that the two solutions are conceptually differ-

ent. Nevertheless, both for technical reasons and for possible applications, it

would surely be desirable to identify classes of games enjoying both properties

at the same time.

This is the aim of the present paper. In section 2, we set out with a general

illustration of the problem at stake. We label as perfect uncontrollable game

the game producing (i) strongly time consistent open-loop Nash equilibria

and (ii) time consistent open-loop Stackelberg equilibria. Then in section 3

3This literature is too wide to be duly accounted for here. See, e.g., Kydland and

Prescott (1977), Calvo (1978), Barro and Gordon (1983a,b,), Lucas and Stokey (1983)

and Cohen and Michel (1988). An overall assessment of this debate can be found in

Persson and Tabellini (1990).
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we illustrate a duopoly game with advertising (based on a model analysed

by Leitmann and Schmitendorf, 1978; and Feichtinger, 1983) to provide one

such example. We complete the exposition by briefly examining two cases

based upon Cellini and Lambertini (1998) and Simaan and Takayama (1978),

where the two properties respectively hold. In the first (section 4), firms

accumulate capacity à la Ramsey and compete in output levels, while in the

second (section 5) firms behave à la Cournot under a sticky price dynamics.

Possible extensions and concluding comments are in section 6.

2 Setup

Consider a generic differential game, played over continuous time, with t ∈
[0,∞).4 The set of players is P ≡ {1, 2}. Moreover, let xi(t) and ui(t) define,
as usual, the state variable and the control variable pertaining to player

i. Assume there exists a prescribed set Ui such that any admissible action
ui(t) ∈ Ui. The dynamics of player i’s state variable is described by the
following:

dxi(t)

dt
≡ .
xi(t) = fi (x(t),u(t)) (1)

where x(t) = (x1 (t) , x2 (t)) is the vector of state variables at time t, and

u(t) = (u1 (t) , u2 (t)) is the vector of players’ actions at the same date, i.e.,

it is the vector of control variables at time t. That is, in the most general

case, the dynamics of the state variable associated with player i depends

4One could also consider a finite terminal time T. The specific choice of the time horizon

is immaterial to the ensuing analysis, provided that terminal conditions are appropriately

defined.
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on all state and control variables associated with all players involved in the

game. The value of the state variables at t = 0 is assumed to be known:

x(0) = (x1 (0) , x2 (0)) .

Each player has an objective function, defined as the discounted value of

the flow of payoffs over time. The instantaneous payoff depends upon the

choices made by player i as well as its rivals, that is:

πi ≡ πi (x(t),u(t)) . (2)

Player i’s objective is then, given uj (t) , j 6= i :

max
ui(·)

Ji ≡
Z ∞

0

πi(x(t),u(t))e
−ρtdt (3)

subject to the dynamic constraint represented by the behaviour of the state

variables, (1), ui(t) ∈ Ui and initial conditions x(0) = (x1 (0) , x2 (0)) .
In the literature on differential games, one usually refers to the concepts

of weak and strong time consistency. The difference between these two prop-

erties can be outlined as follows:

Definition 1: weak time consistency Consider a game played over t =

[0,∞) and examine the trajectories of the state variables, denoted by
x(t). The equilibrium is weakly time consistent if its truncated part in

the time interval t = [T,∞), with T ∈ (0,∞), represents an equilibrium
also for any subgame starting from t = T, and from the vector of initial

conditions xT = x(T ).

Definition 2: strong time consistency Consider a game played over t =

[0,∞). The equilibrium is strongly time consistent, if its truncated

4



part is an equilibrium for the subgame, independently of the conditions

regarding state variables at time T, x (T ).

Strong time consistency requires the ability on the part of each player to

account for the rival’s behaviour at any point in time, i.e., it is, in general,

an attribute of closed-loop equilibria, and corresponds to subgame perfect-

ness. Weak time consistency is a milder requirement and does not ensure, in

general, that the resulting Nash equilibrium be subgame perfect.5

Now consider the Stackelberg differential game, and assume player i is the

follower (we shall subsequently address the leader’s problem). The Hamilto-

nian of player i is:6

Hi (x(t),u(t)) ≡ e−ρt [πi (x(t),u(t)) + λii(t) · fi (x(t),u(t))+
+λij(t) · fj (x(t),u(t))] , (4)

where λij(t) = µij(t)e
ρt is the co-state variable (evaluated at time t) that

firm i associates with the state variable xj (t) .

In the remainder of the paper, we shall focus on first order conditions

alone, under the assumption that sufficiency (second order) conditions are

met. This will be apparent in the examples illustrated in the next sections.

Moreover, we shall adopt the following conventional notation: steady state

values of controls and states are identified by superscript s; optimal controls

or states satisfying the necessary conditions are starred.

5For a more detailed analysis of these issues, see Dockner et al. (2000, Section 4.3, pp.

