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Abstract.

In this paper we propose a ssimple approach to asset valuation in terms
of two characteristics, expected value and expected variability, and
their distinct margina contributions to the value of the market portfolio.
The result is shown to correspond to Sharpe’s CAPM. We then show
that pricing in terms of characteristics (or CAPM) applies to any asset
and in particular to option vauation. A pricing formula corresponding
to Black and Scholes' no-arbitrage option pricing is obtained under the
assumption of normal asset price distributions.



0. Introduction

Capital asset pricing model and option pricing theory: two of the best
known and most important results of finance concern the pricing of
assets. The first modd is attributed to William Sharpe (1964) even if
Tobin (1958), Treynor (1965), Lintner (1965) and Mossin (1966)
reached smilar results in the same years and al of them are in debt of
Markowitz (1952, 1959) portfolio modd.

Option pricing theory, instead, stems from the semina paper of Black
and Scholes (1973), in which an arbitrage argument is developed to
solve in anew manner the old problem of pricing option contracts'.

In both cases pricing is the relevant point at issue and two questions
cannot be avoided. 1) In microeconomic theory, prices are margina
values (margind cost and margind utility, in equilibrium). Is the same
margind approach «ill vaid in finance? 2) Notwithstanding the
apparent differences, is there a unique pricing function containing both
models?

Aswe shall see, the answer is yesto both questions.

In fact, it can be shown that the pricing function of an asset can be
obtained, in a two parameter, normal approach, from the marginal
contributions provided by the asset in terms of risk and return.
Moreover, even if the two results appear quite different, a two
parameter, normal approach is common to both and the two models
can be obtained jointly: CAPM is able to price options and option
prices, in anorma world?, satisfies CAPM conditions.

1. The general mean-variance framewor k

Let us assume that investors are interested only in risk and return,
considered as the two essential characteristics or factors of single
assets and portfolios. Quadratic utility or normal distribution are the
aternative hypotheses used to justify the mean-variance approach.

More precisely, in our view, the first assumption is that asset prices are
determined by two factors (one positive and one negative). Market
prices reflect price and quantity of each factor: price times quantity
summed over al characteristics gives the market price of the asset

! Early modds can be found in Cootner (ed.) (1964). New developments are collected in VV.AA. (1992).

? See Rubinstein (1976) and Leland (1999) for the lognormal case.



exactly asin arestaurant the total bill is the sum of price times quantity
of al choices from the menu.

How can we measure the two factors, return and risk, for a given
security? Our second assumption states that the relevant quantity of
each factor isamargina quantity: respectively, the margina increase in
return and the marginal increase in risk provided by a margina unit of
the asset added to the market (total) portfolio. Therefore, assets are
priced at the margin with respect to their contribution to expected
return (mean) and expected risk (variance).

In symbols, over a given time horizon T, let X be a no dividend asset
(a random variable representing the asset’s cash flow at T) with mean
E(X), variance Var(X) and current price Px . Let M be the market
portfolio and P, and P, be the current prices of the two factors, return
and risk.

The current price of a quantity g of the asset X is given by:

gPx = P, margina expected return - P, margina expected risk

where:

margina expected return = E(M+gX)- E(M) = g E(X)

margina expected risk=Var(M+gX)-Var(M) = ofVar(X)+2gCov(X,M)
so that, asmplifying:

Px = P; E(X) - Py(gVar(X)+2Cov(X,M))

and letting the quantity g go to O:

[1.1] Px =P; E(X) - P,2Cov(X,M)

It is easy to show that this equation for any asset X isthe CAPM.
Proposition 1: Equation [1.1] isthe CAPM.

Proof: Divide both members by Py and by P; and then subtract 1 and
rearrange, obtaining:
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where the covariance properties Cov(X+aM+b)=Cov(X,M) and
Cov(X,bM)=bCov(X,M) for constants a and b have been used.

Define the rate of return of the no dividend asset X as the random
vaiable

13 R =21
P

and note that if the asset has a sure, fixed value X° 1 at the horizon (i.e.
itisarisk free zero coupon discount bond) then Cov(X,M)=0 and:

[1.4] Pre=P:
so that the price of the first characteristics is the present value of one

unit of money to be received for certain at the future date and the risk
freerateis.

Subgtituting in [1.2] we have:

(15 E(R.)=R_+ zFF:_Z P.Cov(R.,R,)

RF

For the market portfolio:

E(R,) =R, +2_-P,Va(R,)

RF
that is;

[16] E(RM) - RRF =2 Pz PM
Var(R,) P

RF

to be substituted in [1.5] obtaining:
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Var(R,)
Writing b, ,, °© Cov(R,,Ry) equation [1.7] is the CAPM in usual
" va(R,)
form. Q.E.D.

