
OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: http://oatao.univ-toulouse.fr/26676 

To cite this version:  

Dupuy, Fabien and Gatti, Marco and Mirat, Clément and 
Gicquel, Laurent and Nicoud, Franck and Schuller, Thierry 
Combining analytical models and LES data to determine the 
transfer function from swirled premixed flames. (2020) 
Combustion and Flame, 217. 222-236. ISSN 0010-2180 

Official URL:  

https://doi.org/10.1016/j.combustflame.2020.03.026 

Open  Archive  Toulouse  Archive  Ouverte 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/335471225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Combining analytical models and LES data to determine the transfer 
function from swirled premixed flames 

Fabien Dupuy a,b,., Marco Gatti C, Clément Mirac c, Laurent Gicquel a, Franck Ni coud e,
Thierry Schullerd 

• CERFACS, 42 Avenue Gaspard Coriolis 31057 Toulouse Cedex 01, Fronce 

b Safran Aircrafr Engines, Rond-poinr Rene Ravaud, Moissy-Cramayel 77550, France 
<tabomroire EM2C. CNRS, CenrmleSupélec, Universiré Paris-Saday, 8-10 rue Jolior Curie 91192 Gif Sur Yverre cedex, France 
d/nsrirur de Mécanique des Fluides de Toulouse, IMFT. Universiré de Toulouse, CNRS, Toulouse, France 
• fMAG, Univ. Monrpellier, CNRS, Monrpellier, Fronce 

Keywords: 
Flame Transfer Function 
Swirling flame 
large Eddy simulation 
Analyrical model 

1

ABSTRACT 

A methodology is developed where the acoustic response of a swirl stabilized flame is obtained from 
a reduced set of simulations. Building upon previous analytical flame transfer functions, a parametriza­
tion of the flame response is first proposed, based on six independent physical parameters: a Strouhal 
number, the mean flame angle with respect to the main flow direction, the vortical structures convection 
spe.ed, a swirl intensity parameter, a time delay between acoustic and vortical perturbations, as well as 
a phase shift between bulk and local velocity signais. lt is then shown how these parameters can be de­
duced from steady and unsteady simulations. The methodology is applied to a laboratory scale premixed 
swirl stabilized flame exhibiting features representative of real aero-engines. ln this matter, cold and re­
active flow Large Eddy Simulations are first validated by comparing results with reference data from 
experiments. The high fidelity simulations are seen to be able to capture the flame structure and velocity 
profiles at different locations while forced flame dynamics for the frequency range of interest also match 
the experimental data. From the same analytical transfer function model, three methodologies of increas­
ing complexity are presented for the determination of the model parameters, depending on the available 
data or computational resources. A first estimation of the flame acoustic response is obtained by evalu­
ating parameters from a single stationary flame simulation in conjunction with analytical estimations for 
the acoustic-convective time delay. Flame dynamics and swirl related parameters can then be determined 
from a series of robust treatments on pulsed simulations data to improve the mode! accuracy. It is shown 
that good qualitative agreement for the flame transfer function can be obtained from a single non-forced 
simulation while quantitative agreement over the frequency range of interest can be obtained using ad­
ditional reactive or non-reactive pulsed simulations at one single forcing frequency corresponding to a 
local gain minimum. The method also naturally handles different perturbation levels. 
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. Introduction

Increasingly stringent regulations for pollutant emissions have 
ead most aeronautical engine manufacturers to aim for systems 
sing lean premixed combustion as an efficient way to reduce NOx 

while maintaining a good level of performance. However, lean pre­
ixed combustors have been shown to be prone to combustion in­

tabilities where the coupling between acoustics of the combustor 

o
m
d• Corresponding author ar: CERFACS, 42 Avenue Gaspard Coriolis 31057 Toulouse 

edex 01, France. 
E-mail addresses: fabien.dupuy@cerfacs.fr. fabien93.dupuy@orange.fr (F. Dupuy). i
nd the flame can cause structural damages to the engine [1 ). In 
arallel to these engine developments, considerable numerical ef­
orts have been deployed and Large Eddy Simulations (LES) for in­
tance has proven capable of capturing combustion instabilities in 
omplex geometries [2,3). Given the broad range of operating con­
itions of an aircraft engine, and its intrinsic complexity, a system­
tic use of high fidelity simulations is however still out of reach at 
he design stage. For this reason, less numerically intensive meth­
ds have been developed in the form of low order codes for ther­
oacoustic instabilities where acoustics and the complex flame 

ynamics are decoupled. 
A large majority of such codes solve the Helmholtz equation 

n the frequency domain and take into account the flame or the 
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ssociated unsteady heat release response to acoustic perturba-

ions using a Flame Transfer Function (FTF) [4] or more recently

 Flame Describing Function (FDF) to also account for non-linear

ffects [5,6] . This approach allows to perform parametric stud-

es, hence enabling to tackle combustion instabilities issues dur-

ng the design phase [7,8] . Examples of results obtained with flow

olvers using the Finite Element Method (FEM) to determine the

olution of the three-dimensional Helmholtz equation within com-

lex geometries with complex boundary conditions, including ac-

ive flames and/or eventually also damping or nonlinear effects

ecome numerous [9–14] . These methods rely on the use of the

TF/FDF and its determination is therefore of crucial importance

f one wants to control or even predict thermoacoustic instabili-

ies. Restricting the analysis to swirled flames, the determination

f FTF/FDF can be made experimentally [15–17] as well as with

umerical flow simulations [18–22] . Several analytical formulations

ased on a level set approach are also available, but only a fraction

eals with swirling flames. You et al. [23] derived a FTF model

ased on a triple decomposition technique of the G-equation in-

luding effects of the mean, synchronized and stochastic flow vari-

bles to deal with flow rate disturbances and also changes asso-

iated to equivalence ratio perturbations. Similar approaches were

sed in [24,25] to examine the FTF of turbulent partially premixed

ames of arbitrary shape due to equivalence ratio perturbations. 

In gas turbines, flames are highly turbulent and stabilized by a

wirling flow. The injector imparts a rotating motion to the fresh

ases, so that combustion occurs around an inner hot gas recircu-

ation zone that helps anchoring the flame in the vicinity of the

njection system. The Swirl number, S, is generally used to char-

cterize the rate of rotation of the flow and is defined as the ra-

io between the tangential and axial momentum fluxes. Neglecting

ressure terms as often done in the literature, it reads: 

 = 

1

R 

∫ R 
0 ρu z u θ r 2 dr ∫ R 

0 ρu 

2 
z rdr 

(1) 

here ρ is the fluid density, u z and u θ are respectively the axial

nd tangential velocity components using cylindrical coordinates,

nd R is a characteristic dimension, usually the outer radius of

he injection device. Recent studies [15,26,27] on swirling flame

ynamics indicate that their response is not only dictated by the

ame itself, but also by the swirler response as evidently shown

y varying the swirler to combustion chamber backplane distance

r the bulk flow velocity in the injector. Palies et al. [28] there-

ore proposed an analytical FTF model for inverted conical flames

or V-shaped) swirled flames based on the perturbed G-equation.

n this case, the swirl action is characterized by a linear relation-

hip between the normalized axial acoustic velocity perturbation

nd the tangential convective velocity perturbation generated by

coustic-vorticity conversion in the swirler [15,29] . This formula-

ion offers an interesting insight on the mechanisms driving the

esponse of flames subject to swirl perturbations. Note that the

odel in [28] uses the convectively perturbed V-flame FTF from

30] as a basis and was shown to be in good agreement with ex- 

eriments for the few considered cases.

