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Port-Hamiltonian flexible multibody dynamics
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Abstract A new formulation for the modular construction of flexible multibody systems
is presented. By rearranging the equations for a flexible floating body and introducing the
appropriate canonical momenta, the model is recast into a coupled system of ordinary and
partial differential equations in port-Hamiltonian (pH) form. This approach relies on a float-
ing frame description and is valid under the assumption of small deformations. This allows
including mechanical models that cannot be easily formulated in terms of differential forms.
Once a pH model is established, a finite element based method is then introduced to dis-
cretize the dynamics in a structure-preserving manner. Thanks to the features of the pH
framework, complex multibody systems could be constructed in a modular way. Constraints
are imposed at the velocity level, leading to an index 2 quasilinear differential-algebraic
system. Numerical tests are carried out to assess the validity of the proposed approach.

Keywords Port-Hamiltonian systems · Floating frame formulation · Flexible multibody
systems · Structure-preserving discretization · Substructuring

This work is supported by the project ANR-16-CE92-0028, entitled Interconnected
Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National
Research Agency (ANR) and the Deutsche Forschungsgemeinschaft (DFG). Further information is
available at https://websites.isae-supaero.fr/infidhem/the-project.

B A. Brugnoli
andrea.brugnoli@isae.fr

D. Alazard
daniel.alazard@isae.fr

V. Pommier-Budinger
valerie.budinger@isae.fr

D. Matignon
denis.matignon@isae.fr

1 ISAE-SUPAERO, Université de Toulouse, 10 Avenue Edouard Belin, BP-54032, 31055 Toulouse
Cedex 4, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-020-09758-6&domain=pdf
http://orcid.org/0000-0002-6823-7499
http://orcid.org/0000-0002-5830-1821
https://websites.isae-supaero.fr/infidhem/the-project
mailto:andrea.brugnoli@isae.fr
mailto:daniel.alazard@isae.fr
mailto:valerie.budinger@isae.fr
mailto:denis.matignon@isae.fr


A. Brugnoli et al.

1 Introduction

In structural control codesign of flexible multibody systems, it is especially useful to dispose
of a modular description, to simplify analysis. In this spirit, the transfer matrix method [40]
and the component mode synthesis [24] are two well-known substructuring techniques that
allow the construction of complex multibody systems by interconnecting subcomponents to-
gether. A reformulation of the Finite Element-Transfer Matrix (FE-TM) method [47] allows
for an easy construction of reduced models that are suited for decentralized control design.
For the component mode synthesis, the controlled component synthesis (CCS), a framework
for the design of decentralized controller of flexible structures, has been proposed in [49].
Another modeling paradigm based on the component mode synthesis is the two-input two-
output port (TITOP) approach [1]. It conceives the dynamical model of each substructure
as a transfer between the accelerations and the external forces at the connection points. This
feature allows considering different boundary conditions by inverting specific channels in
the transfer matrix. A rigorous validation was provided in [37, 41], where the robustness of
the methodology in handling various boundary conditions was assessed.

The Lagrangian formulation is the most commonly used methodology to retrieve the
equations of motion of flexible multibody systems. Using the variational principles of ge-
ometric mechanics, the equations of motion in Hamiltonian form can be derived either for
rigid body dynamics [22, Proposition 7.1.1] and general nonlinear elasticity [32, Chap. 3].
The port-Hamiltonian (pH) framework [17] has been recently employed to describe the dy-
namics of rigid and flexible links [30, 31]. PH systems are intrinsically modular [13], hence
this approach naturally allows constructing complex system by interconnecting together
atomic elements. The formulation therein naturally accounts for the nonlinearities due to
large deformations. However, this methodology relies on Lie algebra and differential ge-
ometry concepts and requires nonstandard discretization techniques [21]. Thus, the overall
implementation is not straightforward.

Together with the approach used to derive the equations of motion, the incorporation of
the elastic motion represents another important point when dealing with flexible multibody
systems. Three descriptions are commonly used: the floating frame formulation, the corota-
tional frame formulation and the inertial frame formulation [19]. The choice greatly depends
on the foreseen application. The corotational and inertial frame formulations take into ac-
count large deformations of the elastic body, hence are well-suited for accurate simulations.
For these formulations, many model reduction strategies have been developed in the last two
decades [39]. The inclusion of active control strategies is often unfeasible due to the com-
putational burden [48]. The floating frame formulation is less accurate but easily integrates
many model reduction techniques [35], making it possible to obtain a low-dimensional prob-
lem for control design.

The strong-form Lagrangian formulation of flexible dynamics using a floating frame ap-
proach is detailed in [45, Eq. (4.10)] using the least action principle, but without highlight-
ing the Hamiltonian structure of the problem. In this paper, we propose to combine the
pH framework with a floating frame description of the dynamics. Starting from the general
equation for the rigid flexible dynamics of a floating body, an equivalent port-Hamiltonian
system is found by appropriate selection of the canonical momenta. The flexible behavior is
based on the linear elasticity assumption, making it possible to include models that cannot
be easily formulated in terms of differential form [8, 9]. The problem is then written as a
coupled system of ordinary and partial differential equations (ODEs and PDEs), extending
the general definition of finite-dimensional port-Hamiltonian descriptor systems provided
in [33]. A suitable structure-preserving discretization method, based on [11], is then used
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to obtain a finite-dimensional pH system. The modularity feature of pH systems makes the
proposed approach analogous to a substructuring technique [26]: each individual component
can be interconnected to the other bodies using standard interconnection of pH systems, as
it is done in [31]. This feature allows the use of modeling platforms like SIMULINK® or
MODELICA®. Other approaches, commonly used in robotics [6, Chap. 5], allow construct-
ing chains of bodies in a systematic way but do not address the conservation of energy. One
of the main interests of this contribution is that the interconnections among bodies do pre-
serve the Hamiltonian structure and the conservation of energy. The constraints are imposed
on the velocities, leading to a quasilinear index 2 differential-algebraic port-Hamiltonian
system (pHDAE) [5, 46]. In the linear case, the algebraic constraints can be eliminated,
preserving the overall pH structure, using null space methods [29]. As a floating frame for-
mulation is used, model reduction techniques can be employed to lower the computational
complexity of the model [14, 18]. These peculiarities make the proposed formulation in-
teresting for control applications that can benefit from the properties of pH systems [34,
36].

The paper is organized in the following manner. In Sect. 2 the classical equations of a
flexible floating body are recalled. Using the properties of the cross-product, the equations
are recast in a form closer to the pH structure. Section 3 details the pH formulation of a float-
ing flexible body by introducing the proper canonical momenta. In Sect. 4 a finite element
based discretization is detailed for the elastodynamics problem. The procedure is easily ap-
plied to flexible floating bodies. The particular case of thin planar beams is then detailed, as
it will be next employed in the simulation part. Section 5 explains how to interconnect mod-
els together using classical pH interconnection. Section 6 is devoted to numerical examples,
to assess the validity of the proposed methodology. The test cases are taken from previously
published articles [15, 19].

2 Flexible dynamics of a floating body

The coupled ODE-PDE system representing the motion of a single flexible body is here
recalled. Then, by exploiting the properties of the cross product, the system of equations is
rephrased to highlight the port-Hamiltonian structure.

2.1 Classical model

Consider an open connected set � ⊆ R
3, representing a floating flexible body. The rigid

dynamics is located at point P , that is not necessarily the center of mass. The velocity of a
generic point is expressed by considering a small flexible displacement superimposed to the
rigid motion

v = vP + ˜[ωP ]xf + vf , xf := x + uf ,

where x is the position vector of the current point, vP ,ωP are the linear and angular ve-
locities of point P , and vf := u̇f is the time derivative of the deformation displacement uf

(computed with respect to the body frame). These quantities are evaluated in the body ref-
erence frame x̂, ŷ, ẑ (see Fig. 1). The notation ˜[a] (cross-map) denotes the skew-symmetric
matrix associated to vector a (see Appendix A). The model for the classical equations de-
rived using the principle of virtual work can be found in [44] and [45, Chap. 4]. The small
difference with respect to the derivation therein is that the equation for the translation is now
written in the body frame (see Appendix B).
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Fig. 1 Thin floating body
undergoing a surface traction τ

and body force density β

– Linear momentum balance:

m(v̇P + ˜[ωP ]vP ) +˜[su]
�
ω̇P +

∫

�

ρüf d� =

− ˜[ωP ]˜[ωP ]su −
∫

�

2ρ ˜[ωP ]u̇f d� +
∫

�

β d� +
∫

∂�

τ d�,

(1)

where ρ is the mass density, m = ∫
�

ρ d� the total mass, su = ∫
�

ρxf d� the static
moment. Additionally, β is a density force and τ is a surface traction, both expressed in
the body reference frame.