98-107); see also Başar and Olsder (1982, 19952, ch. 6).
6By the definition, the follower’s Hamiltonian function is the same as in the Nash game

(see, e.g., Dockner et al., 2000).
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The first order condition (FOC) on the control variable ui(t) is:
7

∂Hi (x
∗(t),u∗(t))
∂ui

= 0, i, j = 1, 2; (5)

⇔ ∂πi (x
∗(t),u∗(t))
∂ui

+ λii(t)
∂fi (x

∗(t),u∗(t))
∂ui

+ λij(t)
∂fj (x

∗(t),u∗(t))
∂ui

= 0

and the adjoint equations concerning the dynamics of state and co-state

variables are as follows:

−∂Hi (x
∗(t),u∗(t))
∂xj

=
∂λij(t)

∂t
− ρλij (t) , i, j = 1, 2; (6)

⇔ ∂λij(t)

∂t
= ρλij (t)− ∂πi (x

∗(t),u∗(t))
∂xj

+

−λii(t)∂fi (x
∗(t),u∗(t))
∂xj

− λij(t)
∂fj (x

∗(t),u∗(t))
∂xj

They have to be considered alongside with the initial conditions x(0) =

(x1 (0) , x2 (0)) and the transversality conditions, which set the final value

(at t = ∞) of the state and/or co-state variables. In problems defined over
an infinite time horizon, one usually sets:8

lim
t→∞

e−ρtλij(t) · xj(t) = 0, i, j = 1, 2. (7)

For simplicity, we consider the case where only one state and one control

are associated with every single player. If the evolution of the state variable

xi(t) depends only upon {xi(t), ui(t)} , i.e., it is independent of uj(t) and xj(t)
and (1) reduces to

.
xi(t) = fi (xi(t), ui(t)) , then the game exhibits separate

7The indication of exponential discounting is omitted for brevity.
8Otherwise, if t ∈ [0, T ] , a different transversality condition applies. For instance, if

the value of xj (T ) differs from zero, then one may set λij (T ) = 0. See section 3.
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dynamics, and one can set λij(t) = 0 for all j 6= i, which entails that the

Hamiltonian of player i can be written by taking into account the dynamics

of i’s state variable only.

Before proceeding to the analysis of the leader’s problem, we would like to

clarify that there exist two possible approaches to the description of strategic

interaction between players in a Stackelberg game. The first consists in ask-

ing the leader (player j) to choose a proper reaction function u∗j (u
∗
i (t)) which

fully specifies the leader’s best reply to the follower’s optimal behaviour at

any instant t during the game. Alternatively, following Dockner et al. (2000,

chapter 5.3), one may suppose that the leader can announce to the follower

the policy uLi (x(t)) that she (the leader) will use throughout the game, de-

fined in terms of the states only. The follower, taking the rule uLi (x(t)) as

given, determines the reaction function uFi
¡
uLi (x(t))

¢
to maximise his pay-

off. The problem of the leader is then to choose, among all the admissible

rules ui (x(t)) , that particular u
L
i (x(t)) that maximises her payoff, given the

follower’s bets reply and all the additional relevant constraints. Dockner et

al. (2000, chapter 5.3) provide the solution to this problem by confining their

attention to games where only one state variable appears and therefore one

can write uLi = w + zx, where w, z ∈ R. The leader’s optimization problem
amounts to choosing w and z once and for all. A major objection to this ap-

proach is that, indeed, this is not a game where both players have Markovian

state information. Moreover, the fact that the leader chooses w and z at the

outset and keep them constant throughout the game is responsible for the

time consistency characterising the resulting Stackelberg equilibrium (for a

more extensive discussion of these issues, see Dockner et al., 2000, p. 135).
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In the present paper, we will take the first route. From Simaan and

Cruz (1973a,b), we know that, in general, open-loop Stackelberg games yield

time inconsistent equilibria. However, if the game structure meets a specific

requirement, the Stackelberg open-loop equilibrium turns out to be time

consistent. To illustrate this requirement, one has to proceed as follows.

From (5) one obtains the instantaneous best reply of player i, which can

be differentiated with respect to time to yield the dynamic equation of the

control variable ui(t). Moreover, given (1), the first order condition (5) will

contain the co-state variable λii(t) associated with the kinematic equation

of the state variable xi(t). Therefore, (5) can be solved w.r.t. λii(t) so as to

yield:

λii(t) = −
·
∂πi (x

∗(t),u∗(t))
∂ui

+ λij(t)
∂fj (x

∗(t),u∗(t))
∂ui

¸
/
∂fi (x

∗(t),u∗(t))
∂ui

(8)

If the expression on the r.h.s. in (8) contains the leader’s control variable

uj(t), then the open-loop Stackelberg strategies are bound to be time in-

consistent, in that the leader can control the follower’s state dynamics by

manoeuvring uj(t). In such a case, the game is controllable by the leader,

who cannot resist the temptation to renege any initial plans later on during

the game. If, instead, λii(t) does not depend upon uj(t), then the game is

uncontrollable by the leader, and the resulting open-loop Stackelberg equilib-

rium strategies are time consistent (Xie, 1997; see also Dockner et al., 2000,

ch. 5).