The present study extends the work from Palies et al. [28] to

roperly represent V-shaped swirl stabilized flames. Moreover, nu-

erical simulations are used to determine the FTF model param-

ters instead of relying on experiments. Following this approach,

t is shown how to obtain the flame response for a whole range

f frequencies with a minimum set of simulations of an unforced

ame in a thermo-acoustically stable state. As a complement, an

ncrease in the model fidelity is demonstrated by addressing a re-

uced set of acoustically forced simulations in addition to the sta-

le steady case. This would constitute a considerable improvement

or the FTF determination over classical methods such as using nu-
erous forced LES, or even more advanced techniques relying on

ystem identification [31] which are limited to vanishingly small

erturbations. 

In the following, a description of the model for the FTF of a

wirled V-shaped flame is first presented in Section 2 , the role of

ach parameter being discussed. The lean premixed swirled flame

onfiguration is then presented in Section 3 . LES predictions are

alidated against experimental data for cold and reactive condi-

ions in Section 4 , followed by a first estimation of the FTF. It is

hown that qualitative agreement for the FTF gain and phase is

btained when extracting parameters from an unforced flame sim-

lation. Finally, in Section 5 , flame dynamics as obtained in acous-

ically forced LES are validated against experimental results and

ore accurate evaluation methods for model parameters estima-

ions are proposed. Model and experimental flame responses are

nally compared, demonstrating the ability of the methodology to

redict the FTF gain and phase with a good accuracy. 

. Flame transfer function modeling and theory

Many analytical expressions for the FTF based on a lineariza-

ion of the G-equation have been derived since the pioneering

ork from Fleifil et al. [32] for the frequency response of a con-

cal laminar premixed axisymmetric flame stabilized on a tube rim

hich is submitted to harmonic flow-rate modulations. Assuming

hat the flame is a thin interface separating fresh and burnt gases

nd moving at the laminar flame speed s l in the direction normal

o its surface, what is generally described by a G-equation, Fleifil

t al. [32] were able to derive an analytical expression for an elon-

ated conical flame primarily depending on a flame Strouhal num-

er. The vast majority of analytical FTF models in the literature

as then also derived from an analysis involving a perturbed G

quation whether it be in a general laboratory frame or in a frame

inked to the mean flame front position for conical or V-shaped

ames. In the following, focus is made on V-shaped flames like the

ne described in Fig. 1 . Local flame wrinkling is assumed to occur

round this mean position which does not change when acoustic

orcing is applied, which translates for a premixed flame to only

onsidering linear acoustics [33] . 

For the model derivation, although alternatives exist [34] , we

ake use here of the convective model for laminar V-shaped

ames introduced by Schuller et al. in [30] and where a convec-

ive velocity perturbation propagates in the vertical direction in the

aboratory reference frame. That is: 

 

′ = v 1 exp

(
i 
ω 

v 
y − iωt

)
= v 1 exp ( iky − iωt ) (2) 

here k = ω/ v is a convective wavenumber built from the aver-

ge axial flow speed v and the angular frequency ω. Parameters

 and b in Fig. 1 correspond to the flame anchoring point and

he radial flame extension respectively. The analysis is restricted to

wirled flames anchored on a narrow stabilizing rod, so that a � b .

ntegrating the unsteady flame displacement over the flame front

nd considering that the unsteady heat release rate is directly pro-

ortional to the unsteady flame surface variation, Schuller et al.

30] obtain the analytical FTF reproduced below for convenience:

 v = 

2

ω 

2 ∗

1 

1 − cos 2 α

[
e iω ∗ − 1 − e iω ∗ cos 2 α − 1

cos 2 α

]

+ 2 i

ω ∗

1 

1 − cos 2 α

[
e iω ∗ cos 2 α − e iω ∗ (3) 

here ω ∗ = (ωR f ) / (s l cos α) = (ωL 2 
f 
) / ( v H f ) = (ωL f ) / ( v cos α) is a

on-dimensional reduced frequency related to the flame Strouhal

umber of Fleifil et al. [32] and α = sin 

−1
( s l / v ) = cos −1 H f / L f

s a flame aspect ratio parameter or simply the flame angle with

espect to the main flow direction, related to the laminar flame



Fig. 1. Schematic of the studied V-shaped flame configuration. Reference frame axes are noted x and y while a second frame directly linked to the steady flame has axes

X and Y . The steady flame is aligned on the X axis. It is anchored on a rod at position a and extends to a radial abscissa x = b which may not be a wall. Definitions of the 

flame length L f , flame height H f and flame radius R f are provided on the right (adapted from [30] ).

 

 

 

 

 

 

 

 

 

 

 

 

U  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

i  

t  

w  

m  

p  

p

 

a  

p  

s  

i  

e  

w  

i  

F

F  

w  

d  

e  

t  

t

 

T  

s

 

T  

t  

t  

(

F  

w  

t  

p  

F  

φ
a  
speed s l . The ratio ω 

∗ / ω represents the convection time from the

anchoring point to the extremity of the flame sheet at the mean

flow velocity. This first expression solely depends on mean flow

and geometrical quantities, which is not surprising in the con-

text of laminar flames it was originally developed for, but raises

questions for turbulent flames where dynamics are likely to be of

crucial importance. As pointed out by Preetham et al. in [35] , a

limitation of this model stems from the fact that the convective

velocity in Eq. (2) assumes that perturbations travel at the mean

flow velocity v . In reality these perturbations (that we will assimi-

late to vortical perturbations to simplify the analysis) travel in the

outer shear layer in the case of a V-shaped flame at a velocity

 c−v that may be lower than v [36] but cannot exceed it. Intro-

ducing the true to mean velocity ratio K , one therefore necessarily

has K = 

v 
U c−v

≥ 1 . Eq. (2) can accordingly be modified by adding the

correction factor K to the wavenumber, which yields the following

expression for the FTF: 

F v = 

2

ω 

2 ∗

1 

1 − K cos 2 α

[
e iω ∗ − 1 − e iω ∗K cos 2 α − 1

K cos 2 α

]

+ 2 i

ω ∗

1 

1 − K cos 2 α

[
e iω ∗K cos 2 α − e iω ∗ (4)

A potential drawback for the model as is, especially for wide flame

angles, is that it may result in large gain values for high frequen-

cies which are not observed in experiments for this type of flames

[37] . Indeed Schuller et al. [38] show by use of PIV measurements

in the fresh gases that the velocity perturbation amplitude de-

creases with the axial distance, with a frequency dependent decay

rate. The authors also pointed out that this feature is needed to

retrieve the FTF obtained experimentally when using a model de-

rived from a G-equation. Further studies focusing on the fresh re-

actants side [39] found velocity perturbations to have an exponen-

tial decay rate which increases with frequency. By construction, the

FTF model F v only considers one-dimensional propagation with-

out any decay, which may be true in the injection system but may

not hold as the perturbation goes through the larger combustion

chamber enclosure. To take this feature into account, the spatial

component ˆ v of the convective velocity v ′ = ̂

 v e −iωt in Eq. (2) can

again be modified following the formulation proposed in [40] : 

ˆ v = v 1 exp 

(
i 
Kω 

v 
y

)
exp 

(
−β

Kω 

v 
y

)

= v 1 exp 

(
i 
K(1 + iβ) ω 

v 
y (5)
hich effectively comes down to introducing a new complex veloc-

ty correction factor K 

′ = K ( 1 + iβ) instead of a r eal-valued quan-

ity. In this case, the corresponding decay rate, −βKω/ v , increases

ith frequency which complies with experimental findings. This

eans that Eq. (4) retains the same form, and in the latter, the

arameter K is always assumed to be complex for conciseness pur-

oses. 

