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Abstract

In many science and engineering applications, the discretization of linear ill-
posed problems gives rise to large ill-conditioned linear systems with right-hand
side degraded by noise. The solution of such linear systems requires the so-
lution of a minimization problem with one quadratic constraint depending on
an estimate of the variance of the noise. This strategy is known as regulariza-
tion. In this work, we propose to use Lagrangian methods for the solution of the
noise constrained regularization problem. Moreover, we introduce a new method
based on Lagrangian methods and the discrepancy principle. We present numer-
ical results on numerous test problems, image restoration and medical imaging
denoising. Our results indicate that the proposed strategies are effective and ef-
ficient in computing good regularized solutions of ill-conditioned linear systems
as well as the corresponding regularization parameters. Therefore, the proposed
methods are actually a promising approach to deal with ill-posed problems.
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Chapter 1

Introduction

In many science and engineering applications it is necessary to compute an
approximate solution of the linear system:

Ax = b, A ∈ Rm×n, m ≥ n, (1.1)

where A is an ill-conditioned matrix. Troughout this work we will suppose A
to be non singular. Usually, the right-hand side b is corrupted by noise, i.e:

b = b̃ + η (1.2)

where b̃ is the unknown noise-free right-hand side vector and η accounts for
noise and measurement errors and it is usually not available.
Discrete ill-conditioned linear systems (1.1) arise from the discretization of
continuous ill-posed problems such as Fredholm integral equations of the first
kind. These integral equations are by nature ill-posed problems in the sense of
Hadamard [27, 26], i.e., they have no solution or their solution, if it exists, does
not depend continuously on the data b.
We would like to determine an approximation of the original solution x̃ of the
noise-free linear system

Ax̃ = b̃. (1.3)

Unfortunately, due to the ill-conditioning of A and the noise on b, the direct
solution of (1.1) is a poor approximation of the true solution x̃. Therefore,
to compute useful approximation of x̃, it is necessary to modify the original
problem (1.1) into a better conditioned one which is strictly related to (1.1)
but incorporates additional information about the unknown solution x̃. This
strategy is referred to as regularization [33]. A common regularization technique
consists in replacing the system (1.1) with the following equality constrained
minimization problem:

minimize φ(x)

subject to
1

2
‖Ax − b‖2 =

σ2

2
.

(1.4)

where ‖ · ‖ denotes the Euclidean norm and σ is the variance of the noise η
which is assumed to be available. The functional φ(x) is called regularization

functional. It incorporates a priori information on the desired solution x̃ and,
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in some sense, it measures the irregularity of x̃.
The quantity ‖Ax−b‖2 is called the discrepancy of the vector x. By solving the
problem (1.4) we find a regularized solution xreg that minimizes the regulariza-
tion functional φ(x) over all the vectors x ∈ R

n with discrepancy equal to σ2.
The regularization problem (1.4) includes classic Tikhonov regularization where

φ(x) =
1

2
‖Lx‖2. (1.5)

Usually, the matrix L ∈ R
p×n, p ≤ n, is the identity matrix or a discretiza-

tion of the first or second order derivative operator. The so called Tikhonov
regularization functional (1.5) measures the smoothness of x and penalizes the
discontinuities in x.
When φ(x) is the discretization of the continuous Total Variation functional:

Φ(χ) =

∫

Ω

|∇χ(t)|dt, (1.6)

where χ : Ω → R and Ω is a bounded convex region in the d-dimensional
space, the problem (1.4) is called Total Variation regularization. The discrete
Total Variation functional allows to recover discontinuities in the vector x and
therefore is well suited for image restoration. For an exhaustive analysis of the
theory of regularization see, for example, [19, 33, 41, 29, 17, 19, 49, 18, 24] for
Tikhonov regularization, and [25, 1, 16] for Total Variation regularization.
Actually, the optimization problem (1.4) is used to model many inverse problems
in image restoration, computer tomography and seismic inversion and therefore
it is a very important optimization problem in many science and engineering
applications.
We stress out that the regularization problem is not usually formulated as the
equality constrained problem (1.4) but as the following unconstrained problem:

minimize φ(x) +
λ

2
‖Ax − b‖2, λ > 0. (1.7)

It can be proved ([17, 33, 3] and the references therein) that problems (1.4)
and (1.7) are equivalent, provided that λ is the exact Lagrange multiplier of
(1.4). The multiplier λ is usually called regularization parameter in the context
of regularization and it has the crucial role of balancing the trade-off between
the smoothness of the solution and the fidelity to the data b.
In the literature there exist other formulations of the regularization problem
that, for A nonsingular, are equivalent to the previous ones; they are the un-
constrained minimization problem:

minimize µφ(x) + ‖Ax − b‖2, µ > 0 (1.8)

where µ = 2
λ

and, for the Tikhonov functional (1.5), the energy constrained
minimization problem:

minimize ‖Ax − b‖2

subject to ‖Lx‖2 = ε2
(1.9)

where ε is an estimate of the norm ‖Lx̃‖ of the solution x̃ of (1.3).
When dealing with the unconstrained problem (1.7), a crucial issue is the se-
lection of a suitable approximation of the exact multiplier λ of (1.4). In fact, if
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the selected value λ is too large, then the corresponding solution xλ of (1.7) is
contaminated by noise while, if λ is too small, xλ is a poor approximation of x̃.
In the literature there exists a significant amount of works on the development
of strategies for selecting the regularization parameter of (1.7) for the Tikhonov
functional (1.5); we refer the reader to [2, 19, 23, 38] and the references therein.
In practice however, given the variance σ, it is difficult to calculate a suitable
value of the regularization parameter for the regularization problem (1.7) at a
low computational cost.
When the norm σ of the variance is explicitly known, a common method for
the selection of a suitable value of the regularization parameter is the discrep-

ancy principle [2, 19, 23, 38, 37] that states that the regularization parameter
λ should be chosen so that the associated solution xλ has a discrepancy equal
to the error σ2. This approach may require the solution of many unconstrained
problems (1.7) at a high computational cost. Some Newton-type methods for
solving the discrepancy principle are presented in [35, 54]. In [20], a variant
of the discrepancy principle is described. In [9], a numerical method based on
Lanczos bidiagonalization and Gauss quadrature is introduced for computing
by the discrepancy principle a suitable value of λ and the associated regularized
solution xλ. In [34], the authors determine the regularization parameter λ from
a smaller dimensional problem. Other methods do not require the exact knowl-
edge of σ but try to derive such information from the right-hand side b. They
are basically heuristic methods. Very popular methods of such type are the
L-curve criterion [33, 31] and the Generalized Cross Validation (GCV) criterion
[33, 53, 21]. For large problems these criteria are computationally very expensive
and therefore they are difficult to use for practical applications. Recently, in [8],
the authors have proposed a computationally less expensive strategy based on
computing an L-ribbon that contains the L-curve and its interior. For Tikhonov
regularization, some strategies based on solving the quadratically constrained
least squares problem (1.9) have been proposed. The algorithm presented in
[11] makes use of “black box” solvers for the related unconstrained least squares
problems. In [47, 46] a trust-region approach to (1.9) is discussed. In [22] the
authors have presented a method for (1.9) based on Gauss quadrature; in [10]
a modification of this latter method based on partial Lanczos bidiagonalization
and Gauss quadrature is presented. The iterative scheme proposed in [14] is
based on the works [46, 48] and requires the computation of the smallest eigen-
value and the corresponding eigenvector to determine the proper regularization
parameter. In [7] a modular approach is proposed for solving the first order
equation associated with (1.9). However, in spite of the numerous methods pro-
posed in the literature, the selection of a suitable regularization parameter λ
for Tikhonov regularization is still an open question (especially for large scale
problems) and an active area of research. Moreover, to the best of the author’
knowledge, little work has been made in developing methods for the choice of
the regularization parameter for other regularization functionals, such as the
Total Variation functional.
In this work we consider the formulation (1.4) of the regularization problem as a
noise constrained minimization problem. Such formulation makes sense because
it does not require to know a good estimate of the regularization parameter but
it needs an estimate of the noise level which is achievable in most applications.
In this work we propose to apply iterative Lagrangian methods [36, 5] to (1.4)
in order to compute both the regularization parameter λ and the corresponding
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regularized solution xλ of (1.1). Moreover, we introduce a new regularization
procedure based on iterations of the Lagrangian methods truncated according
to the discrepancy principle. We have called the proposed methods Truncated
Lagrangian methods. We discuss some properties of the new Truncated Lagran-
gian methods in the regularization framework. To evaluate the performance of
the proposed approach, we have applied the Lagrangian methods and the new
Truncated Lagrangian methods to a wide set of test problems, image restoration
and image denoising.

The work is organized as follows. In Chapter 2 we analyze the noise con-
strained regularization problem (1.4) from a theoretical point of view. In Chap-
ter 3 we present the basic Lagrangian methods and in Chapter 4 we introduce
the proposed Truncated Lagrangian methods. In Chapter 5 we discuss some
implementation details; in Chapter 6, we present the results of numerous nu-
merical experiments to illustrate the performance of the discussed methods.
Conclusions are given in Chapter 7.
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Chapter 2

The noise constrained
regularization problem

Let us consider the regularization problem formulated as a noise constrained
minimization problem:

minimize φ(x)

subject to
1

2
‖Ax − b‖2 =

σ2

2
.

(2.1)

For easier notation, let h : R
n → R be the function

h(x) =
1

2
‖Ax − b‖2 (2.2)

and let Ω be the subset of R
n defined as

Ω = {x ∈ R
n|h(x) ≤ σ2

2
}. (2.3)

Throughout this work, we will make the following assumptions on the minimiza-
tion problem (2.1).

Assumptions

A1. φ : R
n → R is twice continuously differentiable.

A2. φ(x) ≥ 0, φ(0) = 0.

A3. φ is convex.

A4. Null{φ} ∩ Ω = ∅ where Null{φ} is the nullspace of φ.

A5. A ∈ R
m×n, m ≥ n, is nonsingular.

Remark 2.1. The preceding assumptions A1–A3 are verified by both the Tikhonov
functional and the Total Variation functional.
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In this chapter we analyze the noise constrained regularization problem (2.1)
and we give results of existence and uniqueness of its solution. Such results are
known for the Tikhonov and Total Variation functionals but are obtained here
in the wider context of minimizing the convex functional φ under the equality
noise constraint h(x) = σ2/2.

Let us consider the following inequality minimization problem which is strictly
related to (2.1)

minimize φ(x)

subject to h(x) ≤ σ2

2
.

(2.4)

The well-known Weierstrass theorem ensures that problem (2.4) has a solution.

Theorem 2.1. Assume assumption A.1 holds. Then (2.4) has a solution.

Proof. The feasible set Ω ⊂ R
n is compact and therefore, for the Weierstrass

theorem, the continuous function φ achieves a minimum in Ω.

The following theorem states that the inequality constraint of (2.4) is active
at a solution.