That is, uncontrollability relies upon the following property:

∂λii(t)

∂uj(t)
= 0, i, j = 1, 2; j 6= i (9)
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which must hold for (8) (as well as ∂λij(t)/∂uj(t) = 0, if λij(t) 6= 0). This
amounts to saying that λii(t) does not depend on uj(t), i.e., the leader cannot

affect the co-state variable of the follower, and the resulting Stackelberg

solution is time consistent. Since λii(t) in (8) comes from the solution of (5),

we can say that (9) is equivalent to:

∂2Hi (x
∗(t),u∗(t))

∂ui∂uj
= 0, i, j = 1, 2; j 6= i. (10)

For completeness, we may briefly summarise the issue of strong time consis-

tency of open-loop Nash equilibria. If

∂2Hi (x
∗(t),u∗(t))

∂ui∂xj
= 0, i, j = 1, 2; j 6= i (11)

either immediately from the Hamiltonian function, or by appropriate sub-

stitutions from the co-state equations into the first order conditions, then

the optimal controls are independent of states and the open-loop equilibrium

is subgame (or Markov) perfect since it is strongly time consistent. The

property whereby the FOCs on controls are independent of states and ini-

tial conditions after replacing the optimal values of the co-state variables is

known as state-redundancy, and the game itself as state-redundant or per-

fect (Fershtman, 1987; Mehlmann, 1988, ch. 4). Of course condition (10) in

general does not coincide with condition (11). Whenever (10) and (11) are

simultaneously met within the same game, then the game itself is a perfect

uncontrollable game.

Accordingly, we may formulate the following:

Proposition 1 (State-Redundancy) If a differential game is perfect, then

its open-loop Nash equilibrium is strongly time consistent (or subgame per-

fect).

9



Proposition 2 (Uncontrollability) If a differential game is uncontrollable

by all of the players involved, then all of its open-loop Stackelberg equilibria

are time consistent.

Proposition 1 says that state-redundancy is necessary and sufficient to

generate Markov-perfect open-loop Nash equilibria. However, note that

the uncontrollability is necessary but not sufficient to generate subgame (or

Markov) perfect equilibria in the open-loop Stackelberg game. The reason

is that uncontrollability is unrelated to feedback effects, i.e., the presence of

feedback effects throughout the game may prevent an uncontrollable game

to yield strongly time consistent Stackelberg equilibria under the open-loop

information structure. Put together, Propositions 1-2 imply the following

relevant Corollary:

Corollary 3 Consider an open-loop Stackelberg game. If it is both uncon-

trollable and perfect, then its Stackelberg equilibria are strongly time consis-

tent (or subgame perfect). Otherwise, if it is perfect but controllable by at

least one of the players, then the open-loop Stackelberg equilibrium with that

player leading is bound to be time inconsistent.

The above Corollary says that uncontrollability and state-redundancy

must hold together in order for the open-loop Stackelberg behaviour to gener-

ate Markov-perfect solutions. More explicitly, in the Stackelberg case, state-

redundancy is necessary but not sufficient to yield Markov-perfectness.

Observing (10) and (11), a further Remark emerges:

Remark 4 The additive separability of each player’s Hamiltonian function

w.r.t. state and control variables is sufficient to ensure that the game is per-

10



fect and uncontrollable and all of its open-loop Nash and Stackelberg equilibria

are strongly time consistent (or subgame perfect).

The proof is trivial, in that additive separability implies that the first

order condition of each player is independent of both the rival’s control and

state variables. However, it is worth stressing that additive separability is

sufficient but by no means necessary to make the game perfect and uncon-

trollable, as it will become clear by examining the duopoly model illustrated

in the next section.9

3 A perfect uncontrollable game

As in Leitmann and Schmitendorf (1978; LS henceforth) and Feichtinger

(1983), we have a non cooperative differential game over t ∈ [0, T ] between
two firms, 1 and 2, choosing their respective advertising efforts ui (t) to max-

imise their individual discounted payoff:

Ji =

Z T

0

[pixi (t)− ui (t)] e
−ρtdt, i = 1, 2 (12)

where xi (t) , firm i’s market share, is a state variable evolving according to:

·
xi = −βixi (t) + ui (t)− 1

2
ciu

2
i (t)− kixi (t)uj (t) , i, j = 1, 2; j 6= i. (13)

pi, βi, ci and ki are positive parameters. In particular, βi ∈ [0, 1] is the
decay rate of firm i’s market share,10 while ki measures the spillover from

9The analysis of dynamic oligopoly interaction has generated a relatively wide literature

that cannot be exhaustively accounted for here. To the best of our knowledge, the earliest

differential duopoly game can be found in Clemhout, Leitmann and Wan (1971).
10To ensure that xi (t) + xj (t) ≤ 1, one has to impose βi ≥ 1/ (2ci) + 1/ (2cj) (Lemma

1 in LS, p. 646).
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the rival’s investment uj (t) in proportion to firm i’s current demand xi (t) .

