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Numerical simulations of a drop crossing a plane liquid-liquid interface in a centrifugal
field are performed using the level-set method. The objective is to characterize the 
hydrodynamical parameters controlling the coating volume of the droplet, which results
from the rupture of the liquid column of the lighter phase entrained by the droplet during
the crossing of the interface in the tailing regime. The numerical method is validated first
in two-phase flow simulations of a drop rising in a stagnant liquid and then in three-phase
flow configurations to reproduce the theoretical critical condition for a drop to cross
an interface in static conditions (without initial velocity). Then, in inertial conditions, 
extensive simulations of crossing droplets are performed in a wide range of flow parameters
and phase properties for two types of drop: solidlike droplets (mimicking rigid particles)
and deformable drops. The crossing criterion is found to remain very close to that given
by the theory in static conditions, for either a spherical or a deformed droplet. For each
case studied, the crossing time, the maximum length of the column of liquid pulled by
the droplet, and the volume encapsulating the drop after crossing are computed and scaled
as a function of an inertia parameter, which is the ratio F ∗ between the inertial stresses 
pushing on the interface, defined from the minimum drop velocity reached during crossing
as the characteristic velocity, and the opposite stress pulling back the entrained column 
towards the interface. The maximal column length increases with F ∗ (when rescaled by
the minimal inertial required for crossing) under two distinct growth rates according to
the flow regime in the column. For solidlike drops, the final coating volume is a unique 
function of F ∗ and grows with F ∗ at large inertia. In the case of deformable droplets, the
coating volume evolution can also be well predicted by F ∗ but corrected by the drop-to-film 
viscosity ratio, which strongly affects the drainage rate of the film along the drop surface

during the encapsulation process.

I. INTRODUCTION

Encapsulation is a process by which an active ingredient is isolated from its external environment 
within a shell, in order to protect it and trigger and control its release in time and space. Several 
encapsulation processes already exist in the industry (pharmaceutical, food industry, cosmetics, etc.)
[1,2]. The context of this work is the development of a microfluidic encapsulation process allowing 
the coating of submillimeter-sized droplets (the target diameter d being of order 100 μm) by a liquid 
phase immiscible with the droplet phase by crossing a liquid-liquid (typically oil-water) interface in 
a centrifugal field [3]. The same principle was applied at very low inertia for the production of giant 
vesicles [4]. However, in the latter investigation, the crossing of the interface and the encapsulation 
process were driven by a different mechanism: the zipping of two amphiphilic monolayers adsorbed 
on both the droplet surface and the plane interface. In the present study, inertia forces, such as the
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FIG. 1. Scheme of the studied three-phase system in a centrifuged cell (ω is the angular speed): phase
1, lighter (organic) continuous phase; phase 2, droplet (aqueous); and phase 3, heavier (aqueous) continuous
phase.

apparent weight or dynamic pressure force, are responsible for the crossing of droplets and result in
the entrainment of a lighter liquid column into the heavier fluid (tailing regime) [5,6], which, after
rupture, leaves the droplet encapsulated.

The development of such a process first requires one to investigate the physics of the crossing
of a liquid-liquid interface by a droplet in the inertial regime, including the determination of the
crossing conditions and of the mechanism of encapsulation. In the process considered, a centrifugal
field drives the droplet (phase 2) towards an interface separating two immiscible liquids, phases 1
and 3 (liquid 1 being the lighter phase), as sketched in Fig. 1. In order to ensure an inertial regime
for submillimeter-sized drops and ordinary liquids, centrifuge accelerations as large as 5000g are
considered.

The system is composed of ten physical parameters, which are the densities of the three phases
ρi (i = 1, 2, 3), their dynamic viscosities μi (i = 1, 2, 3), the surface tensions γ12 and γ13 between
phases 1 and 2 and between phases 1 and 3, respectively (assuming that phases 2 and 3 will never be
in direct contact allows us to disregard γ23), the droplet diameter d (or radius R), and the centrifugal
acceleration ac = riω

2 evaluated at the interface position, ri being the radial position of the interface
in the cylindrical coordinate system centered on the axis of rotation as sketched in Fig. 1 and ω the
angular speed of rotation. As these ten quantities involve three fundamental units (mass, time, and
length), the theorem of Vaschy-Buckingham states that the problem can be described with seven
independent dimensionless parameters. In this study, we choose the density ratios ξ12 = ρ2

ρ1
− 1 and

ξ13 = ρ3

ρ1
− 1, the viscosity ratios λ12 = μ2

μ1
and λ13 = μ3

μ1
, the Bond number Bo12 = (ρ2−ρ1 )acR2

γ12
of

the droplet immersed in phase 1, which describes its deformability by comparing the centrifugal
force applied on the droplet to its interfacial tension, the Bond number Bo13 = (ρ3−ρ1 )acR2

γ13
of

the interface, and the Archimedes number Ar = ρ1(ξ12ac )1/2R3/2

μ1
, which describes the flow regime

in phase 1, which is merely a Reynolds number based on the gravitational velocity (ξ12acR)1/2.
Other useful nondimensional numbers can be used, such as the drop Reynolds number in phase 1,
Re(t ) = ρ1V (t )d

μ1
, where V (t ) is the velocity of the droplet center of mass at a given time, and its

Weber number in phase 1, which compares the inertial stress responsible for its deformation over
the interfacial tension stress, We(t ) = ρ1V 2(t )d

γ12
.



The problem of a sphere settling through a liquid-liquid interface (with ρ1 and ρ3 of the same
order of magnitude, contrary to the problem of splashing, where a sphere impacts a free surface)
was addressed in the literature through theoretical models, numerical simulations, and experiments,
gravity generally being the driving force in most of the studies. The different investigations
have generally addressed one of the following questions: (i) the film drainage problem, which
corresponds to a sphere standing at the interface in a quasistatic equilibrium, or (ii) the tailing
regime leading to the entrainment of a column of fluid, where the sphere crosses the interface with
a finite velocity, its crossing being possible even though the film drainage process is not achieved.