Theorem 2.2. Assume assumptions A1–A4 hold. If x is a solution of (2.4),
then

h(x) =
σ2

2
. (2.5)

Proof. The feasible set Ω is convex and the objective functional φ is convex; then
every local minimum of φ over Ω is a global minimum. Under the assumptions
A1–A4, we have that the set of the global minima of the objective functional φ
over all R

n is the null space of φ. If a solution x of (2.4) is in the interior of Ω,
then ∇φ(x) = 0 and x ∈ Null{φ}. Because of assumption A.4, we cannot have
x ∈ Null{φ} ∩ Ω, then we deduce that the solution x lies on the boundary of
the feasible set Ω.

The previous theorem 2.2 has the following very important consequence.

Corollary 2.1. Under the hypothesis of the previous theorem, problem (2.1) is

equivalent to (2.4).

Proof. The equivalence between (2.1) and (2.4) is an immediate consequence
of the fact that the minimum of φ over Ω is reached for some x with h(x) =
σ2/2.

The following theorem ensures the uniqueness of the solution of (2.4).

Theorem 2.3. Assume assumptions A1–A5 hold. Then the solution x of (2.4)
is unique.

Proof. If x and y are solutions to (2.4) we have

φ

(
x + y

2

)
≤ 1

2
(φ(x) + φ(y)) = min φ. (2.6)
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The last equality is true since every local minimum of φ is a global minimum.
Moreover, since the feasible set Ω is convex, we have

1

2

∥∥∥∥A
(

x + y

2

)
− b

∥∥∥∥
2

≤ 1

2
σ2 (2.7)

with equality if and only if Ax = Ay. For theorem 2.2 we cannot have the strict
inequality in (2.7), then Ax = Ay and x = y for the non singularity of A.

The following theorem states that the Lagrange multiplier of (2.4) is strictly
positive.

Theorem 2.4. If x is the solution of (2.4), let λ be the corresponding Lagrange

multiplier. Then λ > 0.

Proof. From the first-order necessary conditions for (2.4) we have





∇φ(x) + λ∇h(x) = 0,

λ

(
h(x) − σ2

2

)
= 0,

λ ≥ 0, x ∈ Ω.

(2.8)

If λ = 0, then from the first equation of (2.8) it follows ∇φ(x) = 0. Hence, x
is a global minimum of φ over R

n and x ∈ Ω∩Null{φ}. Because of assumption
A.4, x cannot belong to Ω ∩ Null{φ} and consequently, it must be λ > 0.

The following theorem summarizes the previous results and shows that prob-
lem (2.1) is a well-posed problem.

Theorem 2.5. Assume A1–A5 hold. Then the noise constrained regularization

problem (2.1) has a unique solution x∗ with positive Lagrange multiplier λ∗.

Proof. The proof immediately follows from the equivalence between (2.1) and
(2.4) (Corollary 2.1) and from the theorems 2.1, 2.3 and 2.4.
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Chapter 3

Lagrangian Methods

In this chapter we introduce the Lagrangian methods. We follow [36] for the
description of the methods and we refer the reader to [36, 5, 4] for a broader
treatment.
Lagrangian methods are essentially based on directly solving the nonlinear equa-
tions representing the first-order necessary conditions for the optimality of the
constrained minimization problem. The first-order necessary conditions for (2.1)
are expressed as:

∇xL(x, λ) = 0,

h(x) − σ2

2
= 0,

(3.1)

where the Lagrangian function L : R
n+1 −→ R is defined by:

L(x, λ) = φ(x) + λ

(
h(x) − σ2

2

)
(3.2)

with λ ∈ R the Lagrange multiplier.
Equations (3.1) are usually referred to as Lagrange equations and represent

a system of (n + 1) nonlinear equations in the (n + 1) variables x1, . . . , xn, λ.
A point x satisfying the first-order necessary conditions (3.1) for optimality is
called stationary point. A pair (x, λ) satisfying (3.1) is called stationary pair.
When dealing with algorithms for constrained minimization problems, it is use-
ful to introduce a merit function m(x, λ) : R

n+1 −→ R to measure the progress
of the algorithm towards a local minimum. Merit functions guide the algorithm
by balancing the reduction of the objective function and the satisfaction of the
constraints. The Lagrangian methods described in the following subsections are
basically first-order and second-order methods for solving the Lagrange equa-
tions (3.1). They are characterized by a search direction and a suitable merit
function which is minimized at a solution of (2.1) and serves as a descent func-
tion for the algorithm.

3.1 First-Order Lagrangian method

The first-order Lagrangian method consists in a first-order iterative procedure
for solving the Lagrange equations (3.1). Thus, given an iterate (xk, λk), the
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method is defined by the formula:

xk+1 = xk + αk∆xk

λk+1 = λk + αk∆λk

(3.3)

where the direction (∆xk,∆λk) ∈ R
n+1 is:

∆xk = −∇xL(xk, λk),

∆λk = h(xk) − σ2

2
.

(3.4)

The scalar step-length αk > 0 is such that:

αk = argmin
α

{m(xk + α∆xk, λk + α∆λk)} (3.5)

where the merit function m(x, λ) is defined as follows:

m(x, λ) =
1

2

(
‖∇xL(x, λ)‖2 + |h(x) − σ2

2
|2
)
− γL(x, λ) (3.6)

for some γ > 0. It is possible to prove the convergence of the first-order La-
grangian method to a solution of the original problem (2.1) (see [36]).
In our implementation we have computed an approximate minimizer αk of the
merit function m(xk + α∆xk, λk + α∆λk); i.e. we have selected the step-length
αk so that a “sufficient decrease” in the merit function has been produced along
the direction (∆xk,∆λk). More specifically, we require αk to be the first element
of the sequence {2−i}∞i=0 satisfying the Armijo’s condition:

m(xk + αk∆xk, λk + αk∆λk)

≤ m(xk, λk) + µαk (∆xk,∆λk)
t ∇(x,λ)m(xk, λk) (3.7)

with µ = 10−4.
The iterative procedure (3.3) is terminated as soon as one of the following
stopping criteria is satisfied.

i) k ≥ kmax (3.8a)

ii)
∥∥∥



∇xL(xk, λk)

h(xk) − σ2

2



∥∥∥ ≤ τ1

∥∥∥



∇xL(x0, λ0)

h(x0) −
σ2

2



∥∥∥ (3.8b)

iii)
∥∥∥αk

(
∆xk

∆λk

)∥∥∥ ≤ τ2 (3.8c)

iv) |αk∆λk| ≤ τ3 (3.8d)

where kmax is the maximum number of allowed iterations and τ1, τ2, τ3 are given
tolerances. Criteria (3.8a)–(3.8c) are standard stopping criteria for Lagrangian
methods; criterium (3.8d) requires a comment. In our experiments, we have
observed that, for many problems, the value of the multiplier λk significantly
changes only in the first iterations and then it remains almost constant, even if
the corresponding iterate xk is far from the solution. The first-order Lagrangian
method has the main advantage of requiring only the computation of the first
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derivatives but it is well known to converge very slowly. Therefore we propose
to use the first-order Lagrangian method only to provide a good estimate λk+1

of the true multiplier λ by stopping the iterative procedure when |λk+1 − λk|
becomes less or equal to the tolerance τ3. An approximation of the solution
of the original problem (1.1) is then obtained by solving the unconstrained
minimization problem

minimizex φ(x) +
λk+1

2
‖Ax − b‖2. (3.9)

with the computed value λk+1 of the multiplier.
We can now outline the algorithm as follows.

algorithm 3.1 First-Order Lagrangian Method

0. Compute an initial iterate (x0, λ0) ∈ R
n+1; set k = 0.

Repeat

1. Compute:

∆xk = −∇xL(xk, λk),

∆λk = h(xk) − σ2

2
.

2. Find the first number αk of the sequence {1, 1
2 , 1

4 , . . . , 1
2i , . . .} such that:

m(xk + αk∆xk, λk + αk∆λk)

≤ m(xk, λk) + µαk (∆xk,∆λk)
t ∇(x,λ)m(xk, λk)

with µ = 10−4.

3. Set:

xk+1 = xk + αk∆xk,

λk+1 = λk + αk∆λk.

4. Set k = k + 1 and return to Step 1.

until stopping criteria (3.8) are satisfied.

3.2 Second-Order Lagrangian method

Let us consider the nonlinear system of equations (3.1) representing the first-
order necessary conditions for (2.1). An iteration of the Newton method to solve
(3.1) is stated as

(∇2
xxL(x, λ) ∇xh(x)

∇xh(x)t 0

)(
∆x

∆λ

)
= −



∇xL(x, λ)

h(x) − σ2

2


 (3.10)
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where (x, λ) is the current iterate and (∆x,∆λ) is the search direction for the
next iterate.
Let us consider the merit function m : R

n+1 → R defined as

m(x, λ) =
1

2

(
‖∇xL(x, λ)‖2 + w|h(x) − σ2

2
|2
)
, (3.11)

with w ∈ R a positive parameter.
The following results show that the merit function m(x, λ) is a well-behaved
merit function for (2.1).

Theorem 3.1. Suppose that x∗ and λ∗ satisfy the first-order necessary con-

ditions for a local minimum of m(x, λ) with respect to x and λ. Suppose also

that the rank of the gradient ∇h(x∗) at x∗ is full and that the hessian matrix

∇2
xxL(x∗, λ∗) is positive definite. Then, (x∗, λ∗) is a global minimum point of

m(x, λ) with value m(x∗, λ∗) = 0.

For a proof see §14.2 of [36].

Corollary 3.1. Under the hypothesis of theorem 3.1, (x∗, λ∗) is a stationary

pair for (2.1).

Proof. From m(x∗, λ∗) = 0 it immediately follows ∇L(x∗, λ∗) = 0 and h(x∗) =
σ2/2.

3.2.1 The algorithm

In this section we present a second-order Lagrangian method which is essentially
based on Newton iterations to solve the Lagrange equations (3.1). Besides, we
show that the algorithm is well-defined.
The algorithm is formally described as follows.

algorithm 3.2 Second-Order Lagrangian Method

0. Data. Compute an initial iterate (x0, λ0) ∈ R
n+1; set k = 0.

Repeat

1. Compute the matrix:

M(xk, λk) =

(∇2
xxL(xk, λk) ∇xh(xk)

∇xh(xk)t 0

)
. (3.12)

2. Computation of the search direction.
Compute the search direction (∆xk,∆λk) by solving the linear system:

M(xk, λk)

(
∆xk

∆λk

)
= −



∇xL(xk, λk)

h(xk) − σ2

2


 . (3.13)
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3. Line search.