That is, kixi (t) is the correspondent of what is usually called ‘absorptive

capacity’ in the literature on research and development11 (except that, in

the present case, the effect is negative because it entails ‘business stealing’).

The factor e−ρt discounts future gains, and the discount rate ρ is assumed to

be constant and common to all players.12 In addition to (13), we also adopt

the further constraint whereby ui (t) ∈ [0, 1/ci] , which amounts to saying
that there is an upper bound to the advertising investment of firm i, i = 1, 2.

This restriction remains to be checked ex post, once we are in a position to

determine the features of the steady state equilibrium.

The Hamiltonian of firm i is:

Hi (x(t),u(t)) = e−ρt
n
[pixi (t)− ui (t)] + λii (t)

·
xi (t) + λij (t)

·
xj (t)

o
, (14)

with i, j = 1, 2; j 6= i, where the scrap value at the terminal date T is set

equal to zero for the sake of simplicity, and without further loss of gener-

ality. We know from LS that the Nash open-loop solution is a degenerate

closed-loop one, i.e., there exists a state-independent feedback control for

each player. Using

·
λij (t) = λij (t)

·
kju

∗
i (t) + βj + kjx

∗
j (t)

∂u∗i (t)
∂xj

+ ρ

¸
+

−λii (t) [1− ciu
∗
i (t)]

∂u∗i (t)
∂xj

= 0
(15)

11See, e.g., Kamien and Zang (2000).
12In the original version of the LS model, the discount rate is nil. As we show in the

remainder, introducing positive discounting, while making the analysis a bit more realistic

at least in economic terms, does not modify significantly the conclusions.
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and
∂u∗i (t)
∂xj (t)

= −λij (t) kj
λii (t) ci

, i, j = 1, 2; j 6= i. (16)

one finds that the problem admits the solution λij (t) = 0 for j 6= i, at all t.

This, in turn, entails that the first order condition:13

∂Hi (x
∗(t),u∗(t))
∂ui

= 0⇔ u∗i (t) =
λii (t)− 1− λijkjx

∗
j (t)

ciλii (t)
(17)

can be rewritten as follows:

u∗i (t) =
λii (t)− 1
ciλii (t)

≥ 0 iff λii (t) ≥ 1;
u∗i (t) = 0 otherwise; i = 1, 2 (18)

At this point, from (18) there emerges the property ∂u∗i (t) /∂xj (t) = 0, so

that the open-loop solution is a degenerate closed-loop one, and yields a

Markov equilibrium. The aforementioned property is equivalent to (11). We

can summarise the above discussion in the following:

Lemma 5 (Leitmann and Schmitendorf, 1978) The open-loop Nash so-

lution of the LS game is strongly time consistent. Therefore, the LS game is

perfect.

It is worth stressing that the above method is that employed byMehlmann

(1988) in revisiting the LS model. The alternative method adopted by Leit-

mann and Schmitendorf consists in showing that the open-loop controls de-

pend only upon time but not states and initial conditions. In both cases,

13Second order conditions, which are omitted for brevity, can be shown to hold by using,

e.g., Arrow’s sufficiency conditions (Arrow, 1968). For global sufficiency conditions, which

apply also in the case of feedback solutions, see Stalford and Leitmann (1973).
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one ascertains that the feedback effects at any instant t during the game

are endogenously nil, and therefore the open-loop Nash equilibrium is indeed

Markovian, i.e., it is the collapse of a closed-loop equilibrium.

To complete the characterisation of the open-loop Markovian equilibrium,

from (18) we may obtain (the indication of time is omitted henceforth):

·
u
∗
i =

·
λii

ciλ
2
ii

(19)

provided λii ≥ 1. The dynamics of λii is given by the following co-state

equation, derived under the open-loop information structure:

−∂Hi (x
∗,u∗)

∂xi
=

·
λii − ρλii ⇔

·
λii = λii

¡
ρ+ βi + kiu

∗
j

¢− pi . (20)

The transversality condition is λij (T ) = 0, i, j = 1, 2.

Expression (18) can be rearranged to obtain:

λii =
1

1− ciu∗i
. (21)

Now (20-21) can be substituted into (19) to obtain:

·
u
∗
i =

(1− ciu
∗
i ) [ρ+ βi − pi (1− ciu

∗
i ) + kju

∗
i ]

ci
, i, j = 1, 2; j 6= i. (22)

The steady state values of optimal controls and states can be found by

solving the system
³ ·
xi = 0;

·
u
∗
i = 0

´
w.r.t. x and u. To simplify the exposi-

tion and focus the attention on the fundamental properties of our analysis, at

this point we may introduce some symmetry conditions, whereby ci = cj = c,

ki = kj = k, pi = pj = p, βi = βj = β, ui = uj = u and xi = xj = x. In

this way, we confine to symmetric steady state equilibria.14 The stationarity

14It can also be shown that indeed a unique steady state equilibrium exists, and it is

symmetric, even without imposing the above symmetry conditions.
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condition
·
x = 0 yields:

xs =
u∗ (2− cu∗)
2 (β + ku∗)

(23)

which can be plugged into (22) so that
·
u
∗
= 0 in:

ua ≡ 1
c
; ub ≡ p− β − ρ

cp+ k
. (24)

Note that ub < ua always, and ub > 0 iff p > β + ρ. The latter condition

means that, in order for the steady state advertising effort to be positive, the

marginal value that the firm attaches to any additional customer (p) must

be higher than the sum of depreciation and discount rates.