– Angular momentum balance:

˜[su](v̇P + ˜[ωP ]vP ) + J uω̇P +
∫

�

ρ ˜
[

xf

]

üf d� + ˜[ωP ]J uωP =

−
∫

�

2ρ ˜
[

xf

]

˜[ωP ]u̇f d� +
∫

�

˜

[

xf

]

β d� +
∫

∂�

˜

[

xf

]

τ d�,

(2)

where J u := ∫
�

ρ ˜
[

xf

]�
˜

[

xf

]

d� = − ∫
�

ρ ˜
[

xf

]

˜

[

xf

]

d� is the inertia matrix.
– Flexibility PDE:

ρ(v̇P + ˜[ωP ]vP ) + ρ(˜[ω̇P ] + ˜[ωP ]˜[ωP ])xf + ρ(2˜[ωP ]u̇f + üf ) =
Div� + β.

(3)

Variable � is the Cauchy stress tensor. From linear elasticity theory, it is well known
that the infinitesimal strain is given by ε = Grad(uf ), where Grad = 1

2 [∇ + ∇�] is the
symmetric gradient. The constitutive equation is expressed as � = Dε, where D is the
stiffness tensor. This PDE requires the specifications of boundary conditions:

� · n|�N
= τ |�N

, n is the outward normal,

uf |�D
= ūf |�D

.
(4)

The boundary ∂� = �D ∪�N is split into two subsets, on one of them the surface traction
is imposed (�N Neumann condition) and the other is where the flexible displacement is
known (�D Dirichlet condition).

2.2 Towards a pH formulation

The gyroscopic terms in Eqs. (1), (2), and (3) need some manipulation so that the skew-
symmetric interconnection operator can be more easily highlighted. Considering that v̇f =
üf and using the Jacobi identity (54) (see Appendix B for a detailed explanation), the clas-
sical equations can be equivalently rewritten as follows:
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– Linear momentum balance:

mv̇P +˜[su]
�
ω̇P +

∫

�

ρv̇f d� =
[

m˜[vP ] + ˜
[

˜[su]
�
ωP

]

+ 2
∫

�

ρ˜
[

vf

]

d�

]

ωP +
∫

�

β d� +
∫

∂�

τ d�.

(5)

– Angular momentum balance:

˜[su]v̇P + J uω̇P +
∫

�

ρ ˜
[

xf

]

v̇f d� =
[

˜
[

˜[su]
�
ωP

]

+ 2
∫

�

ρ˜
[

vf

]

d�

]

vP +
[

˜
[

˜[su]vP

]+ ˜[J uωP ] + 2
∫

�

ρ
˜
[

˜

[

xf

]

vf

]

d�

]

ωP +

2
∫

�

[

ρ˜[vP ] + ρ
˜[

˜

[

xf

]�
ωP

]

]

vf d� +
∫

�

˜

[

xf

]

β d� +
∫

∂�

˜

[

xf

]

τ d�.

(6)

– Flexibility PDE:

ρv̇P + ρ ˜
[

xf

]�
ω̇P + ρv̇f =

[

ρ˜[vP ] + ρ
˜[

˜

[

xf

]�
ωP

]

+ 2ρ˜
[

vf

]

]

ωP + Div� + β.

(7)

Again this equation requires the specification of the boundary conditions (4).

By introducing the appropriate momenta, this model can be reformulated as a pH system
as illustrated in the following section.

3 Elastic body under large rigid motion as a pH system

In this section the flexible dynamics of a floating body is written as a coupled system of
ODEs and PDEs in pH form. The final form is a descriptor port-Hamiltonian system that fits
and generalizes the framework detailed in [5, 33].

3.1 Energies and canonical momenta

Consider the total energy (Hamiltonian) given by the sum of kinetic and deformation energy:

H = Hkin + Hdef,

= 1

2

∫

�

{

ρ||vP + ˜[ωP ]xf + vf ||2 + � .. ε
}

d�.
(8)

The inner product A .. B = Tr(ABT ) is the tensor contraction. The momenta (usually called
energy variables in the pH framework) are then computed by derivation of the Hamiltonian.
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As the variables belong to finite- and infinite-dimensional spaces, the derivative is either a
classical gradient or a variational derivative:

pt := ∂H

∂vP

= mvP +˜[su]
�

ωP +
∫

�

ρvf d�,

pr := ∂H

∂ωP

=˜[su]vP + J uωP +
∫

�

ρ ˜
[

xf

]

vf d�,

pf := δH

δvf

= ρvP + ρ ˜
[

xf

]�
ωP + ρvf ,

ε := δH

δ�
=D−1�,

(9)

where the last derivative is computed with respect to a tensor [8]. The relation between
energy and coenergy variables is then given by

⎡

⎢

⎢

⎣

pt

pr

pf

ε

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

mI 3×3 ˜[su]
� I�

ρ 0

˜[su] J u I�
ρx 0

(I�
ρ )∗ (I�

ρx)
∗ ρ 0

0 0 0 D−1

⎤

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

M: Mass operator

⎡

⎢

⎢

⎣

vP

ωP

vf

�

⎤

⎥

⎥

⎦

, (10)

where I 3×3 is the identity matrix in R
3. The operators are defined as

I�
ρ :=

∫

�

ρ(·) d�,

(I�
ρ )∗ = ρ,

I�
ρx :=

∫

�

ρ ˜
[

xf

]

(·) d�,

(I�
ρx)

∗ = ρ ˜
[

xf

]� = −ρ ˜
[

xf

]

.

The superscript ∗ denotes the adjoint operator (see Appendix A). The mass operator M is
a self-adjoint, positive operator. The kinetic and deformation energy can then be written as

Hkin + Hdef = 1

2
〈ekd, Mekd〉 (11)

where ekd = [vP ; ωP ; vf ;�] and the inner product 〈·, ·〉 is taken over the space R
3 ×R

3 ×
L 2(�,R3) × L 2(�,R3×3

sym ) (L 2(�,R3), L 2(�,R3×3
sym ) are the spaces of square integrable

vector-valued and symmetric tensor-valued functions in R
3, respectively). Notice that the

kinetic energy also depends on the flexible displacement

δHkin

δuf

= ˜

[

pf

]

ωP .

This term is responsible for a coupling between the kinematic coordinates and the velocities,
as will be clear in the following section.

3.2 PH formulation

In order to get a complete formulation, generalized coordinates are required. It is natural to
select the following variables:
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– irP is the position of point P in the inertial frame of reference;
– R is the direction cosine matrix that transforms vectors from the body frame to the inertial

frame (other attitude parametrizations are possible, here the direction cosine matrix is
considered for ease of presentation);

– uf is the flexible displacement;

In particular, following [20], the direction cosine matrix is converted into a vector by
concatenating its rows

Rv = vec(R�) = [Rx Ry Rz]�,

where Rx,Ry,Rz are the first, second, and third row of matrix R. Furthermore, the corre-
sponding cross-map will be given by

˜[Rv] =

⎡

⎢

⎢

⎣

˜[Rx]

˜

[

Ry

]

˜

[

Rz

]

⎤

⎥

⎥

⎦

, ˜[Rv] ∈R
9×3.

The overall port-Hamiltonian formulation, equivalent to Eqs. (5), (6), (7), is then (omit-
ting the external forces and torques)

[

I 0
0 M

]

︸ ︷︷ ︸

E

∂

∂t

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

irP

Rv

uf

vP

ωP

vf

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

e

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 R 0 0 0
0 0 0 0 ˜[Rv] 0 0
0 0 0 0 0 I 3×3 0

−R� 0 0 0 ˜

[

p̂t

]

0 0

0 −˜[Rv]
�

0 ˜

[

p̂t

]

˜

[

p̂r

]

I�
pf

0

0 0 −I 3×3 0 −(I�
pf

)∗ 0 Div
0 0 0 0 0 Grad 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

J

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂rP
H

∂RvH

δuf
H

vP

ωP

vf

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

z

.

(12)

Variables p̂t , p̂r are defined as

p̂t = pt +
∫

�

ρvf d�,

p̂r = pr +
∫

�

ρ ˜
[

xf

]

vf d�.

(13)

The operator I�
pf

is defined as

I�
pf

:=
∫

�

{

2 ˜
[

pf

]+ ρ˜
[

vf

]

}

(·) d�. (14)

Its adjoint is given by

(I�
pf

)∗ =
{

2 ˜
[

pf

]� + ρ˜
[

vf

]�}
(·) = −

{

2 ˜
[

pf

]+ ρ˜
[

vf

]

}

(·).
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The coefficient 2 is required to compensate the contribution given by δuf
H , namely

− δH

δuf

− (I�
pf

)∗ωP =
[

ρ˜[vP ] + ρ
˜[

˜

[

xf

]�
ωP

]

+ 2ρ˜
[

vf

]

]

ωP .

The additional terms related to ρvf are associated to the Coriolis accelerations that affect the
deformation field. It is important to underline that Div and Grad are formally skew-adjoint
operators, i.e., for homogeneous boundary conditions (I.B.P. stands for integration by parts)

∫

�

� .. Grad(vf ) d� =
︸︷︷︸

I.B.P.