Find the first number αk of the sequence {1, 1
2 , 1

4 , . . . , 1
2i , . . .} satisfying:

i) m(xk + αk∆xk, λk + αk∆λk) (3.14a)

≤ m(xk, λk) + µαk (∆xk,∆λk)
t ∇(x,λ)m(xk, λk)

with µ = 10−4;

ii) λk + αk∆λk > 0; (3.14b)

iii) A(xk + αk∆xk) − b 6= 0. (3.14c)

4. Updates.

Set:

xk+1 = xk + αk∆xk,

λk+1 = λk + αk∆λk.
(3.15)

Set k = k + 1 and return to Step 1.

until
∥∥(∇xL(xk, λk), h(xk) − σ2

2

)∥∥ = 0

The algorithm includes, in step 3, an inexact line search based on the
Armijo’s procedure (condition (3.14a)) [42] for unconstrained optimization that
ensures a reasonable decrease of the merit function. In addition, condition
(3.14b) forces the Lagrange multipliers to be strictly positive. From theorem 2.5
we have that (2.1) is equivalent to (2.4) and that the Lagrange multiplier of the
solution of (2.1) is positive. Therefore, we can consider the presented algorithm
as a sort of active set strategy applied to the inequality constrained problem
(2.4) in which we treat the inequality constraint as an active constraint and we
force the Lagrange multiplier to be positive on the basis of the prior knowledge
on the solution provided by theorem 2.5. Finally, condition (3.14c) ensures that
the matrix M(xk, λk) is nonsingular. It is a nonrestrictive condition as, obvi-
ously, if x is a solution of (2.1), then Ax− b 6= 0. In the following we prove that
the algorithm is well-defined, i.e. the coefficient matrix M(xk, λk) of the linear
system (3.13) is nonsingular and a positive step-length αk satisfying (3.14) can
be always computed. For easier presentation, in the following of this subsection,
we omit the index k.

Proposition 3.1. The direction (∆x,∆λ) ∈ R
n+1 computed at step 2 of the

algorithm is a descent direction for the merit function m(x, λ) at (x, λ).
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Proof. Given (∆x,∆λ) satisfying (3.13), we have:

(∆x,∆λ)t∇(x,λ)m(x, λ) =

= (∆x,∆λ)t

(
∇2

xxL(x, λ)∇xL(x, λ) + w
(
h(x) − σ2

2

)
∇xh(x)

(∇xL(x, λ))t∇xh(x)

)
=

= ∆xt∇2
xxL(x, λ)∇xL(x, λ)+

+ w

(
h(x) − σ2

2

)
∆xt∇xh(x) + ∆λ∇xh(x)t∇xL(x, λ)) =

=
(
∆xt∇2

xxL(x, λ) + ∆λ∇xh(x)t
)
∇xL(x, λ) + w

(
h(x) − σ2

2

)
∆xt∇xh(x) =

= −(∇xL(x, λ))t∇xL(x, λ) − w

(
h(x) − σ2

2

)2

.

This is strictly negative unless ∇xL(x, λ) = 0 and h(x) − σ2

2 = 0.

Remark 3.1. Notice that, if both ∇xL(x, λ) = 0 and h(x) − σ2

2 = 0 then the
algorithm stops and the current iterate (x, λ) is a stationary pair of (2.1).

Proposition 3.2. Given a pair (x, λ) such that Ax − b 6= 0 and λ > 0, the

matrix

M(x, λ) =

(∇2
xxL(x, λ) ∇xh(x)

∇xh(x)t 0

)
(3.16)

is nonsingular.

Proof. Because of assumptions A3 and A5 (chapter 2, pp. 9), the hessian matrix
∇2L(x, λ) = ∇2φ(x, λ)+λAtA is positive definite if λ > 0. However, the matrix
M(x, λ) is always indefinite (see §16.2 of [42]). Since Ax − b 6= 0, the vector
∇xh(x) = At(Ax − b) is trivially a maximum rank matrix, therefore M(x, λ) is
nonsingular (see §14.1 of [36]).

As a consequence of proposition 3.2, we have that the search direction
(∆x,∆λ) is uniquely determined. The following proposition shows that the
line search procedure in step 3 is well-defined.

Proposition 3.3. Given a pair (x, λ) such that Ax − b 6= 0 and λ > 0, and a

search direction (∆x,∆λ) satisfying (3.13), there exists α > 0 such that condi-

tions (3.14) are verified for any α ∈]0, α].

Proof. The merit function m(x, λ) is continuous and bounded below. Since
(∆x,∆λ) is a descent direction for m(x, λ), there exists α1 such that (x +
α∆x, λ + α∆λ) satisfies condition (3.14a) for any α ∈]0, α1].
As λ > 0, there exists α2 > 0 such that λ + α∆λ > 0 for all α ∈]0, α2]; in
particular, if ∆λ > 0 then λ + α∆λ > 0 for each α > 0 and α2 = ∞ while, if
∆λ < 0, α2 = − λ

∆λ
.

Finally, let us consider the continuous function

r(α) = ‖A(x + α∆x) − b‖. (3.17)

Since r(0) = ‖Ax− b‖ > 0, there exists a neighborhood [−α3, α3] of 0 such that
r(α) > 0 for any α ∈ [−α3, α3]. Let α = inf{α1, α2, α3}; then the conditions
(3.14) hold for any α ∈]0, α].
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3.2.2 Global Convergence

In this section we prove that either the algorithm stops at a solution, or any
sequence {(xk, λk)}k∈N generated by the algorithm converges to the solution of
(2.1).
In order to prove the global convergence result, the following additional assump-
tion is required.

Assumption A6 The points (xk, λk) generated by the algorithm lie in a
compact set.

We firstly remark that, if the algorithm stops at the kth iteration, then the
current iterate (xk, λk) is a stationary pair of (2.1). Since φ and h are convex
functions, the iterate xk is a global minimum of (2.4). Suppose now that the
algorithm never stops and an infinite sequence {(xk, λk)}k∈N is generated. The
following result establishes the global convergence of the sequence generated by
the algorithm to the solution of (2.1).

Theorem 3.2. The sequence {(xk, λk)}k∈N generated by the algorithm con-

verges to the solution of (2.1).

Proof. Since the sequence {(xk, λk)}k∈N is contained in a compact, it has a con-
vergent subsequence. Therefore, we can extract a subsequence {(xk, λk)}k∈K,
K ⊂ N, converging to a point (x∗, λ∗). Since the merit function m(x, λ) is
continuous, it follows that

m(xk, λk) −→ m(x∗, λ∗) for k ∈ K.

From condition (3.14a) it follows

m(xk+1, λk+1) ≤ m(xk, λk) for k ∈ N.

This means that the sequence {(xk, λk)}k∈N is a decreasing sequence and that:

m(x∗, λ∗) ≤ m(xk, λk) for k ∈ K.

Using the convergence of the merit function m on the subsequence K and the
definition of limit, we have that, given ε > 0, there exists kε ∈ K such that for
k > kε and k ∈ K

m(xk, λk) − m(x∗, λ∗) < ε for k ∈ K.

Let ` ∈ K be the element which follows kε in K; thus, for all k > `, k ∈ N, we
have

m(xk, λk) − m(x∗, λ∗) =

m(xk, λk) − m(x`, λ`) + m(x`, λ`) − m(x∗, λ∗) < ε.

Summarizing, given ε > 0, there exists ` > 0 such that for k > `, k ∈ N

m(xk, λk) − m(x∗, λ∗) < ε

that is
m(xk, λk) −→ m(x∗, λ∗) for k ∈ N.
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By the Armijo’s rule (condition (3.14a)) we have

m(xk+1, λk+1) − m(xk, λk) ≤ ηαk(∆k,∆λk)t∇(x,λ)m(xk, λk)

and taking the limit on both sides we have

0 ≤ lim
k→∞

ηαk(∆xk,∆λk)t∇(x,λ)m(xk, λk).

Since ηαk(∆k,∆λk)t∇(x,λ)m(xk, λk) < 0 for all k, in the limit we have

lim
k→∞

ηαk(∆xk,∆λk)t∇(x,λ)m(xk, λk) ≤ 0.

These inequalities imply

lim
k→∞

ηαk(∆xk,∆λk)t∇(x,λ)m(xk, λk) = 0.

Since 1
αk

≥ 1 > 0 for all k, the product sequence 1
αk

αk(∆xk,∆λk)t∇(x,λ)m(xk, λk)
has limit

lim
k→∞

(∆xk,∆λk)t∇(x,λ)m(xk, λk) = 0.

The search direction satisfies (3.13), hence

(∆xk,∆λk)t∇(x,λ)m(xk, λk) = −
∥∥∥∇xL(xk, λk)

∥∥∥
2

− w
∣∣∣h(xk) − σ2

2

∣∣∣
2

;

consequently, taking the limit for k → ∞, k ∈ K, we have

lim
k→∞
k∈K

(
−
∥∥∥∇xL(xk, λk)

∥∥∥
2

− w
∣∣∣h(xk) − 1

σ2

∣∣∣
2
)

=

= −
∥∥∥∇xL(x∗, λ∗)

∥∥∥
2

− w
∣∣∣h(x∗) − 1

σ2

∣∣∣
2

= 0.

The last equation implies that the limit point (x∗, λ∗) satisfies the first-order
necessary conditions of (2.1):

∇xL(x∗, λ∗) = 0,

h(x∗) − σ2

2
= 0.

Next, we prove that (x∗, λ∗) is a solution of (2.1). From the condition (3.14b)
we have λ∗ ≥ 0, therefore (x∗, λ∗) is a Kuhn-Tucker pair of (2.4). Since φ and
h are convex functions, the point x∗ is a global minimum of (2.4) and, in con-
sequence of corollary 2.1, x∗ is also a global minimum of (2.1).
To conclude the proof we have to prove the convergence of the entire sequence
{(xk, λk)}k∈N to (x∗, λ∗). By contradiction assume that the sequence {(xk, λk)}k∈N

does not converge to (x∗, λ∗). Therefore, it exists an index set K1 6= K such
that

(xk, λk) −→ (x, λ) for k ∈ K1

and (x, λ) 6= (x∗, λ∗). As before, we can prove that (x, λ) is a solution of
(2.1). From theorem 2.5, we have that the solution of (2.1) is unique and
therefore (x, λ) = (x∗, λ∗). But this result is a contradiction with the fact that
(x, λ) 6= (x∗, λ∗); thus we have

(xk, λk) −→ (x∗, λ∗) for k ∈ N.

