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Abstract

We investigate a dynamic oligopoly game with price adjustments. We show

that the subgame perfect equilibria are characterised by larger output and

lower price levels then the open-loop solution. The individual (and industry)

output at the closed-loop equilibrium is larger than its counterpart at the

feedback equilibrium. Therefore, …rms prefer the open-loop equilibrium to

the feedback equilibrium, and the latter to the closed-loop equilibrium. The

opposite applies to consumers.

JEL Classi…cation: D43, D92, L13
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1 Introduction

The aim of this note consists in assessing comparatively the properties of

open-loop, feedback and closed-loop memoryless equilibria in a dynamic

oligopoly model with price dynamics …rst introduced by Simaan and Takayama

(1978) and then extended by Fershtman and Kamien (1987).

Broadly speaking, the main di¤erence between the open-loop equilibrium

on one side and the feedback and closed-loop equilibria on the other, is that

the former does not take into account strategic interaction between players

through the evolution of state variables over time and the associated adjust-

ment in controls. Under the open-loop rule, players choose their respective

plans at the initial date and commit to them forever. Therefore, in general,

open-loop equilibria are not subgame perfect, in that they are only weakly

time consistent because players make their action ‘by the clock’ only.1

A further distinction can be made between the closed-loop equilibrium

and the feedback equilibrium, which are both strongly time consistent and

therefore subgame perfect because, at any date ¿ , players decide ‘by the

stock’ of all state variables. However, while the closed-loop memoryless equi-

librium takes into account the initial and current levels of all state variables,2

1For an exhaustive discussion of this issue, see ch. 6 in Başar and Olsder (1982, 19952).

However, there are classes of games where open-loop equilibria are subgame perfect. See

Clemhout and Wan (1974); Reinganum (1982); Mehlmann and Willing (1983); Dockner,

Feichtinger and Jørgensen (1985); Fershtman (1987). For an overview, see Mehlmann

(1988); Fershtman, Kamien and Muller (1992).
2The information set associated with the closed-loop decision rule can take several

forms. One consists in the level of the state variable(s) at the intial and current dates.

This is usually de…ned as the closed-loop memoryless decision rule. Another consists in

the whole path of state variable(s) from the initial date to the present time. This is de…ned

as closed-loop perfect state information rule.
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the feedback equilibrium accounts for the accumulated stock of each state

variable at the current date. If one player decide according to the feedback

rule, then it is optimal for the others to do so as well. Hence, the feedback

equilibrium is a closed-loop equilibrium, while the opposite is not true in

general.3

We extend the analysis of Fershtman and Kamien (1987) to investigate

the open-loop, closed-loop memoryless and feedback equilibria of an industry

with more than two players. Then, we characterise the closed-loop equilib-

rium for this market, to show the following results: (i) both subgame perfect

equilibria involve a larger production and a lower price as compared to the

open-loop solution; (ii) the steady state price and output levels are, respec-

tively, higher and lower in the closed-loop equilibrium than in the feedback

equilibrium. Property (i) can be reformulated by saying that, if …rms are

unable to initially commit to a given output plan for the whole time horizon,

then subgame perfection entails overproduction (for analogous results see

Spence, 1979; and Reynolds, 1987). Property (ii) suggests that the feedback

rule allows …rms to reduce overproduction as compared to the closed-loop

rule, precisely because according to the feedback rule they look exclusively

at the current level of the state variable.

The remainder of the paper is organised as follows. The model is laid

out in section 2. Sections 3 and 4, which illustrate the open-loop and the

feedback equilibria, are simply the extension of Fershtman and Kamien’s

analysis to the oligopoly case. The closed-loop equilibrium is analysed in

section 5. A comparative assessment of steady states is given in section 6.

Section 7 concludes the paper.

3For an exhaustive exposition of the di¤erence among these equilibrium solutions, see

Başar and Olsder (1982, pp. 318-327, and chapter 6, in particular Proposition 6.1).
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2 The setup

Probably the simplest way to think about the dynamics of market inter-

action consists in assuming that prices evolve over time according to some

acceptable rules. That is, it consists in taking price as the state variable.

