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Advertising in a Differential Oligopoly Game

1. Introduction

The existing literature on dynamic models of advertising can be broadly partitioned

into two main categories. The first originates from Vidale and Wolfe (1957), and is

characterized by a direct relation between the rate of change in sales and the advertising

efforts of firms. The second dates back to Nerlove and Arrow (1962), and considers

advertising as an instrument to increase the stock of goodwill or reputation, summarising

the effects of past and current advertising expenditures carried out by a firm, on the

current demand for her goods. A relevant result emerging from the Nerlove-Arrow model

is the dynamic version of the well known Dorfman-Steiner (1954) condition, establishing

that the advertising investment is proportional to sales.1

We present a dynamic model of  oligopoly with homogeneous products, where

firms compete à la Cournot in the market phase, and invest in advertising activities aimed

at increasing consumers' reservation price over time. The advertising investment carried

out by any firm spills over to the rivals as long as the market demand function – the same

for all firms – shifts outwards. Accordingly, this kind of advertising is a public good.

We consider a very general formulation of the demand function, accounting for

concavity, lenearity and convexity. Indeed, there emerges that the dynamic properties of

the equilibria drastically depend upon the degree of the market demand curvature. In the

standard case of linear demand, no sensible equilibria exist. If demand is concave, one

(saddle-path) equilibrium emerges. If demand is convex, the equilibrium is unstable.

The determinants of the steady state investment and reservation price are first

analyzed in the non-cooperative game, using alternatively the open-loop and the closed-

loop equilibria as solution concepts. Then, we analyze (i) the optimal decisions by a cartel

made up by all firms in the market, aiming at the maximum joint profits with respect to

                                                                
1 For the first class of games, see Leitmann and Schmitendorf (1978), Feichtinger (1983) and Erickson (1985);
for the second, see Sethi (1977), Fershtman (1984) and Jørgensen and Zaccour (1999), inter alia. For exhaustive
surveys, see Jørgensen (1982), Feichtinger, Hartl and Sethi (1994) and Dockner, Jørgensen, Van Long and
Sorger (2000, ch. 11).



2

both output and advertising effort, and (ii) the optimal behavior for a social planner

choosing output levels and advertising investments of all firms so as to maximize social

welfare. Also in these cases, the dynamic properties of the steady state depend on the

curvature degree of the market demand function. Reservation prices, investments and

production decisions are compared across the steady states of all the aforementioned

regimes. A relevant result is that social welfare in steady state may well be larger under in

the cartel equilibrium, than in the non-cooperative Cournot equilibrium (irrespectively of

whether the latter is derived under the open-loop or the closed-loop information

structure). This is due to the externality effect affecting firms’ advertising activities, and

the associated inefficiency affecting the Cournot setting.

The structure of the paper is as follows. Section 2 illustrates the basic setup. Sections

3 and 4 solve the model under the open-loop and the closed-loop information structure,

respectively. Section 5 compares the steady states derived in section 4 and evaluates them

against the existing literature. Section 6 deals  with of the optimal cartel behaviour and the

first best solution that a social planner would implement. The comparative assessment of

all equilibria is in Section 7. Section 8 briefly concludes.

2. The basic model

We consider an oligopoly under full information. At any time ( )+∞∈ ,0t , n firms sell

a homogenous good. Marginal production costs are assumed to be identical across firms

and normalized to zero for the sake of simplicity.

The market demand curve is borrowed from Anderson and Engers (1992, 1994)2:

(1) [ ]α

1

)()()( tQtAtP −= ,

                                                                
2 The current literature on oligopoly theory usually adopts a linear market demand, with either
homogeneous or differentiated goods; for exhaustive surveys, see Tirole (1988), Martin (1993), and Vives
(2000) inter alia. A relatively scanty attention has been devoted to the analysis of the effects of market
demand curvature on firms' strategic behavior; such a problem is studied by Anderson and Engers (1992,
1994) and Lambertini (1996).
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where P(t) denotes the price, ∑
=

=
n

i
iqQ

1

 the aggregate quantity of the good, A(t) is the

reservation price, and ( )+∞∈ ,0α  is a positive parameter determining the curvature of

demand. The inverse demand function (1) is convex if ( )1,0∈α , is concave if ( )+∞∈ ,1α ,

and is linear if 1=α .