This concludes the proof.
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3.2.3 Implementation issues

In our implementation, the linear system (3.13) is solved inexactly by the Gener-
alized Minimal RESidual (GMRES) method. The GMRES iterations are termi-
nated when the relative residual of (3.13) is smaller then a tolerance τGMRES or
after a maximum of maxitGMRES iterations. Notice that the direction (∆x,∆λ)
computed by the truncated GMRES method is not guaranteed to be a descent
direction for the merit function. The GMRES method is known to converge to
the solution of (3.13) within a finite number of iterations; then, for a sufficiently
large number of iterations, the computed direction is a descent direction for m.
In our implementation, if the computed direction is not a descent direction,
we decrease the tolerance τGMRES and we allow MaxitGMRES � maxitGMRES

iterations to be performed. If even after MaxitGMRES a descent direction has
not been found, we stop the algorithm. We underline that in all the performed
numerical experiments this eventuality has never happened and a descent di-
rection (∆x,∆λ) has been always found within maxitGMRES iterations of the
GMRES method.
In our implementation of the algorithm, the iterative procedure is terminated
as soon as one of the following stopping criteria is satisfied.

i) k ≥ kmax (3.18a)

ii)
∥∥∥
( ∇xL(xk, λk)

1

2
h(xk) − 1

2σ2

)∥∥∥ ≤ τ1

∥∥∥
( ∇xL(x0, λ0)

1

2
h(x0) −

1

2
σ2

)∥∥∥ (3.18b)

iii)
∥∥∥αk

(
∆xk

∆λk

)∥∥∥ ≤ τ2 (3.18c)

where kmax is the maximum number of allowed iterations and τ1, τ2 are given
tolerances.
In the following, for easier notation, we will refer to the second-order Lagrangian
method simply as Lagrangian method.
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Chapter 4

Truncated Lagrangian
Methods

In this chapter we present a novel regularization technique, termed Truncated

Lagrangian method, which is based on iterations of a Lagrangian method trun-
cated according to the discrepancy principle.
Let us consider the equality constrained minimization problem:

minimize φ(x)

subject to h(x) = 0
(4.1)

where h(x) = 1
2‖Ax−b‖2. Under the assumption A5 (chapter 2, pp. 9), the fea-

sible set for problem (4.1) contains only the single point x∗ that solves the linear
system (1.1). The idea underlying the proposed method is to apply an iterative
procedure to (4.1) in order to generate a succession of points {xk} converging
to the solution x∗ of (4.1) and to stop the iterations before convergence as soon
as an iterate xk satisfying the discrepancy principle has been determined. Con-
sequently, the proposed Truncated Lagrangian method is basically an iterative
regularization method [19, 33] with a Tikhonov-like prior information term.
Before describing the proposed approach, we will briefly review the discrepancy
principle.

Definition 4.1. If the ill-posed problem (1.1) is consistent, i.e., Ax̃ = b̃ and
the error norm σ is known, then an approximated solution x̂ to (1.1) is said to
satisfy the discrepancy principle if:

‖Ax̂ − b‖ ≤ ρσ (4.2)

where ρ > 1 is an a-priori parameter.

For an iterative regularization method, stopping the iteration according to
the discrepancy principle (4.2) means to stop the algorithm when the norm of
the residual vector ‖Axk − b‖ of the current iterate xk satisfies:

‖Axk − b‖ ≤ ρσ (4.3)

where ρ > 1 is fixed.
In order to determine a regularized solution to (1.1), we would like to apply
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one of the Lagrangian methods of the previous chapter 3 to (4.1) and to select
the termination number of iterations according to the discrepancy principle. As
described in the previous chapter 3, the Lagrangian methods can be viewed
as methods for solving the first-order necessary optimality conditions for (4.1).
Unfortunately, the first-order necessary conditions do not apply to (4.1) because
its solution x∗ is not a regular point, i.e. the gradient ∇xh(x∗) = At(Ax∗− b) is
the null vector. Therefore, in order to be able to apply the Lagrangian methods,
we slightly modify problem (4.1) by adding a small positive constant ε to the
right-hand side of the equality constraint. In this way we obtain the following
perturbed equality constrained problem:

minimize φ(x)

subject to h(x) = ε
(4.4)

where the positive constant ε is fixed to be much smaller than (ρσ)2

2 . The
solution x∗

ε of (4.4) is now a regular point which satisfies, together with the
corresponding multiplier λ∗

ε, the first-order necessary conditions

∇xL(x∗
ε , λ

∗
ε) = 0,

h(x∗
ε) = ε,

(4.5)

where the Lagrangian function L : R
n+1 −→ R is defined by:

L(x, λ) = φ(x) + λ(h(x) − ε). (4.6)

In the following sections we will describe both the first-order Truncated Lagran-
gian method and the second-order Truncated Lagrangian method for computing
an approximated solution to (1.1).

4.1 First-Order Truncated Lagrangian method

The first-order Truncated Lagrangian method consists in a truncated first-order
iterative procedure for solving the Lagrange equations (4.5). Thus, given an
iterate (xk, λk), the method is defined by the formula:

xk+1 = xk + αk∆xk

λk+1 = λk + αk∆λk

(4.7)

where the direction (∆xk,∆λk)t ∈ R
n+1 is:

∆xk = −∇xL(xk, λk)

∆λk = h(xk) − ε.
(4.8)

The scalar step-length αk > 0 is such that:

αk = argmin
α

{m(xk + α∆xk, λk + α∆λk)} (4.9)

where the merit function m(x, λ) is defined as follows:

m(x, λ) =
1

2

(
‖∇xL(x, λ)‖2 + |h(x) − ε|2

)
− γL(x, λ) (4.10)
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for some γ > 0.
The stopping rule for the iterative procedure (4.7) is based on the discrepancy
principle, i.e. the iteration (4.7) is stopped as soon as an iterate xk satisfying
the discrepancy principle (4.3) index k > 1 has been determined.
In our implementation we have computed an approximate minimizer αk of the
merit function m(xk + α∆xk, λk + α∆λk); i.e. we have selected the step length
αk so that a “sufficient decrease” in the merit function has been produced along
the direction (∆xk,∆λk). More specifically, we require αk to be the first element
of the sequence {2−i}∞i=0 satisfying the Armijo’s condition:

m(xk + αk∆xk, λk + αk∆λk)

≤ m(xk, λk) + µαk (∆xk,∆λk)
t ∇(x,λ)m(xk, λk) (4.11)

with µ = 10−4.
In our implementation, we have terminated the iterative procedure (4.7) not
only according to the discrepancy principle:

i) ‖Axk − b‖ ≤ ρσ (4.12a)

but also when one of the following stopping criteria is satisfied:

ii) k ≥ kmax (4.12b)

iii)
∥∥∥
(
∇xL(xk, λk)
h(xk) − ε

)∥∥∥ ≤ τ1

∥∥∥
(
∇xL(x0, λ0)
h(x0) − ε

)∥∥∥ (4.12c)

iv)
∥∥∥αk

(
∆xk

∆λk

)∥∥∥ ≤ τ2 (4.12d)

v) |αk∆λk| ≤ τ3 (4.12e)

where ρ > 1 is fixed, kmax is the maximum number of allowed iterations and τ1,
τ2, τ3 are given tolerances. Conditions (4.12) represent the stopping criteria of
the algorithm that can be stated as follows.

algorithm 4.1 First-Order Truncated Lagrangian Method

0. Compute an initial iterate (x0, λ0) ∈ R
n+1; set k = 0.

Repeat

1. Compute:

∆xk = −∇xL(xk, λk)

∆λk = h(xk) − ε.

2. Find the first number αk of the sequence {1, 1
2 , 1

4 , . . . , 1
2i , . . .} such that:

m(xk + α∆xk, λk + α∆λk)

≤ m(xk, λk) + µαk (∆xk,∆λk)
t ∇(x,λ)m(xk, λk)

with µ = 10−4.
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3. Set:

xk+1 = xk + αk∆xk,

λk+1 = λk + αk∆λk.

4. Set k = k + 1 and return to Step 1.

until stopping criteria (4.12) are satisfied.

4.2 Second-Order Truncated Lagrangian method

The second-order truncated Lagrangian method essentially consists in applying
the second-order Lagrangian method of section 3.2 to the perturbed problem
(4.4) and in stopping its iterations according to the discrepancy principle. That
is, given the pair (xk, λk), the new iterate is determined by:

xk+1 = xk + αk∆xk

λk+1 = λk + αk∆λk

(4.13)

where the search direction (∆xk,∆λk)t ∈ R
n+1 is obtained by solving the sys-

tem of equations:

(∇2
xxL(xk, λk) ∇xh(xk)

∇xh(xk)t 0

)(
∆xk

∆λk

)
= −

(∇xL(xk, λk)

h(xk) − ε

)
. (4.14)

The positive step-length parameter αk is selected to satisfies conditions (3.14)
where the merit function m(x, λ) is defined as

m(x, λ) =
1

2

(
‖∇xL(x, λ)‖2 + |h(x) − ε|2

)
. (4.15)

According to the discrepancy principle, the iterative procedure (4.13) is termi-
nated as soon as an iterate xk satisfying condition (4.3) has been determined.
Notice that the coefficient matrix of the linear system (4.14) is the same matrix
M(xk, λk) defined by (3.12) which we have already proved to be nonsingular
(proposition 3.2).
The algorithm can be now described as follows.

algorithm 4.2 Second-Order Truncated Lagrangian Method

0. Data. Compute an initial iterate (x0, λ0) ∈ R
n+1; set k = 0.

Repeat

1. Compute the matrix:

M(xk, λk) =

(∇2
xxL(xk, λk) ∇xh(xk)

∇xh(xk)t 0

)
. (4.16)
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2. Computation of the search direction.
Compute the search direction (∆xk,∆λk) by solving the linear system:

M(xk, λk)

(
∆xk

∆λk

)
= −

(∇xL(xk, λk)

h(xk) − ε

)
. (4.17)

3. Line search.

Find the first number αk of the sequence {1, 1
2 , 1

4 , . . . , 1
2i , . . .} satisfying:

i) m(xk + αk∆xk, λk + αk∆λk) (4.18a)

≤ m(xk, λk) + µαk (∆xk,∆λk)
t ∇(x,λ)m(xk, λk)

with µ = 10−4;

ii) λk + αk∆λk > 0; (4.18b)

iii) A(xk + αk∆xk) − b 6= 0. (4.18c)

4. Updates.

Set:

xk+1 = xk + αk∆xk,

λk+1 = λk + αk∆λk.
(4.19)

Set k = k + 1 and return to Step 1.

until ‖Axk − b‖ ≤ ρσ.

4.2.1 Implementation issues

In our implementation we have terminated the iterative procedure (4.13) ac-
cording to the discrepancy principle, i.e. when

i) ‖Axk − b‖ ≤ ρσ (4.20a)

or when one of the following stopping criteria is satisfied:

ii) k ≥ kmax (4.20b)

ii)
∥∥∥
(
∇xL(xk, λk)
h(xk) − ε

)∥∥∥ ≤ τ1

∥∥∥
(
∇xL(x0, λ0)
h(x0) − ε

)∥∥∥ (4.20c)

iii)
∥∥∥αk

(
∆xk

∆λk

)∥∥∥ ≤ τ2 (4.20d)

where ρ > 1 is fixed, kmax is the maximum number of allowed iterations and τ1,
τ2 are given tolerances.
In our implementation, the linear system (4.17) is solved by the GMRES method.
The GMRES iterations are terminated when the relative residual of (4.17) is
smaller then a tolerance τGMRES or after a maximum of maxitGMRES iterations.
In the following, we will refer to the second-order Truncated Lagrangian method
simply as Truncated Lagrangian method.
In what follows this chapter we will discuss some properties of the proposed
Truncated Lagrangian methods.
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4.3 Properties of the Truncated Lagrangian method

For easier presentation we will consider only the second-order Truncated method;
the same results can be applied to the first-order method.
The following assumption is made.