This is the problem analysed in Simaan and Takayama (1978) and Fersht-

man and Kamien (1987).4 Here, we present a generalisation of Fershtman

and Kamien’s setup to the case of N …rms.5

Consider an oligopoly where, at any t 2 [0;1); N …rms produce quan-

tities qi(t); i 2 f1; 2; :::Ng; of the same homogeneous good at a total cost

Ci(t) = cqi(t)¡
1

2
[qi(t)]

2 ; c > 0:

In each period, market demand determines the price level bp(t) = A ¡
PN
i=1 qi(t): In general, however, bp(t); will di¤er from the current price level

p(t); since there is price stickness, and price moves according to the following

equation:

dp(t)

dt
´ :
p (t) = s fbp(t)¡ p(t)g (1)

Notice that the dynamics described by (1) establishes that price adjusts

proportionately to the di¤erence between the price level given by the inverse

demand function and the current price level, the speed of adjustment being

determined by the constant s;with 0 < s < 1.This amounts to saying tha

the price mechanism is sticky, that is, …rms face menu costs in adjusting

4See also Mehlmann (1988, ch. 5) for an exhaustive exposition of both contributions,

and Fershtman and Kamien (1990), and Tsutsui and Mino (1990) for further results on

the same model, in the case of a …nite horizon.
5An interesting application of this model to the analysis of adverting strategies is in

Piga (2000). Trade policy issues are investigated by Dockner and Haugh (1990, 1991).
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their price to the demand conditions deriving from consumers’ preferences:

they may not (and, in general, the will not) choose outputs so that the price

reaches immediately bp(t):

The instantaneous pro…t function of …rm i is:

¼i(t) = qi(t) ¢
·
p(t)¡ c¡ 1

2
qi(t)

¸
: (2)

Hence, the problem of …rm i is:

max
qi(t)

Ji =
Z 1

0
e¡½t qi(t) ¢

·
p(t)¡ c¡ 1

2
qi(t)

¸
dt (3)

subject to (1) and to the conditions p(0) = p0; and p(t) ¸ 0 for all t 2 [0;1] :
We solve the problem by considering -in turn- the open-loop solution, the

feedback solution and the closed-loop memoryless solution.

3 The open-loop solution

Here we look for the open-loop Nash equilibrium, i.e., we examine a situation

where …rms commit to a production plan at t = 0 and stick to that plan

forever.

The Hamiltonian function is:

Hi(t) = e
¡½t ¢

(
qi(t) ¢

·
p(t)¡ c¡ 1

2
qi(t)

¸
+ ¸i(t)s

"
A¡

NX

i=1

qi(t)¡ p(t)
#)
;

(4)

where ¸i(t) = ¹i(t)e
½t; and ¹i(t) is the co-state variable associated to p(t):

The supplementary variable ¸i(t) is introduced to ease calculations as well as

the remainder of the exposition. In the remainder of the paper, superscript

OL indicates the open-loop equilibrium level of a variable. The outcome of

the open-loop game is summarised by:
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Proposition 1 At the open-loop Nash equilibrium, the steady state levels of

the price and the individual output are:

pOL = A¡NqOL ;
qOL =

(A¡ c)(s+ ½)
(s+ ½)(1 +N) + s

:

The pair
n
pOL ; qOL

o
is a saddle point.

Proof. Consider the …rst order condition (FOC) w.r.t. qi(t); calculated

using (4):
@Hi(t)

@qi(t)
= p(t)¡ c¡ qi(t)¡ ¸i(t)s = 0 : (5)

This yields the optimal open-loop output for …rm i; as follows:6

qi(t) =

8
><
>:
p(t)¡ c¡ ¸i(t)s if p(t) > c+ ¸i(t)s

0 otherwise.
(6)

The remaining conditions for optimum are:

¡@Hi(t)

@p(t)
= ¡qi(t) + ¸i(t)s =

@¹i(t)

@t
) @¸i(t)