To this point, F v holds for a laminar V-shaped flame without

ny consideration regarding swirl or any azimuthal velocity com-

onent. Analytical expressions for swirling flames are much more

carce than for standard laminar flames. The model presented here

s a slightly modified version of the expression introduced by Palies

t al. [28] for swirling V-shaped flames. It has already been applied

ith some success in [41] to gain insight on the dynamics of strat-

fied swirling flames. Palies et al. [28] show that the swirling flame

TF can be written as: 

 s = F v 

[
1 − ˆ s t / s t

ˆ v / v 

]
(6)

here F v is the laminar V-shaped flame FTF that was previously

etailed and s t is the turbulent flame speed. According to Palies

t al. [28] , turbulent velocity fluctuations are assumed to be linked

o the normalized velocity fluctuations in a linear fashion using

wo real valued model parameters χ and ζ so that: 

ˆ s t 

s t 
= χ

ˆ u θ

u θ
+ ζ

ˆ v 
v 
, (7)

he axial ˆ v and azimuthal ˆ u θ velocity disturbances are then as-

umed to be related by: 

ˆ u θ

u θ
= 

ˆ v 
v 

e 
iφ ˆ u θ −ˆ v (8)

his means that the normalized velocity fluctuations are essen-

ially the same but with a phase shift φ ˆ u θ −ˆ v between the axial and

he azimuthal components. Reintroducing Eqs. (7) and (8) in Eq.

6) then yields the FTF for a swirling V-shaped flame :

 s = F v 

 

1 −
(
ζ + χe 

iφ ˆ u θ −ˆ v 

)] 
(9)

hich depends on six parameters : ω 

∗ , α, K, χ , ζ and φ ˆ u θ −ˆ v . In

he original work of Palies et al. [28] , no additional constraint is

resent. One can however point out that according to theory, the

TF gain at zero frequency should always be unity [42] . Setting

ˆ u θ −ˆ v = ωτ where τ is a characteristic time delay between axial

coustic and azimuthal convective velocity perturbations, imposes
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Fig. 2. Sketch of the NoiseDyn swirl combustor, with dimensions in mm. Only the

shaded domain is resolved in the LES, starting 6 mm under the hot wire position

(HW). δ is the distance between the combustion chamber backplane and the top of

the swirler channels exit.
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= −ζ . The other solution χ = 2 − ζ is discarded as it yields non

hysical results. This simplistic assumption does however not hold

hen confronted to the experimental findings from [28] . Introduc-

ng a more general framework by setting φ ˆ u θ −ˆ v = ωτ + φ0 and en-

orcing the low frequency limit gain yields: 

 1 − ζ + χe iφ0 | = 1 (10) 

here | · | stands for the modulus of a complex number. It results

 second order equation relating χ and ζ : 

2 + 2 ζ ( χ cos φ0 − 1 ) + χ2 − 2 χ cos φ0 = 0 (11) 

ssuming χ and φ0 to be known, solutions of this equation are: 

1 = 1 − χ cos φ0 + 1 − χ2 sin 

2 φ0 

1
2

(12) 

2 = 1 − χ cos φ0 − 1 − χ2 sin 

2 φ0 

1
2

(13) 

ssuming | χ | ≤ 1, ζ 1 and ζ 2 take real values. Without any data

o compare the model results, and depending on parameter values,

t is difficult to choose between one root or another. Experiments

or V-shaped flames FTF have shown that such flames exhibit an

ncrease in gain in the low frequency limit [37] . Starting from Eq.

9) and inserting Eq. (12) or (13) , one can show after some calculus

hat to first order, the low frequency derivative for the FTF gain

eads:

lim 

→ 0

∂|F s | 
∂ω 

= τ sin φ0 

 

χ2 cos φ0 ± χ 1 − χ2 sin 

2 φ0 

1
2

] 
(14) 

herefore, the value ensuring a positive derivative of the FTF gain

n the low frequency limit is chosen depending on values for

, τ and φ0 . Eq. (9) along with Eq. (12) or (13) constitute the

arametrization of a V-shaped premixed swirling flame transfer

unction that will be referred to as the SFTF model throughout

he rest of the article. This model relies on a set of six indepen-

ent parameters, three of which describe the premixed flame re-

ponse ( ω 

∗ , α, and K ) while the three remaining ones account for

he effect of the swirling motion ( χ , τ and φ0 ). While the cur-

ent model is limited to premixed V-shaped flames, it could han-

le various flow injection conditions and fuels through parameters

 

∗ and α while various swirler designs would affect parameters τ ,

0 and χ . Note that an overview of the role of each parameter is

vailable in supplemental material A in the form of a sensitivity

nalysis. From this study, it is concluded that every investigated

arameter should be evaluated with caution, and emphasizes both

he need for an accurate description of flame dynamics as well as

or a precise evaluation of intermediate quantities needed to eval-

ate model parameters. This evaluation process should ideally be

obust enough to cover a large spectrum of configurations. 

. Test configuration and modeling

To proceed with the SFTF model validation, LES of a generic

onfiguration are performed. In this matter, a laboratory scale pre-

ixed swirl stabilized burner is chosen as it features a turbulent

wirling flow and an easy to model geometry. The numerical setup

s conceived to be robust enough to allow focus on the evaluation

f quantities of interest with reduced relative uncertainties. Details

egarding the experimental rig and the numerical modeling strat-

gy are presented in the following section. 

.1. Experimental setup 

The experimental configuration used for analysis and model de-

elopment is a variation of the NoiseDyn burner already studied in

43–46] . The rig is composed of an injection system, a swirler unit
nd a combustion chamber ending with a short exhaust tube as

resented in Fig. 2 . A premixed methane/air mixture of equivalence

atio φ = 0 . 82 is injected through the bottom of the device and

asses through a honeycomb layer to break large turbulent eddies,

he system being operated at P 0 = 1 atm and with a fresh gases

emperature T 0 = 293 K. The resulting laminar flow enters a 65

m wide plenum and a convergent of diameter D in = 22 mm, pro-

ucing a top-hat velocity profile with bulk velocity U b = 5 . 44 m/s

t the hot wire position identified as HW in Fig. 2 . The flow then

oes into a radial swirler using six cylindrical channels of diameter

 Sw 

= 6 mm forming a 33 ◦ angle with respect to the radial direc-

ion, before leaving through a central 20 mm wide injection tube.

he injection also includes a central metallic rod of diameter d = 6

m topped by a 10 mm high truncated cone ending with a circular

ection of diameter D c = 10 mm to help stabilizing the flame. Note

hat the cone is protruding 1.5 mm inside the combustion cham-

er and the chamber back-plane to swirler back-plane distance is

 bc = 56 mm. The combustion chamber itself is 150 mm long, is

quipped with four quartz windows and has a square cross-section

f L ch = 82 mm width. In the absence of acoustic forcing, the flame

s anchored few millimeters above the cone and has a V shape. 