Assumption A7 The perturbation term ε is such that

0 <
√

2ε � ρσ (4.21)

where σ is the error norm and ρ > 1 is fixed.

The following proposition ensures that Algorithm 4.2 with the stopping rule
(4.20a) terminates after a finite number k∗ of iterations.

Proposition 4.1. Assume that Assumption A1–A7 hold and that ‖b‖ > ρσ with

ρ > 1 fixed. Furthermore, assume that the initial iterate x0 of the Truncated

Lagrangian iteration (4.13) is x0 = 0. Then, there exists a finite stopping index

k∗ ∈ R such that

‖Axk∗ − b‖ ≤ ρσ (4.22)

Proof. Because of our assumptions, we have

‖Ax0 − b‖ = ‖b‖ > ρσ (4.23)

and, by virtue of the theorem 3.2, we have that

lim
k→∞

‖Axk − b‖ =
√

2ε < ρσ. (4.24)

Therefore, there exists a finite index k∗ ∈ N such that

‖Axk − b‖ ≤ ρσ, ∀k ≥ k∗. (4.25)

Remark 4.1. Assumptions A1 and A6 ensure that ‖b‖ > σ. Then, for ρ suffi-
ciently small, it is ‖b‖ > ρσ. Therefore, the assumption of Proposition 4.1 is
not restrictive.

Remark 4.2. Proposition 4.1 is still true under the assumption that x0 6= 0 and
‖Ax0 − b‖ > ρσ.

The following proposition characterizes the approximated solution to (1.1)
and the corresponding regularization parameter computed by Truncated La-
grangian method when the regularization functional φ(x) is the Tikhonov func-
tional (1.5).

Proposition 4.2. Assume φ(x) = 1
2‖Lx‖2, L ∈ R

p×n, p ≤ n, be the Tikhonov

regularization functional. Let xk∗ be the approximated solution to (1.1) computed

by the Truncated Lagrangian method with stopping rule (4.20a) and let λk∗ be

the corresponding regularization parameter. Then the pair (xk∗ , λk∗) is a Kuhn–

Tucker pair for the equality constrained minimization problem:

minimize
1

2
‖Lx − xc‖2

subject to
1

2
‖Ax − b‖2 =

1

2
%σ2 (4.26)

where % is a positive parameter and xc ∈ R
m is a vector depending on k∗.
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Proof. By the definition of the stopping index k∗, the residual associated to xk∗

satisfies:
‖Axk∗ − b‖ ≤ ρσ (4.27)

with ρ > 1 fixed; in particular, there exists a positive ς ∈]0, 1[ such that

‖Axk∗ − b‖ = ςρσ (4.28)

and hence
1

2
‖Axk∗ − b‖2 =

1

2
(ςρ)2σ2. (4.29)

Choosing % = (ςρ)2 we have

1

2
‖Axk∗ − b‖2 =

1

2
%σ2. (4.30)

The pair (xk∗ , λk∗) does not exactly satisfy the first equation of (4.5); i.e.

∇xL(xk∗ , λk∗) = ω∗ (4.31)

where ω∗ ∈ R
n is a residual vector. Therefore, by substituting the expression

∇xL(xk∗ , λk∗) = (LtL + λk∗A
tA)xk∗ (4.32)

in the equation (4.31) we have that the pair (xk∗ , λk∗) satisfies the equations:

LtLxk∗ − ω∗ + λk∗(A
tAxk∗ − Atb) = 0,

1

2
‖Axk∗ − b‖2 =

1

2
%σ2.

(4.33)

Equations (4.33) are the first-order necessary optimality conditions for the
equality constrained problem:

minimize xtLtLx − xtω∗

subject to
1

2
‖Ax − b‖2 =

1

2
%σ2 (4.34)

which is equivalent to the following equality constrained problem:

minimize ‖Lx − xc‖2

subject to
1

2
‖Ax − b‖2 =

1

2
%σ2 (4.35)

where xc = 1
2 (Lt)†ω∗ and (Lt)† is the Moore–Penrose generalized inverse of

Lt.
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Chapter 5

Implementation details

In this chapter we describe some aspects of the implementation of the algorithms
of the previous chapters 3 and 4 for Tikhonov and Total Variation functionals.
For easier presentation, throughout this section we omit the index k.
Let us define the function h̃(x) such that:

h̃(x) =





h(x) − σ2

2
, for the Lagrangian Method;

h(x) − ε, for the Truncated Lagrangian Method.

(5.1)

In both the Lagrangian method (Chapter 3.2) and the Truncated Lagrangian
method (Chapter 4.2) we have to solve a linear system

M(x, λ)

(
∆x
∆λ

)
= −

(∇xL(x, λ)

h̃(x)

)
(5.2)

where the coefficient matrix is defined as

M(x, λ) =

(∇2
xxL(x, λ) ∇xh(x)

∇xh(x)t 0

)
(5.3)

and
L(x, λ) = φ(x) + λh̃(x).

5.1 Discrete formulation of the continuous Total
Variation functional

In Total Variation regularization, the regularization functional φ is the dis-
cretization of the continuous Total Variation functional Φ defined as:

Φ(χ) =

∫

Ω

|∇χ(t)|dt, (5.4)

where χ : Ω → R and Ω is a bounded convex region in the d-dimensional space.
In this section, we give a description of the discretization of Φ(χ) by finite
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difference. This discretization is quite standard for Total Variation functional;
the interested reader can find a broader discussion in [13, 12, 50].
Let us consider the two-dimensional case, i.e. χ(t) = χ(u, v) is a function of
Ω ⊂ R

2 −→ R. For simplicity let Ω = (0, 1) × (0, 1). Assume to discretize the
function χ(u, v) on an equispaced grid of nu × nv points (ui, vj) such that:

ui = i∆u, i = 1, . . . , nu,

vj = j∆v, j = 1, . . . , nv,
(5.5)

and let xij denote the value of χ at the grid point (ui, vj), i.e.:

xi,j = χ(ui, uj), i = 1, . . . , nu, j = 1, . . . , nv. (5.6)

For notational simplicity, let us assume nu = nv and let we denote

m = nu = nv, n = m2, h =
1

m
. (5.7)

The gradient of the matrix x ∈ R
m×m at the (i, j)-th entry is defined by means

of the forward difference operator as:

∇xij =

(
x(i+1)j − xij

h
,
xi(j+1) − xij

h

)
, i, j = 1, . . . ,m. (5.8)

The forward differential operator is modified according to Neumann boundary
conditions for boundary pixels. We then obtain the following discretization of
the continuous functional (5.4):

φ(x) = h2
m∑

i,j=1

|∇xij |. (5.9)

To overcome the difficulties due to the non-differentiability of the Euclidean
norm, the functional φ(x) is usually replaced by the slightly modified functional

φβ(x) = h2
m∑

i,j=1

|∇xi,j |β , (5.10)

where

|∇xi,j |β =
√

|∇xi,j |2 + β2. (5.11)

To apply the methods of the previous chapters 3 and 4, we need to compute an
expression for the gradient ∇xφβ(x) and the hessian ∇xxφβ(x).
The gradient of φβ(x) is the matrix ∇xφβ(x) ∈ R

m×m whose (i, j)-th entry is
defined as:

(∇xφβ(x))
i,j

= ∇ ·
(

∇xi,j√
|∇xi,j |2 + β2

)
. (5.12)

The Lagrangian methods of chapters 3 and 4, at each iteration, require to solve
a linear system (5.2) where the matrix x is assumed to be ordered row-wise in a
vector also termed x. We compute the solution of (5.2) by the GMRES method
that requires the computation of the action of the coefficient matrix M(x, λ) on
a vector (p, q)t ∈ R

n+1. We have (see (5.3)):

M(x, λ)

(
p
q

)
=

(
∇2

xxL(x, λ)p + ∇xh(x)q
∇xh(x)tp

)
(5.13)
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where
∇2

xxL(x, λ)p = ∇2
xxφβ(x)p + λAtAp. (5.14)

Thus, instead of determining a formula for the hessian ∇2
xxφβ(x) of the Total

Variation functional, it is sufficient to provide a formula for the computation of
the matrix-vector product ∇2

xxφβ(x)p. Given a matrix p ∈ R
m×m, the discrete

hessian ∇2
xxφβ(x) acting on p is the m×m matrix whose (i, j)-th entry is given

by:

(
∇2

xxφβ(x)p
)
i,j

= ∇·
(

∇pi,j√
|∇xi,j |2 + β2

)
−∇·

(
∇pi,j(∇xi,j)

t

√
|∇i,jx|2 + β2

∇xi,j

)
. (5.15)

The previously defined matrix (5.15) ordered row-wise can be substituted in
expression (5.14) to evaluate the product ∇2

xxL(x, λ)p.
Vogel and Oman [51] proposed to approximate the true hessian ∇2

xxφβ(x) with
the matrix obtained by dropping in (5.15) the higher order term. Therefore the
action of the approximated hessian on a matrix p is defined as:

(
∇2

xxφβ,app(x)p
)
i,j

= ∇ ·
(

∇pi,j√
|∇xi,j |2 + β2

)
(5.16)

where ∇2
xxφβ,app(x) denotes the approximated hessian. In our numerical expe-

riments we have used both the true (5.15) and the approximated (5.16) hessian
of the discrete Total Variation functional.

5.2 Computation of the matrix-vector product
Ay = z when A is a BTTB matrix

Let us consider the case of A a Block Toeplitz with Toeplitz Blocks (BTTB)
matrix. Such a matrix A derives, for example, from the discretization of the
first kind integral equation:

∫

Ω

A(s − t)χ(t)dt + η(x) = ζ(s). (5.17)

This integral equation is used to model the formation process of an image χ(t) :
R

2 → R degraded by a gaussian spatially invariant blurring operator A : R
2 →

R
2 and by gaussian noise η : R

2 → R. The function A is termed as Point Spread
Function (PSF); the function ζ(t) : R

2 → R represents the measured image. The
spatial coordinates t, s ∈ Ω, with Ω a compact subset of R

2. Assume the blurred
image ζ(s) to be measured at m×m points; then, by discretizing the continuous
model (5.17), we obtain the matrix equation model (1.1) where n = m2 and the
vectors x, b ∈ R

n represent the components of the true and the observed image,
respectively, in a row-wise ordering. The coefficient matrix is BTTB; even if A
is a full matrix, it is not necessary to store all its entries and the Fast Fourier
Transform (FFT) can be used to efficiently evaluate the matrix-vector products
involving A.
Let S be a m × m image of the PSF partitioned into four blocks Sij :

S =

(
S11 S12

S21 S22

)
(5.18)
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where S22(1, 1) is the centre of the PSF. Let Se ∈ R
2m×2m be the extension of

S defined as:

Se =




S22 0 S21

0 0 0
S12 0 S11


 . (5.19)

where the null matrix 0 ∈ R
m×m.