As a last step, we evaluate the sign of the determinant of the Jacobian

matrix of the dynamic system
³ ·
x;

·
u
∗´
to show that indeed ub is the optimal

solution. The determinant is:

∆ ≡ ∂
·
x

∂x
· ∂

·
u

∂u
− ∂

·
x

∂u
· ∂

·
u

∂x
(25)

which in (xs, ub) corresponds to:

∆|xs,ub = −
[cpβ + k (p− ρ)] [k + c (β + ρ)]

c (cp+ k)
< 0 (26)

given p > β + ρ. That is, the positivity of the advertising investment is

sufficient to ensure that (xs, ub)is a saddle point. The expression of the co-

state variable (21) simplifies as follows:

λii =
cp+ k

k + c (β + ρ)
> 1 for all p > β + ρ. (27)

Conversely, the solution (xs, ua) is unstable, since

∆|xs,ua =
(cβ + k) [k + c (β + ρ)]

c2
> 0. (28)

We may summarise the foregoing analysis in:
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Proposition 6 The open-loop Nash game yields a unique saddle point where

the symmetric steady state values of the Markovian controls are:

us =
p− β − ρ

cp+ k
.

The corresponding steady state level of the state variable is:

xs =
(p− β − ρ) [2k + c (p+ β + ρ)]

2 (cβ + k) [cpβ + k (p− ρ)]
.

Now we move on to the Stackelberg open-loop solution of the same game,

which can be shown to be subgame (Markov) perfect as well. Before doing

that, a preliminary step can be taken here to show the following property:

Lemma 7 At any instant during the game, ∂u∗i /∂uj < 0, i.e., optimal con-

trols are strategic substitutes.

Proof. Abandon the symmetry assumptions we have just considered in

order to quickly characterise the steady state of the system, and examine

again (22). This dynamic equation entails that
·
u
∗
i = 0 in u∗i = 1/ci, which,

as we know, can be disregarded, and

u∗i =
pi − βi − ρ− kiuj

cipi
(29)

defining the instantaneous best reply (or reaction) function of firm i to the

strategy of firm j. Now observe that

∂u∗i
∂uj

= − ki
cipi

< 0 (30)

which entails that reaction functions are negatively sloped. That is, the game

takes place in strategic substitutes, in the sense that any increase in firm j’s

16



control triggers a decrease in firm i’s control, and conversely. The stage game

at any t is therefore submodular.15

Lemma 7 will help us characterising the qualitative properties of the

open-loop Stackelberg equilibrium.

3.1 The Stackelberg solution of the LS game

To simplify exposition, we stipulate that firm 1 is the leader and firm 2 is

the follower. The follower maximizes

H2 (x(t),u(t)) = e−ρt
n
[p2x2 (t)− u2 (t)] + λ22 (t)

·
x2 (t) + λ21 (t)

·
x1 (t)

o
,

(31)

where

·
x1 (t) = −β1x1 (t) + u1 (t)− 1

2
c1u

2
1 (t)− k1x1 (t)u2 (t) ;

·
x2 (t) = −β2x2 (t) + u2 (t)− 1

2
c2u

2
2 (t)− k2x2 (t)u1 (t) .

(32)

The FOCs for the open-loop solution are:16

∂H2 (x
∗,u∗)

∂u2
= λ22 [1− c2u

∗
2]− 1− λ21k1x

∗
1 = 0⇔ (33)

u∗2 =
λ22 − 1− λ21k1x

∗
1

c2λ22
(34)

∂H2 (x
∗,u∗)

∂x2
=

·
λ22 − ρλ22 ⇔

·
λ22 = λ22 (k2u

∗
1 + β2 + ρ)− p2 (35)

∂H2 (x
∗,u∗)

∂x1
=

·
λ21 − ρλ21 ⇔

·
λ21 = λ21 (k1u

∗
2 + β1 + ρ) (36)

15The label of strategic substitutability/complementarity dates back to Bulow, Geanako-

plos and Klemperer (1985). On supermodular/submodular games, see Amir (1996) and

Vives (1999), inter alia.
16The indication of time and exponential discounting is omitted for brevity.
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From (33), observe that

∂λ22
∂u1

=
∂2H2 (x

∗,u∗)
∂u2∂u1

= 0 (37)

which immediately entails the following result:

Lemma 8 The Stackelberg LS game is uncontrollable by the leader. There-

fore, the open-loop Stackelberg solution is time consistent.