It is easy to verify that the price elasticity of demand is, in absolute value,

QQAPQ /)(, −= αε , while the consumers' surplus evaluated at Q=A, i.e., the total area

below the inverse demand curve, is )1/(/)1( αα αα += +
= ACS AQ , which also measures social

welfare at the perfectly competitive equilibrium. This means that the curvature parameter

α affects (i) the price elasticity; (ii) market size; and (iii) total surplus. Moreover, for a

given α , the higher is A, the larger is market size; likewise, given A, the higher is α , the

larger is market size.

Firms are able to increase A(t) over time through investment in advertising

campaigns. Formally, the following differential equation describing the dynamics of

variable A(t) amounts to saying that the market size increases as result of the sum of

advertisement activities of all firms, and, furthermore, it is subject to a constant

depreciation rateδ :

(2) )()(
)(

1

tAtk
dt

tdA n

i
i δ−= ∑

=

.

This type of advertising is indeed a pure public good, in that the effort carried out

by any firm benefits all firms alike (see Fershtman, 1984; Fershtman and Nitzan, 1991);

accordingly, it is sometimes referred to as cooperative, with the implicit caveat that firms do

not necessarily cooperate in the sense of joint profit maximisation.3

The advertisement activity of each firm entails a quadratic cost 2))(())(( tkbtkc iii ⋅= ,

with b>0. Of course, the spillover effect characterising the advertising activity trivially

entails that the individually optimal advertising effort is undersized from the standpoint

of the whole population of firms.

                                                                
3 This labelling dates back to Friedman (1983); see also Martin (1993, ch. 6). For a model where advertising is
both cooperative and predatory, see Piga (2000, pp. 517-21).
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The dynamic problem can be summarized as follows: the objective of each firm is to

achieve the maximum present value of the flows of future profits, taking into

consideration that the price depends on the production decisions of all firms, the costs are

represented by the individual investment costs in advertisement (which spills over to all

rivals), and that a positive discounting rate ρ , common to all firms, applies to future costs

and benefits. Formally, each individual firm faces the problem:

(3)
[ ]

)()()(
)(

..

))(()()()()( 2
1

0

tAtKtk
dt

tdA
ts

dttkbtqtQtqtAeJMax

ii

iiii
t

i

δ

α
ρ

−+=







 −−−⋅=

−

−

+∞
−∫

where ∑ ≠− =
ij ji qQ and ∑ ≠− =

ij ji kK .

The choice variables of firm i are qi(t) and ki(t). A(t) is the state variable, common to

all agents, subject to the initial condition A(0)=A0>0.

The solution of this dynamic optimization problem by player i is based on the

Hamiltonian function Hi. Let )(tiµ be the co-state variable associated to the state variable

A(t) by player i, and let t
ii ett ρµλ )()( =  be the current-value co-state variable. The

Hamiltonian function is therefore:

(4) [ ] [ ] t
iiiiiiii etAtKtkttkbtqtQtqtAH ρ

α δλ −
−−







 −++−−−= )()()()())(()()()()( 2

1

.

The next sections solve the fully non-cooperative problem, according to the open-

loop Nash equilibrium concept, and the closed-loop memoryless Nash equilibrium

concept, respectively. The difference between these two concepts rests on the possibility of

modifying the plans, once the game has started. In particular, under the former solution

concept, firms precommit their decisions on the control variables to a given time path:

they design the optimal plan at the initial time and then stick to it forever. Under the latter

solution concept, firms do not precommit on any path and their decisions at any instant t

depend on all the preceding history, and specifically on the value of the state variable at

that instant.
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The closed-loop solution is strongly time consistent and therefore subgame perfect,

while the open-loop solution is only weakly time-consistent, i.e., it is not sub-game

perfect.4

3. The open-loop Nash equilibrium

The first order (necessary) conditions to characterize the open-loop Nash

equilibrium are:5

(5)















−=
∂
∂

−

=
∂
∂

=
∂
∂

)(
)(

)(
)(

0
)(
)(

0
)(
)(

t
dt

td
tA
tH

tk
tH
tq
tH

i
ii

i

i

i

i

ρλ
λ

along with the initial condition and the transversality condition  0)()(lim =−
+∞→

t
it ettA ρλ .