In the case of solid particles, the two configurations of (i) the film drainage mode (see the study
of Hartland [7]) or (ii) the tailing mode (see the study of Dietrich et al. [8]) were reproduced in
the simulations of Geller et al. [9] and presented in a regime diagram experimentally obtained by
Jarvis et al. [10] and depending on both the interface Bond number Bo13 and the viscosity ratio
λ13. Generally, small and light spheres remain trapped at the interface. To analyze the quasistatic
problem, Maru et al. [5] proposed a force balance model, between the particle weight, driving its
crossing, and surface tension and buoyancy forces opposing it, leading to the prediction of a minimal
sphere radius as the crossing condition, validated by experimental observations. A similar critical
condition was established by Pierson and Magnaudet [11] in the form of a minimum relative density
contrast ξ12

ξ13
required to cross an interface under static conditions, at a given Bond number Bo13.

From experimental observations with several particles and pairs of fluids, these authors found that
this relationship successfully predicted, in most of the cases, if a particle would cross the interface
or be trapped on it. This criterion was validated in quasistatic regimes, where a settling particle
is stopped for a long time at the interface, and in dynamic conditions, where the sphere velocity
remains finite during crossing. In only a few cases was the crossing possible, due to dynamic effects,
whereas the quasistatic balance predicted that the particle should not cross, associated with a strong
deceleration of the particle at the interface; the crossing mechanism was due in these cases to a
supplementary history force [12] issued from the collapse of the particle wake at the interface,
which made it possible to overcome the resisting forces to crossing. In the tailing regime, Pierson
and Magnaudet [11] have shown that the entrained liquid column geometry strongly depends on
λ13 and the Archimedes number Ar based on properties of phase 1, due to the fact that the column
keeps the footprint of the wake developed in phase 1. The entrained tail stretches inside phase 3 and
eventually breaks. Different column rupture modes have been classified by Aristoff and Bush [13]
and characterized by Pierson and Magnaudet [11]: deep seal pinch-off, corresponding to a column
detachment close to the particle in the case where buoyancy effects are dominant, and shallow
pinch-off, where the column detachment first occurs close to the position of the interface when
driven by the interfacial tension. Column axisymmetry is ensured provided that Ar < 55 [14]. In
very high inertial conditions (Ar > 55), the development of instabilities has been observed [11,12]
and leads to configurations of tailing with surrounding corollas or even full three-dimensional tails
with possible fragmentation due to the strong shearing from the boundary layer developing around
the tail when Ar is O(100) and λ13 < 1. In all cases, once the entrained column breaks up, a part
of the fluid of phase 1 covers the settling particle. At small ξ13 (�0.1) and with continuous phases
of contrasted viscosities λ13 � 0.02, the coating volume experimentally measured by Pitois et al.
[15] (particles falling in Stokes regime in phase 1) and Pierson and Magnaudet [11] scales linearly
with a modified Bond number ( ξ12

ξ13
− 1)Bo13 obtained from a force balance on the coated particle

in the limit of small Ar; note that, in these cases, the encapsulating volumes are of same order of 
magnitude as that of the particle. At larger liquid density contrasts (ξ13 > 0.1), the coating volume 
was observed to be highly sensitive to both Bo13 and ξ12/ξ13 in a nontrivial way.

The crossing of a liquid-liquid interface by bubbles is more complex due to bubble deformation. 
Shopov and Minev [16] performed numerical simulations of deformed bubbles crossing an interface, 
at small and moderate Reynolds numbers, focusing on the bubble and interface deformations and 
on the film drainage dynamics rather than on the tailing mode. They have shown that, at very low 
Weber and Reynolds numbers, a bubble can be deformed into a prolate shape (i.e., elongated in the



direction of motion) during the passage through the interface in cases at low λ13, a result confirmed 
by the simulations of Manga and Stone [17], whereas at higher Weber and Reynolds numbers, 
the action of inertial forces and the interaction with the interface lead to oblate bubbles with the 
formation of a concavity at the rear and spherical cap shapes during the crossing. Interface crossing 
in inertial regimes was also experimentally investigated by Dietrich et al. [18], who provided the 
relationship of the crossing time of the interface by a bubble as a function of the ratio of the terminal 
velocities inside the two continuous phases. Once the tail is formed in the column, their particle 
image velocimetry measurements have shown the coexistence of a fluid motion entrained in the 
bubble wake and an opposite flow driven by gravity. The crossing in the tailing mode in the case of 
a bubble was also considered by Bonhomme et al. [19], both experimentally and numerically under 
inertial conditions, in a wide variety of bubble shape configurations (from spherical to toroidal). A 
mapping of the bubble shapes and entrained column geometries was provided as a function of both 
Bo13 and Ar. Small bubbles are slowed down and even stopped at the interface without crossing (film 
drainage configuration, the crossing being possible only provided the drainage process is achieved), 
whereas larger spherical cap bubbles at larger Bo13 generally cross the interface easily. It has been 
found that the volume entrained is also larger with such spherical cap bubble shapes since they 
offer a larger cross section to the interface than spheroidal bubbles, for a given gas volume. In the 
experiments of Emery et al. [20], the crossing by a single bubble shows additionally that, in the 
tailing mode, the column of liquid entrained is longer in the case where the bubble velocity does 
not change much during the crossing of the interface; the tail is observed to remain connected a 
long time before its rupture, in some cases the liquid shell covering the bubble breaking before the 
column. The latter study has investigated the crossing of a stream of bubbles, giving a map of the 
different flow regimes with the possible formation of clusters. The experimental results of Manga 
and Stone [17] also illustrate the case of vertically aligned bubbles, by showing that the following 
bubble in a train experiences less resistance during the crossing, leading to a more elongated shape 
as compared to the previous bubble.