This academic configuration is not as complex as injectors

sed in real engines, yet it includes their most prominent fea-

ures with a turbulent swirling flow and confined flame oper-

ted at lean premixed conditions. It allows for an easier inter-

retation of LES results than in real scale burners. A wide se-

ection of diagnostics has been employed by Gatti et al. [47,48] ,

ncluding velocity measurements with a hot wire, pressure mea-

urements using microphones, LDV and PIV of the flow at the in-

ection exit and in the flame residence area. FDF data is avail-

ble for forcing amplitudes ranging from 10 to 70% RMS of the

ulk velocity at the hot wire location. In the following, only the

nforced data and the one at a forcing amplitude v ′ RMS = 30% is

onsidered. 



Table 1

List of meshes created during the adaptation process and their characteristic dimen- 

sion h in the swirler, injector and flame regions.

Mesh id. h swirler ( mm ) h in jector ( mm ) h f lame ( mm ) number of tetrahedra

M1 0.306 0.379 0.515 15 526 871

M2 0.253 0.327 0.515 16 234 106

M3 0.251 0.290 0.476 19 110 948

M4 0.158 0.197 0.260 55 766 260

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2

Mean pressure loss obtained with meshes M1, M2,

M3 and in experiments. For numerical simulations,

the mean pressure loss is calculated as the differ- 

ence between the inlet and outlet surface averaged

pressures.

Case �P swirler (Pa) difference with Exp. (%)

M1 465 39

M2 364 9

M3 341 2

Exp. 335 NA
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3.2. Numerical modeling 

LES of the configuration described in the previous subsection

are performed using the AVBP solver developed by CERFACS, which

solves the three-dimensional filtered compressible multi-species

Navier–Stokes equations on unstructured grids. The TTGC centered

spatial scheme [49] is used, featuring a third order accuracy in

both space and time. The computational domain covers a region

starting after the plenum contraction all the way to the exit of

the exhaust tube to reduce the total cost of the simulation. Since

the flame response to acoustics is to be studied, characteristic

boundary conditions [50] are used for both inlet and outlet, en-

suring a proper treatment of waves. All other boundary condi-

tions are set to adiabatic no slip walls for the cold flow simula-

tions, while for hot conditions, chamber walls as well as the con-

ical part of the stabilizing rod are specified as heat losing walls.

To do so, experimental temperature measurements outside of the

quartz panels are used as a reference along with adequate ther-

mal resistances, allowing wall temperatures in the LES to adapt to

the chamber temperature field. The conical bluff-body is assumed

to have a constant temperature of 293 K at its base inside the in-

jection unit and the fin theory is used to derive a space depen-

dent analytical expression for the thermal resistance. Since few

experimental data is available for the combustion chamber back

plane temperatures, a hyperbolic tangent profile varying between

300 K in the central watercooled region to 700 K near the cham-

ber walls is prescribed. Finally, the SIGMA subgrid scale model is

used [51] while flame/turbulence interaction is handled using the

Dynamically Thickened Flame model (DTFLES [52] ) in conjunction

with a two-step BFER chemistry [53] validated for atmospheric

conditions. 

For meshing, the mesh adaptation strategy proposed by Daviller

et al. [54] is employed, resulting in three meshes M1, M2, M3 pre-

sented in Table 1 , where h is the characteristic cell size in a par-

ticular mesh area. 

To proceed, a baseline full tetrahedra unstructured mesh, M1,

was first created, with refined regions around the swirler, the in-

jection system and the area where the flame is supposed to sta-

bilize. The normalized time averaged viscous dissipation defined

by: 


 = ( μ + μt ) 

(
∂u i 

∂x j 
+ ∂u j

∂x i 

2

(15)

where μ and μt are the laminar and turbulent dynamic viscosi-

ties respectively was then extracted from the associated LES pre-

dictions and used as a metric for the automatic mesh refinement

process. It results a new mesh, M2, from which the process is iter-

ated once again to yield mesh M3. This method allows not only to

adapt the mesh near walls to reach acceptable values of normal-

ized wall distances y + , but also improves pressure loss predictions

across the swirler, which is of particular importance for the deter-

mination of the phase between acoustic and vortical perturbations,

φ ˆ u θ −ˆ v . As a result, a 2% error on the swirler pressure loss with M3

is obtained if compared to experiments (see Table 2 ). 

In terms of mesh adaptation, Table 1 , one can observe that the

transition from M1 to M2 reduced the characteristic length scale
ithin the swirler, while the transition from M2 to M3 mainly

mpacted the injector and flame regions. To further validate M3,

 fourth mesh M4 was also created to assess mesh invariance in

eactive simulations. For that purpose, mesh characteristic length

cales in the swirler, injector and flame regions have been divided

y two compared to M1, yielding lower characteristic length scales

n these regions (see Table 1 ) but also comparable local refinement

ompared to M3. As a result and despite an increase in the com-

uting power needed to achieve the same physical time, only mi-

or differences were observed between M3 and M4. The reader is

eferred to supplemental material B for further details. As a con-

equence and unless told so, all results presented in the following

re obtained from simulations based on mesh M3. 

. FTF assessment from stationary flame data

.1. Numerical setup validation against experimental data 

In the following, LES results based on mesh M3 are first com-

ared to experimental data in non reacting conditions to assess the

eliability of the numerical setup prior to any combustion simula-

ion. As already shown in the last section, pressure losses across

he swirler are in very good agreement with experiments. LDV

easurements available from experiments over a line located 3

m above the chamber backplane are used to gauge the numer-

cal prediction. It is worth noting that measurements were ob-

ained without the enclosing chamber walls, while simulations are

lways fully enclosed. For comparison, LES data is averaged over

37 ms, i.e. approximately 8.6 inlet to injector backplane flow

hrough times. Data are furthermore averaged in the azimuthal di-

ection since the injector diameter to chamber width ratio is low,

esulting in a quasi axisymmetric flow. Results presented in Fig. 3

how a very good agreement with experimental data for all mean

elocity components. A slight overestimation of the axial velocity

eaks is present, as well as minor discrepancies when x / R > 1 for

adial and azimuthal velocities, R = 10 mm being the injector outer

adius. RMS velocity components, Fig. 3 (d)–(f) are also in good

greement in the central region where the first series of peak is

aptured by LES. Again, discrepancies are visible in the outer shear

ayer ( x / R > 1) where only the RMS of axial velocity is observed

o properly match the experiment. The estimated swirl number

rom LDV measurements is 0.8 while the LES yields S = 0 . 73 . All

hese minor differences can be attributed to the unconfined exper-

mental measurements versus confined simulations. Another possi-

le explanation lies in the fact that LDV measurements are known

o introduce a small bias for turbulent flows [55] , and the discrep-

ncies observed here are localized in the turbulent region that is

he outer shear layer. Further validation is available in supplemen-

al material C. Overall, LES captures the investigated configuration

wirling flow features with satisfactory agreement, allowing to pro-

eed to the reacting conditions with confidence. 