−
∫

�

Div(�) · vf d�,

〈

�, Grad(vf )
〉

L 2(�,R3×3
sym )

=
︸︷︷︸

I.B.P.

− 〈Div(�), vf

〉

L 2(�,R3)
,

where 〈·, ·〉H denotes an inner product on the Hilbert space H . For this reason, the operator
J is skew-symmetric J ∗ = −J . System (12) fits into the framework detailed in [33] and
extends it, since a coupled system of ODEs and PDEs is considered. The underlying state
space is

X =R
3 ×R

9 × L 2(�,R3) ×R
3 ×R

3 × L 2(�,R3) × L 2(�,R3×3
sym ).

The dynamics can be rewritten compactly as follows:

E(e)
∂e

∂t
= J (e)z(e) +Bd(e)ud +Br (e)u∂ ,

yd = B∗
d(e)z(e),

yr = B∗
r (e)z(e),

u∂ = B∂z(e) = � · n|∂� = τ |∂�,

y∂ = C∂z(e) = vf |∂�,

(15)

where ud = β . Using definitions (9), it follows that the Hamiltonian satisfies

∂eH = E∗z. (16)

Adopting the same nomenclature as in [33], e contains the state and z contains the effort
functions. The operators verify E = E∗, J = −J ∗. The control operators are expressed as

Bd = [0 0 0 I� I�
x I 0

]�
,

Br = [0 0 0 I� I�
x 0 0

]�
,

where

I� :=
∫

�

(·) d�,

I� :=
∫

∂�

(·) d�,

I�
x :=

∫

�

˜

[

xf

]

(·) d�,

I�
x :=

∫

∂�

˜

[

xf

]

(·) d�.
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The distributed control operator Bd is compact. The boundary traction force acts on the rigid
part through the compact operator Br . Notice that by definition of adjoint (see Appendix A),
the vector yr represents the rigid body velocity at the boundary,

yr = (vP + ˜

[

xf

]�
ωP )|∂�,

while yd represents the velocity field in the domain,

yd = (vP + ˜

[

xf

]�
ωP + vf )|�.

The power balance is naturally embedded in the dynamics

Ḣ (e) = 〈∂eH,∂te〉X = 〈E∗z, ∂te〉X

= 〈z,E∂te〉X (Adjoint definition)

= 〈z,J z +Bd(e)ud +Br (e)u∂〉X

= 〈y∂ ,u∂〉L 2(∂�,R3) + 〈B∗
dz,ud〉X + 〈B∗

r z,u∂〉X (I.B.P. on J )

= 〈y∂ + yr ,u∂〉L 2(∂�,R3) + 〈yd ,ud〉L 2(�,R3),

(17)

where the integration by parts (Stokes theorem) has been used

∫

�

� .. Grad(vf ) d� +
∫

�

Div(�) · vf d� =
∫

∂�

(� · n) · vf d� = 〈y∂ ,u∂〉L 2(∂�). (18)

The power balance equals the power due to body force and surface traction

Ḣ (e) =
∫

∂�

(� · n) · v d� +
∫

�

ud · v d�, v := vP + ˜[ωP ]xf + vf . (19)

Remark 1 Even if three-dimensional elasticity has been taken as an example up to this
point, other models are easily considered. Beam and plate models [8, 9] are described by
appropriate differential operators that replace the Div,Grad appearing in (12) (see §4.3).
For example, in the case of the Kirchhoff plate, the three-dimensional divergence is replaced
by a planar divergence for the membrane behavior and a double divergence for the flexural
behavior.

Remark 2 Conservative forces are easily accounted for by introducing an appropriate po-
tential energy. For example, if the gravity force is considered, the corresponding potential
energy reads

Hpot =
∫

�

ρg irz d� =
∫

�

ρg
[

i rP,z + Rz(xf )
]

d�,

where i rz is the vertical location of a generic point computed in the inertial frame. The
associated coenergy variables are easily obtained as

∂rP
Hpot = mĝZ, ̂Z is the inertial frame vertical direction,

∂RvHpot = [0(3,1), 0(3,1),

∫

�

ρg(xf )� d�]�,
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δuf
Hpot = ρg R�

z .

These contributions correspond to the forcing terms due to gravity.

Remark 3 The linear elasticity hypothesis does not allow including the effect of nonlineari-
ties due to large deformations. However, geometric stiffening could be considered by adding
a potential energy associated to centrifugal forces [44].

Remark 4 If case of vanishing deformations uf ≡ 0, the Newton–Euler equations on the
Euclidean group SE(3) are retrieved [12] as

⎡

⎢

⎢

⎣

i ṙP

Rv

ṗt

ṗr

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 R 0

0 0 0 ˜[Rv]

−R� 0 0 ˜

[

pt

]

0 −˜[Rv]
�

˜

[

pt

]

˜

[

pr

]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

∂rP
H

∂RvH

vP

ωP

⎤

⎥

⎥

⎦

,

where
[

pt

pr

]

=
[

mI ˜[s]
�

˜[s] J

]

[

vP

ωP

]

, p = Mv.

The kinetic energy is then given by Hkin = 1
2v�Mv. This system can be written in standard

pH form as ẋ = J (x)∂xH .

4 Discretization procedure

A finite-element based technique to obtain a finite-dimensional pH system is illustrated.
This methodology relies on the results explained in [11] and ahead, used in [8, 9]. The
essential feature of this method is that it is structure-preserving. Given the lossless infinite-
dimensional system (15), it allows obtaining a finite-dimensional representation that is again
lossless (cf. [42, Definition 3.1.4]). The procedure boils down to three simple steps:

1. The system is written in weak form;
2. An integration by parts is applied to highlight the appropriate boundary control;
3. A Galerkin method is employed to obtain a finite-dimensional system.

4.1 Illustration for the elastodynamics PDE

To explain the methodology, consider the elastodynamics PDE

ρ
∂2u

∂t2
− Div (DGrad(u)) = ud ,

where a distributed control ud (a volumetric force) is considered. This model describes the
flexible vibrations of a continuum under small deformations. It is embedded in the general
formulation (12), and therefore the procedure explained here is easily adapted to the general
formulation.
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To get a pH representation, the energy variables have to be properly selected by consid-
ering the total energy

H = 1

2

∫

�

{

ρ

(

∂u

∂t

)2

+ � .. ε

}

d�. (20)

Taking as energy variables the linear momentum and the deformation

x1 := ρ ∂tu, X2 := ε = Grad(u), (21)

the corresponding coenergies are obtained by taking the variational derivative of the Hamil-
tonian

e1 := δH

δx1
= ∂tu, E2 := δH

δX2
= �. (22)

The port-Hamiltonian representation in coenergy variables becomes
[

ρ 0
0 D−1

]

︸ ︷︷ ︸

M

∂

∂t

[

e1

E2

]

=
[

0 Div
Grad 0

]

︸ ︷︷ ︸

J

[

e1

E2

]

+
[

I

0

]

︸︷︷︸

Bd

ud .

The interconnection operator may be decomposed as J = J Div +J Grad, where
[

0 Div
Grad 0

]

︸ ︷︷ ︸

J

=
[

0 Div
0 0

]

︸ ︷︷ ︸

J Div

+
[

0 0
Grad 0

]

︸ ︷︷ ︸

J Grad

. (23)

Assuming Neumann boundary conditions (the normal traction τ is known at the boundary),
this system can be written compactly as a boundary control system

M∂e

∂t
= J e +Bdud ,

yd = B∗
de,

u∂ = E2 · n|∂�,

y∂ = e1|∂�.

(24)

The system is defined over the state space

X = X1 × X2 = L 2(�,R3) × L 2(�,R3×3
sym ),

where L 2 is the space of square integrable functions. Taking [a,A], [b,B] ∈ X , the inner
product is computed as

〈[a,A], [b,B]〉X =
∫

�

a · b d� +
∫

�

A .. B d�.

The total energy is then computed as an inner product modulated by the mass operator H =
1
2 〈e, Me〉X (see (20)). The power balance is computed by applying the Stokes theorem
(18)

Ḣ = 〈e,M∂te〉X = 〈y∂ ,u∂〉L 2(∂�,R3) + 〈yd ,ud〉L 2(�,R3). (25)



A. Brugnoli et al.

So the system is lossless and passive with storage function given by the total energy. Con-
sidering a test function w = [w1, W 2], the weak form reads

〈w, M ∂te〉X = 〈w, J e〉X + 〈w, Bdud〉X .