The first condition of system (5) turns out to be:

(6) [ ] [ ] 0)()()()()()(
1

)(
)( 1

1
1

=−−+−−−=
∂
∂

−
−

− αα
α

tQtqtAtQtqtA
tq
tH

iiii
i

i ,

from which the Cournot reaction curve can be obtained. Under the symmetry condition

qi(t)=q(t), which implies Q-i(t)=(n-1)q, the optimal quantity to be produced by each firm is:

                                                                
4 Another strongly time-consistent (and therefore subgame perfect) solution concept is the feedback
equilibrium using Bellman’s equation. The feedback equilibrium is a closed-loop equilibrium, while the
opposite is not true in general. For a clear exposition of the difference among these equilibrium solutions see
Basar and Olsder (1982, pp. 318-327, and chapter 6, in particular Proposition 6.1). There exist classes of
games where the closed-loop and the open-loop solutions coincide (see Mehlmann, 1988, ch. 4; Reinganum,
1982; Fershtman, 1987; Fershtman, Kamien and Muller, 1992; Dockner, Jørgensen, Van Long and Sorger,
2000, ch. 7, Cellini and Lambertini, 2001).

5 Second order conditions are omitted throughout the paper, for the following reason. When demand is
concave, they are always met in that the problem is concave and single-peaked; when demand is either
linear or convex, second order conditions are irrelevant in that there exists no stable equilibrium, as it will
become clear in the remainder of the analysis.
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(6')
1
)(

)(
+

=
n

tA
tq

α
α .

The second condition of system (5) is

(7) 0)()(2
)(
)(

=+−=
∂
∂

ttbk
tk
tH

ii
i

i λ ,

from which we can easily derive )(2)( tbkt ii =λ and, by differentiating w.r.t. time:

(7')
dt

td
bdt

tdk ii )(
2
1)( λ

⋅= .

Finally, from the third condition of system (5) we derive:

(8) [ ] 1
1

)()()(
)(

)()(
)( −

−−−−+= α
α

λδρ
λ

tQtqtA
tq

t
dt

td
ii

i
i

i .

Considering simultaneously conditions (7') and (8) we obtain:

(9) [ ] 1
1

)()()(
2

)(
)()(

)( −
−−−−+= α

α
δρ tQtqtA

b
tq

tk
dt

tdk
ii

i
i

i .

Now we are in a position able to completely characterize the dynamic system under

optimal decision rules by part of Cournot firms, and under symmetry conditions qi(t)=q(t),

ki(t)=k(t):

(10)
















+
−+=

−=

α

α
δρ

δ
1

1
)(

2
1

)()(
)(

)()(
)(

n
tA

b
tk

dt
tdk

tAtnk
dt

tdA
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A phase diagram can be easily drawn to represent this dynamic system. In steady

state, dA(t)/dt=0 implies nAk /δ=  while dk(t)/dt=0 implies ])1)((2/[ /1/1 αα αδρ ++= nbAk .

In the space (A,k), the former relation corresponds to a straight line with positive slope

equal to n/δ , while the latter corresponds to a curve which may be convex (if ( )1,0∈α ),

concave (if ( )+∞∈ ,1α ), or linear (if 1=α ). The three panels of Figure 1 show the

alternative cases. The linear case is shown under the hypothesis that the locus  dA(t)/dt=0

lies above the locus dk(t)/dt=0, but the opposite case could be equally possible, as well as

the case that the two loci coincide. The arrows are drawn taking into account that above

(below) the line dA(t)/dt=0, the state variable A increases (decreases), and above (below)

the curve dk(t)/dt=0, variable k increases (decreases). The dotted line identifies the saddle

path.

The dynamic system admits one meaningful steady state solution, besides the

trivial one (k*=0, A*=0) :

(10) nAk
b

n
n

A /**;
)(21

1
*

11

1

δ
δρδα

α
α

α
=








+

⋅







+
=

−−
.

This solution does not exist in the particular case where 1=α , as it clear in the graphical

representation. Correspondingly, it is immediate to find the amount of the individual

production level in steady state: )1/(** += nAq αα . The steady state values of the relevant

variables are also reported in Table 1 (Section 7), in order to ease comparisons across

different regimes.

INSERT FIGURE 1 HERE
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The linearization of the dynamic system is as follows:

(10')


















+
+

−

−

=Ω















Ω=





















−

)(
)1(2

,

)(

)(

)(

)(

/1

/)1(

δρ
αα

δ

α

αα

nb
A

n

tk

tA

dt
tdk

dt
tdA

.