@t
= ¸i(t)(s+ ½) ¡ qi(t) ; (7)

lim
t!1

¹i(t) ¢ p(t) = 0 : (8)

Di¤erentiating (6) and using (7), we obtain:

dqi(t)

dt
´ :
q (t) =

dp(t)

dt
¡ s [(½+ s)¸i(t)¡ qi(t)] : (9)

Now, substitute into (9) (i) dp=dt = s fbp(t)¡ p(t)g ; with bp(t) = A¡Nq(t);
where a symmetry assumption is introduced for individual …rm’s output; and

(ii) s¸(t) = p(t)¡ c¡ q(t) from (6). This yields:

dq(t)

dt
= sA+ (s+ ½)c¡ (2s+ ½)p(t) + [s(1¡N ) + s+ ½] q(t) (10)

6In the remainder, we consider the positive solution. Obviously, the derivation of the

steady state entails non-negativity constraints on price and quantity, that we assume to

be satis…ed.
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Note that dq(t)=dt = 0 is a linear relationship between p(t) and q(t): This, to-

gether with dp(t)=dt = 0; also a linear function, fully characterise the steady

state of the system. The dynamic system can be immediately rewritten in

matrix form as follows:2
66664

¢
p

¢
q

3
77775
=

2
64

¡s ¡sN
¡(2s+ ½) s+ ½ ¡ s(N ¡ 1)

3
75

2
66664

p

q

3
77775
+

2
66664

sA

sA+ (s+ ½)c

3
77775

(11)

As the determinant of the above 2 £ 2 matrix is negative, the equilibrium

point is a saddle, with

qOL =
(A¡ c)(s+ ½)

(s+ ½)(1 +N ) + s
; pOL = A¡NqOL : (12)

This concludes the proof.

As in the duopoly case described by Fershtman and Kamien (1987 pp.

1159-61), also here the static Cournot-Nash equilibrium price and output
n
pCN ; qCN

o
obtain from (12), in the limit, when ½ ! 0 or s ! 1: For all

positive levels of the discount rate and for any …nite speed of adjustment, the

static Cournot price (output) is higher (lower) than the open-loop equilibrium

price (output).

4 The feedback solution

In this section, we extend the analysis of the feedback solution investigated

by Fershtman and Kamien (1987) to the case of N …rms. Using Bellman’s

value function approach, the feedback solution must satisfy the following set

of Hamilton-Bellman-Jacobi equations (see Starr and Ho, 1989):

½Vi (p (t)) = max
qi(t)

(
qi(t) ¢

·
p(t) ¡ c¡ 1

2
qi(t)

¸
+
@Vi (p(t))

@p(t)
s

"
A¡

NX

i=1

qi(t)¡ p(t)
#)

(13)
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where Vi (p (t)) is the value function for …rm i: Hereinafter, the indication of

time will be dropped to ease the exposition. Given the linear-quadratic form

of the maximand, we follow Fershtman and Kamien (1987), and propose the

quadratic value function:

Vi (p) =
kip

2

2
+ hip+ gi (14)

so that
@Vi (p)

@p
= kip + hi : (15)

Henceforth, the superscript F stands for feedback. The outcome of the

game is summarised by:

Proposition 2 At the feedback Nash equilibrium, the steady state levels of

the price and the individual output are:

pF =
A+N

³
c ¡ hs

´

N
³
1¡ ks

´
+ 1

;

qF =

8
>><
>>:

pF
³
1¡ sk

´
+ hs¡ c if pF >

c¡ hs
1¡ sk

0 otherwise
;

where

h =
c¡ s (a¡Nc) k

½ + s
³
ks¡ 2Nks+N + 1

´ ;

k =
½ + 2s (N + 1)¡

q
½2 + 4s (½+N½ + 2s+ sN2)

2 (2N ¡ 1) s2 :

Proof. Taking the FOC w.r.t.qi; we obtain:

qFi = p¡ c¡ s@Vi (p)
@p

= p¡ c ¡ s (kip + hi) ; (16)
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where we invoke the symmetry conditions gi = g; ki = k and hi = h; so that

qi = q for all i: On the basis of (16) and (1), we …nd:

pF =
A+N (c¡ hs)
N (1¡ ks) + 1 ; (17)

where h and k can be calculated by the following procedure. We can rewrite

(13) as:

¼V (p) ¡max
(
¼ +

@V (p)

@p
s
dp

dt

)
= 0 ; (18)

that is:

¯1p
2 + ¯2p+ ¯3 = 0 ; (19)

where

¯1 =
k [½+ s (2 + 2N + ks¡ 2ksN)]¡ 1

2
; (20)

¯2 = c¡ h(½+ s+ sN )¡ ks (A+Nc+ hs¡ 2hsN) ; (21)

¯3 =
2g½¡ c2 + hs (2A+ 2Nc+ hs¡ 2hsN )

2
: (22)

Expression (19) is satis…ed if expressions (20), (21) and (22), i.e., coe¢cients

¯1; ¯2 and ¯3 are simultaneously zero. This makes up a system of three

equations in three unknowns, fg ; h ; kg ; with the following solutions:

g =
c2 ¡ hs (2A+ 2Nc+ hs¡ 2hsN )

2½
; (23)

h =
c¡ s (a¡Nc) k

½+ s
³
ks¡ 2Nks+N + 1

´ ´ h ; (24)

k =
½+ 2s (N + 1)§

q
½2 + 4s (½+N½+ 2s+ sN2)

2 (2N ¡ 1) s2 : (25)

We choose the smaller solution for k in (25), which yields - when N = 2 - the

same expression as in Fershtman and Kamien (1987, Theorem 2, p. 1157).

This establishes that

k =
½+ 2s (N + 1)¡

q
½2 + 4s (½+N½+ 2s+ sN2)

2 (2N ¡ 1) s2 : (26)
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This concludes the proof.

5 The closed-loop solution

The closed-loop memoryless solution remains to investigate. We use su-

perscript CL to denote the closed-loop equilibrium levels of the relevant

variables. The Hamiltonian of …rm i is given by (4), and the outcome is

summarised by the following:

Proposition 3 At the closed-loop Nash equilibrium, the steady state levels

of the price and the individual output are:

pCL = A¡NqCL ;
qCL =

(A¡ c) (½+ sN )
(N + 1) ½+ (N2 +N + 1) s

:

The pair
n
pCL ; qCL

o
is a saddle point.

Proof. The …rst order condition w.r.t. qi; calculated using (4), obviously

coincide with condition (5) calculated in the open-loop case:

@Hi

@qi
= p¡ c¡ qi ¡ ¸is = 0 : (27)

This yields the closed-loop output for …rm i; as follows (again, in the remain-

der we shall consider only the positive solution):

qCLi =

8
><
>:
p¡ c¡ ¸is if p > c+ ¸is

0 otherwise.
(28)

The remaining conditions for optimum are:

¡@Hi

@p
¡

X

j 6=i

@Hi

@qj

@qCLj
@p

=
@¸i
@t
+ ½¸i (29)
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Now consider that
@Hi

@qj
= ¡¸js ;

@qCLj
@p

= 1 : (30)

Therefore:
X

j 6=i

@Hi

@qj

@qCLj
@p

= ¡
X

j 6=i
¸js (31)

is the additional term in the co-state equation, characterising the strategic

interaction among …rms, which is not considered by de…nition in the open-

loop solution (see, e.g., Driskill and McCa¤erty, 1989). Equation (29) may

be rewritten as: ¡qi + ¸is+
P
j 6=i ¸js =

@¸i
@t
+ ½¸i ;and, invoking symmetry,

one obtains:
@¸

@t
= ¡q + ¸ (½+Ns) : (32)

Then we have the transversality condition:

lim
t!1

¹i ¢ p = 0 : (33)

Di¤erentiating (28) w.r.t. time and using (32), we obtain:

dqi
dt
=
dp

dt
¡ s [(½ + w)¸i ¡ qi] : (34)