The bilinear form 〈w, M ∂te〉X is symmetric and coercive. The bilinear form 〈w, Bdud〉X

takes into account distributed control.
Now an integration by parts is applied on J Div:

〈w, J e〉X = 〈w, J Grade〉X − 〈J Gradw, e〉X + 〈w1, u∂〉L 2(∂�,R3)

= 〈W 2, Grad(e1)〉X2
− 〈Grad(w1), E2〉X2

+ 〈w1, u∂〉L 2(∂�,R3)

(26)

where 〈·, ·〉L 2(∂�,R3) denotes the L 2 inner product over the boundary. The expression
jGrad(w, e) := 〈W 2, Grad(e1)〉X2

− 〈Grad(w1), E2〉X2
is a skew-symmetric bilinear form,

since jGrad(w, e) = −jGrad(e,w) holds. The bilinear form 〈w1, u∂〉L 2(∂�,R3) imposes the
Neumann condition weakly. System (24) is now rewritten in weak form

〈w1, ρ∂te1〉X1
= −〈Grad(w1), E2〉X2

+ 〈w1, ud〉X1
+ 〈w1, u∂〉L 2(∂�,R3) ,

〈

w2, D−1∂te2

〉

X2
= 〈W 2, Grad(e1)〉X2

.
(27)

The output equation is discretized considering test function w∂ defined over the boundary

〈

w∂ , y∂

〉

L 2(∂�,R3)
= 〈w∂ , e1〉L 2(∂�,R3) . (28)

If a Galerkin method is applied then corresponding test and trial functions are discretized
using the same basis as

w1(x) =
n1
∑

i=1

φi
1(x)wi

1,

e1(x, t) =
n1
∑

i=1

φi
1(x)ei

1(t),

W 2(x) =
n2
∑

i=1

�i
2(x)wi

2,

E2(x, t) =
n2
∑

i=1

�i
2(x)ei

2(t),

w∂ (s) =
n∂
∑

i=1

φi
∂ (s)w

i
∂ ,

u∂ (s, t) =
n∂
∑

i=1

φi
∂ (s)u

i
∂ (t),

where x ∈ �, s ∈ ∂�. A finite-dimensional pH system is readily obtained as

[

M1 0
0 M2

]

︸ ︷︷ ︸

M

(

ė1

ė2

)

=
[

0 −D�
D 0

]

︸ ︷︷ ︸

J

(

e1

e2

)

+
[

Md

0

]

︸ ︷︷ ︸

Bd

ud +
[

B1,∂

0

]

︸ ︷︷ ︸

B∂

u∂ ,

Md ỹd = [Md 0
]

(

e1

e2

)

,

M∂ ỹ∂ = [B�
1,∂ 0

]

(

e1

e2

)

.

(29)
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The matrices are defined as follows:

M
ij

1 =
〈

φi
1, ρφ

j

1

〉

X1

,

Mmn
2 = 〈�m

2 , D−1�n
2

〉

X2
,

M
ij

d =
〈

φi
1, φ

j

1

〉

X1

,

Mlk
∂ = 〈φl

∂ , φk
δ

〉

L2(∂�,R3)
,

Dmi = 〈�m
2 , Gradφi

1

〉

X2
,

Bik
1,∂ = 〈φi

1, φk
∂

〉

L 2(∂�,R3)
,

(30)

where i, j ∈ {1, n1} , m,n ∈ {1, n2} , l, k ∈ {1, n∂}. System (29) is rewritten compactly as

Mė = Je + Bdud + B∂u∂ ,

yd := Md ỹd = B�
d e,

y∂ := M∂ ỹ∂ = B�
∂ e.

(31)

It is important to notice that this system is again lossless. The discrete energy is Hd =
1
2 e�Me. The discrete power balance is given by

Ḣd = e�Mė = e�(Jė + Bdud + B∂u∂ ) = y�
d ud + y�

∂ u∂ ,

which mimics (25) at the discrete level.

Remark 5 Connection with standard discretization A standard finite element discretization
of linear elastodynamics provides a system of the form

M1q̈ + Kq = Mdud + B1,∂u∂ , (32)

where M1, Md , B1,∂ are defined as in (30). Since the stiffness matrix K is symmetric and
positive definite, it admits the following nonunique factorization [23] (see also [16, Theorem
2] for the equivalence of standard and mixed finite elements for elastodynamics problems):

K = D�M−1
2 D.

Now consider the following new variables:

e1 := q̇, e2 := M−1
2 Dq.

Then (32) can be rewritten as

[

M1 0
0 M2

](

ė1

ė2

)

=
[

0 −D�
D 0

](

e1

e2

)

+
[

Md

0

]

ud +
[

B1,∂

0

]

u∂ , (33)

which is exactly (29).

Remark 6 Vectors ỹd , ỹ∂ correspond to the output degrees of freedom. The outputs yd ,y∂

have been defined incorporating the mass matrix in order get the discrete power balance
Ḣd = u�

∂ y∂ + u�
d yd .

Remark 7 Stable mixed finite elements for the elastodynamics problem are detailed in [3].
The formulation therein is based on a weak form obtained by integration by parts of the
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J Grad operator. The mixed finite element methods for such a problem are then stable in the
sense of Brezzi, thanks to the properties of L2/H Div finite element spaces. However, the
discretization scheme proposed here allows for an easier representation of floating bodies as
the free condition corresponds to an homogeneous Neumann boundary condition.

4.2 Discretized rigid-flexible port-Hamiltonian dynamics

The same methodology is applied to system (15). If corresponding test functions w, state e,
and effort functions z are discretized using the same bases, namely

w(x) = φ(x)�w, e(x, t) = φ(x)�e(t), z(x, t) = φ(x)�z(t),

then a finite-dimensional pHDAE system is obtained (after integration by parts of the JDiv

operator)

E(e)ė = J(e)z(e) + Bd(e)ud + B∂ (e)u∂ ,

yd := Md ỹd = B�
d z(e),

y∂ := M∂ ỹ∂ = B�
∂ z(e).

(34)

The computation of vector z is based on the discrete Hamiltonian gradient:

∂Hd

∂e
= E�z, Hd = Hd,kin + Hd,def + Hd,pot.

This relation represents the finite-dimensional counterpart of (16). For the deformation and
kinetic energy, it is straightforward to find the link between the state and effort functions
since those energies are quadratic in the state variable:

Hd,kin + Hd,def = 1

2
e�

kd Mkd ekd −→ zkd = ekd, (35)

where ekd = [vP ; ωP ; vf ;�] and Mkd is the discretization of the mass operator M given
in Eq. (10). The only term that requires additional care is the potential energy, particularly
the variational derivative of the Hamiltonian with respect to the deformation displacement
zu = δuf

H . Consider the continuous power balance associated to the flexible displacement

Ḣu =
∫

�

∂uf

∂t
· zu d� =

∫

�

∂uf

∂t
· δH

δuf

d�.

The deformation displacement and its corresponding effort variable are discretized using
the same basis, i.e., uf = φ�

u uf , zu = φ�
u zu. The discrete Hamiltonian rate assumes two

equivalent expressions

Ḣu,d(uf ) =

⎧

⎪

⎨

⎪

⎩

u̇�
f Mu zu,

u̇�
f

∂Hd

∂uf

,

where Mu = ∫
�

φu φ�
u d�. To preserve the power balance at the discrete level, zu = M−1

u
∂Hd

∂uf

must hold.
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Fig. 2 Floating beam. The rigid
motion is located at point P

Remark 8 The set �D for the Dirichlet condition has to be nonempty, otherwise the deforma-
tion field is allowed for rigid movement, leading to a singular mass matrix. To enforce that,
test and state shape functions are chosen so as to verify a homogeneous Dirichlet condition.

4.3 Application to thin planar beams

A thin planar flexible beam is considered as a mechanical model. The dependence of the
canonical momenta on the deformation field is neglected. This hypothesis usually applies
in the floating frame formulation, since the deformations are small. Point P is placed at the
origin of the local frame P = {x = 0}, while C is the ending point of the beam C = {x = L}
(see Fig. 2). The beam has length L, Young modulus E, density ρ, cross-section A, and
second moment of area I . The model in strong form for a flexible beam is then written
compactly as

[

I 0
0 M

][

q̇

ṗ

]

=
[

0 J qe

−J ∗
qe J e

][

∂qH

p

]

+
[

0
Br

]

u∂ ,

u∂ = B∂p,

y∂ = C∂p.

(36)

The state and boundary vectors are expressed as

q = [irP , Rv, uf ]�

p = [vx
P , v

y

P , ωz
P , vx

f , v
y

f , nx, mx]�,

u∂ = [Fx
P , F

y

P , T z
P , F x

C, F
y

C, T z
C]�,

y∂ = [vx
P , v

y

P , ωz
P , vx

C, v
y

C, ωz
C]�.