The Jacobian matrixΩ , evaluated at the steady state point, has the following trace and

determinant:

α
αδ

δρ

ρ
)1(

)()det(

)(

−
+=Ω

=Ωtr

It is straightforward to verify that the trace is always positive, while the determinant is

positive, negative or nil, if 0<α <1, α >1 or α =1, respectively. Thus, the following holds:

Proposition 1. The steady state of the non-cooperative game, where

nAk
b

n
n

A /**;
)(21

1
*

11

1

δ
δρδα

α
α

α
=








+

⋅







+
=

−−
;   

1
*

*
+

=
n
A

q
α
α

(i) is unstable when the market demand curve is convex, (ii) does not exist when the market demand

is linear, and (iii) is a saddle when the market demand is concave.

Proposition 1 states that there exists no economically meaningful saddle point when

α≤1. The intuition behind this result is as follows. When market demand is either linear or

convex, the market size (i.e., the area below the demand curve) is too small to justify firms’

investment in a public good. The saddle point where A=0 can obviously be disregarded.

Focusing our attention on the case of concave market demand (i.e., on the saddle

path equilibrium of the dynamic game), the determinants of the steady state variables, as

shown by eq. (10), are as follows:
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∂
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αρδ
kkk

b
k
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b

A

The economic meaning is easy to interpret. First of all, there exists a direct relationship

between the steady state levels of A and k. The larger is the steady state value of the

market size, the larger is the investment effort required to neutralize the depreciation of A

and to remain in steady state. Second, the larger is the cost of investment effort (captured

by parameter b), the smaller the steady state optimal level of investment effort. Similarly,

the higher the depreciation rate, the lower the optimal steady state level of market size and

investment efforts. Furthermore, the higher the discounting factor, the less important are

future profits, and then the lower the optimal market size in the steady state. Finally, the

larger is α , i.e., the wider is the market (ceteris paribus), the less convenient is to invest in

demand-increasing advertising.

The effect of the number of firms, n, upon the optimal steady state values is not

clearcut, because two opposite effects are in operation. On the one hand, the larger is n, the

harsher is market competition, which makes it more convenient to have a larger market

size. On the other hand, the larger is n, the larger is the spillover effect coming from the

investments operated by other firms.

4. The closed-loop Nash equilibrium

In this section, we investigate the closed-loop solution of the differential game, that

is, the optimal solution when each player takes into account that – at any point in time –

the control variables of other players affect the state variable(s), requiring a revision of

optimal production and investment plans. In particular, here we adopt the so-called

"memoryless" closed-loop solution concept, according to which every player is required to

know only the current value of the state variable, and the knowledge of the complete past

history is not necessary to compute the optimum. This kind of closed-loop solution is
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strongly time consistent. Analytically, the first order conditions to characterize the closed-

loop memoryless Nash equilibrium are:

(12)















−=
∂

∂

∂
∂
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−
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t
dt
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tA

tq

tq
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tA
tH

tk
tH
tq
tH

i
i

ij

j

j

i
ij

j

j

ii

i

i

i

i

ρλ
λ

where Hi denotes the Hamiltonian function of player i, as defined by equation (4).

The first and second conditions of system (12) are the same as in the open-loop

solution represented in system (5), while the third condition takes into account the

interaction between the other players' controls and the current level of the state variable.

As a consequence, equations (6) and (7), yielding the reaction curves, hold also in this

problem, while the co-state equation is now:

(13) [ ] 1
1

)()()(
)1(
)()1(

)()(
)( −

−−−
+

+
−+= α

αα
α

λδρ
λ

tQtqtA
n

tq
t

dt
td

ii
i

i
i .

Of course, the conditions derived from system (12) have to be considered along with the

usual initial conditions and the transversality conditions.

Under the symmetry assumptions qi(t)=q(t) and ki(t)=k(t), and following the same

procedure as in the open-loop problem, equations (6), (7) and (13) lead to the following

dynamic system in A(t) and k(t):

(14) 

















++
+

−+=

−=

α

αα
α

δρ

δ
1

1
)(

)1(2
)1(

)()(
)(

)()(
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n
tA

nb
tk

dt
tdk

tAtnk
dt

tdA

or, in matrix form:
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(14')
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−
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)1(
,
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/)1(

/)1(

δρ
αα

α

δ

αα

αα

nb
A

n

tk

tA

dt
tdk

dt
tdA

Also in this case, the trace of the Jacobian matrix is always positive, while the

determinant –evaluated at the steady state value of A and k – is positive, nil or negative,

according to the value of parameter  α . Consequently, the properties of the steady state

again depend on the curvature of the market demand function.