In terms of prices, from [1.1]:
[18] PM:PRF E(M) -2 P2V6T(|\/|)
and therefore:

P.E(M)- P,
Var(M) Cov(X,M)

[19] I:)x = PRFE(X) -

Equation [1.1] or equivaently [1.9] is the basic vauation equation of
any security.

It isinteresting to note that, writing, without loss of generality:
[1.10] EX)=R ™Y  and 1=P,e™"

for any security equation [1.1] has two representations:
[1.118] Py =€ TP, €™ - P,2Cov(X,M)/Pxe

and

[1.11b] P =€V [P €= 6" E(X)

In the first one, the current price B is given by the future expected

value E(X), obtained using the natural expected rate of growth r, risk-
adjusted through the covariance term and discounted at the risk-free
rae.

In the second one, the same current price is given by a future expected

vaue E(X), smply obtained using the risk-free growth rate r instead of
r, discounted at the risk-free rate. We say that, in this case, the risk
adjustment is not in the process X but in the probabilities (‘risk neutrd
probabilities’).



This reault is a amplified, satic verson of the equivaent martingale
measure theorem of dynamic asset pricing (e.g. Duffie, 1992).

Proposition 2: The vauation equation [1.1] has two equivalent
representations:

[1.118] Py = €™V E(X- P2(X-E(X))M/Pxf)
and
[1.11b] Py =€e"™ E(X)

where E(.) is the expectation under the natural probability measure and
E(.) isthe expectation under the risk-adjusted (risk-neutral) probability
measure.

Pr oof: See above.

2. Pricing options in the mean-variance framewor k

Let C=max(0, SK) be the find value of an European call option
written on a no dividend asset with future price S, with strike price K
and maturity T.

According to [1.1] the price of C is given by:

[21] Pey = P, E(C) - P,2Cov(C,M)

and we shal show that, under normality, equation [2.1] is the Black
and Scholes option price.

In order to do this, we have first to calculate the Black and Scholes
price in the case of normal distributions.

Lemma 1 Let S be a norma variable, N(mss<), with density n(.).
Then:

55 oep(- KMy - k- F (M)

E(C)° E(max(0,S- K)) = @exp(- s 2 s

where F (u) isthe integrd of the standard normal density f up to u.



Pr oof:
E(max(0,S- K)) = sn(s)dx - KQn(s)ds

then calculate the first integral as:

Ll mam) 1 C(smm)E.
osn(s)ds— S10 7peT O g s

T lent SO ema- B

and note that the second oneis 1- F (K "™y QED.

S

Lemma 2 Let S(t) be the Gaussian diffusion process solution of the
stochastic differential equation:

dS(t) = (AS(t) + a)dt +s dwW/(t)

24 g1 =s,

with A,a;s constant and W(t) standard brownian motion.
Then:

[2.3] S(t) =S, +— (e’*‘t o1 +s Qe’“t Vdw (v)
and the conditiona distribution of S(T) given S(t) |s

[24] S(T)|S(t) »N(S(t)e* ™" +2( ChE 1) A€ e?™ - 1)

Proof: See Arnold (1974), p.159.

Proposition 3: Let S(t) be the price of a no dividend asset with
dynamics:

[25] dS(t)=m(t,Sdt +s dW(t)

and let C(t, S) be the price of an European call option maturing at time
TO t+t with strike price K.



Then:

[2.6]

C(t.S) =%@<p(- (K- i(;);”)zw(su)- Ke ™)1~ FE Ve g(st)e” )
\/s ?(exp(2rt) - 1)

5s* 2r

r being the continuously compounded instantaneous riskless rate.
Proof: Writing Cs for the first partia derivative, USUS) , and Cg for

the second partial derivative, the value V of an arbitrage portfolio being
long Cs unit of the underlying asset and short one unit of the cal is:

[2.7] V(S, C)=CSC

By Ito lemma the dynamics of the cal price C(S;t) and the arbitrage
portfolio (which islinear in Sand C) are given by:

[2.8] dC=CgdS+Cdt+YCqsdt

[2.9] dV=VdS+VdC = CdS-dC = -C,dt-YCqs°dt

Given that V isinstantaneoudy riskless it must gain the riskless rate:
[2.10] dV=rVdt=r(CsS-C)dt

so that, combining [2.9] and [2.10] we obtain the problem:

YCeS?+ CSr + C,-Cr=0
dS(t) = m(S,)dt + sdw(t)
C(S,T)=max(0, (T)-K)