Finally, the problem of droplets crossing a liquid-liquid interface is even more complex because 
it involves more parameters as compared to the case of particles or bubbles, due to the droplet 
viscosity and deformability. Only a few studies are available, most of them addressing the film 
drainage problem in the context of drop-interface coalescence under quasistatic conditions. In this 
configuration, Hartland [21,22] studied experimentally the profile of the draining film beneath a 
droplet approaching a liquid-liquid interface and derived expressions of the drainage dynamics in 
the case of either mobile or immobile interfaces, a more complete theoretical analysis being further 
provided by Jones and Wilson [23], who clarified the possible narrowing of the drainage film at its 
periphery (dimple formation). Simulations by Chi and Leal [24] at low Reynolds number were also 
able to consider the influence of the drop internal circulation on the film drainage dynamics, through 
the viscosity ratio λ12 (=λ13 in their particular conditions). They confirmed that different types of 
film geometry can be observed upon the arrival of the drop at the interface: a film with a minimum 
thickness at the top indicating a rapid drainage at low λ12, a film with a uniform thickness when λ12 
is of the order of unity, and a film with minimum thickness at its periphery involving the formation 
of a dimple at high λ12. When the droplet travels a distance of several radii beyond the interface, i.e., 
when it actually crosses the interface, Manga and Stone [17] did a parametric numerical study in 
low-Reynolds-number regimes in the first phase. The influence of four nondimensional numbers λ12, 
λ13, Bo13, and Bo12 on the drop and interface deformations and film drainage rate was addressed. As 
for bubbles, at low λ13, drops have been observed to undertake a prolate shape during the interface 
crossing; at large Bo12, they deform by developing either an elongated tail or a small cavity at the 
back. Concerning the film drainage, it has been found that the higher the droplet viscosity (the higher 
λ12), the thicker the coating film of phase 1 around the drop, the slowest drainage rate occurring 
when λ12 � 1 � λ13. However, due to the limitation of the numerical approach, calculations could 
not capture the long tail dynamics and its rupture. Studies dedicated to investigating the tailing mode 
with droplets until breakup of the column are lacking.



In this paper, the crossing of a liquid-liquid interface by a droplet submitted to a centrifugal field
is numerically investigated, by focusing on the tailing regime. Two types of drops are considered,
both solidlike drops mimicking rigid particles (with a high internal viscosity and surface tension)
and deformable drops at different viscosity ratios λ12, in a wide range of flow parameters and
phase properties, which however correspond to common liquid phases and oil-water interfaces.
In all cases, droplet motion lies in inertial regime (7 � Re � 160, based on the settling velocity in
phase 1).

The paper is structured as follows. In Sec. II the numerical level-set method used in the
three-phase system is briefly presented and some validation test cases are discussed to compute
the terminal velocity of nondeformed droplets, the deformation of drops in inertial regimes, and, in
three-phase configurations, the crossing criterion for solidlike drops in static conditions. Then the
results obtained in dynamic crossing conditions (i.e., with an impacting velocity) are presented and
discussed in Sec. III, starting with the effect of the drop velocity at the interface on the condition
for crossing, followed by an analysis of the drop shape and velocity during crossing. Finally, the
length of the entrained column and the volume encapsulating the droplet are scaled as a function of
parameters characterizing drop inertia.

II. NUMERICAL METHODS AND VALIDATIONS

A. Simulation method

Axisymmetric direct numerical simulations of droplets traveling through liquid-liquid interfaces
are carried out using the numerical code DIVA. In view of solving a three-phase flow involving
the dynamics of two interfaces, the numerical approach is based on a one-fluid formulation of
the Navier-Stokes equations, and the level-set method is used to capture the two interfaces on a
Cartesian grid that does not follow the complex interface shapes. This numerical method is the
natural extension for three phases of that described by Tanguy et al. [25], Lalanne et al. [26],
or Rueda-Villegas et al. [27] in the case of two-phase flows, with several validation tests of the
dynamics of deformed droplets and bubbles. The method is briefly presented here.

The method consists in solving the Navier-Stokes equations for an incompressible flow to
compute the velocity field �u and the pressure field P,

ρ

(
∂ �u
∂t

+ (�u · �∇ )�u
)

= −�∇P + �∇ · (2μD) + �F , (1)

�∇ · �u = 0, (2)

where ρ and μ are the density and dynamic viscosity of the fluid which is present at the considered
mesh cell center, D is the rate of the deformation tensor defined as �D = �∇�u+�∇�uT

2 , and �F is the
volume force. These equations are used together with a level-set method [28,29] for capturing
the two interfaces �1 and �2, which are the droplet and the liquid-liquid interfaces, respectively.
Numerically, these interfaces are defined as the zero level of two respective distance functions φ1

and φ2 that represent the algebraic distance between a mesh point and each interface, allowing us to
locate in which phase any mesh cell center lies. The evolution of φ1 and φ2 is computed from two
advection equations, for i = 1, 2,

∂φi

∂t
+ �u · �∇φi = 0. (3)

For each of these two level-set functions, an algorithm of redistancing [29] is used to ensure that φi

(i = 1, 2) remain distance functions at each time step.
Different jumps of density, viscosity, and pressure, denoted by square brackets in the equations,

exist at both interfaces; in particular,

[P]�1 = γ12κ1 + 2[μ]�1

∂un

∂n
, (4)

[P]�2 = γ13κ2 + 2[μ]�2

∂un

∂n
(5)



give the balance of the normal stresses at each interface involving pressure and viscous normal
stress discontinuities, where κi is the local curvature of the interface and un the normal velocity
of the fluids at the interface. The ghost fluid method [30] is employed to take into account these
discontinuities, as jumps of pressure during the resolution of the Navier-Stokes equations [26].

In the following simulations, the force �F driving the drop motion will be either normal gravity
( �F = �g) or a higher acceleration similar to that existing in a centrifugal field, i.e., linearly increasing
with the drop position. In the latter case, it is expressed as �F = �ω × �ω × �r, where �ω is the rotation
vector and �r the position vector regarding the axis of rotation (see Fig. 1). Note that such an
inertial force is not sufficient to fully simulate the flow in a centrifugal device from a rotation
frame, as a Coriolis force should also be considered for that purpose, which would require us to use
three-dimensional simulations; however, we can consider that an axisymmetric simulation, which
includes only the centrifugal force, will be a good approximation of the flow in the case where the
Coriolis force has a negligible impact on drop deformation, influencing only slightly its trajectory.
All simulations are thus carried out under the axisymmetric assumption, in a frame moving with the
droplet, which allows us to keep it at a fixed position in the simulation domain so as to maintain a
high grid resolution around the drop.