In its steady state reacting regime, LES as well as experi-

ental observations indicate that the flame has a classical V

hape and is stabilized few millimeters above the central bluff



Fig. 3. Comparison of velocity fields under cold flow conditions measured with LDV ( ) and obtained in LES ( ), 3 mm above the chamber back plane. (a), (b) and (c) :

mean values, (d), (e) and (f) : RMS values of axial (left), radial (middle), and azimuthal (right) velocity components. Axial distance is normalized by the injector radius R = 10 

mm.

Fig. 4. Non-reactive (left) and reactive (rights) axial velocity fields and velocity

streamlines. Combustion strongly affects the flow and widens the inner recircula- 

tion zone.
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Fig. 5. Comparison of steady state flame shapes. On the left, LES heat release rate

field averaged over 80 ms. On the right Abel transform of OH 

∗ signal recorded by a 

CCD camera with a narrowband filter centered around 310 nm, averaged over 100

samples.
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ody. The flow structure downstream the injector is of course

rastically modified by the presence of the flame in comparison

o cold flow conditions. The expansion of the burnt gases increases

he flow velocity near the flame, pushing the flow outer recircula-

ion zones downwards while the inner recirculation zone becomes

igger than in the non-reacting case. As a result, Fig. 4 shows

hat the flow angle at the injector exit slightly increases. Figure 5

resents the heat release rate distribution on a vertical plane in

he middle of the chamber, obtained from LES fields averaged over

ime (80 ms) and in the azimuthal direction, complemented by an

bel transform of OH 

∗ signals from the experiment. 
For the numerical simulation, the normalized heat release rate

veraged in the azimuthal direction and over 80 ms is used, the

ormalization value being the maximum value found in the sim-

lation. Clearly, numerical and experimental flame shapes are in

ood agreement, though a minor difference in flame height can be

bserved and may possibly be explained by the limited thermal

ata available for the LES to match the experiment. Indeed, in ex-

eriments the flame exhibits a larger lift-off distance than in LES,

hich may imply that the bluff-body tip temperature is lower than

he value estimated from simulations. The mean flame angle is also

ell reproduced by the simulation. Secondary branches on the up-

er part of the flame found in the experiment are reproduced nu-

erically, showing that thermal conditions necessary to the flame

tabilization are correctly reproduced by the LES [56,57] . Further

omparisons using PIV data on a vertical plane 3.5 mm above the



Fig. 6. Schematic of the flame and associated quantities of interest : α, L f , H f , R f ,

R 0 . The position of the ˙ Q center of mass ( x c , y c ) is shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Identification of the outer shear layer using the I 2 criterion for the reactive

case. Each white dot represent the local maximum at a given height y / R 0 .
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chamber back plane are provided as supplemental material in an-

nex D. They show a very good agreement at several locations for

both mean axial and azimuthal velocities, indicating that the flow

angle is indeed well captured by the simulation. 

Overall, LES is able to capture both cold and reactive flow fea-

tures with good accuracy, allowing to move on with confidence on

to the SFTF parameters estimation step. 

4.2. SFTF model parameters estimation from stationary data 

LES results are used to probe geometrical quantities of inter-

est needed to determine the reduced frequency ω ∗ = ωL 2 
f 
/ ( v H f ) as

well as the half flame angle α. A wide variety of flame dimension

definitions is available in the literature, the most common ones

rely on isolevels of a variable representative of the flame front

(typically heat release rate or a progress variable) in the case of

numerical simulations. In this paper, dimensions are defined from

the location of the center of mass of the heat release rate ˙ Q field

obtained from time and azimuthally averaged solutions [58] . Given

N , the number of nodes in the solution, the centroid coordinates

( x c , y c ) of the heat release rate distribution in a vertical plane are

given by: 

x C = 

∑ N
k =1 

˙ Q k x k y k ∑ N
k =1 y k ˙ Q k 

and y C = 

∑ N
k =1 

˙ Q k y k y k ∑ N
k =1 y k ˙ Q k 

(16)

Coordinates for the flame anchoring point are much less sensitive

to its definition. It is here defined as the lowest point in the ax-

ial direction where ˙ Q is at least superior to 1% of its maximum

value. Figure 6 shows the position of the retrieved centroid of

heat release rate distribution and the associated flame dimensions.

For the specific configuration of this work, one gets : R f /R 0 = 1 . 0 ,

L f /R 0 = 1 . 75 , H f /R 0 = 1 . 44 and α = 34 . 8 ◦. The mean axial velocity

at the injector exit plane v = 8 . 78 m/s is measured from the sta-

tionary unperturbed LES to complete the analysis, yielding ω ∗/ω =
2 . 43 ms. 

The next critical step in the SFTF construction is to determine

the axial convection velocity U c−v of vortical structures along the

outer shear layer of the swirling jet exhausting the injector. For V-
haped flames like the present one, these structures are respon-

ible for large surface area perturbations and thus, in the case

f a premixed flame, for the major part of the unsteady heat re-

ease [33,36] . One possibility to assess the real speed of these dis-

urbances is to use a tracking algorithm [59] . While theoretically

ppealing, this method has some limitations in a turbulent LES

ramework and requires acoustically pulsed simulations. Another

ossibility arising for highly swirling flows is to use properties

oming from solid mechanics theory. For solid bodies, the norm

f the second principal invariant of the deviatoric stress tensor is

sed as a measure of shear. In the present case, swirl is strong

nough (and possibly the injection tube narrow enough) so that

he angular momentum flux prevails, resulting in a fully devel-

ped turbulent pipe flow in solid body rotation. A similar criterion

60] resembling the classical λ2 criterion for vortex identification

s therefore used, that is the second invariant I 2 of the strain rate

ensor S, which is in practice computed as:

 2 = 

1 

2 

S ii S j j − S i j S ji (17)

egative values of I 2 indicate high shear regions. Applied to the

ean steady reacting field issued by LES, maximum negative val-

es of I 2 identify a collection of abscissa starting from the injector

xit up to the distance H f associated to the height of the centroid

f heat release rate distribution. This yields a curve assigned as the

uter shear layer trajectory shown in Fig. 7 . Note that other crite-

ia could be used to identify the shear layer, such as the norm of

he strain rate tensor, removing the possible high swirl limitation

f the method. The I 2 criterion was however shown to be particu-

arly robust for high swirling flows. Along this path, the local ax-

al velocity at a given y abscissa is retrieved and thereafter noted

 l ( y ). The axial velocity component of vortical structures U c−v is

hen evaluated by averaging the axial velocity along the shear layer

ath over the distance H f , that is: 

 c−v = 

1

H f 

∫ H f

0

v l (y ) dy (18)

here H f is the flame height ( Fig. 6 ). Using the available average

ES fields yields U c−v = 6 . 46 m/s. The real part of the correction
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actor K for the FTF mode! therefore equals K = ii/Uc-v = 1.36. In 
he absence of pulsed LES data, one can estimate the time delay t' 

 assuming that acoustic perturbations travel at the sound speed 
 while azimuthal perturbations are convected at the local flow 
peed Uc over a distance 8 = 50 mm between the swirler vanes 
xit where acoustic/vorticity conversion occurs (29) and the injec­
or exit plane ( see Fig. 2 ): 