Writing:

ds(t) = srdt + s (M
S

where Z(t) is, by Girsanov theorem, a standard brownian motion in a

different space, the problem is now the following:

dt + dW (1)) © Srdt + sdZ(t)



YeS?+ CSr + C,-Cr=0
dS(t) = Srdt + sdz(t)
C(S,T)=max(0, (T)-K)

whose solution has the stochastic representation in terms of
conditional expectations&, (Friedman, 1975 p.147) in the probability
space induced by Z(t) (risk-neutral probability space):

C(S,t) = E, (max(0,S(T) - K)exp(- 1))
Noting that by lemma 2 with A=r and a=0:

S(T)[S(t) » N(S(t) exp(1t),$ 3)
[2.11] .
§30 ?(exp(Zrt) -1

we have, from lemma 1 the required result. Q.E.D.

3. Equivalence of CAPM and option pricing in the normal case.

The same vauation result can be obtained using the CAPM formula
[2.1].

Lemma 3: If (SM) arejointly norma with dengty:

~ 1 -1 s- E(S.,
(S = el S ()
zr,, (5 EO) (- W) (- EW)

then the conditional distribution of M ¢sis given by:

S

M|s» N(E(M) +r,, (s- E(9),s, (1-T1C,))

S

Proof: See Press (1972), p. 69.



K - E(S)

Lemma4: Cov(C,M)=Cov(SM)(1- F( )

Pr oof:
Cov(C,M) =E[(C- E(C))(M - E(M)]=
O dmax(0,S- K) - E(C)](M - E(M))n(s, m)dsdm =

:) E(C)(M - E(M))n(s)n(ms)dsdm +

xO-K;UQ

S &(S- K - E(C)(M - E(M)n(9n(ms)dsdm =

K

O E(C)[o(M - E(M))n(ms)dm]n(s)ds +

a(s K- E(C)[3(M - E(M))n(ms)dm]n(s)ds
But frorr}; the previous Ierr?ma
E(M - E(M))9) =1 ,,, = (s- E(9)

S

30 that:

Cov(CM)= & EC)r., ‘Z_M(s- E(S)n(9)ds+

S

o5 K- BN 1 S (- E(©)n(9ds=

S

FL 3 (s- K)(s- E(9)n(s)ds=

S K

o 2[5 E(9) (9 + (9 - K) b (5 SN

S K

For the first integral:
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(s- E(9)°

+¥ S +¥ dexp(_ 252 )
9(3- E(9)?n(s)ds=- JzipP(S E(9) > ds=
by integration by parts
_ Ss _ _ (S_ E(S))Z +¥ 21 _ K- E(S) —

@[(S E(S)) exp( 25 I +sc(@- F( s )
Ss (1. (K- E(9)° 2. K- E(S
Jz_p(K E(S)) exp( 25? )+sc(1- F( s. )
For the second integral:

(s- E(9)°

P s- E(9)n(g)ds=- —= Hidexp(_ 25 )ds—
ofs- E()IN(9s=- 20 = =

(s ) -

@[exp( 2! exp( )

\2p 2s?
S0 that:
_ Sy Ss (K- E(9)?
COV(C’ M) =lsu S, @ (K - E(S)) exp(- Tg) +
) K- E(S) S, (K- E(9)°\,_
ss(1- F (T)) +(E(S) - K)TpeXp(' Tg)] =

rS,MSSS M (1' F(K _SE(S)))

S

Proposition 4. The CAPM option price is the Black and Scholes
option price under the natural probability measure.

Pr oof:

From CAPM:

11



Pey = PeE(C) - P,2Cov(C,M) =

Ss (K- E(9)° ] g K-E©S
PRF[\/EGXD( 25 2 )+ (E(S) - K)A- F( s, )]

E(S)

S

- P,2Cov(SM)(1- F (K )

But, from Lemma 1 and Proposition 2:

Pyt = PreE(C) - P,2Cov(C, M) = Pe-E(C) =

PRFj%eXp( (K- iit)e )+ (- ke - F S0 j“)e )
S S

which is the Black and Scholes price [2.6]. Q.E.D.

4. Conclusion

In these years the proliferation of financial asset of many types has
been enormous. This paper tries to explore whether the apparent
multiplicity of rights and obligations may be tackled through one
simple valuation approach. In a Gaussian world asset prices are
obtained through the vauation of two basic characteristics, expected
value and variance. We have shown that the valuation formula agrees
both with the CAPM and the Back and Scholes' no-arbitrage pricing
of options. Extension to non-normal distributions is in our research

agenda.
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