B. Post-treatment of film volume

In the simulation of the dynamic interface crossing resulting in drop encapsulation, the film
volume covering the droplet is evaluated as the post-treatment at the first instant where the capsule
is formed. The method consists in evaluating the volume Ve enclosed by the interface between
phases 1 and 3 around the droplet (see Fig. 13 for screenshots from the simulations), based on
the level-set function φ2, from which the droplet volume Vdrop is subtracted in order to obtain the
film volume Vf = Ve − Vdrop. As the post-treatment, Ve is computed through the volume integration
of a regularized Heaviside function H , equal to 1 inside the film contour defined by a minimum
numerical thickness ε0 = 1.5�x (with �x the smaller mesh cell size) as

H (φ2) =
⎧⎨
⎩

0 if φ2 < −ε0
1
2 [1 + φ2

ε0
+ 1

π
sin( πφ2

ε0
)] if |φ2| � ε0

1 if φ2 > ε0.

As explained in Sec. III B 4, for most of the cases of dynamic crossing, the contribution to Vf 
from the bottom part of the droplet is generally dominant, which is a well-resolved zone, contrary 
to the contribution at the top, which is of negligible thickness (see Figs. 13 and 14). The uncertainty 
of the computed Vf values needs to be assessed and will now be discussed.

First, concerning the level-set method accuracy on the mass conservation, whereas the numerical 
method ensures the conservation of the droplet phase in time, even in the case of high deformation, 
that of the covering film volume is slightly affected, in particular because of the underresolution 
of the film at the top of the droplet. In order to get an estimate of the resulting mass loss, some 
computations have been continued for a longer time than the time required to encapsulate the drop, 
allowing us to compute Vf at several instants when it should remain constant. The computations 
show that the mass loss of the film reaches 2% after a supplementary travel distance of six radii 
for the capsule. Such a mass loss is not representative of the error of the film topology prior to 
detachment, but gives an idea of the uncertainty. To minimize it, in the following simulations, Vf is 
computed as soon as the droplet is encapsulated.

Second, in order to test the sensitivity of Vf on the grid resolution (which has an influence on 
the mass conservation in the numerical method, the resolution of the flow in the film, and the post-
treatment used to compute Vf ), a mesh convergence study has been carried out, in case D2 from 
Table II, by using grids with 48, 72, and 96 points per radius. The difference in volume computation 
was less than 0.7% between the different grids; therefore, a grid resolution of 48 points per radius 
has been chosen for the following simulations. Note, however, that, despite this very good accuracy 
of Vf , all these grid resolutions are still insufficient to accurately capture the very thin thickness of



the film at the front of the droplet. This is a limitation of such Eulerian numerical simulations to
study this multiscale problem, the film thickness becoming several orders of magnitude lower than
the characteristic length scales of the flow around the drop, as also discussed in the numerical study
of Bonhomme et al. [19].

Finally, the uncertainty of Vf comes mainly from the contribution of the film volume from the top
part of the droplet. In order to quantify an error of the computed Vf , a criterion is defined ε = 2πR2�x

Vf

based on the size of one mesh cell �x = R/48 around the northern hemisphere of the drop where
the mesh resolution is not sufficient. Such a criterion probably overestimates the error from the
numerical simulation and the post-treatment process, but allows us to include error bars in Fig. 13
for the computed Vf . The accuracy will be higher for the highest Vf .

C. Validation of the numerical model

In this section we validate the numerical method by (i) performing simulations of the gravity-
driven motion of a liquid droplet in a stagnant liquid phase and comparing the results to predictions
of the drop velocity and its deformation and (ii) performing simulations of a three-phase flow
configuration of a solidlike droplet crossing or floating at a liquid-liquid interface in quasistatic
conditions and comparing the result with existing data for solid particles.

1. Two-phase flow validations

As a validation of our methodology, we compute the rise of a droplet in a stagnant liquid
(ρ2/ρ1 = 1.29 and μ2/μ1 = 1.67), under constant gravitational acceleration g at two different
Reynolds numbers ReT = ρ1uT d

μ1
, where uT is the terminal velocity: ReT = 20 (case 1) and ReT =

180 (case 2). For each case, the value of g is adjusted so as to reach the desired uT and the Weber

number We12 = ρ1u2
T d

γ12
based on uT is maintained low enough to keep the droplet spherical during

its motion. The terminal velocity can be predicted through a force balance between the drag force
and the buoyancy force in the steady-state regime

0.5πR2ρ1CDu2
T = (ρ2 − ρ1)

4πR3

3
g, (6)

where CD is the drag coefficient for spherical droplets, expressed as, according to Rivkind and 
Ryskin [31], CD = 1 

1
λ12 

[λ12( 24
Re + 4 Re−1/3 ) + 14.9 Re−0.78], valid with a maximal accuracy of 7%

for Reynolds numbers
+ 

lower than 200. The mesh is uniform in both cases and grid resolutions 
of 8, 16, and 32 nodes per radius are evaluated. Figure 2 shows the Reynolds-number evolution 
as a function of the normalized distance traveled by the droplet for each case and with different 
mesh resolutions. In both cases, the numerical code shows a very good convergence above 16 
points per radius, as demonstrated by the overlap of the curves obtained for more refined grids. The 
Reynolds number converges towards a limit value ReT at distances z large compared to the droplet 
diameter. For case 1, the prediction of uT by Rivkind and Ryskin’s correlation is perfectly consistent 
with the results of numerical simulations with a discrepancy of 0.4%. For case 2 it is around 9%. 
Since the numerical results are converged in terms of mesh resolution, it can be concluded that the 
boundary layers around the droplet are well resolved in this range of drop Reynolds number with 
our numerical tool, which is the range of interest in this study.