More specifically, the locus dA(t)/dt=0 coincides with its counterpart in the open-

loop solution, while the locus dk(t)/dt=0 under the closed-loop decision rule is a curve

with equation ])1)((2/[])1[( ))/1(1(/1 αα αδρα ++++= nbAk . This can be straight, convex or

concave, according to the value of α , as in the open-loop solution, except that it always

lies below its counterpart in the open-loop solution.

As a consequence, under the closed-loop solution, the steady state solution of the

dynamic system, i.e., the intersection between the two loci (obviously disregarding the

origin), occurs in the correspondence of higher (respectively, lower) levels of both k and A

than in the open-loop equilibrium, when α <1 (α >1). This is evident from the analytical

solution of the steady state equilibrium under the closed-loop decision rule, which gives:

(15) nAk
b

n

n
A /**;

)(2
1

)1(

)]1([
*

1

1

1

1

δ
δρδ

α

α α

α

α

α

α
α

=







+

⋅

+

+
=

−

−

+

−

Qualitatively speaking, the dynamic properties of the closed-loop steady state are the

same as stated in Proposition 1 for the open-loop equilibrium. This prompts for a

comparative evaluation of the two equilibria, which we carry out in the next section.
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5. Steady states under open-loop Nash equilibrium and closed-loop Nash equilibrium

A quick comparison between the steady state levels of the highest reservation price

under the Nash open-loop equilibrium (A*OL) and the Nash closed-loop equilibrium

(A*CL), as given by equations (10) and (15) respectively, permits us to write:

(15') OLCL A
n

A *
1
1

*
1

⋅







+
+

=
−α

α

α
α

where it is evident that the closed-loop steady state equilibrium value of the highest

reservation price is larger under the closed-loop solution concept than under the open-

loop one if and only if α <1. In the more interesting case where α >1, the saddle equilibria

are such that the steady state equilibrium value of the reservation price is smaller under

the close-loop solution than under open-loop one. A graphical representation of the case

with ( )+∞∈ ,1α  is given in figure 2, where the locus pertaining to the closed-loop

memoryless information structure is denoted by CL.

Our main result may be summarized as follows:

Proposition 2. When the market demand function is concave, and the equilibrium is a saddle, the

steady state levels of A and k under the closed-loop decision rule are smaller than the steady state

levels of A and k under the open-loop decision rule.

Otherwise, when the market demand function is convex, and the equilibrium is unstable,

the steady state levels of A and k under the closed loop rule are larger than the steady state

levels of A and k under the open-loop rule. Finally, when demand is linear, only the

degenerate steady state with zero investment and nil market size does exist.

This result is seemingly in contrast with the acquired wisdom. In fact, the available

models of dynamic oligopoly suggest that the closed-loop solution entails larger steady

state levels of investment (e.g., investment in production capacity or R&D) than the

capacity associated with the steady state under the open-loop Nash solution concept. The

reason is that, under the closed-loop solution concept, all players take into account the

simultaneous action of rivals, and react by investing more than they would do on the basis

of the plans designed at the beginning of the game according to the open-loop Nash

solution (see, e.g., Fudenberg and Tirole, 1983, 1991 ch. 13); Reynolds, 1987, 1991). The
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interpretation of these results relies upon the attempt at pre-emptimg rivals by acquiring a

large capacity or by investing a large amount of resources in R&D activities. By contrast, in

the present model, advertising investments produce a reciprocal spillover, which firms

take into account when playing the closed-loop equilibrium. Therefore, subgame

perfection entails lower advertising efforts (and therefore lower spillover effects to the

benefit of rivals) as compared to what emerges at the weakly time consistent solution.6

6. Full cartelisation and social planning

In this section, we study the model under two alternative hypotheses: (i) all the

firms in the market build a cartel where all decision variables are set cooperatively, in

order to maximize the present value of the joint profits. We label this case as full

cartelisation; (ii) the decisions concerning investment and output levels are taken in order

to maximize the present value of the social welfare, i.e., as if the market were ruled by a

social planner aiming at the maximizing total surplus. We will refer to this case as social

planning.

In the case of a cartel, the dynamic problem can be summarized as follows. We have

to find the optimal plans of each of the n (symmetric) firms concerning individual

production q and investment k, in order to achieve the maximum present value of the

flows of future joint profits. Formally,  the problem is

(16)
[ ]

)()(
)(

..