The state contains the generalized coordinates q , the linear and angular velocity vx
P , v

y

P , ωz
P

at point P , the deformation velocity vx
f , v

y

f , and the traction and bending stress nx, mx .
The boundary input contains the forces and torques acting at the extremities of the beam,
while the boundary output contains the corresponding conjugated variables (velocities and
angular velocities). The deformation field has to be constrained, to prevent rigid movement
(see Remark 8). The appropriate selection of the boundary condition for the deformation
field is an unavoidable problem that depends on the particular case under consideration.
Depending on the application, cantilever or simply supported boundary conditions may be
considered (see Sect. 6)

Cantilever

⎧

⎪

⎨

⎪

⎩

ux
f (x = 0) = 0,

u
y

f (x = 0) = 0,

∂xu
y

f (x = 0) = 0,

Simply supported

⎧

⎪

⎨

⎪

⎩

ux
f (x = 0) = 0,

u
y

f (x = 0) = 0,

u
y

f (x = L) = 0.
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Partitioning the p vector into rigid pr = [vx
P , v

y

P , ωz
P ]� and flexible part pf = [vx

f , v
y

f , nx,

mx]�, the mass operator is then formulated as follows:

M =
[

Mrr Mrf

Mf r Mff

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

m 0 0 IL
ρ 0 0 0

0 m sx 0 IL
ρ 0 0

0 sx J zz 0 IL
ρx 0 0

(IL
ρ )∗ 0 0 ρA 0 0 0

0 (IL
ρ )∗ (IL

ρx)
∗ 0 ρA 0 0

0 0 0 0 0 (EA)−1 0

0 0 0 0 0 0 (EI)−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (37)

where sx = ∫ L

0 ρAx dx is the static moment, J zz = ∫ L

0 ρAx2 dx is the moment of inertia,

IL
ρ := ∫ L

0 ρA(·) dx, IL
ρx := ∫ L

0 ρAx(·) dx. Differently from standard Lagrangian formula-
tions, the mass operator includes the coefficients (EA)−1 and (EI)−1. These coefficients
represent the compliance of the beam and appear in the mass operator to include the defor-
mation energy

Hdef = 1

2

∫ L

0

1

EA
n2

x + 1

EI
m2

x d�.

The interconnection operator is found by adapting the cross-product to the planar case:

J e(e) =
[

J rr J rf

J f r J ff

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 +p̂
y
t 0 0 0 0

0 0 −p̂x
t 0 0 0 0

−p̂
y
t +p̂x

t 0 −IL

p
y
f

+IL
px

f
0 0

0 0 +(IL

p
y
f

)∗ 0 0 ∂x 0

0 0 −(IL
px

f
)∗ 0 0 0 −∂xx

0 0 0 ∂x 0 0 0

0 0 0 0 ∂xx 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (38)

where p̂x
t , p̂

y
t are the modified canonical momenta components (see (13)), IL

px
f

:= ∫ L

0 {2px
f +

ρAvx
f }(·) dx, and IL

p
y
f

:= ∫ L

0

{

2p
y

f + ρAv
y

f

}

(·) dx. The control operator reads

Br =
[

I 3×3 τ�
CP

04×3 04×3

]

with τCP =
⎡

⎣

1 0 0
0 1 L

0 0 1

⎤

⎦ . (39)

The discretization procedure detailed in §4 is extended to this case, considering that the
differential operators are

J Div =

⎡

⎢

⎢

⎣

0 0 ∂x 0
0 0 0 −∂xx

0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

, J Grad =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
∂x 0 0 0
0 ∂xx 0 0

⎤

⎥

⎥

⎦

.
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These two operators play the same role as their previously defined homonyms. The two
PDEs associated to the first and second line of J Div are integrated by parts once and twice,
respectively, so that the boundary forces and momenta are naturally included in the dis-
cretized system as inputs. The finite-dimensional system then reads

⎡

⎣

I 0 0
0 Mrr Mrf

0 Mf r Mff

⎤

⎦

⎡

⎣

q̇
ṗr

ṗf

⎤

⎦=
⎡

⎢

⎣

0 Jqr (q) Jqf

Jrq(q) Jrr (p) Jrf (p)

Jf q Jf r (p) Jff

⎤

⎥

⎦

⎡

⎣

∂qH

pr

pf

⎤

⎦+
⎡

⎣

0
Br

Bf

⎤

⎦u∂ ,

y∂ = [0 B�
r B�

f

]

⎡

⎣

q
pr

pf

⎤

⎦ .

(40)

Matrix Br = [I3×3, τ�
CP ] accounts for the effect of boundary forces on the rigid part. Matrix

Bf is the result of the integration by parts,

Bf =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0nvx
f

×3 φvx
f
(L) 0nvx

f
0nvx

f

0n
vy
f

×3 0n
vy
f

φv
y
f
(L) ∂xφv

y
f
(L)

0nσx
f

×3 0nσx
f

0nσx
f

0nσx
f

0n
σy
f

×3 0n
σy
f

0n
σy
f

0n
σy
f

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where φvx
f
, φv

y
f

are the shape functions for vx
f , v

y

f and φvx
f

. Fields vx
f , v

y

f , nx,mx are ap-

proximated using nvx
f , n

vy

f , nσx
f , n

σy

f degrees of freedom, respectively. System (40) can be
rewritten compactly as

Eė = J(e)z(e) + B∂u∂ ,

y∂ = B�
∂ z.

(41)

This model describes the motion of a flexible floating beam that undergoes small deforma-
tions.

5 Multibody systems in pH form

In Sects. 3 and 4, the pH formulation of a single flexible floating body in infinite- and finite-
dimensional form was presented. The construction of a multibody system is accomplished
by exploiting the modularity of the port-Hamiltonian framework. Each element of the sys-
tem is interconnected to the others by means of classical pH interconnections.

5.1 Interconnections of pHDAE systems

Consider two generic pHDAE systems of the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ei ėi = Jizi (ei ) + Bint
i uint

i + Bext
i uext

i ,

yint
i = Bint�

i zi ,

yext
i = Bext�

i zi ,

∀i = 1,2, (42)
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where ∂ei
Hi = E�

i zi . Systems of this kind arise from the discretization of formulation (15).
The interconnection uses the internal control uint

i . An interconnection is said to be power-
preserving if and only if the following holds:

〈uint
1 , yint

1 〉 + 〈uint
2 , yint

2 〉 = 0, (43)

which expresses that the power going out from one system flows into the other in a loss-
less manner. Two interconnections are of interest when coupling system: the gyrator and
transformer interconnections.

Gyrator interconnection The gyrator interconnection reads

uint
1 = −Cyint

2 , uint
2 = C�yint

1 .

This interconnection verifies (43) and provides the system
[

E1 0
0 E2

][

ė1

ė2

]

=
[

J1 −Bint
1 CBint�

2
Bint

2 CBint�
1 J2

][

z1

z2

]

+
[

Bext
1 0
0 Bext

2

][

uext
1

uext
2

]

[

yext
1

yext
2

]

=
[

Bext�
1 0
0 Bext�

2

][

z1

z2

]

.

Transformer interconnection The transformer interconnection reads

uint
1 = −Cuint

2 , yint
2 = C�yint

1 .

Again, this interconnection verifies (43). After the interconnection the final system is
differential-algebraic:

⎡

⎣

E1 0 0
0 E2 0
0 0 0

⎤

⎦

⎡

⎣

ė1

ė2

λ̇

⎤

⎦=
⎡

⎢

⎣

J1 0 −Bint
1 C

0 J2 Bint
2

C�Bint�
1 −Bint�

2 0

⎤

⎥

⎦

⎡

⎣

z1

z2

λ

⎤

⎦+
⎡

⎣

Bext
1 0
0 Bext

2
0 0

⎤

⎦

[

uext
1

uext
2

]

[

yext
1

yext
2

]

=
[

Bext�
1 0 0
0 Bext�

2 0

]

⎡

⎣

z1

z2

λ

⎤

⎦ .

5.2 Application to multibody systems of beams

Once a discretized system is obtained, lossless joints can be modeled as a transformer inter-
connection. A common example is a revolute joint between two beams (cf. Fig. 3). Consid-
ering discretization (41), the boundary control input u∂,i may be split into interconnection
variables uint

i and external variables uext
i , i.e., u∂,i = [uint

i ; uext
i ]. The same splitting applies

to the output. In this case the interconnection variables are

uint
1 = [Fx

C1
, F

y

C1
]� := FC1 ,

uint
2 = [Fx

P2
, F

y

P2
]� := FP2 ,

yint
1 = [vx

C1
, v

y

C1
]� := vC1 ,

yint
2 = [vx

P2
, v

y

P2
]� := vP2 .

The interconnection matrix is the relative rotation matrix between the two local frames

R(θ) =
[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

, θ(t) = θ(0) +
∫ t

0
(ωz

P2
− ωz

P1
) dτ. (44)
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Fig. 3 Two beams
interconnected by an hinge

The transformer interconnection

uint
1 = −R(θ)uint

2 , yint
2 = R(θ)�yint

1 , (45)

imposes the constraints on the velocity level and gives rise to a quasilinear index 2 pHDAE
(see Appendix A for the index definition):

⎡

⎣

E1 0 0
0 E2 0
0 0 0

⎤

⎦

⎡

⎣

ė1

ė2

λ̇

⎤

⎦=
⎡

⎢

⎣

J1(e1) 0 −Bint
1 R

0 J2(e2) Bint
2

R�Bint�
1 −Bint�

2 0

⎤

⎥

⎦

⎡

⎣

z1

z2

λ

⎤

⎦+
⎡

⎢

⎣

Bext
∂1 0

0 Bext
∂2

0 0

⎤

⎥

⎦

[

uext
1

uext
2

]

,

[

yext
1

yext
2

]

=
[

Bext�
∂1 0 0
0 Bext�

∂2 0

]

⎡

⎣

z1

z2

λ

⎤

⎦ .