Lemmas 5 and 8 imply:

Proposition 9 The LS model is a perfect uncontrollable game. Therefore,

all of its Nash and Stackelberg open-loop equilibria are subgame perfect.

Just to complete the solution of the model, we proceed to examine the

leader’s problem, where (34-35-36) appear as additional constraint that the

leader must account for in choosing his own optimal advertising plan. Ac-

cordingly, firm 1’s Hamiltonian is:

H1 (x(t),u(t)) = e−ρt
n
[p1x1 (t)− u1 (t)] + λ11 (t)

·
x1 (t)+ (38)

+λ12 (t)
·
x2 (t) +'1 (t)

·
λ22 (t) +'2 (t)

·
λ21 (t)

¾
(39)

where '1 (t) and '2 (t) are the adjoint variables (in current value) attached

to the follower’s co-state dynamics (35-36), with λ22 (t) and λ21 (t) acting as

additional state variables in the leader’s maximization problem. Using also

(34), the Hamiltonian of the leader is as follows:17

H1 (x,u) = e−ρt
½
[p1x1 − u1] + λ11

·
−β1x1 + u1 − 1

2
c1u

2
1 − k1x1

λ22 − 1− λ21k1x1
c2λ22

¸
+

17Again, the indication of time end exponential discounting is omitted henceforth.
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+λ12

"
−β2x2 +

λ22 − 1− λ21k1x1
c2λ22

− 1
2
c2

µ
λ22 − 1− λ21k1x1

c2λ22

¶2
− k2x2u1

#
+

+'1 [λ22 (k2u1 + β2 + ρ)− p2] +'2λ21

µ
k1
λ22 − 1− λ21k1x1

c2λ22
+ β1 + ρ

¶¾
(40)

Now we can take the FOC w.r.t. u1 :

∂H1 (x
∗,u∗)

∂u1
= −1 + λ11 − λ11c1u

∗
1 − k2 (λ12x

∗
2 −'1λ22) = 0⇔ (41)

λ11 = −1 + k2 (λ12x
∗
2 −'1λ22)

c1u∗1 − 1
(42)

Moreover, from (41) we also obtain:

u∗1 =
λ11 − 1− k2 (λ12x

∗
2 −'1λ22)

λ11c1
(43)

from which we obtain the kinematic equation of the leader’s optimal invest-

ment:

·
u1 =

1

λ211c1

· ·
λ11 (1 + k2 (λ12x

∗
2 −'1λ22))+ (44)

+λ11k2

µ
'1 (t)

·
λ22 +

·
'1 (t)λ22 − x∗2

·
λ12 − ·

x2λ12

¶
The co-state equations are:

−∂H1 (x
∗,u∗)

∂x1
=

·
λ11 − ρλ11 ⇔

·
λ11 =

1

λ222c2

£
k1 (λ12λ21 + λ11λ22 (λ22 − 1)) + λ222c2 (λ11 (β1 + ρ)− p1)+

+λ21k
2
1 (x

∗
1 (λ12λ21 − 2λ11λ22) + λ21λ22'2)

¤
(45)

−∂H1 (x
∗,u∗)

∂x2
=

·
λ12 − ρλ12 ⇔

·
λ12 = λ12 (k2u

∗
1 + β2 + ρ) (46)
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−∂H1 (x
∗,u∗)

∂λ22
=

·
'1 − ρ'1 ⇔

·
'1 = − 1

λ322c2

£
λ12 (1 + λ21k1x1)

2 + λ22
¡
'1λ

2
22c2 (k2u

∗
1 + β2)+

+k1 ('2λ21 − λ11x
∗
1) (1 + λ21k1x

∗
1))] (47)

−∂H1 (x
∗,u∗)

∂λ21
=

·
'2 − ρ'2 ⇔

·
'2 = − 1

λ222c2

£
k1 (λ12x

∗
1 −'2λ22 (λ22 − 1))−'2λ

2
22c2β1+

k21x
∗
1 (2'2λ21λ22 + x∗1 (λ12λ21 − λ11λ22))

¤
(48)

Now (32) and (35), together with (45-47) can be inserted into (44) to rewrite

the leader’s control dynamics. We look for possible steady state(s), and,

imposing the stationarity condition upon the follower’s co-state dynamics,

we obtain: ·
λ21 = 0 in λ21 = 0

·
λ22 = 0 in λ22 =

p2
k2u∗1 + β2 + ρ

(49)

Note that λ21 = 0 as in the Nash game. Then, using (42) and imposing
·
λ12 = 0, we obtain λ12 = 0.