(19) 

s a first approximation, the phase ef>o is simply nullified. By doing 
o, the low frequency gain limit condition from Eq. (10) reduces to 
 = -s and the FrF phase is evidently forced to a null value in the 
ero frequency limit. Finally, choosing Uc = ii as a first approxima­
ion yields t' = 5.55 ms. The choice of the convective velocity Uc is 

still subject to discussions in the community. It has been observed 
xperimentally (61) and while trying to reproduce FrF from mod­
ls (26) that the actual value may be 40-50% Iarger than the bulk 

velocity in the injection device. Recently, Albayrak et al. (62) have 
roposed an analytical expression for this quantity in the Iow ax­
al wavenumber limit based on a modal decomposition of the lin­
arized Euler equations which resumes to: 

c = ïï(1 + 2K/Ào) (20) 

here K is the circulation strength of the swirling flow and Ào 
s the first eigenvalue of a characteristic Sturm-Liouville equation. 
pplied to the current configuration, the above expression yields 
c = 1 .SSii with K = 1145 ç 

1 and Ào = 470, resulting in t' = 3.51
s which does not comply with the time delay found in the LES 

s will be presented in Section 5. For this reason, it was chosen 
o use Uc = v. No information is available for the determination of
he swirl fluctuation intensity parameter X. In the present paper 
nd as a first step, a value comparable to those found in (28.41) is 
sed : x = -0.33. 

From the parameters estimated previously, one can obtain a 
rst estimation of the flame acoustic response, that is denoted as 

SFrF1 and is shown in Fig. 8. With only a single stationary flame 
imulation, the mode( is able to depict the FTF gain and phase ten­
encies over the frequency range of interest. In particular, correct 
hase tendencies are already retrieved without the introduction 
f unsteady perturbations, and values match the experiment for 
 2:-, 150 Hz. The frequency of the first local FrF gain minimum is 
owever not retrieved using SFTF1, which also shows in the phase 
urve where the phase shift region is not well predicted. This point 
s further detailed in the next section. 
. Forced simulations for more accurate SFTF predictions

.1. Acoustically pulsed LES results 

In this section, focus is made on obtaining the parameters ef>o, 
 and f3 which require at Ieast one acoustically pulsed simula­

ion since they are related to dynamic features: the phase lag be­
ween acoustic and convective perturbations, swirl fluctuations in­
ensity, velocity disturbances decay. Building upon previous simu­
ations, and for verification purposes, pulsed LES have been per­
ormed to assess the CFD capability to successfully capture the 
lame response to flow perturbations. For these cases, the inlet 
oundary condition is changed to impose a uniform velocity pul­
ation with a 30% RMS amplitude, corresponding to 23 m/s vari­
tions, with a unique frequency in the range 80-200 Hz. NSCBC 
elaxation coefficients are set to Iow values to avoid any unwanted 
coustic reflection (63). Flame dynamics during a forcing cycle is 
ell retrieved as indicated for f = 180 Hz in Fig. 9, by comparing 

zimuthally and phase averaged heat release rate fields with OH* 
hemiluminescence data at various instants in the forcing cycle. In 
articular, the flame angle and dimensions as well as the roll-up 
otion at the flame tip are well reproduced. 

The FrF as obtained from single frequency LES forcing is pre­
ented in Fig. 10 and shows excellent agreement with reference 
ata from the experiments. The characteristic Iow and high FTF 
ain regions of a swirled V-shaped flame anchored on a bluff-body 
re well retrieved. It is therefore concluded that LES is able to cap­
ure pulsed reactive flow features with good accuracy. 

.2. SFTF mode/ parameters estimation /rom pulsed LES 

To the exception of x, ail SFrF parameters can be roughly es­
imated from a stationary reactive simulation without acoustically 
orcing the flow, giving a first estimation of the flame acoustic re­
ponse. It is shown in this section that performing a few or even 
nly one additional pulsed simulation to obtain further informa­
ion can improve the mode( accuracy. This method avoids numer­
us single frequency forced simulations (20,21) or the need for 
ther identification techniques (18,64). In addition, since quanti­
ies of interest only concern the injection system at the exit plane, 
hich may only be marginally affected by burnt gases expansion, 

 single non reactive forced simulation may be sufficient for some 
f these parameters. 

As an alternative minimizing the number of assumptions 
Eq. (19)), the phase ef>a _0 between acoustic and convective per­
urbations can also be determined from a set of pulsed flow sim­
lations. Such a study would of course defeat the purpose of 



Fig. 9. Abel transform of phase averaged OH' chemiluminescence pictures from experiments (left parts) and phase averaged field of normalized heat release rate from LES 
(right parts) for a forcing frequency f = 180 Hz. Here the experimental results were obtained with a cane protruding 1 mm higher in the chamber, but should however 
still be comparable. The phase rp is defined from the velocity signal at the hot wire position : rp = 0 corresponds to null acoustic velocity while rp = TC /2 corresponds to a 
maximum. 

1.5�----------------

+++e 
� o+ 

o +

+ 
+ 

+o +

+Q'i� 

� s 

0.0 +---�-------

50 100 150 200 250 
f (Hz) 

...::'.., 

C. 
� 
� � 

31r/2�--------------�

7r 

n/2 

50 

+
+

+ <i+ 
+ ooei+ 

0 

100 150 
f (Hz) 

+ (b
+ 

O+
+ 

+ 

200 250 
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sing an analytical model which should avoid running several 
ostly simulations, but the study is performed as another valida­
ion test here. The phase between Fourier coefficients of axial and 

azimuthal unsteady velocity signais integrated on the injector exit 
lane is used for a set of eight forcing frequencies, giving the lin­
ar regression presented in Fig. 11. The time delay -r = 5.54 ms and 
hase at the low frequency limit </>o = 0.03 are found to be very
lose to those obtained using the simple one-dimensional propa­
ation model from Eq. (19) leading to -r = 5.55 ms [29). This result 
ay however not be satisfactory since the first local gain mini­
um lies around f = 120 Hz and the maximum gain deviation is 

ttained when swirl fluctuations are maximal, that is for </>a
0
-v = :,r 

65). Using Eq. (19) shows that a value close to -r = 1/(2/) = 4.17 
s would be expected if </>o = O. ln [28), <l>û -ÎI was evaluated ex­
erimentally at the base of the flame for difÏerent bulk velocities, 
eporting values of -1 and -1.5 rad for </>o with forcing frequen­
ies going as low as 30 Hz. lt is then important to notice that ve­

locity profiles plotted in Fig. 12 are not fiat at the injector outlet, 
nd that considering only bulk quantities may not be satisfactory. 
ndeed, swirl fluctuations should be considered where they pre­
onderantly affect the flame. ln the particular case of the Noise­
yn confined swirled V-flame, this region is the edge of the injec­

or wall where large vortical structures are created and travel along 
he shear layer and perturb the flame surface. Accordingly, one can 
ee </>o as a phase lag between the bulk oscillation signais and sig­
ais obtained at a particular radial location close to the wall, here 
hosen as a point 0.5 mm away from the injector wall on the in­
ector exit plane, see Fig. 12. lt can be evaluated as: 

o = <l>as-Îi(yinj, 0.95Ro) - 5
1 

[ <l>as-Îi(yinj, r)dSe 
e 1s, 

= <l>as-Îi(yinj, 0.95Ro) - w-r (21) 

here Se designates the cross section area at the burner outlet Yinj· 
 maximum deviation of less than 10% in </>o is obtained when 
he probe position changes bY 0.3 mm. Larger deviations are seen 
hen using locations doser to the wall, depending on the local 
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Table 3 
Phase q,0 as obtained from LES data for different frequen­

cies using Eq. (21 ). 