Let Y ∈ R
m×m partitioned into four blocks:

Y =

(
Y11 Y12

Y21 Y22

)
(5.20)

and let Ye ∈ R
m×m be the extended array such that:

Ye =




Y22 0 Y21

0 0 0
Y12 0 Y11


 . (5.21)

Let extract be the operator extracting from a 2m × 2m matrix a m × m sub-
matrix made by the elements in the first m rows and columns. Moreover let
reshape represent the operator converting a n = m2 vector in a m × m array
via filling it by columns and let fft2 and ifft2 denote the two-dimensional Dis-
crete FFT (2DFFT) and the two-dimensional Discrete Inverse FFT (2DIFFT),
respectively. Then, the product z := Ay with y = reshape(Y, n, 1), is obtained
as follows:

z = reshape

(
extract

(
ifft2

(
fft2(Se). ∗ fft2(Ye)

))
, n, 1

)
(5.22)

where .∗ is the component-wise product. More details on the computation of
the products involving A can be found in [30].
Therefore, even if the size of linear systems (5.2) arising in image restoration
is large, the matrix vector products can be performed via FFTs at a reduced
computational cost and iterative methods, such as the GMRES method, are
effectively usable for solving such linear systems.

5.3 Solution of the Newton linear system when
A is a BTTB matrix and φ(x) = ‖I‖2

Let us consider the linear system (5.2). We have already observed that the
hessian matrix ∇2

xxL(x, λ) is nonsingular. If it is easily invertible, i.e. its inverse(
∇2

xxL(x, λ)
)−1

can be easily computed, then the solution of the linear system
(5.2) can be obtained by the following explicit formula (§14.1 of [36]):

∆x = −
(
∇2

xxL
)−1(

∇xh∆λ + ∇xL
)
,

∆λ =
(
(∇xh)t∇2

xxL∇xh
)−1(

(∇xh)t(∇2
xxL)−1∇xL − h̃

)
.

(5.23)

Notice that, since ∇xh is a vector of dimension n, then the inversion of the
term (∇xh)t∇2

xxL∇xh is simply the inversion of a scalar. In order to be able
to effectively use formula (5.23), we need an expression for the inverse of the
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hessian ∇2
xxL(x, λ).

Assume that A is a BTTB matrix and the regularization functional is the
Tikhonov functional (1.5) with L equal to the identity I. Then:

∇2
xxL(x, λ) = I + λAtA. (5.24)

Observe that, even if A is BTTB, AtA could not be BTTB. It is possible to
approximate AtA by a BTTB matrix T as described in [43, 44]. Following the
notation of the previous section, the matrix-vector products involving T can be
computed as follows. Let y be a n-dimensional vector and let

T̂ = |fft2(Se)|.̂2 (5.25)

where | · | and .̂ are the component-wise absolute value and squaring of the
2m × 2m matrix Se. Then:

Ty = reshape

(
extract

(
ifft2

(
T̂ . ∗ fft2(Ye)

))
, n, 1

)
(5.26)

where Y = reshape(y,m,m). By substituting T in (5.24), we obtain the follow-
ing approximation of the hessian of the Lagrangian

∇2
xxLapp(x, λ) = I + λT. (5.27)

The approximated hessian ∇2
xxLapp(x, λ) can be explicitly inverted by use of

FTTs. By replacing the true hessian (5.24) with the approximated one (5.27), we
obtain the Modified Lagrangian method and the Modified Truncated Lagrangian
methods where the search direction is computed by solving the modified linear
system (∇2

xxLapp(x, λ) ∇xh(x)

∇xh(x)t 0

)(
∆x

∆λ

)
= −



∇xL(x, λ)

h̃(x)


 (5.28)

via the explicit formula:

∆x = −
(
∇2

xxLapp

)−1(
∇xh∆λ + ∇xL

)
,

∆λ =
(
(∇xh)t∇2

xxLapp∇xh
)−1(

(∇xh)t(∇2
xxL)−1∇xL − h̃

)
.

(5.29)
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Chapter 6

Numerical Results

In the following, for easier notation, we generically refer to all the methods de-
scribed in chapters 3 and 4 as Lagrangian-type methods.
In this section we report the results obtained from several numerical experi-
ments performed in order to evaluate the performance of the Lagrangian-type
methods. In our experiments we have used as regularization functional the
Tikhonov functional and the Total Variation functional. We present three sets
of experiments. The first set (section 6.1) consists of one-dimensional numerical
experiments. The second and the third sets consist of two-dimensional experi-
ments: an application to image deblurring (section 6.2) and some applications
to image denoising (section 6.3). The numerical experiments have been executed
on a Pentium IV PC using Matlab 6.5. In each numerical experiment we have
selected, as initial iterate (x0, λ0) of the considered Lagrangian-type methods,
the vector:

(x0, λ0) = (0, 1) ∈ R
n+1 (6.1)

where 0 is the null vector of R
n. In all the experiments, we have fixed the follow-

ing value for the parameter ρ of the discrepancy principle (criterium (4.20a)):

ρ = 1 + eps (6.2)

where eps is the machine precision.
The values of the tolerances for the stopping criteria are different for each set
of experiments and are indicated in the following.

6.1 One-dimensional test problems

Aim of the one-dimensional experiments is to compare the Lagrangian methods
(chapter 3) and the Truncated Lagrangian methods (chapter 4) with some well-
known regularization methods.
To test the proposed methods when applied to Tikhonov regularization (1.5),
we have considered some one-dimensional test problems from the Regularization
Tools package by P. C. Hansen [33, 32]. This package includes a collection of
test problems which are widely used in the literature.
The considered test problems from [32] are the following: phillips, baart, shaw

and heat. They all come from the discretization of a Fredholm equation of the
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first kind: ∫ b

a

K(s, t)f(t)dt = g(s); (6.3)

the problem is to compute a regularized solution of the linear system (1.1) where
A ∈ R

100×100 comes from the discretization of the kernel K(s, t) on a grid of
100 points. The right-hand side vector b ∈ R

100 is given by:

b = b̃ + η (6.4)

where b̃ ∈ R
100 derives from the discretization of g(s) and η ∈ R

100 is a white
noise vector with noise level:

δ :=
‖η‖
‖b̃‖

= 10−3 (6.5)

for the baart, shaw and heat test problems and δ = 10−2 for the phillips test
problem. For these test problems the exact solution x̃ is known and we can
compute the relative error of the approximated solution. In our experiments,
we have used the identity matrix (L = I) or the discretization of the second order
derivative operator (L = ∇2) as regularization matrix L. For a comparison with
the proposed approach, we have considered the solution obtained by Tikhonov
method with the regularization parameter λ determined by the GCV method,
the L-curve method and heuristically. Besides, we have considered the Con-
jugate Gradient for Least Squares (CGLS) method [6] with iterations stopped
according to the discrepancy principle for a comparison of the Lagrangian-type
methods with a well established iterative regularization method [19, 33, 28]. For
this set of test problems, the selected values of the tolerances of the stopping
criteria (3.8), (3.18), (4.12) and (4.20) of the Lagrangian-type methods are the
following:

kmax = 50, τ1 = 10−4, τ2 = 10−8, τ3 = 10−2,

w = 1010, maxitGMRES = 150, τGMRES = 10−6.

In tables 7.1, 7.2, 7.3 and 7.4 we have presented the results obtained for the
considered test problems. In these tables we have reported the value of the
regularization parameter λ and the relative error of the corresponding solution
xλ obtained by Tikhonov method with GCV criterium (Tikh + GCV), L-curve
criterium (Tikh + L-curve) and with an heuristic criterium for the choice of the
regularization parameter (Tikh + heuristic). In the heuristic criterium, several
experiments have been performed in order to determine a good regularization
parameter. For such computation we have used the codes from [32]. For the
CGLS method, we have reported the relative error of the computed solution and
the number of performed iterations. For the second-order and the first-order
Lagrangian and Truncated Lagrangian methods (L, 1-stL, TL and 1-stTL) we
have indicated the computed value of λ, the relative error of xλ and the number
of inner and outer iterations. In particular, the first-order methods have been
used only to compute an approximation of the regularization parameter: the
parameter λ computed by the first-order methods is substituted in the Tikhonov
unconstrained problem

minimize
x

‖Lx‖2 +
λ

2
‖Ax − b‖2 (6.6)
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to calculate a regularized solution xλ of the original linear system (1.1). There-
fore, in the last two rows of the tables 7.1, 7.2, 7.3 and 7.4, the value of λ is
the value computed by the first-order methods, while the relative error is the
relative error of the solution xλ of the Tikhonov unconstrained problem (6.6).
In the last column of the tables, we have indicated the type of matrix L used
in each experiment. The solutions obtained by all the considered methods are
plotted in figures 7.1, 7.2, 7.3 and 7.4 (continuous line) together with the exact
solutions (dotted line).
From the numerical results shown in the tables and from the plots in the figures,
we have observed that the Lagrangian method and the Truncated Lagrangian
method always give results of very good quality. The Truncated Lagrangian
method has a less computational cost compared with the traditional Lagran-
gian method (except for the baart test problem) and it has a smaller relative
error for the phillips and baart test problems. Obviously, Tikhonov regularization
with heuristically determined regularization parameter always provides solution
of very good quality. On the other hand, the GCV and L-curve criteria are not
always reliable: in some cases they are effective in computing a good value of
λ but in other cases they are unsuccessful. Instead, in each test problem the
Lagrangian-type methods provide at the same time a good approximation of λ
and a regularized solution whose relative error is comparable with the relative
errors of the Tikhonov solution with heuristic criterium. The first-order Lagran-
gian and Truncated Lagrangian methods are not always successful in computing
a good regularization parameter but, if it is the case, they require a really little
amount of computational work.
We remark that even if for three test problems (phillips, shaw and heat) the
CGLS method gives a very good solution with little computational cost, for the
test problem baart it gives a very poor approximation to the true solution. It is
evident that, for such test problem, in order to compute a good solution, it is
necessary to add to the original problem (1.1) the information deriving from the
regularization functional ‖Lx‖2 with L = ∇2. The term ‖Lx‖2 gives additional
information on the regularity of the solution x̃ and this information can not be
recovered by iterative regularization methods such as the CGLS method. On
the other hand, for the test problem shaw, Tikhonov regularization does not
reproduce very well the true solution: even if the approximated solutions by
Tikhonov method (Tikh + GCV, Tikh + L-curve and Tikh + heuristic) have a
smaller relative error, they are not visually satisfactory. Instead, the Lagrangian
methods compute a good approximate solution for all the considered test prob-
lems. From these considerations, we can state that the Truncated Lagrangian
method is an iterative regularization method with a Tikhonov-like prior informa-

tion term. The terminate iteration number k and the regularization parameter
λ are selected according to the discrepancy principle. In some sense therefore,
the proposed truncated method joins the properties of the classic Tikhonov reg-
ularization with those of the regularization by iteration.
For the Total Variation functional, we have tested the proposed approach on
two test problems of function denoising, i.e. A in (1.1) is the identity matrix.
Figure 7.5 shows the noise-free functions (figures 7.5(a) and 7.5(b)) and the
noisy ones (figures 7.5(c) and 7.5(d)) for the considered two test problems that
we have called box and towers, respectively. For this set of test problems, the
selected values of the tolerances of the stopping criteria (3.8), (3.18), (4.12) and
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(4.20) of the Lagrangian-type methods are the following:

kmax = 50, τ1 = 10−1, τ2 = 10−8, τ3 = 10−2,

w = 1, maxitGMRES = 100, τGMRES = 10−2.