Now, substitute into (34) the expressions (i) dp=dt = s fbp¡ pg ; with bp(t) =

A ¡ Nq; where a symmetry assumption is introduced for individual …rm’s

output; and (ii) s¸ = p¡ c¡ q which obtains from (27). This yields:

dq

dt
= ½ (c¡ p + q) + s [A¡ p+ q ¡N (p¡ c)] (35)

As in the open-loop case, dq=dt = 0 is a linear relationship between p and q:

This, together with dp=dt = 0; which is also a linear function, yields

pCL = A¡ N (A¡ c) (½+ sN )
(N + 1) ½+ (N2 +N + 1) s

; (36)

qCL =
(A¡ c) (½ + sN)

(N + 1) ½+ (N 2 +N + 1) s
:
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as the unique steady state of the system.7 The dynamic system can be

immediately rewritten in matrix form to verify that the pair
n
pCL ; qCL

o
is

a saddle point. The proof of this is omitted for the sake of brevity.

6 Comparative assessment of steady states

Now we can compare the steady state levels of price and individual output

in the three cases analysed above, as well as in the static case. The following

result emerges.

Proposition 4 For all s 2 [0 ; 1] and all N 2 [1 ; 1) ;

qCL > qF > qOL > qCN ;

pCN > pOL > pF > pCL :

The proof is straightforward. In words, con…ning our attention to the

equilibria of the dynamic setting, all subgame perfect equilibria entails a

higher (individual and industry) output and a lower market price than the

open-loop equilibrium (which is not subgame perfect). Therefore, Proposi-

tion 4 produces a relevant Corollary:

Corollary 1 From the …rms’ viewpoint, the open-loop equilibrium is pre-

ferred to both the feedback equilibrium and the closed-loop memoryless equi-

librium. On the contrary, the closed-loop memoryless equilibrium is socially

preferred to the feedback and open-loop equilibria.

Fershtman and Kamien (1987, pp. 1159-61) also investigate the proper-

ties of the limit games, where the speed of adjustment s tends to in…nity or

7Of course by “unique” we mean the only steady state with positive price and outputs.
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½ becomes nil. They establish that, in such cases, the open-loop equilibrium

coincides with the Nash equilibrium of the static game. However, consider-

ing an in…nitely high speed of price adjustment seems more a mathematical

curiosum than a theoretically relevant case, in that whenever s > 1; the in-

stantaneous change in price is larger than the error bp(t)¡ p(t): If we con…ne

to s 2 [0 ; 1] ; we obtain the following Corollary to Proposition 1:

Corollary 2 When s = 1;

qOL =
(A¡ c) (1 + ½)

(N + 1) (1 + ½) + 1

which is larger than the static Cournot-Nash output

qCN =
A¡ c
N + 2

for all N ¸ 1 and all ½ > 0:

In the limit, as ½ ! 0; qOL ! qCN for all admissible N and s:

Finally, one can check what happens to the steady state levels of output

as N tends to in…nity, to verify the following Corollary to Proposition 4:

Corollary 3 As the number of …rms becomes in…nitely large, optimal indi-

vidual output tends to zero indipendently of the solution concept.

Therefore, as the market becomes perfectly competitive, open-loop, closed-

loop and feedback solutions coincide with the static Cournot-Nash solution,

which is itself reproducing the perfectly competitive outcome.

7 Concluding remarks

We have investigated the properties of a dynamic oligopoly game with sticky

prices. The foregoing analysis shows that subgame perfection always en-

tails larger output and lower price levels in steady state, as compared to

12



the weakly time consistent open-loop solution. In particular, the individual

and industry output associated to the closed-loop equilibrium is larger than

its counterpart at the feedback equilibrium. Two further (and related) re-

marks are in order. First, the foregoing analysis highlights that the larger

the relevant information set, the larger the overproduction compared to the

(commitment) open-loop equilibrium. The second is that among the sub-

game perfect solution concepts, the feedback rule appears to be able to min-

imise overproduction. Accordingly, while …rms would prefer the open-loop

equilibrium to the feedback equilibrium, and the latter to the closed-loop

equilibrium, the opposite holds from the social standpoint.
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