![Hz) 100 120 150 180 

4>o [rad) -0.832 -0.905 -0.887 -0.874 
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esh size. Using data from forced LES, one gets the results of 
able 3, which tend to validate the assumption that <Po is almost 
requency independent in the studied pulsation range. 

This means that this quantity can be obtained using only a sin­
le pulsed simulation. The signais used to obtain these values are 
hown in Fig. 13, with <Po computed as <Po = </>p - <Pb using the fig­
re notations. Inverting the equality <f>a

9
_0 = rr with the newly ob­

ained values yields an evaluation of the frequency /1 correspond­
ng to the FTF minimum gain: 

1 <l>o =---
2-r 2rr-r 

(22) 

or f = 120 Hz and f = 180 Hz respectively, Eq. (22) yields /1 =

115 Hz and /1 = 116 Hz, which agrees well with the frequency 
ange 110 Hz � /1 � 120 Hz obtained in the experiment, Fig. 10. 

The last remaining parameter is the swirl intensity parameter 
. Although its etfect on the mode! is quite straightforward, it is

till unclear how to directly measure it using either experiments
r LES. To remedy this situation, and since at least one acous­
ically forced reacting LES has to be performed to retrieve other

ode) parameters dealing with the system dynamics, it is pro­
osed to perform a pointwise optimization on both the FTF gain
(a) r = 0.95Ro
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ig. 12. (a) Sketch of the burner with the position of the integration surface height mark
.5 mm away from the wall. (b) Axial velocity profile at axial position Yini for different pha
osiàon): àme evolving non homogeneous profiles indicate chat there may be a phase sh
nd phase at a particular frequency to determine a suitable value 
or X. Best agreement can only be achieved when using frequen­
ies corresponding to local extrema of the FTF gain. Since the first 
ocal gain minimum frequency is known from the previous step, 
ne can perform LES at this particular frequency and use it as a 
arget One advantage for using the lowest frequency known ex­
remum lies in the fact that at this stage, no high frequency acous­
ic decay is taken into account and thus, the obtained X value is 
ore likely to be a good estimate. Once again, it is made use of 

he data of the pulsed LES at f = 120 Hz in conjunction with an 
ptimization algorithm to determine the best value for the SFTF 
ode! to match the FTF gain and phase as obtained from LES at 

his particular frequency. The value X = -0.368 is obtained as the 
ptimal one. 

With the addition of <Po and the optimization process on x, the 
FTF mode! reaches a higher level of complexity, here denoted as 
FTF2 and shown in Fig. 14. 

.3. SFTF mode/ with a spatial decay for velodty disturbances 

Finally, the spatial decay rate of the velocity perturbation am­
litude, {3, can be evaluated by means of a single pulsed cold flow 
imulation with the same 30% RMS amplitude as in the reactive 
ase presented in the previous section. The FTF mode! derivation 
as done assuming a clear separation between fresh and hot gases, 
hich is obviously not the case for a confined swirl burner where 
uter recirculation zones contain hot gases. For this reason cold 
low simulations were preferred to determine {3. ln this case, two 
orcing frequencies are investigated : / = 120 Hz and f = 180 Hz 
orresponding to the identified local minimum and maximum am­
litudes of the FTF gain (Fig. 10). Velocity disturbance amplitudes 
re probed on a vertical line at r/Ro = 0.75 which corresponds to 
he central line between the injector outer wall radius and the con­
cal bluff body top radius as shown in Fig. 15(a). Figure 15(b) shows 
hat LES predicts a decrease of the amplitude as expected from ex­
eriments. 

Post-processing the LES data leads to f3 = 0.184 for f = 120 Hz 
nd 0.188 for f = 180 Hz. These specific values were obtained by 
tting an exponential function of the form Ae-YY so that f3 = Y utv 
here Uc-vlco1d = 3.83 m/s cornes from the technique described in 
ection 4 for the unperturbed cold LES fields. Embedding the de­
ay rate in the SFTF mode! should allow for better gain predic­
ion at relatively high frequencies. ln the following it is chosen to 
roceed with the value obtained for f = 120 Hz as this particular 
requency was already studied for reacting conditions. The optimal 
alue for X is of course not the same with the spatial decay corn-
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onent addition. The method is therefore iterated once gain, yield­
ng X = -0.336. This new methodology requiring a non-reactive 
ulsed simulation for the decay rate determination is here denoted 
s SffF3, and results are shown in Fig. 16. By stepping up to SFTF3, 
he FTF gain for frequencies f � 150 Hz matches reference data 
ue to the fact that the spatial/high frequency velocity perturba­
ion decay is taken into account. The phase curve in Fig. 16 is 
n the other hand only marginally modified compared to the re­
ults from SFTF2 shown in Fig. 14. From these observations, it is 
oncluded that the SffF strategy constitutes a modular analytical 
fF mode( for swirled V-flames featuring different accuracy levels 
epending on the number of simulations the user can afford. ln
ny case, it remains less computationally intensive than perform­
ng several single frequency forced simulations as usually needed 
o reconstruct the whole fff. Compared to a reconstruction based 
n system identification techniques [18,64), the method developed 
n this work is not restricted to vanishingly small perturbation lev­
ls and can be used to determine the frequency response of pre­
ixed swirled flames submitted to flow rate modulations of any 
nite arbitrary amplitude. It is recalled that the results were ob­

ained here for a fixed perturbation RMS level tl /ÏI = 0.30. 
Ali input parameters for the SFTF mode( determined using 

ethodologies SffFl. SFTF2 and SffF3 are summarized in Table 4 
or the sake of completeness, while a brief summary of each 

ethodology ability to represent the flame response is available 
n Table S. 

From these results, and depending on the available computa­
ional resources, one can choose whether a single simulation is 
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Table 4 
SFTF parameters as determined from (a) a single reacring srationary LES or (b) us­
ing pointwise optimization on an additional reactive pulsed LES at f = 120 Hz and 
(c) with two additional cold/reactive pulsed LES at f = 120 Hz. 

Case w,Jw [msj a (degj K X t [msj <Po [radj 

(a) SFTFt 2.43 34.8 1.36 -0.33 5.55 0.0 
(b) SFTF2 2.43 34.8 1.36 -0.368 5.55 -0.905 
(c) SFTF3 2.43 34.8 1 .36 + 0.250i -0.336 5.55 -0.905 

Table 5 
Overview of the FTF reproduction accuracy using an increasingly complex evalua­
tion of SFTF mode] parameters. 

Case 

(a) SFTFt 
(b) SFTF2 
(c) SFTF3 

nb. of LES 

3 
4 

Agreement on gain 

moderate 
moderate 
good 

Agreement on phase 

moderate 
good 
good 
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Table 6 
SFTF parameters as determined from SFTF3 procedure using f = 180 Hz as a rarget 
for forcing levels 0/ü = 10%, 30% and 55%. 