In order to validate the computation of drop deformation by the numerical tool, simulations of 
rising droplets in another liquid (1.11 � ρ2/ρ1 � 1.62 and 0.12 � μ2/μ1 � 50) are carried out 
under a constant gravitational acceleration. Results are obtained with mesh resolutions of 48 mesh 
points per drop radius. The drop Reynolds number is large (7 � ReT � 163), leading to a drop 
deformation controlled by the inertial forces inside the continuous phase, then characterized by the 
Weber number We12. The drop deformation is described through the aspect ratio χ at steady state, 
once the deformation no longer evolves, which is defined as χ = a/b, where a is the larger axis of
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FIG. 2. Reynolds-number evolution as a function of normalized distanced covered by the droplet z∗ = z
d

for different mesh resolutions for (a) case 1, ReT = 20, We12 = 0.11, and simulation domain 6R × 12R and
(b) case 2, ReT = 180, We12 = 0.31, and simulation domain 8R × 16R.

the ellipsoidal drop shape and b the smaller axis. Figure 3 shows the measured drop deformation as
a function of We12: χ varies in a large range in the simulations, until 3.3, and is found to increase
with We12. For weakly deformed droplets (χ � 1.3), the results are in good agreement with the
correlation proposed by Wellek et al. [33], where there is not any influence of the viscosity ratio
λ12 on the steady deformation. In the case of more deformed droplets, our numerical results are also
fully consistent with the simulation predictions of Bäumler et al. [34] at a viscosity ratio λ12 = 2.4
for oblate droplets with an aspect ratio as high as χ = 2.8. At such large deformations, it is observed
in Fig. 3 that the drop viscosity strongly influences the deformation: For a given We12, the higher the
λ12, the lower the deformation. This was explained by Hinze [35]: In contrast to bubbles, the viscous
dissipation associated with the internal circulation in droplets consumes a part of the outer flow
energy responsible for deformation. On the basis of these quantitative and qualitative comparisons,
axisymmetric simulations of drop shapes are validated, even in the case of highly deformed droplets.

0 2 4 6 8 10
We

12

1

1.5

2

2.5

3

3.5

χ

λ
12

 < 1

λ
12

 = 1 (Lalanne et al. [32])

λ
12

 = 2.36 (Bäulmer et al. [34])

λ
12

 = 5

λ
12

 = 50

Wellek et al. [33]

FIG. 3. Simulation of droplets with different values of λ12: aspect ratio as a function of the Weber number 
We12, including numerical results obtained with the same numerical tool from Lalanne et al. [32], experimental 
results from Wellek et al. [33], and numerical results from Bäumler et al. [34] with another simulation tool.



2. Three-phase flow: Static crossing

For validation purposes, we consider here a three-phase flow configuration of a solidlike droplet
crossing a liquid-liquid interface in static conditions. We call a condition static when the solid
particle is directly placed at the position of the interface without initial velocity. A force balance
model able to predict the critical crossing conditions under such a particular assumption for a rigid
sphere was developed by Pierson and Magnaudet [11] with several parts common with previous
publications (e.g., [5,19,36,37]). The model predicts if the solid particle will float or cross the
interface, by considering the balance between the force favoring the crossing (apparent weight) and
the resisting forces (surface tension force of the liquid-liquid interface and hydrostatic pressure).
In two different asymptotic regimes depending on Bo13, the critical conditions are given in a
nondimensional form according to

ξ12

ξ13
� f (Bo13) (7)

for Bo13 � 1, with

f (Bo13) = 3

2 Bo13
+ 1

2
+ 3

4

[
log10

(
4√

Bo13

)
− 0.577

]
, (8)

and for Bo13 � 1, with

f (Bo13) = 3

2 Bo13
sin2 k + 1

4
(2 + 3 cos k − cos3 k) + 3

4

(
2

Bo13

)1/2

sin2 k, (9)

where k = 2(2 Bo13)−1/4.
In order to simulate the crossing of a rigid particle with the numerical tool being used in

our simulations, configurations of static crossing are simulated with solidlike droplets [λ12 = 50
and small droplet Bond number Bo12 ∼ O(10−2)] for different values of ξ12

ξ13
and Bo13. In these

simulations, the mesh resolution is 48 grid points per drop radius. The numerical results show
excellent consistency with theory, as illustrated in Fig. 4, where the theoretical criterion for crossing
and the corresponding numerical simulation cases are reported. These results validate both the
three-phase flow extension of the numerical code and the use of the solidlike droplet approximation
as a model of the solid particle.

III. INTERFACE CROSSING IN DYNAMIC CONDITIONS

In this section we consider axisymmetric simulations of interface crossing in inertial conditions
by either solidlike droplets Si, simulated as highly viscous (λ12 = 50) and nondeformed droplets
(both Bo12 � 1 and We12 � 1), or deformable droplets Di with variable λ12. As shown in Fig. 1, the
driving force is induced by a high acceleration, which increases linearly with the drop position like
in a centrifugal field. Simulations are carried out in the frame moving with the droplet, of size 6R ×
13R or 19R, with a resolution of 48 mesh points per radius based on the validation tests. In what
follows, the conditions and dynamics of interface crossing and film entrainment are investigated.

In terms of nondimensional parameters, several values of ξ12 are considered (1.67 � ξ12 � 21,
ξ13 ξ13

which correspond to 0.0105 � ξ12 � 0.2941 and 0.0005 � ξ13 � 0.176). For each case, the Bond
number Bo13 is taken to be high enough for interface crossing, the study being performed from 
moderate to high inertia 5.3 � Ar � 70 (the maximal value of Ar is 55 for solidlike droplets). For
deformable drops, the drop Bond number Bo12 lies in between 1.3 and 6.25 and the viscosity ratio 
λ12 is varied in a wide range (0.1 � λ12 � 50). In most cases, λ13 = 1 and in a few cases λ13 < 1 
(down to 0.05). For solidlike droplets, it has been verified that the tangential velocity along the
interface is always small compared to the drop rise velocity uT ; the maximal value never exceeds 
10% of uT , leading to a negligible fluid velocity both at the interface and inside the solidlike 
droplet.
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FIG. 4. Mapping of the crossing configuration for solidlike droplets. The red solid line corresponds to the
expression (8) and the green solid line corresponds to the expression (9), with an assumed red dashed line
that connects the two theoretical predictions. Closed squares correspond to a success in crossing, while open
squares are associated with a fail in crossing, in the static case.