In order to further simplify matters, we introduce a useful (albeit ar-

guable) set of symmetry conditions: c2 = c1 = c, k2 = k1 = k, p2 = p1 = p

and β2 = β1 = β. Now, imposing
·
'1 = 0, we have:

'1 =
kx∗1 (ku

∗
1 + β + ρ)

p [cp (1− cu∗1) (ku
∗
1 + β) + k2x∗1 (ku

∗
1 + β + ρ)]

(50)

while the value of '2 is irrelevant, since we may write:

·
u1 =

1

c2p (ku∗1 + β)
{(cu∗1 − 1) [(ku∗1 + β) (k − cp) (ku∗1 + β + ρ+

+p (cu∗1 − 1)) + k2px∗1 (ku
∗
1 + β + ρ)

¤ª
(51)
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where '2 does not appear. Imposing the stationarity condition
·
xi = 0,

i = 1, 2, upon the system of state equations (32), we obtain the expressions

of the optimal states as a function of the leader’s optimal control:

xs1 =
cpu∗1 (2− cu∗1)

2 [cpβ − k2u∗1 + k (p− β − ρ)]

xs2 =
p2 − (ku∗1 + β + ρ)2

2cp2 (ku∗1 + β)

(52)

As a last step, one should solve
·
u1 = 0 w.r.t. u1.

18 Without going through

numerical calculations, we may rely on Lemma 7 to state what follows:

Proposition 10 Since the game exhibits decreasing best reply functions at

any instant, the Stackelberg solution entails that the leader invests more than

the follower.

This claim has a definite Cournot flavour: with strategic substitutes, hi-

erarchical play involves a first-mover advantage, and a corresponding second-

mover disadvantage. In fact, it can be shown by numerical calculations

that the resulting market shares are, respectively, larger (for the leader) and

smaller (for the follower) than in the steady state of the Nash game.

4 The Ramsey oligopoly game

Here, we illustrate a game which is state-redundant (or perfect), but control-

lable. Consider a market where two single-product firms, labelled as 1 and

18The expression for
·
u1 is cubic, with only one solution belonging to the set of real

positive numbers. Details are available from the authors upon request.
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2, offer homogeneous products over t ∈ [0,∞). At any time t, the inverse
market demand function is:

p(t) = A−B [q1(t) + q2(t)] . (53)

Production requires investment in physical capital, which accumulates over

time to create capacity. At any t, the output level is yi(t) = f(κi(t)), with

f 0 ≡ ∂f(κi(t))/∂κi(t) > 0 and f 00 ≡ ∂2f(κi(t))/∂κ
2
i (t) < 0; i = 1, 2.

A reasonable assumption is that qi(t) ≤ yi(t), that is, the level of sales is

at most equal to the quantity produced. Excess output is reintroduced into

the production process yielding accumulation of capacity according to the

following process (Ramsey, 1928):

dκi(t)

dt
= f(κi(t))− qi(t)− δκi(t), i = 1, 2, (54)

where δ denotes the rate of depreciation of capital. In order to simplify fur-

ther the analysis, suppose that unit variable cost is constant and equal to

zero. The cost of capital is represented by the opportunity cost of intertem-

poral relocation of unsold output. Firm i’s instantaneous profits i are

πi (q (t)) ≡ p(t)qi(t) = [A−B (qi(t) + qj(t))] qi(t), i, j = 1, 2. (55)

Firm i maximizes the discounted flow of its profits:

Ji ≡
Z ∞

0

e−ρtπi (q (t)) dt, i, j = 1, 2. (56)

under the constraint (54) imposed by the dynamics of the state variable κi(t).

Notice that the state variable does not enter directly the objective function.
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We assume that firms behave as quantity-setters. Hence, the control variable

of firm i is qi(t).
19

Define the vectors of control and state variables, respectively, as q (t) and

κ (t) . Then, the Hamiltonian function of firm i is:

Hi(q (t) ,κ (t)) = e−ρt{qi(t)[A−B (qi(t) + qj(t))]+ (57)

+λii(t) [f(κi(t))− qi(t)− δκi(t)] + λij(t) [f(κj(t))− qj(t)− δκj(t)]}

where λij(t) = µij(t)e
ρt, and µij(t) is the co-state variable associated to κj(t),

i, j = 1, 2; j 6= i.

The FOC on firm i’s control is:

∂Hi(q
∗ (t) ,κ∗ (t))
∂qi

= A− 2Bq∗i (t)− qj(t)− λii(t) = 0; (58)

which immediately proves two facts. The first is that the instantaneous best

reply function

q∗i (t) =
A− qj(t)− λii(t)

2B
(59)

is independent of state variables. The second is that, since (58) can be solved

to yield the expression of λii(t) :

λii(t) = A− 2Bq∗i (t)− qj(t) (60)

it appears that ∂λii(t)/∂qj(t) = −1. These results can be summarised in the
following:

Proposition 11 The Ramsey oligopoly game is perfect but controllable. That

is, the open-loop Nash equilibrium is strongly time consistent, while the Stack-

elberg open-loop equilibrium is time inconsistent.

19It can be easily shown that none of the ensuing result modifies if firms behave as

price-setters. See Cellini and Lambertini (1998).
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The open-loop Nash game always produces a unique saddle point equilib-

rium, whose complete characterisation can be found in Cellini and Lambertini

(1998) in a more general setup where N single-product firms operate in the

market, supplying differentiated varieties of the same good.