(46)

Remark 9 The constraints are imposed at a velocity level to preserve the pH structure. It is
well-known that a drift appears in this case. For linear systems, it is possible to use the Gear–
Gupta–Leimkuhler formulation to preserve the pH structure and enforce the constraints di-
rectly on the positions [43]. In the nonlinear case, stabilization techniques may be introduced
to avoid drifting phenomena [4, 28].

The same result can be obtained by using a pHDAE system and a gyrator interconnection.
To illustrate this, consider the pHDAE obtained by interchanging the role of output and input
of the second system uint

2 ↔ yint
2 . The output then plays the role of a Lagrange multiplier. The

input uint
2 is now considered as Lagrange multiplier λ2 and the output yint

2 plays the role of
uint

2 . The discretized system assumes the following differential-algebraic structure

[

E2 0
0 0

][

ė2

λ̇2

]

=
[

J2(e2) Bint
2

−Bint�
2 0

]

[

z2

λ2

]

+
[

0
I

]

uint
2 +

[

Bext
2
0

]

uext
2 ,

yint
2 = λ2,

yext
2 = Bext�

2 z2.

(47)

This system is improper since the input appears in the algebraic part. Now, a gyrator inter-
connection is used to model the hinged joint

uint
1 = −R(θ)yint

2 , uint
2 = R(θ)�yint

1 . (48)
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Fig. 4 Block diagrams representing the transformer interconnection (45) (left) and the equivalent gyrator
interconnection (48) (right)

The resulting differential-algebraic system is exactly (46), which is proper. The equivalence
between the two representation is represented in Fig. 4. This approach allows the modu-
lar construction of systems of arbitrary complexity. Other kind of lossless joints (prismatic,
spherical) can be modeled by appropriate interconnections. The system can then be simu-
lated by using specific DAE solvers [7].

5.3 The linear case: substructuring and model reduction

If the angular velocities and the relative orientations are small, then the system may be
linearized about a particular geometrical configuration. Omitting the partition related to the
generalized coordinates q and partitioning the system into rigid and flexible dynamics, the
resulting equations are then expressed as

⎡

⎣

Mrr Mrf 0
Mf r Mff 0

0 0 0

⎤

⎦

⎡

⎣

ṗr

ṗf

λ̇

⎤

⎦=
⎡

⎢

⎣

0 0 G�
r

0 Jff G�
f

−Gr −Gf 0

⎤

⎥

⎦

⎡

⎣

pr

pf

λ

⎤

⎦+
⎡

⎣

Br

Bf

0

⎤

⎦u. (49)

The Hamiltonian is now a quadratic function of the state variables H = 1
2 p�Mp [5]. The

modular construction of complex multibody systems is then analogous to a substructuring
technique [26], where the velocities and forces are linked at the interconnection points. Such
system can be reduced using Krylov subspace method directly on the DAE formulation [18].
The basic idea relies on the construction of a subspace Vred

f for the vector pf such that
pf ≈ Vred

f pred
f . The reduced system then reads

⎡

⎢

⎣

Mrr Mred
rf 0

Mred
f r Mred

ff 0

0 0 0

⎤

⎥

⎦

⎡

⎢

⎣

ṗr

ṗred
f

λ̇

⎤

⎥

⎦
=
⎡

⎢

⎣

0 0 G�
r

0 Jred
ff Gred�

f

−Gr −Gred
f 0

⎤

⎥

⎦

⎡

⎢

⎣

pr

pred
f

λ

⎤

⎥

⎦
+
⎡

⎢

⎣

Br

Bred
f

0

⎤

⎥

⎦
u, (50)

where the second row has been premultiplied by Vred�
f . Alternatively, a null space matrix can

employed to eliminate the Lagrange multiplier and preserve the port-Hamiltonian structure.
Consider the pHDAE (49), where the differential and algebraic parts are explicitly separated

Mṗ = Jp + G�λ + Bu,

0 = Gp,
(51)
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and consider a matrix P that satisfies

range{P} = null{G}.
Then, the range of P automatically satisfies the constraints. Considering the transformation
p̂ = Pp and premultiplying the system by P�, an equivalent ODE is obtained

̂M ˙̂p =̂J p̂ +̂B u,

with ̂M = P�MP, ̂J = P�JP, ̂B = P�B. The computation of P can be performed by QR
decomposition of matrix G [29]. A pH system in standard form is then obtained considering
the variable change x̂ = ̂Mp̂ leading to

˙̂x =̂ĴQ x̂ +̂Bu, ̂Q := ̂M−1.

Once an equivalent ODE formulation is obtained, the concepts and ideas presented in [14]
can be used to reduce the flexible dynamics.

6 Validation

In this section numerical simulations are performed to assess the correctness of the proposed
formulation. The examples make use of Euler–Bernoulli beam model (40). To discretize the
system, Lagrange polynomial of order 1 and Hermite polynomials of order 3 are used for
vx

f and v
y

f , respectively. Discontinuous Galerkin elements of order 0 and 1 are selected for
nx and mx , respectively. This choice ensures the conformity with respect to the differential
operator. As a first example, the vertical vibrations of a simply supported beam are consid-
ered. To assess the validity of the finite elements, a convergence study with respect to an
analytical solution is performed. A second example concerns the computation of eigenval-
ues of a four-bar mechanism for different geometrical configuration. The third example is a
rotating crank–slider. In this case the nonlinearities cannot be neglected. The fourth example
is a hinged beam undergoing external excitations so that the out-of-plane motion becomes
important. The Firedrake Python library [38] is employed to construct the finite-dimensional
discretization.

6.1 Convergence test for an analytical solution

We consider the following exact solution for the Euler–Bernoulli beam under simply sup-
ported boundary conditions:

u
y,ex
f = sin(πx/L) sin(t), � ∈ {0,L},

v
y,ex
f = sin (πx/L) cos(t),

my,ex
xx = −EI (π/L)2 sin (πx/L) sin(t),

u
y,ex
f |∂� = 0,

v
y,ex
f |∂� = 0,

my,ex
xx |∂� = 0.

The numerical values used for the simulations are reported in Table 1. The total simula-
tion time is tf = 1 [s]. A Crank–Nicholson scheme is used for the time discretization with
t = tf

L
h, where h is the mesh element size (same accuracy for the spatial and temporal dis-

cretizations). For the bending stress m
y
xx , the error is computing using the following norm:

||my,ex
xx − my

xx ||L∞
t (L

2(�)) := max
t∈ti

||my,ex
xx − my

xx ||L2(�),
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Table 1 Physical parameters for
the convergence analysis

Beam parameters

ρ A E I L

5600 [kg/m3] 50 [mm2] [136 GPa] 4.16 [mm4] 1 m

where ti are the discrete simulation instants and L2 is the Hilbert space of square integrable
functions with norm

||f ||L2(�) =
√

∫ L

0
f 2 dx.

The errors for the displacement u
y

f and the velocity v
y

f are computed using the following
norm:

||uy,ex
f − u

y

f ||L∞
t (H

2(�)) = max
t∈ti

||uy,ex
f − u

y

f ||H 2(�),

||vy,ex
f − v

y

f ||L∞
t (H

2(�)) = max
t∈ti

||vy,ex
f − v

y

f ||H 2(�),

where H 2 is the Sobolev space of functions with second derivative in L2 with norm

||f ||H 2(�) =
√

∫ L

0
f 2 +

(

∂f

∂x

)2

+
(

∂2f

∂x2

)2

dx.

The results are reported in Fig. 5. A quadratic convergence is obtained for all variables.

6.2 Linear analysis of a four-bar mechanism

The four-bar mechanism has one degree of freedom and represents a closed chain of bodies.
The data are taken from [15, 25] are recalled in Table 2. In Fig. 6, the mechanism and the
corresponding block diagram used for constructing the final pH system with transformer in-
terconnections between subsystems are presented. The lumped masses are directly included
in the coupler and follower model considering a simple modification of the rigid mass matrix

Mi+ml
rr [1 : 2,1 : 2] = Mi

rr [1 : 2,1 : 2] + I2×2ml,

where i = 2,3 denotes the coupler or follower model. Given a certain crank angle θ1, the rel-
ative angles between the different links are found by solving the two kinematic constraints:

L1 cos(θ1) + L2 cos(θ1 + θ2) + L3 cos(θ1 + θ2 + θ3) = L0,

L1 sin(θ1) + L2 sin(θ1 + θ2) + L3 sin(θ1 + θ2 + θ3) = 0.

Once the angles describing the geometrical configuration are known, the transformer inter-
connection (45) is applied to insert a revolute joint between adjacent links. For the defor-
mation field, a cantilever condition is imposed for each beam. The resulting system is then
constrained to ground by imposing to following equalities:

vP1 = 0, ωz
P1

= 0, vC3 = 0.