The level of the noise is δ = 0.75 for the test problem box and δ = 0.5 for the test
problem towers. For a numerical comparison with the proposed approach, we
have considered the Fixed Point Iteration method of Vogel [51, 52, 50, 15] and
the Newton method [51]. Both the cited methods compute a Total Variation reg-
ularized solution of (1.1) by solving the first-order Euler-Lagrange equations of
the unconstrained minimization problem (1.7), therefore they require a suitable
value of the regularization parameter. In tables 7.5 and 7.6 we have compared
the numerical results for the test problems box and towers obtained with the
following methods: Fixed Point (FP) and Newton (N) methods, Lagrangian
and Truncated Lagrangian methods with exact hessian (5.15) (L, TL) and with
approximated hessian (5.16) (L (app. hess.), TL (app. hess.)) and first-order
Lagrangian and Truncated Lagrangian methods (1-stL, 1-stTL). In these tables
we have reported the relative error of the computed solution xλ, the value of the
corresponding regularization parameter λ and the number of outer and inner
iterations. For the Fixed Point method and the Newton method, the value of
λ has been heuristically determined and the used inner solver is the Conjugate
Gradient method. As in the previous test problem, the first-order Lagrangian
and Truncated Lagrangian methods have been used only to compute an esti-
mate of the regularization parameter λ. The corresponding regularized solution
xλ has been determined by applying the Fixed Point method the unconstrained
problem (1.7) with λ approximated by the first-order methods. Therefore, for
the first-order Lagrangian methods, the number of outer iterations refers to the
number of iterations of the first-order Lagrangian method for providing an es-
timate of λ. The relative error is the error of the solution computed by Fixed
Point method with the computed approximation of λ. In the column of the
inner iterations, we have indicated the number of iterations of the inner solver
of the Fixed Point method and, between braces, the number of outer iterations.
Figures 7.6 and 7.7 show the computed solutions (continuous line) and the exact
solution (dotted line). From the figures we observe that the considered methods
provide reconstructions of different quality. In fact, the Fixed Point and Newton
reconstructions greatly depend on the value of the regularization parameter and
for the box test problem the obtained reconstructions are not visually satisfac-
tory, even if they have a smaller relative error. On the other hand, the solutions
obtained by Lagrangian-type methods are always satisfactory and have relative
errors comparable to the relative errors of the solutions given by Fixed Point
and Newton methods. Besides, from the tables we observe that Lagrangian-
type methods require more computational work but they provide at the same
time both a suitable value of the regularization parameter λ and the regularized
solution xλ.
We conclude this section dedicated to the one-dimensional test problems with a
summarizing comment. The experiments have been performed with the purpose
of evaluating the behavior of the Lagrangian-type methods and compare them
with other well-established methods. For all the considered one-dimensional
test problems, the Lagrangian and Truncated Lagrangian methods give results
of actually good quality that are always comparable with those of the methods
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known in literature. Their computational cost is reasonable considered that,
given an estimate of the variance σ, they provide both the regularization pa-
rameter λ and the approximate solution xλ.

6.2 Image deblurring test problem

In this section, we present the results on an image deblurring test problem con-
sisting in restoring the image of a satellite in space degraded by Gaussian blur
and noise. The image to be restored is a computer simulation of a field exper-
iment showing a satellite as taken from a ground based telescope. The set of
data of this test problem was developed at the US Air Force Phillips Labora-
tory, Laser and Imaging Directorate, Kirtland US Air Force Base, New Mexico
[45, 40], and has been widely used in the literature to test image deblurring
algorithms. The data set is available from:
http://www.mathcs.emory.edu/~nagy/RestoreTools/index.html [39]; it con-
sists of the true and blurred satellite images (figures 7.8(a) and 7.8(b)) of
256×256 pixels. The blurring matrix A is an ill-conditioned 2562×2562 BTTB
matrix and it is implicitly defined by a Point Spread Function. Therefore, the
Fast Fourier Transform can be used for matrix vector multiplications with A
(see section 5.2). For large size problem, such as image restoration problems
where the image to be restored is usually represented by 256 × 256 pixels, the
L-curve and the GCV criteria are practically unusable for determining an es-
timate of λ because of their extremely high computational cost. Therefore, in
large size applications, λ is usually chosen heuristically on the basis of prelimi-
nary experiments and experience. Our goal is to show that, even for large size
applications, Lagrangian-type methods can be actually used for automatic se-
lection of the regularization parameter. In this experiment, we have tested and
compared the Lagrangian method and the Truncated Lagrangian method. As
regularization functional, we have considered both Tikhonov functional (with L
equal to the identity matrix) and Total Variation functional with exact (5.15)
and approximated (5.16) hessian. For this test problem, the selected values of
the tolerances of the stopping criteria (3.18) and (4.20) of the Lagrangian-type
methods are the following:

kmax = 50, τ1 = 10−3, τ2 = 10−8,

w = 1, maxitGMRES = 30, τGMRES = 10−2,

for both Tikhonov and Total Variation functional. For Tikhonov functional, we
have considered two different implementations of the aforementioned methods.
The first one is the “standard” implementation described in section 3.2 while
the second one is the implementation of the Modified Lagrangian method based
on the approximation of the product AtA by a circulant matrix as described in
section 5.3 (in this case w = 1014). In figure 7.8 the reconstructed images are
displayed. Figures 7.8(c), 7.8(e) and 7.8(g) show the images obtained with the
Lagrangian method; figures 7.8(d), 7.8(f) and 7.8(h) depict the reconstructions
given by the Truncated Lagrangian method. Table 7.7 reports the value of the
computed λ, the relative error of xλ and the number of inner and outer iterations
for the considered methods.
From the displayed images and the numerical results reported in the table, it is
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evident that Lagrangian-type methods behave very well on this test problem;
they gives satisfactory reconstructions at a quite low computational cost: only
37 matrix-vector products are required. Notice that the reconstructions by
Tikhonov and Total Variation functionals are surprisingly very similar (figures
7.8(c)- 7.8(d) and 7.8(g)- 7.8(h)).

6.3 Image denoising test problems

In this section we present the results obtained on a set of image denoising
test problems. Aim of this set of test problems is to compare the behaviour
of the Lagrangian and the Truncated Lagrangian methods when applied to
image denoising. For this set of test problems, we have considered the Tikhonov
(L = ∇2) and Total Variation regularization functionals.
For Tikhonov functional, the selected values of the tolerances of the stopping
criteria (3.18) and (4.20) of the Lagrangian-type methods are the following:

kmax = 50, τ1 = 10−1, τ2 = 10−8,

maxitGMRES = 50, τGMRES = 10−2.

For Total Variation functional, the tolerances of the stopping criteria (3.18) are:

kmax = 50, τ1 = 10−1, τ2 = 10−8,

maxitGMRES = 50, τGMRES = 10−2,

while the tolerances of the stopping criteria (4.20) are:

kmax = 50, τ1 = 10−2, τ2 = 10−8,

maxitGMRES = 50, τGMRES = 10−4.

In the first test problem, the exact satellite image of section 6.2 is used. Figure
7.9 depicts the exact, the noisy (δ = 0.5) and the reconstructed images.
In the second test problem, the well-known Lena image is exposed with noise
(δ = 0.09). Figure 7.10 shows the original and noisy images together with
the obtained reconstructions. In the next test problem, a real Magnetic Reso-
nance (MR) image (figure 7.11(a)) is exposed with noise of level δ = 0.2 (figure
7.11(b)). The reconstructions are displayed in figure 7.11. The last test problem
concerns a blocky image degraded by noise (δ = 0.12). This image is available
at the url: http://www.math.uib.no/~mariusl/. The original, the noisy and
the reconstructed images are shown in figure 7.12. Tables 7.8, 7.9, 7.10 and 7.11
show the relative error of the approximated solution xλ, the computed value
of the regularization parameter λ and the number of the performed iterations
for these four test problems. As expected, the Total Variation functional is
more suited for image denoising than Tikhonov functional. In fact, from the
figures and the relative error values shown in the tables, it is evident that the
Total Variation functional performs better than Tikhonov functional in remov-
ing noise from the images; the images obtained by Tikhonov regularization have
a higher relative error and exhibit the presence of noise. Besides, the images
obtained with exact and approximated hessian of the Total Variation functional
are comparable in quality and computational cost.
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As far as concerns the performance of the proposed Lagrangian-type methods,
we have noticed that for this set of test problems the Lagrangian method and
the new Truncated Lagrangian method perform differently.
For the satellite image, the Truncated Lagrangian method does not completely
filter out the noise but it conserves all the details of the image.
The Lena and the MR images have many regions with gradual image variation
and therefore they are not well suited for Total Variation regularization. As
expected, the Total Variation functional transforms smooth regions into piece-
wise constant regions but the so called staircase effect is more evident in the
images reconstructed by the Lagrangian method. Tikhonov functional does not
completely remove the noise and tends to blur the images, however the images
reconstructed by the Truncated Lagrangian method are less blurred than those
obtained by the Lagrangian method.
Finally, for the blocky image, the images reconstructed by the two methods are
visually very similar but the reconstructions given by the Truncated Lagrangian
method have a smaller relative error (for the Total Variation functional).
From the reported results, it is evident that the proposed Lagrangian-type meth-
ods are efficient and effective when applied to image denoising test problems.
On the whole, the considered methods have a contained computational cost: on
average, they require no more than 150 matrix-vector products to provide a good
denoised image and the corresponding regularization parameter. In particular,
the new Truncated Lagrangian method filters out the noise very well and, at
the same time, the new method is able to retain the fine details of the images as
well as to preserve its smooth regions. It is well-known that both the Total Vari-
ation and the Tikhonov functionals have some drawbacks: the first one suffers
from a staircase effect in regions with gradual image variation, while the sec-
ond one blurs the details of the images. The results show that such defects are
less evident in the images reconstructed by the Truncated Lagrangian method:
the images are less flat or less blurred if obtained by the Truncated Lagrangian
method rather than the Lagrangian method. Furthermore, the computational
cost of the Truncated Lagrangian method is considerably smaller than those of
the classic Lagrangian method. Therefore, the proposed Truncated Lagrangian
method appears to be a promising technique for image denoising.
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Chapter 7