5 The sticky price game

In this section, we examine a game which is uncontrollable, but not perfect.

To this aim, we revisit the differential game with sticky prices dating back

to Simaan and Takayama (1978) and further investigated by Fershtman and

Kamien (1987) and Cellini and Lambertini (2004), inter alia. As in the previ-

ous section, two single-product firms, labelled as 1 and 2, offer homogeneous

products over t ∈ [0,∞). At any time t, the inverse demand function is (53).
Output levels are the control variables, while prices are the state variables,

each following the dynamic equation:

dp(t)

dt
≡ .
p(t) = s {bp(t)− p(t)} , i = 1, 2, (61)

where bp(t) denotes the notional level of the market price at time t, while p(t)
denotes its current level, the former being defined by the demand function

(53). Notice that the speed of adjustment is captured by parameter s, with

s ∈ [0,∞). The lower is s, the higher is the degree of price stickiness.
The instantaneous production cost function of firm i is assumed to be

quadratic:

Ci(t) = cqi(t)− 1
2
[qi(t)]

2 , 0 < c < A. (62)
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As a consequence, the instantaneous profit function of firm i is:

πi (q (t)) ≡ p(t)qi(t)− Ci(t) = qi(t) ·
·
p(t)− c− 1

2
qi(t)

¸
, i = 1, 2. (63)

The current price of any good is generally different from its notional level.

The production decisions of firms affect notional prices, but current prices

evolve subject to price stickiness. We assume that firms choose the quantity

to be produced, so that we are in a Cournot framework. More precisely,

each firm chooses the path of her control variable qi(t) over time in order to

maximize the present value of the profit flow, subject to (i) the motion laws

regarding the state variables, and (ii) the initial conditions. The problem of

player i = 1, 2 may be written as follows:

max
qi(t)

Ji ≡
Z ∞

0

e−ρt qi(t) ·
·
p(t)− c− 1

2
qi(t)

¸
dt (64)

s.t. :
dp(t)

dt
= s {bp(t)− p(t)}

and p(0) = p0, i = 1, 2. The factor e−ρt discounts future gains, and the

discount rate ρ is assumed to be constant over time and equal across firms.

Define the vector of controls as q (t) . The Hamiltonian function is:

Hi(q (t) , p (t)) = e−ρt{qi(t) [p(t)− c− qi(t)/2] + (65)

+λi(t)s [A−B (qi(t) + qj(t))− pi(t)]}

where λi(t) = µi(t)e
ρt, and µi(t) is the co-state variable associated by player

i to the price p(t).

The FOC taken w.r.t. the control of firm i is:

∂Hi(q
∗ (t) , p∗ (t))
∂qi

= 0 ⇔ q∗i (t) = p∗(t)− c− λi(t)sB (66)
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or

λi(t) =
p∗(t)− q∗i (t)− c

sB
(67)

While (66) proves that ∂q∗i (t)/∂p (t) 6= 0, i = 1, 2, expression (67) shows that
the co-state variable of each firm is independent of the control variable of the

rival. Therefore, we may state:

Proposition 12 The sticky price oligopoly game is uncontrollable but not

perfect. That is, the open-loop Nash equilibrium is only weakly time consis-

tent, while the Stackelberg open-loop equilibrium is time consistent but not

subgame perfect.

The Nash and Stackelberg open-loop equilibria of this game are unique.

For the complete characterisation as well as the stability analysis of the Nash

equilibrium, we refer the reader to the aforementioned contributions.

6 Extensions and concluding remarks

In this paper we have analysed the time consistency property of open-loop

equilibria, in the case of Nash and Stackelberg behaviour. We have noted

that classes of games exist, in which the strong time-consistency of the open-

loop Nash equilibrium associates with the time consistency of the open-loop

Stackelberg equilibrium. We have labelled these setups as perfect uncon-

trollable games. We have also provided one example based on a model of

oligopolistic competition with advertising efforts analysed by Leitmann and

Schmitendorf (1978) and Feichtinger (1983). We have completed the expo-

sition by briefly examining two cases where the two properties alternatively

hold.
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In the above analysis, we have confined our attention to two-player games,

and the generalisation to the case of N players is desirable. With respect to

open-loop Nash behaviour, this extension is intuitive, as state redundancy

requires that property (11) is met for each player w.r.t. N − 1 opponents.
Indeed, it can be easily shown that in the case of N players our results go

through unchanged in the three models investigated in the paper. General-

ising the analysis of the stackelberg case to N players is less straightforward.

However, it can be easily shown that our analysis is robust in the case where

there is one leader followed by N − 1 rivals, for the same reason as in the
Nash game.

Another appealing extension would consist in investigating macroeco-

nomic policy games where uncontrollability couples with state redundancy to

ensure that optimal fiscal and monetary policies are subgame perfect. Two

such examples are Xie (1997; see also Karp and Lee, 2003) and Cellini and

Lambertini (2003).
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