The physical parameters and nondimensional numbers of all simulations are reported in Tables I and
II, respectively.

A. Crossing conditions with additional inertia

Here the effect of drop impact velocity on the crossing condition is examined. In a quasistatic
regime, the critical crossing condition is given by Eqs. (8) and (9) in two limits Bo13 � 1 and
Bo13 � 1. In dynamic conditions, the droplet is released far from the interface (at a distance of three
diameters in the simulations) and has time to develop its wake in phase 1, the drop motion being
inertial in the conditions studied. When the droplet approaches the interface, it decelerates due to
the presence of the interface, reaching a minimum value Umin while crossing. For each case, the
minimal Reynolds number Remin computed from this velocity is reported in Table II. In most cases,
Remin is positive, but in some cases, Remin falls to 0 when the drop (deformable or not) is stopped
by the interface. Further, Umin can even reach negative values for bouncing drops. For a noncrossing
case in static conditions, inertia could be expected to favor the crossing. Figure 5 compares the
theoretical critical condition for crossing given by the static theory with the simulation results in
dynamic cases at different Ar values for both solidlike and deformable droplets.

For the simulations at different values of ξ12

ξ13
in the range investigated, the critical condition for

crossing is found to be consistent with the quasistatic theoretical predictions. This conclusion stands 
for both the solidlike and the deformable droplets, showing the strong interest of the static theory, 
given by Eqs. (7)–(9) and developed for spherical particles to make a reliable prediction of whether 
or not a droplet will cross an interface. Moreover, from the numerical results of Fig. 5, the crossing 
condition is shown to be very slightly affected by the impact velocity. Actually, the value of Ar is 
probably not crucial to understand the role of additional inertia. Indeed, in the inertial regime and 
for liquid-liquid systems of close density, the dynamic pressure force exerted by the drop on the 
interface is approximately equal to its apparent weight; whatever the value of Ar, the maximum 
force brought by inertia therefore simply doubles the particle weight. Hence, an equivalent Bond 
number Bo13eq can be defined to take into account the maximum dynamic force due to inertia, 
which



TABLE I. Physical parameters of the simulations (Sim.) presented in this paper for solidlike and de-
formable droplets. Density is in kg/m3, dynamic viscosity in Pa s, and surface tension in N/m. The droplet
size is d = 200 μm for all simulations.

Sim. ρ1 ρ2 ρ3 μ1 μ2 μ3 γ12 γ13 ac

Solidlike
S1 995 1100 1000 0.001 0.05 0.001 1 0.01 2740g
S2 995 1100 1000 0.002 0.1 0.002 1 0.01 1551g
S3 995 1100 1000 0.001 0.05 0.001 1 0.01 1551g
S4 995 1100 1000 0.001 0.05 0.001 1 0.01 2660g
S5 995 1100 1000 0.001 0.05 0.001 1 0.01 3262g
S6 995 1100 1000 0.0015 0.075 0.0015 1 0.01 1551g
S7 995 1100 1000 0.0007 0.035 0.0007 1 0.01 1551g
S8 930 1080 1000 0.002 0.1 0.002 1 0.0045 1359g
S9 850 1100 1000 0.01 0.5 0.001 2 0.02 5097g
S10 980 1100 1000 0.001 0.05 0.001 1 0.01 2548g
S11 980 1100 1000 0.001 0.05 0.001 1 0.01 1733g

Deformable
D1 995 1100 1000 0.001 0.05 0.001 0.01 0.01 2740g
D2 995 1100 1000 0.001 0.005 0.001 0.01 0.01 2740g
D3 995 1100 1000 0.001 0.02 0.001 0.01 0.01 2740g
D4 995 1100 1000 0.01 0.05 0.01 0.01 0.01 2740g
D5 995 1100 1000 0.01 0.05 0.01 0.0134 0.0134 2740g
D6 995 1100 1000 0.001 0.05 0.001 0.01 0.01 1529g
D7 960 1200 1000 0.0017 0.0085 0.0017 0.01 0.01 1359g
D8 960 1200 1000 0.0007 0.0035 0.0007 0.01 0.01 1359g
D9 960 1200 1000 0.0017 0.085 0.0017 0.01 0.01 1359g
D10 960 1200 1000 0.0007 0.035 0.0007 0.01 0.01 1359g
D11 980 1200 1000 0.001 0.0005 0.001 0.006 0.006 503g
D12 850 1100 1000 0.01 0.01 0.001 0.02 0.02 4077g
D13 850 1100 1000 0.01 0.05 0.001 0.02 0.02 5097g
D14 913 1081 997 0.005 0.0024 0.001 0.036 0.011 898g
D15 930 1081 997 0.01 0.0024 0.001 0.036 0.011 923g
D16 950 1081 997 0.02 0.0024 0.001 0.036 0.011 926g

finally turns out to consider a drop of the same properties but with a volume multiplied by 2, i.e., 
a diameter multiplied by 21/3, leading to Bo13eq = 22/3Bo13 = 1.59Bo13 (note that the correction 
factor is small). Making use of this equivalent apparent weight, the solidlike case at Ar = 22 in 
Fig. 5, which is subcritical (i.e., the noncrossing case), has a Bo13 approximately equal to 0.6. 
Multiplying Bo13 by 1.59 leads to Bo13eq = 0.95, which still stands below the critical condition 
on the static crossing condition curve: The particle is not crossing. The same evaluation can be 
achieved for the deformable drop case at Ar = 28 and Bo13 < 0.04. In this case, Bo13eq = 0.06, 
which remains smaller than the critical value, close to 0.08; here again, the droplet is not crossing. 
The case Ar = 34, corresponding to a solidlike droplet, is interesting because its equivalent Bond 
number (Bo13eq = 0.087) is close to (slightly above) the critical value (around 0.08) predicted by 
the static crossing theory. In this case, the drop is submitted to several oscillations and it does not 
cross the interface at the end of the simulation. Such a behavior indicates that this point is close to 
the critical condition of crossing as predicted by the equivalent Bond number. Running a simulation 
over a very long time could have shown that crossing was finally possible. Finally, these different 
examples of crossing conditions in dynamic cases emphasize the strong interest of the static theory, 
which is shown to be able to predict quite well if a droplet succeeds or fails to cross the interface,



TABLE II. Nondimensional numbers of all simulations. Here Remax, Remin, and Wemax are based on the
properties of phase 1. Note that drop breakup occurs during the interface crossing for simulations D12 and D14.