Conclusions

In this work, we have considered the noise constrained formulation of the prob-
lem of the regularization of discrete ill-posed linear systems. We have analyzed
the noise constrained regularization problem from a theoretical point of view
and we have characterized its solution. We have analyzed the behavior of the
Lagrangian method when applied to the noise constrained regularization prob-
lem. Moreover, we have introduced a novel regularization technique based on
truncated iterations of the Lagrangian method. The numerous performed ex-
periments have shown that the considered methods are effective and efficient in
computing both a regularized solution of the linear system and the correspond-
ing regularization parameter.
The analyzed Lagrangian-type methods require the error norm to be known. In
our future work we intend to investigate the use of the L-curve criterium for
an a-posteriori selection of the terminate index of the Truncated Lagrangian
iterations.
Finally, we remark that the Lagrangian-type methods do not require neither
the objective functional φ(x) nor the constraint h(x) to be linear. Therefore,
the proposed regularization approach based on iterations of Lagrangian-type
methods is actually attractive for nonlinear regularization.
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Method Rel. Error λ outer it. inner it. L
Tikh + GCV 4.6218e-002 6.9079e+001 - - I

Tikh + L-curve 1.0841e-001 2.3731e+002 - - I
Tikh + heuristic 2.8913e-002 2.0000e+001 - - I

CGLS 2.6626e-002 - 5 - -
L 2.9282e-002 2.2757e+001 13 144 I

TL 2.8318e-002 2.3920e+001 9 91 I
1st-L 3.1604e-002 8.7457e+000 4 0 I

1st-TL 3.1603e-002 8.7467e+000 4 0 I

Table 7.1: Test problem: phillips

Method Rel. Error λ outer it. inner it. L
Tikh GCV 3.6452e-002 4.2810e-001 - - ∇2

Tikh + L-curve 3.5122e-002 3.1871e-001 - - ∇2

Tikh + heuristic 3.3225e-002 1.0000e-001 - - ∇2

CGLS 1.6602e-001 - 3 - -
L 5.7800e-002 7.8523e-003 7 695 ∇2

TL 3.2199e-002 7.9387e-002 14 1402 ∇2

1st-L 4.6671e-002 1.6604e+000 5 - ∇2

1st-TL 4.6671e-002 1.6604e+000 5 - ∇2

Table 7.2: Test problem: baart

Method Rel. Error λ outer it. inner it. L
Tikh + GCV 3.8349e-002 5.0772e+004 - - I

Tikh + L-curve 4.1591e-002 1.2939e+005 - - I
Tikh + heuristic 3.7763e-002 6.6667e+004 - - I

CGLS 4.7917e-002 - 8 - -
L 4.3629e-002 1.3208e+004 22 182 I

TL 4.5340e-002 7.0868e+003 18 140 I
1st-L 1.6595e-001 3.5276e+001 8 - I

1st-TL 1.6595e-001 3.5276e+001 8 - I

Table 7.3: Test problem: shaw

Method Rel. Error λ outer it. inner it. L
Tikh + GCV 5.1613e-002 1.6777e+006 - - I

Tikh + L-curve 2.5826e-001 2.8474e+007 - - I
Tikh + heuristic 4.0180e-002 6.6667e+005 - - I

CGLS 4.5846e-002 - 21 - -
L 5.6880e-002 1.6934e+005 21 446 I

TL 7.0751e-002 9.8693e+004 18 341 I
1st-L 9.6490e-001 1.1095e+000 2 - I

1st-TL 9.6490e-001 1.1095e+000 2 - I

Table 7.4: Test problem: heat
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Method Rel. Error λ outer it. inner it.
FP 8.1876e-002 1.0000e+002 36 973
N 8.3591e-002 1.0000e+002 86 5153
L 9.2849e-002 9.9545e+001 23 2300

TL 8.3654e-002 9.7977e+001 26 2563
L (app. hess.) 7.8005e-002 9.9368e+001 22 2200

TL (app. hess.) 8.3070e-002 9.7596e+001 12 1200
1st-L 8.2771e-002 1.0000e+002 41 769 (24 outer it.)

1st-TL 8.2754e-002 1.0001e+002 42 764 (24 outer it.)

Table 7.5: Test problem: box

Method Rel. Error λ outer it. inner it.
FP 1.1656e-001 1.0000e+002 29 815
N 1.1392e-001 1.0000e+002 74 4081
L 1.1855e-001 9.9359e+001 22 2165

TL 1.1850e-001 9.8638e+001 24 2400
L (app. hess.) 1.2221e-001 9.9128e+001 25 2500

TL (app. hess.) 1.2154e-001 9.7574e+001 30 3000
1st-L 1.1610e-001 1.0000e+002 50 658 (23 outer it.)

1st-TL 1.1568e-001 1.0001e+002 50 660 (23 outer it.)

Table 7.6: Tets problem: towers

Method Rel. Error λ outer it. inner it. reg.
L 3.6764e-001 6.5536e+004 2 37 Tikh

TL 3.6764e-001 6.5536e+004 2 37 Tikh
L (fft) 4.1395e-001 8.0689e+002 13 - Tikh

TL (fft) 3.7907e-001 1.8922e+003 9 - Tikh
L 3.6730e-001 6.5536e+004 2 37 TV

TL 3.6730e-001 6.5536e+004 2 37 TV
L (app. hess.) 3.6730e-001 6.5536e+004 2 37 TV

TL (app. hess.) 3.6730e-001 6.5536e+004 2 37 TV

Table 7.7: Test problem: deblurring a satellite image

Method Rel. Error λ outer it. inner it. reg.
L 2.3898e-001 6.6269e-001 6 99 Tikh

TL 2.6711e-001 9.4191e-001 2 19 Tikh
L 1.6666e-001 4.3674e-002 11 147 TV

TL 2.6879e-001 4.5496e-001 2 19 TV
L (app. hess.) 1.6903e-001 4.4778e-002 10 121 TV

TL (app. hess.) 2.4949e-001 4.8883e-001 2 19 TV

Table 7.8: Test problem: denoising a satellite image
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Method Rel. Error λ outer it. inner it. reg.
L 6.5752e-002 3.1413e+000 8 98 Tikh

TL 6.6226e-002 6.2345e+000 8 97 Tikh
L 5.3317e-002 9.5027e-002 12 118 TV

TL 5.3088e-002 1.2105e-001 4 48 TV
L (app. hess.) 5.3160e-002 9.4114e-002 8 55 TV

TL (app. hess.) 5.3450e-002 1.2368e-001 4 48 TV

Table 7.9: Test problem: denoising the Lena image

Method Rel. Error λ outer it. inner it. reg.
L 1.3437e-001 2.2992e+000 8 120 Tikh

TL 1.2767e-001 6.2838e+000 6 76 Tikh
L 1.2179e-001 1.0308e-001 12 139 TV

TL 1.2232e-001 2.4368e-001 3 33 TV
L (app. hess.) 1.2181e-001 1.0255e-001 7 56 TV

TL (app. hess.) 1.2024e-001 2.5827e-001 3 33 TV

Table 7.10: Test problem: denoising a MR image

Method Rel. Error λ outer it. inner it. reg.
L 1.1170e-001 9.0030e+000 8 85 Tikh

TL 1.1534e-001 1.2004e+001 7 77 Tikh
L 8.1718e-002 1.4433e-001 11 95 TV

TL 7.0494e-002 2.2867e-001 4 53 TV
L (app. hess.) 8.1966e-002 1.4526e-001 8 57 TV

TL (app. hess.) 7.2142e-002 2.5129e-001 4 52 TV

Table 7.11: Test problem: denoising a blocky image

43



−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Tikhonov with GCV

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Tikhonov with L-curve

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) “Heurisytic” Tikhonov

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) CGLS

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) Lagrangian method

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(f) Truncated Lagrangian method

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(g) First-order Lagrangian method

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(h) First-order Truncated Lagrangian
method

Figure 7.1: Test problem: phillips. Computed solutions (continuous line) and
exact solution (dotted line).
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Figure 7.2: Test problem: baart. Computed solutions (continuous line) and
exact solution (dotted line).
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Figure 7.3: Test problem: shaw. Computed solutions (continuous line) and
exact solution (dotted line).
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Figure 7.4: Test problem: heat. Computed solutions (continuous line) and exact
solution (dotted line).

47



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Test problem: box

0

0.5

1

1.5

(b) Test problem: towers

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

(c) Test problem: box

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(d) Test problem: towers
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Figure 7.6: Test problem: box. Computed solutions (continuous line) and exact
solution (dotted line).
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Figure 7.7: Test problem: towers. Computed solutions (continuous line) and
exact solution (dotted line).
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(a) Exact image (b) Noisy and blurred image

(c) Tikhonov regularization: Lagran-
gian method

(d) Tikhonov regularization: Trun-
cated Lagrangian method

(e) Tikhonov regularization: Lagran-
gian method (circulant matrix approxi-
mation)

(f) Tikhonov regularization: Trun-
cated Lagrangian method (circulant
matrix approximation)

(g) Total Variation regularization: La-
grangian method

(h) Total Variation regularization:
Truncated Lagrangian method

Figure 7.8: Test problem: deblurring a satellite image.
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(a) Exact image (b) Noisy image

(c) Tikhonov regularization: Lagran-
gian method

(d) Tikhonov regularization: Trun-
cated Lagrangian method

(e) Total Variation regularization: La-
grangian method

(f) Total Variation regularization:
Truncated Lagrangian method

(g) Total Variation regularization: La-
grangian method (approximated hes-
sian)

(h) Total Variation regularization:
Truncated Lagrangian method (ap-
proximated hessian)

Figure 7.9: Test problem: denoising a satellite image.
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(a) Exact image (b) Noisy image

(c) Tikhonov regularization: Lagran-
gian method

(d) Tikhonov regularization: Trun-
cated Lagrangian method

(e) Total Variation regularization: La-
grangian method

(f) Total Variation regularization:
Truncated Lagrangian method

(g) Total Variation regularization: La-
grangian method (approximated hes-
sian)

(h) Total Variation regularization:
Truncated Lagrangian method (ap-
proximated hessian)

Figure 7.10: Test problem: denoising the Lena image.
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(a) Exact image (b) Noisy image

(c) Tikhonov regularization: Lagran-
gian method

(d) Tikhonov regularization: Trun-
cated Lagrangian method

(e) Total Variation regularization: La-
grangian method

(f) Total Variation regularization:
Truncated Lagrangian method

(g) Total Variation regularization: La-
grangian method (approximated hes-
sian)

(h) Total Variation regularization:
Truncated Lagrangian method (ap-
proximated hessian)

Figure 7.11: Test problem: denoising a MR image.
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(a) Exact image (b) Noisy image

(c) Tikhonov regularization: Lagran-
gian method

(d) Tikhonov regularization: Trun-
cated Lagrangian method

(e) Total variation regularization: La-
grangian method

(f) Total Variation regularization:
Truncated Lagrangian method

(g) Total Variation regularization: La-
grangian method (approximated hes-
sian)

(h) Total Variation regularization:
Truncated Lagrangian method (ap-
proximated hessian)

Figure 7.12: Test problem: denoising a blocky image.
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