))(()()()( 2
1

0

tAtnk
dt

tdA
ts

dttknbtqtnqtAneJMax i
t

δ

α
ρ

−=







 −−⋅= ∫

+∞
−

The corresponding Hamiltonian function HFC is:

(17) [ ] [ ] t
i

FC etAtnktknbtnqtnqtAH ρ
α δλ −







 −+−−= )()())(()()()( 2

1

.

                                                                
6 An analogous result is obtained by Bertuzzi and Lambertini (2001) in a model of horizontal product
differentiation where firms’ advertising campaigns are aimed at increasing the density of consumers along
Hotelling’s linear city (see also Piga, 1998).
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The first order conditions are:

(18)

[ ] [ ]
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along with the initial condition A(0)=A0 and the  transversality condition

0)()(lim =−
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t ettA ρλ .

The first condition of system (18) yields:
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which is clearly smaller as compared to its counterpart in the case of Cournot oligopoly.

By the usual manipulation of the remaining conditions of the system we obtain:
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and  we can characterize the dynamic system under the cartel rules. In particular, in

steady state, dA(t)/dt=0 implies that nAk /δ=  and dk(t)/dt=0 implies

])1)((2/[ /1/1 αα αδρ ++= bAk . In the space (A,k), the optimal investment function

corresponds to a curve which may be convex (if ( )1,0∈α ), concave (if ( )+∞∈ ,1α ), or linear

(if 1=α ). In any case, this curve lies above its counterpart under the open-loop decision

rule, and – a fortiori – above the relevant curve obtained under the closed-loop decision

rule in the non-cooperative game. As a consequence, a steady state point exists also in the

cartel case and its dynamic properties are the same as in the Cournot cases. In particular,

this steady state is a saddle under the case ( )+∞∈ ,1α . Moreover, it is also easy to verify

what follows:
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Proposition 3. For all ( )+∞∈ ,1α , the cartel equilibrium is a saddle point, and the steady state

levels of A and k under full cartelisation are both larger than the steady state levels of A and k in the

open-loop and closed-loop Cournot-Nash equilibria.

Needless to say, if ( )1,0∈α  steady state values of A and k under the chartel case are both

smaller than the respective variables under Cournot behaviour, while the steady state does

not exist if 1=α .

A very similar procedure can be adopted to find the decision of a social planner

aiming at the maximum present value of the social welfare flows. Social welfare at time t is

defined as the sum of the consumer surplus and net profits of firms at that time. Under the

symmetry hypothesis, consumers' surplus at time t and aggregate profits are respectively:

(21) ( ) 







−−

−
=−=

++

∫ α

α
α

α
α

α
α 11)(

0

1

)()()(
1

)()]()([)( tQtAtAtdststAtCS
tq

(22) [ ] 2/1 ))(()()()()( tknbtQtAtnqtn −−= απ .

We assume that the planner discounts future welfare flows at the same constant rate

0>ρ as firms, so that his dynamic problem is:

(23)
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Solving the planner’s problem, we find that dk(t)/dt=0 implies )](2/[/1 δρα += bAk ,

which is a locus that lies always above all its counterparts in the previous games, in the

space (A,k), both when it is concave, and when it is convex. The intersection with the
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straight line dA(t)/dt=0 gives the steady state (see, once again, figure 2, where the line in

the case of social planning is labeled as SP). Therefore, we have:

Proposition 4. For all ( )+∞∈ ,1α , the socially optimal advertising effort in steady state is higher

than in any other regime.

Once again, if ( )1,0∈α  steady state values of A and k under the social optimum case are

both smaller than the respective variables under Cournot behaviour, while the steady state

does not exist if 1=α .

7. Comparisons across different regimes

Table 1 gathers the steady state values of the relevant variables under the different

considered regimes. To ease the exposition, we define:

1
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Table 1. - Relevant steady state variable values across regimes.
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In the remainder of this section, we confine our attention to the interesting case

where saddle paths lead to the steady state, i.e., we confine to the case ( )+∞∈ ,1α , and we

proceed to compare the different steady states. The analogous exercise under the case

( )1,0∈α  is trivial and it is omitted for the sake of brevity.