Port-Hamiltonian flexible multibody dynamics

Fig. 5 Error for the vertical vibrations of a simply supported beam

Table 2 Four-bar mechanism links properties: each link is a uniform beam with mass density ρ =
2714 [kg/m3] and Young modulus E = 7.1 1010 [N/m2]. The lumped masses ml = 0.042 [kg] are taken
into account considering an additional mass at P for links 2 and 3

i 0 1 2 3

Name ground crank coupler follower

Length Li [m] 0.254 0.108 0.2794 0.2705

Cross section Ai [m2] − 1.0774 10−4 4.0645 10−5 4.0645 10−5

Flexural rigidity (EI)i [Nm2] − 11.472 0.616 0.616

The resulting system is expressed in pH form as Eė = Je. The eigenfrequencies are
then found by solving the generalized eigenvalue problem E� = J�
. Since J is skew-
symmetric, the eigenvalues will be imaginary 
 = j�. The first three pulsations are re-
ported in Fig. 7 for different values of the crank angle θ1. The results match those of [15]
(labeled as TITOP in the figure), assessing the validity of the linear model.

6.3 Rotating crank–slider

To verify the nonlinear planar model, a crank–slider rotating at high speed is considered.
The example is retrieved form [19]. The crank is considered as rigid, with length Lcr =
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Fig. 6 Four bar mechanism illustration (left, taken from [15]) and block diagram used for the eigenvalues
analysis (right)

Fig. 7 Eigenvalues ωi, i = 1,2,3 for the four bar mechanism for varying crank angle (Color figure online)

Fig. 8 Crank–slider illustration (left) and block diagram (right)

0.15 [m] and rotates at a constant angular rate ωcr = 150 [rad/s]. The flexible coupler has
length Lcl = 0.3 [m] and a circular cross-section whose diameter is dcl = 6 [mm]. Its Young
modulus and density are given by Ecl = 0.2 1012 [Pa] and ρcl = 7870 [kg/m3]. The slider
has a total mass equal to half the mass of the coupler msl = 0.033 [kg]. A simply supported
condition applies for the coupler deformation field. This choice is motivated by the fact that
the slider has a large inertia and does not allow for elastic displacement at the tip.

An illustration of the system and the block diagram used to construct the model are
provided in Fig. 8. To construct the crank–slider, a transformer interconnection is first used
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Table 3 Computational
performances for the crank slider

Solver Elapsed simulation time Average t Final time

IDA 12.14 [s] 4.98 10−7 [s] 0.053 10−4 [s]

Fig. 9 Coupler midpoint horizontal (left) and vertical (right) displacement

to connect the slider to the flexible coupler. The motion of the slider is then computed in the
coupler reference frame. Then the sliding constraint, requiring the vertical velocity of the
slider to be null in the inertial frame, is imposed as follows:

0 = sin(θP1)v
x
P2

+ cos(θP1)v
y

P2
= Ry(θP1)vP2 ,

where Ry is the second line of the rotation matrix and θP1 is the angle defining the orientation
of the coupler. The rigid crank velocity at the endpoint

vcr(t) = −ωcrLcr sin(ωcrt)̂X + ωcrLcr cos(ωcrt)̂Y

has to be written in the coupler reference frame to get the input

ucl = R(θP1)
�vcr.

The resulting system is a quasilinear index 2 DAE of the form

⎡

⎣

M 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣

ė
λ̇0

λ̇u

⎤

⎦=
⎡

⎣

J(e) G�
0 (θP1) G�

u

−G0(θP1) 0 0
−Gu 0 0

⎤

⎦

⎡

⎣

e
λ0

λu

⎤

⎦+
⎡

⎣

0
0

R(θP1)
�

⎤

⎦vcr.

Setting the initial conditions properly is of utmost importance for a DAE solver. For this
problem, the beam is supposed undeformed at the initial time. The initial conditions for the
rigid movement are then found using basic kinematics considerations. The system is then
solved using the IDA algorithm available in the Assimulo library [2]. The computational
performances for this test case are reported in Table 3. In Fig. 9, the midpoint deforma-
tion displacement ux

f (Lcl/2), u
y

f (Lcl/2), normalized with respect to the coupler length, is
reported. The resulting vertical displacement is in accordance with the results presented in
[19]. The horizontal displacement exhibits high oscillations because of the higher eigenfre-
quencies of the longitudinal movement. This is due to the fact that null initial conditions are
imposed on the deformation [44]. In order to obtain a smoother solution, the initial defor-
mation has to be computed from the rigid initial condition.
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Fig. 10 Spatial beam on a
spherical joint

Table 4 Physical parameters for the hinged spatial beam

Length Cross-section Inertia moment Density Young modulus

141.45 [mm] 9.0 [mm2] 6.75 [mm4] 7800 [kg/mm3] 2.1 106 [N/m2]

Table 5 Computational
performances for the hinged
spatial beam

Solver Elapsed simulation time Average t Final time

Radau IIA 21.14 [s] 6 10−4 [s] 50 [s]

Fig. 11 Simulation results: kinetic energy (left) and angular velocity about the vertical inertial direction
(right)

6.4 Hinged spatial beam

A spatial beam rotating about a spherical joint is considered (see Fig. 10). This example was
considered in [10, 19]. The physical parameters are briefly recalled in Table 4. The spherical
joint constraint is imposed by setting to zero the linear velocity, while a cantilever is imposed
for the deformation field as the tip is free. For the first 10.2 [s], a torque Mz = 200 [N/mm]
is applied about the vertical axis. Then, an impulsive force Fz = 100 [N] is applied at the tip
of the beam at 15 [s], to excite the out-of-plane movement. The system is solved using an
implicit Runge–Kutta method of the Radau IIA family (see Table 5 for the computational
performances of this test case). The simulation results, provided in Fig. 11, correspond to the
total energy and the angular velocity measured in the inertial vertical direction. The result
matches with the provided references. Indeed, the nonlinearities associated to the gyroscopic
terms are small as the maximum angular velocity is equal to 0.1 [rad/s] ≈ 5 [deg/s].
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7 Conclusion

A port-Hamiltonian formulation for the flexible multibody dynamics has been discussed.
The equations of motions proposed in the paper are obtained by direct manipulation of
preexisting results, unveiling the Hamiltonian structure of the floating frame of reference
formulation.

The discretization procedure uses a mixed finite element method, hence, the stress dis-
tribution is available without any postprocessing. This is a valuable characteristic of this
framework, as the stress distribution is the most important variable for preliminary analysis
of mechanical components.

This approach allows treating different models and their interconnections in a common
framework. This formulation works with any kind of rigid joints and could be easily ex-
tended for any kind of flexible joints. The construction of multibody system becomes com-
pletely modular and well suited for control applications.

There are, however, many questions that require further investigations. To address com-
plex multibody systems, higher dimensional models (plates, shells, and 3D continua) have
to be considered. Port-Hamiltonian plate models and 3D continua are readily available,
whereas the reformulation of shell structures in pH form is still an open topic.

Concerning the spatial discretization, for 3D continua and thick plate models (Mindlin–
Reissner plates) one may employ the method proposed in [16] to achieve a structure-
preserving discretization. The discretization of thin plate models is substantially more diffi-
cult.

The employment of finite elements leads to large sparse systems to be solved. To limit
the computational complexity of these models, model reduction techniques can be incorpo-
rated. While for linear pHDAE systems consolidated methodologies exist, for the nonlinear
differential-algebraic case solutions are not available, yet. To avoid the problem of dealing
with large-scale systems, spectral methods can be equivalently used to achieve a structure-
preserving discretization made up of small and dense matrices.

The time-domain simulations of the resulting systems have been accomplished using
ready-to-use solvers. A rigorous numerical analysis, out of the scope of this paper, represents
an important future development. In particular, numerical methods capable of preserving
important structural properties in discrete time have been studied for rigid body dynamics
[12] and generic ODE [27] and DAE [33] pH systems. These methods could be fruitfully
employed in the proposed framework.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Appendix A: Mathematical tools

We recall here some identities and definitions that will be used throughout the paper.

A.1 Properties of the cross-product

We denote by ˜[a] the skew-symmetric map associated to vector a = [ax, ay, az]�, that is,

˜[a] =
⎡

⎣

0 −az ay

az 0 −ax

−ay ax 0

⎤

⎦ . (52)
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This map allows rewriting the cross-product as a matrix–vector product a ∧ b = ˜[a]b. The
cross-product satisfies the anticommutativity property

˜[a]b = −˜[b]a, a,b ∈ R
3. (53)

Furthermore, it satisfies the Jacobi Identity

˜[a]˜
[

b
]

c + ˜

[

b
]

˜[c]a +˜[c]˜[a]b = 0, a,b, c ∈R
3. (54)

A.2 Adjoint of operators

In this paper, the adjoint of an operator is used. We recall the necessary definitions.