Sim. ξ12 ξ13
ξ12
ξ13

λ12 λ13 Bo12 Bo13 Ar Oh12 Oh13 Remax Remin Wemax Iex χmax χmin χdet

S1 0.105 0.005 21 50 1 0.03 0.13 53 0.1 0.02 160 134 0.13 11 1 1 1
S2 0.105 0.005 21 50 1 0.02 0.076 20 0.21 0.04 48 16 0.046 1.56 1 1 1
S3 0.105 0.005 21 50 1 0.02 0.076 40 0.1 0.02 114 62 0.065 3.05 1 1 1
S4 0.105 0.005 21 50 1 0.03 0.13 52 0.1 0.02 158 130 0.125 10.5 1 1 1
S5 0.105 0.005 21 50 1 0.03 0.16 57 0.1 0.02 178 158 0.16 14.8 1 1 1
S6 0.105 0.005 21 50 1 0.02 0.076 27 0.16 0.03 69 25 0.054 1.76 1 1 1
S7 0.105 0.005 21 50 1 0.02 0.076 57 0.07 0.01 177 104 0.077 3.82 1 1 1
S8 0.161 0.075 2.14 50 1 0.02 2.07 22 0.22 0.07 52 17 0.058 1.61 1 1 1
S9 0.294 0.176 1.67 50 0.1 0.06 3.75 10 0.75 0.17 19 0 0.106 1.05 1 1 1
S10 0.12 0.02 6 50 1 0.03 0.5 54 0.1 0.02 94 85 0.045 5.07 1 1 1
S11 0.12 0.02 6 50 1 0.02 0.34 45 0.1 0.02 72 36 0.026 1.83 1 1 1
D1 0.105 0.005 21 50 1 2.82 0.134 53 1.06 0.02 124 95 7.72 6.4 1.77 1.93 1.63
D2 0.105 0.005 21 5 1 2.82 0.134 53 0.1 0.02 112 92 6.37 6.14 2.39 3.24 1.77
D3 0.105 0.005 21 20 1 2.82 0.134 53 0.43 0.03 116 95 6.8 6.38 2.21 2.12 1.808
D4 0.105 0.005 21 5 1 2.82 0.134 5 1.06 0.22 7 2.8 2.37 2.17 1.24 1.09 1.16
D5 0.105 0.005 21 5 1 2.1 0.1 5 0.92 0.19 7 1.3 1.77 1.4 1.21 0.998 1.11
D6 0.105 0.005 21 50 1 1.57 0.076 40 1.06 0.02 96 40 4.63 1.85 1.33 1.4 1.13
D7 0.25 0.042 6 5 1 2.43 0.4 28 0.17 0.03 60 38 5.4 3.67 2.1 0.95 1.26
D8 0.25 0.042 6 5 1 2.43 0.4 69 0.07 0.01 151 116 5.8 5 2.52 1.79 1.5
D9 0.25 0.042 6 50 1 2.43 0.4 28 1.74 0.03 64 30 6.2 2.83 1.4 1.16 1.16
D10 0.25 0.042 6 50 1 2.43 0.4 69 0.71 0.01 162 111 6.76 4.68 1.95 1.53 1.39
D11 0.224 0.02 11 0.5 1 1.8 0.16 33 0.01 0.02 77 58 5 4.37 2.23 1.48 1.42
D12 0.294 0.176 1.67 1 0.1 5 3 9 0.15 0.17 16 1.8 7.3 1 1.65 0.6 1.17
D13 0.294 0.176 1.67 5 0.1 6.25 3.75 10 0.75 0.17 17 −2.5 8.3 1.05 1.83 0.72 1.1
D14 0.184 0.092 2 0.48 0.2 1.37 2.25 18 0.02 0.08 48 37 4.76 4.7 1.82 1.39 1.31
D15 0.162 0.072 2.25 0.24 0.1 1.44 2.09 10 0.02 0.16 22 17 3.5 3.96 1.43 1.13 1.33
D16 0.138 0.049 2.78 0.12 0.05 1.36 1.6 5 0.02 0.3 8 6.5 1.97 5.14 1.21 0.92 1.76

even in the case of a deformable droplet which arrives at the interface with a nonzero velocity. For
such liquid droplets translating in an inertial regime, a rough approximation to take into account the
dynamic force that could favor the crossing allows us to consider a higher equivalent Bond number
Bo13eq, the crossing being possible when the latter overcomes the minimal value required which is
predicted by the static theory. Note that the effect of inertia discussed here only concerns the final
state, i.e., crossing or noncrossing, and disregards the dynamics of the interaction of the drop with
the interface, which naturally is strongly dependent on Ar and involves transient inertial forces as
discussed by Pierson and Magnaudet [12].

In the following section, simulation results of crossing cases Si (solidlike drops) and Di

(deformable drops) are presented and discussed.