We can easily draw the graphical representation of the dynamic system under the

four different regimes under consideration: the open-loop Cournot-Nash equilibrium

(labeled by OL), the closed-loop Cournot-Nash equilibrium (CL), full cartelisation (FC)

and social planning (SP). In all cases, the locus dA(t)/dt=0 is represented by the straight

line nAk /δ= , while the locus dk(t)/dt is a concave curve; we have shown that the position

of such curves in the space (A,k) is clear-cut. In particular, the relevant curve under the

closed-loop oligopoly lies below the curve corresponding to the open-loop oligopoly, that

– in turn – lies below the curve associated to the cartel case, that – finally – lies below the

curve of the social planning problem.

INSERT FIGURE 2 HERE

The graphical representation, as well as the analytical study based on Table 1, show that

reservation prices and investment in steady state are such that A*CL<A*OL<A*FC<A*SP and

k*CL<k*OL<k*FC<k*SP. As to the amount of the individual firm's production in steady state,

the order is not univocal. Indeed, the following chain of inequalities turns out to hold:

q*CL<q*OL<q*SP, while the production under the cartel is smaller than the production of the

planner, but it may fall in different positions with respect to the levels of production

associated with the Cournot-Nash equilibria. In particular, three cases are possible:
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Accordingly, the ranking of the social welfare levels across regimes is not unique. Put

differently, the social welfare level is not a monotonic function of A. Indeed, a larger value

of A  implies larger consumer surplus and firms’ operative profits, but it also requires a

larger investment. Nevertheless, it is possible that the ranking of social welfare levels in

steady state replicates the ranking of the equilibrium values of A. In such a case, the

maximum social level is (obviously) attained under social planning, followed by the

allocation chosen by the cartel, and then by the allocations associated with the open-loop

Cournot-Nash equilibrium and the closed-loop Cournot-Nash equilibrium.7 It is also

worth stressing that, in this dynamic game, the full cartelisation among firms is not

necessarily detrimental to social welfare, as compared to the either of the non-cooperative

games played à la Cournot. The point that collusion may have positive effects, able to

more than compensate consumers for the negative effects of collusive prices has been

already made, in different models. Recently, Fershtman and Pakes (2000) and Pakes (2001)

show that collusion may affect the variety, cost, and quality of the products marketed by

an industry, and this may affect the welfare as do the price effects of collusion. Our

present model adds the effect of adverting into the list of factors leading to the conclusion

that - in a dynamic framework - society is not necessarily better off when cartels are

forbidden. This amounts to saying that there exist relevant circumstances where the per se

rule might profitably be replaced by a more elastic rule of reason.

8. Conclusions

We have analyzed a differential oligopoly game, where firms invest in order to

increase the consumers' reservation prices in a market where the demand function is non-

linear.

The consideration of non-linear market demand has allowed us to highlight that the

curvature of the market demand affects the stability properties of the steady state

equilibria. In particular, in the present model, when the market demand is linear no

meaningful steady state exists, besides the trivial situation where reservation price and

                                                                
7 This can be easily verified by numerical calculations, which are available from the authors upon request.
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investment are zero. When the market demand is concave or convex, a meaningful steady

state does exist. It is a saddle in the former case, while it is unstable in the latter.

We have also shown that steady state investments and output levels state are

sensitive to the solution concept. In particular, when the market demand is convex, the

equilibrium investments by firms (and the associated consumer reservation price) in

steady state are larger under the closed-loop decision rule than under the open-loop one.

In this case, however, the steady state is  unstable. In the case where the market demand

function is concave, and the steady state is a saddle, the closed-loop equilibrium

investments (and the reservation price) are smaller than the optimal investments (and

reservation price) emerging at the open-loop equilibrium. This case is the most interesting

one, not only because a saddle path leads the system to the steady state equilibrium, but

especially because the conclusion contradicts the widespread idea that closed-loop

equilibrium entails larger investments on the part of firms, as compared to the open-loop

equilibrium. This is not true in the present model, because advertising investments

produce a reciprocal spillover which firms take into account when paying according to the

closed-loop Nash equilibrium.

Equilibrium allocations under Cournot oligopoly have been compared to the

optimal allocation under full cartelisation and to the optimal behaviour of a social planner

aiming at the maximization of discounted social welfare. In this respect, the main result is

that the social welfare level associated to the steady state allocation of the cartel may well

be larger than the social welfare level generated by the fully non-cooperative Cournot

oligopoly, both in the open-loop and in the closed-loop case. This is due to the fact that a

full externality characterizes the advertising campaign, and the cartel invests considerably

more than the population of non-cooperative Cournot firms. The benefits from this fact is

larger than the damage deriving from the restriction of quantity under the cartel

agreement.
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