Case w,Jw [msj a (degj K X t [msj ,Po [radj 

0/11 = 10% 2.43 34.8 l.36+0.20i -0.341 5.55 -0.905 
0/11 = 30% 2.43 34.8 l.36+0.26i -0.331 5.55 -0.905 
0/11 = 50% 2.43 34.8 l.36+0.50i -0.346 5.55 -0.905 
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sufficient (Sfffl ), or if accuracy is sought, if it is preferable to run
dditional forced simulations to obtain a better representation of 
he ffF gain and phase (Sfff2 and Sfff3). Assessing the spatial de­
ay rates of velocity disturbances, SFrF3, yields a complete descrip­
ion of the flame acoustic response at the cost of an additional non
eactive pulsed simulation at any frequency compared to SFrF3. 

.4. Effect of the perturbation amplitude 

Ali analyses performed up to this point have been made for a 
xed RMS perturbation level vjii = 30%. Jt is well known that while 

he flame acoustic response remains unchanged for low amplitude 
erturbations, for greater amplitudes, nonlinear interactions mod­

fy the FrF gain and phase [6,15,17,20,22]. In the particular case of 
ully premixed swirled flames, studies [15.48] show that increas­
ng the forcing amplitude barely affects the position of the gain 
xtrema of the FrF, but regularly reduces the gain for frequencies 
igher than the one associated to the first local gain minimum. 
he FrF phase lag remains unaltered by the forcing level. When 
t cornes to the SFrF model, this implies that the time delay r. 
ut also the phase <j,0 controlling the position of this local mini­
um do not change when increasing the forcing level. The two re­
aining parameters which can therefore potentially account for ef­

ects of non-linearities are f3 and x. Note also that the SFrF model 
tself was derived from linear acoustics theory and should there­
ore not be suitable for high forcing levels. Despite this theoretical 
imit, the model parameters are here determined from LES, which 
s intrisically a nonlinear flow solver. Jt is therefore interesting to 
auge the mode! ability to handle different forcing amplitudes. ln
rder to validate the aforementioned assumptions, two additional 
on reacting pulsed simulations are run with RMS forcing levels 
jii = 10% and vjii = 55%. For the latter, experiments have shown 
 drop of the FrF gain from 1.05 for a 30% forcing level to 0.80 
or a 55% forcing level at f = 180 Hz. The procedure described 
n Section 5.3 for the determination of the decay rate f3 is ap­
lied once again for the two new forcing levels using phase aver­
ged data, yielding the decay curves shown in Fig. 17 obtained for 
 = 180 Hz. This frequency was chosen as it corresponds to a local 
rF gain maximum. The corresponding decay rates are f3 = 0.148 

or 10%, f3 = 0.188 for 30% and f3 = 0.37 for 55% forcing amplitude, 
ndicating that higher dissipation occurs when increasing the per­
urbation strength. For each new set of parameters, x is again de­
uced from an optimization using LES obtained gain and phase val­
es for f = 180 Hz. Newly obtained values for X do not differ sig­
ificantly when the forcing level is varied from 10% to 55% .. Note 
lso that for Îl/ii = 30%, x = -0.331 is obtained for an optimiza­
ion applied at f = 180 Hz, resulting in a coefficient very close to 
 = -0.336 obtained for f = 120 Hz in Section 5.2. Final parame­

ers for the three considered cases are summarized in Table 6. 
Resulting FrF gain and phase curves for 10% and 55% forcing 

evels are shown in Fig. 18. 
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Provided results illustrate nonlinear effects that produce a de­
rease of the ITF gain for high frequencies, which is indeed cap­
ured through the increase of the decay rate {3. The model how­

ver fails at predicting the initial high FTF gain around f = 60 Hz 

or Îl/ii = 10%. Concerning the FTF phase, it is almost unaffected 

y the forcing amplitude. This behavior is also obseived for the
ITF mode(, which reproduces the experimental phase quite well 

egardless of the forcing Ievel. 

. Conclusion

An analytical model for the acoustic response of a premixed 

wirled V-shaped flame, called SFTF. has been derived as an ex­
tension of the swirling FTF model proposed by Palies et al. in (28). 

he exponential decay of acoustic velocity perturbations seen in 

xperiments is taken into account by adding a complex valued cor­
ection factor to the mean flow velocity. and the expected unity 

F gain in the Iow frequency limit is met thanks to a proper con­

straint on the mode( parameters. lt is shown that the ITF can be 
characterized by a set of six distinct parameters. half of them rep­
esenting the standard V-shaped flame response while the other 

alf aims at providing the effect of swirl. By performing high fi­

delity simulations of a laboratory scale premixed swirled burner. 

t is shown that apart from experiments, LES is a good candidate
or the determination of these parameters. A methodology to as­

ess mode( parameters is then proposed. ln this view. the final 

ITF mode( can reach three accuracy levels SITFl. SFTF2, SFTF3,

epending on the way parameters are assessed and on the avail­

ble computational resources. The design of these models can be

bstracted as follows 

• A first LES of the stationary flame is performed. Geometric

quantities are extracted and parameters Cù•{Cù, a and K, -r are
appraised. The first accuracy level SFTFl is reached.

• A pulsed LES is performed over a few periods to evaluate the

phase difference <Po between the phase lag of azimutal and ax­

ial velocity disturbances at the exit edge of the burner where
large vortical structures are created and the phase lag between

azimuthal and axial velocities averaged over the burner cross

section area The frequency of the first local gain minimum /1 

is then assessed from Eq. (22).
• Another pulsed LES is performed at frequency /1 • the ITF gain

and phase are evaluated at this particular frequency.

• The swirl amplitude parameter X is obtained from a pointwise
optimization process using LES estimated FTF gain and phase at

/1• The second accuracy Ievel SFTF2 is reached.

• An additional cold pulsed LES at any frequency is performed
and the velocity disturbances decay rate f3 is assessed. The fi­
nal fidelity Ievel SITF3 is finally attained. yielding quantitative
results for both ITF gain and phase compared to measurements. 0
Mode( predictions are compared to FTF data determined from 
xperiments, exhibiting characteristic swirling V-shaped flame fea­
ures such as local Iow and high gain regions at specific frequency 

alues. and a quasi-linear phase with undulations. Using a single 

tationary LES flame. the SITF mode( is able to qualitatively re­

rieve these features and provides a first estimation of the flame 
esponse. lt is then shown that using an additional reactive pulsed 
ES improves the mode( agreement with experiments by allow­

ng to precisely evaluate the frequency of the first local FTF gain 
inimum. ln particular, the phase evolution is already very well 

eproduced by the model. Finally. quantitative agreement on both 

TF gain and phase is achieved with an additional cold flow pulsed 
imulation. Regardless of the chosen fidelity level. one reduces the 

lobal computational cost needed to compute the flame response 
ver a broad frequency range, which would normally require sev­

ral high fidelity simulations. ln addition, the method works for 

ny finite amplitude forcing and is not limited to vanishingly small 
erturbations. While the mode( is shown to perform well on this 

ase. further investigation is needed for the evaluation of the swirl 

trength parameter X which has been presently assessed by per­
orming a pointwise optimization. Conclusions raised in this pa­
er will be confronted to other V-shaped flame configurations to 

urther validate the mode( and methodology. with varying swirler­
hamber distances or differently shaped bluff bodies for instance. 
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