Definition 1 Given a linear operator A : H 1 → H 2 between Hilbert spaces, the adjoint
A∗ : H 2 → H 1 fulfills

〈y,Ax〉H 2 = 〈A∗y, x〉H 1 , x ∈ H 1, y ∈ H 2. (55)

To illustrate this definition, consider the operator I� = ∫
�
(·) d� : L 2(�,R3) →R

3. Given
a function u ∈ L 2(�,R3) and a vector v ∈R

3, the adjoint operator (I�)∗ extends the vector
v as a constant vector field over �,

〈v,I�u〉R3 = 〈(I�)∗v,u〉L 2(�,R3).

Definition 2 A linear bounded operator A : H → H is self-adjoint if

〈y,Ax〉H = 〈Ay, x〉H , x, y ∈ H . (56)

Definition 3 A linear bounded operator A : H → H is skew-adjoint if

〈y,Ax〉H = −〈Ay, x〉H , x, y ∈ H . (57)

Indeed, the differential operators that appear in J (Div,Grad) are unbounded in the L 2

topology. Whenever unbounded operators are considered, it is important to define their do-
main. To avoid the need of specifying domains, the notion of formal (or essential) adjoint
can be evoked. The formal adjoint respects the integration by parts formula and is defined
only for sufficiently smooth functions with compact support. In this sense Div,Grad are
formally skew-adjoint, since for smooth functions with compact support, it holds

〈y, Grad(x)〉L 2(�,R3×3
sym )

=
︸︷︷︸

I.B.P.

−〈Div(y), x〉L 2(�,R3) .

The definition of the domain of the operators, which requires the knowledge of the boundary
conditions, has not been specified. For this reason, the J operator is said to be formally
skew-adjoint (or simply skew-symmetric).
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A.3 Index of a differential-algebraic system

When dealing with differential-algebraic systems, an important notion is the index.

Definition 4 The index of a DAE is the minimum number of differentiation steps required
to transform a DAE into an ODE.

Because of their structure, pH multibody systems are of index 2. Consider for simplicity a
generic linear pH multibody system whose equations are

Mė = Je + G�λ + Bu,

0 = −Ge.

Matrix M is squared and invertible and matrix G is of full row rank. If the second equation
is derived twice in time, then

λ̇ = −(GM−1G�)−1GM−1(Jė + Bu̇).

Therefore, the system index is 2.

Appendix B: Detailed derivation of the equation of motions

The detailed derivation of the pH system (12) is presented here. We stick to the notation
adopted along the paper. First, let us recall the equations for a floating flexible body reported
in [44, 45].

– Linear momentum balance:

mi r̈P + R˜[su]
�
ω̇P + R

∫

�

ρüf d� =

+ R

{

−˜[ωP ]˜[ωP ]su −
∫

�

2ρ ˜[ωP ]u̇f d� +
∫

�

β d� +
∫

∂�

τ d�

}
(58)

– Angular momentum balance:

˜[su]R� i r̈P + J uω̇P +
∫

�

ρ ˜
[

xf

]

üf d� + ˜[ωP ]J uωP =

−
∫

�

2ρ ˜
[

xf

]

˜[ωP ]u̇f d� +
∫

�

˜

[

xf

]

β d� +
∫

∂�

˜

[

xf

]

τ d�

(59)

– Flexibility PDE:

ρR� i r̈P + ρ(˜[ω̇P ] + ˜[ωP ]˜[ωP ])xf + ρ(2˜[ωP ]u̇f + üf ) = Div� + β, (60)

The first two equations are written in the inertial frame and so they need to be projected in
the body frame. Considering that the position of point P , i.e., irP , is computed in the inertial
frame and vP in the body frame, one has i ṙP = RvP . Taking the derivative of this gives

i r̈P = R
(

v̇P + ˜[ωP ]vP

)

. (61)
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Substituting (61) into (58), (59), (60) and premultiplying (58) by R�, Eqs. (1) (2), and (3)
are obtained.

– Linear momentum balance:

m(v̇P + ˜[ωP ]vP ) +˜[su]
�
ω̇P +

∫

�

ρv̇f d� =

− ˜[ωP ]˜[ωP ]su −
∫

�

2ρ ˜[ωP ]vf d� +
∫

�

β d� +
∫

∂�

τ d�.

(62)

– Angular momentum balance:

˜[su](v̇P + ˜[ωP ]vP ) + J uω̇P +
∫

�

ρ ˜
[

xf

]

v̇f d� + ˜[ωP ]J uωP =

−
∫

�

2ρ ˜
[

xf

]

˜[ωP ]vf d� +
∫

�

˜

[

xf

]

β d� +
∫

∂�

˜

[

xf

]

τ d�.

(63)

– Flexibility PDE:

ρ(v̇P + ˜[ωP ]vP ) + ρ(˜[ω̇P ] + ˜[ωP ]˜[ωP ])(xf ) + ρ(2˜[ωP ]vf + v̇f ) =
Div� + β,

(64)

where vf = u̇f .

Consider now the term ˜[ωP ]˜[ωP ]su, appearing in (62). Using the anticommutativity (53)
and the fact that the cross-map is skew-symmetric, i.e., ˜[a] = −˜[a]

�
, one finds

−˜[ωP ]˜[ωP ]su = ˜
[

˜[su]
�
ωP

]

ωP .

Equation (62) is then rewritten as

mv̇P +˜[su]
�
ω̇P +

∫

�

ρv̇f d� =
[

m˜[vP ] + ˜
[

˜[su]
�
ωP

]

+ 2
∫

�

ρ˜
[

vf

]

d�

]

ωP +
∫

�

β d� +
∫

∂�

τ d�.

(65)

The terms ˜[su]˜[ωP ]vP , 2ρ ˜
[

xf

]

˜[ωP ]vf , appearing in (63), can be rewritten using the Jacobi
identity (54) as

˜[su]˜[ωP ]vP = − ˜
[

˜[su]vP

]

ωP − ˜
[

˜[su]
�
ωP

]

vP , (66)

2ρ ˜
[

xf

]

˜[ωP ]vf = −2ρ
˜
[

˜

[

xf

]

vf

]

ωP − 2ρ
˜[

˜

[

xf

]�
ωP

]

vf . (67)
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Equation (63) is then rewritten as

˜[su]v̇P + J uω̇P +
∫

�

ρ ˜
[

xf

]

v̇f d� =
[

˜
[

˜[su]
�
ωP

]

+ 2
∫

�

ρ˜
[

vf

]

d�

]

vP +
[

˜
[

˜[su]vP

]+ ˜[J uωP ] + 2
∫

�

ρ
˜
[

˜

[

xf

]

vf

]

d�

]

ωP +

2
∫

�

[

ρ˜[vP ] + ρ
˜[

˜

[

xf

]�
ωP

]

]

vf d� +
∫

�

˜

[

xf

]

β d� +
∫

∂�

˜

[

xf

]

τ d�.

(68)

Notice that 2˜
[

vf

]

vP + 2˜[vP ]vf = 0. Using again the anticommutativity, Eq. (64) is ex-
pressed as

ρv̇P + ρ ˜
[

xf

]�
ω̇P + ρv̇f =

[

ρ˜[vP ] + ρ
˜[

˜

[

xf

]�
ωP

]

+ 2ρ˜
[

vf

]

]

ωP + Div� + β.
(69)

Indeed, Eqs. (65), (68), (69) are exactly (5), (6), (7). Now by definitions (13), (14),

p̂t = mvP +˜[su]
�
ωP + 2

∫

�

ρvf d�,

p̂r =˜[su]vP + J uωP + 2
∫

�

ρ ˜
[

xf

]

vf d�,

I�
pf

(·) =
∫

�

[

2

(

ρ˜[vP ] + ρ
˜[

˜

[

xf

]�
ωP

]

+ ρ˜
[

vf

]

)

+ ρ˜
[

vf

]

]

(·) d�.

Equations (58), (59), (60) are written as

M d

dt

⎡

⎢

⎢

⎣

vP

ωP

vf

�

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 ˜

[

p̂t

]

0 0

˜

[

p̂t

]

˜

[

p̂r

]

I�
pf

0

0 −(I�
pf

)∗ 0 Div

0 0 Grad 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

vP

ωP

vf

�

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎣

0
0

δuf
H

0

⎤

⎥

⎥

⎦

, (70)

with

M =

⎡

⎢

⎢

⎢

⎢

⎣

mI 3×3 ˜[su]
� I�

ρ 0

˜[su] J u I�
ρx 0

(I�
ρ )∗ (I�

ρx)
∗ ρ 0

0 0 0 D−1

⎤

⎥

⎥

⎥

⎥

⎦

, see (10),

H = 1

2

∫

�

{

ρ||vP + ˜[ωP ](xf ) + vf ||2 + � .. ε
}

d�, see (8).

Hence, it is clear that Eqs. (58), (59), (60) from [44, 45] are equivalently recast in the form
(12).
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