B. Dynamics of interface crossing

1. Phenomenology

For solidlike droplets, Fig. 6 shows the evolution of the velocity of the particle centroid as a 
function of its travel distance across the interface and the corresponding image sequence, for cases 
S1 (Ar = 53) and S2 (Ar = 20), with the same density and viscosity ratios (Table II). In both cases, 
the droplet accelerates in phase 1 and the droplet wake develops with recirculations, as expected [38] 
at these Reynolds numbers (the maximum values of the Reynolds number in phase 1, Remax, are 160
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FIG. 5. Diagram showing the crossing and no-crossing zones as a function of static theory predictions 
(solid lines), Eqs. (8) and  (9). The squares and circles correspond to simulations of solidlike droplets and 
deformable droplets, respectively, in the dynamic case, with the points labeled by the Archimedes number Ar. 
Symbols are closed in the case of crossing in the simulation and open otherwise.

and 48, respectively). In these cases, the distance of the drop release to the interface is not sufficient 
to reach the point where viscous effects are fully established (note that, even with a larger initial 
distance between the droplet and the interface, a steady state is not expected because the centrifugal 
acceleration increases linearly with the distance from the rotation axis; only a quasisteady state 
could be reached, with a drop acceleration that becomes low but does not vanish). At a distance 
from the interface of the order of the drop radius (close to point 1), the droplet velocity reaches a 
maximum Umax and then decelerates due to the presence of the interface (point 2 corresponds to 
the drop arrival at the position of the plane interface). Between points 2 and 3, drainage of phase 1 
develops in the thin film between the top of the droplet and the interface, giving rise to a lubrication 
flow in this film, as the droplet continues its rising motion, pulling a column of phase 1 in its wake. 
At point 3, the droplet velocity reaches a minimum value Umin (from which Remin = ρ1Umind/μ1 
is computed). In both cases, while the droplet velocity reaches an extremum (Umax and Umin close 
to point 1 and at point 3, respectively), all of the forces exerted on the droplet center of mass are at 
equilibrium. Then, from point 3 to point 5, the droplet accelerates inside phase 3 with a different rate 
in the two cases considered, entraining a liquid column of phase 1 which extends up to a maximum 
length Lmax before it breaks. For the two cases considered here, the column first detaches at the 
bottom close to the interface position (point 6) and then at the rear of the droplet (point 7), leaving 
the droplet coated by a volume of phase 1 rising in phase 3. Due to gravitational effects, the volume 
of the lighter phase 1, coating the droplet, moves towards its rear, thinning up strongly at the top. It 
can be noticed that Lmax is larger in case S1 than in case S2, i.e., when inertia is higher.

Let us now consider the case of deformable droplets at Ar = 53 and the same Bond number 
of the interface Bo13 = 0.134, similarly to S1 (solidlike droplet), for two different viscosity ratios 
λ12 = 50 (case D1) and λ12 = 5 (case D2). Case D1 corresponds to a very viscous but deformable 
droplet and case D2 corresponds to a deformable droplet of lower internal viscosity.

The droplet dynamics during its rising motion towards the interface is first analyzed. Simulation 
results of cases D1 and D2 both in the presence of the liquid-liquid interface (three-phase system)



FIG. 6. Evolution of the Reynolds number Re = ρ1Ud
μ1

(U is the instantaneous drop velocity) as a function
of z∗ (drop center of mass position normalized by R), for cases S1 and S2, along with screenshots of the phase
indicator function field issued from the simulations. Here z∗ = 0 is the interface position. Figures appearing
on the curves of the Reynolds number time signal are related to the image sequences; dimensionless time is

indicated below the screenshots, using the characteristic timescale
√

d
ω2ri

.

and without the interface (two-phase system) are compared in order to evaluate the coupling between 
the drop velocity and its shape.

Figure 7 displays the evolution of the instantaneous Reynolds number and aspect ratio of the 
two droplets. Quasisteady conditions are not reached in the three-phase flow simulation before 
the liquid-liquid interface. In particular, if the velocity is close to its terminal value, the aspect 
ratio is still increasing, based on the results from the two-phase flow simulations. The slow drop 
deformation dynamics is due to viscosity effects from both phases 1 and 2, in the same way 
as the damping rate of eigenmodes of drop shape oscillations [39]: For the same μ1, the higher 
the drop viscosity, the slower the drop shape response to the deforming stress. By analyzing the 
steady-state conditions, the D1 droplet is found to have a larger velocity (larger Re and We12) but  
lower deformation than the D2 droplet. Indeed, as already emphasized in Fig. 3, deformation of a 
viscous droplet in inertial conditions is a function not only of We12 but also of the viscosity ratio λ12, 
which is ten times larger for D1, resulting in a less flattened drop shape in quasisteady conditions. 
Concerning the drop rising velocity, even if Ar is the same in both cases (same acceleration), D1 rises 
faster than D2, a result which probably arises from two competing effects acting on the drag force: 
As μ2 is higher for D1, dissipation of the energy provided by gravity is increased for D1, whereas 
the aspect ratio, of 2.4 for D1 lower than that of D2 (3.4), results in a larger drag on D2 than on D1, 
the influence of drop shape being observed to dominate since the velocity of D2 is finally smaller.
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FIG. 7. Evolution of the Reynolds number Re and aspect ratio χ as a function of z∗ = z/R for cases D1 and 
D2. Dashed lines correspond to the two-phase flow simulations (without the interface), used as a comparison 
basis for the three-phase flow case.

Note also that some velocity and shape oscillations are observed in the quasisteady regime, of larger 
amplitude in case D2, probably due to the fact that Ar is close to the critical value of 55 where a 
path instability appears (known for a solid particle motion [14]), even though such a threshold could 
be different in a computation which assumes axisymmetry. All these comments make us understand 
that when these droplets arrive close to the liquid-liquid interface in the three-phase flow simulation, 
their shapes can strongly differ and can still be deforming despite close velocities. Now, in the 
presence of the liquid-liquid interface, Fig. 8 shows the variation of the Reynolds number along 
with that of the drop aspect ratio as a function of the drop position, for cases D1 and D2 as well as 
for the solidlike droplet S1.

Before the interface, due to the strong effect of deformation on the rise velocity, the highly 
deformed droplets D1 and D2 both have a smaller maximum velocity (at point 1) than the solidlike 
one S1. Between points 1 and 3, the presence of the interface makes the velocity decrease at a 
distance of about 1R before the interface, as clearly visible from the curves of Fig. 7. The droplet 
shape continues flattening until point 2, where the action of external stresses deforms the droplet 
in the direction perpendicular to the acceleration, hence towards a spherical shape. At point 3, the 
interface is crossed and a column of phase 1 is entrained by the drop motion, like in the solidlike 
drop case. Between points 3 and 4, droplet D2, which reacts faster in deformation to the external 
flow due to a lower μ2, sees its deformation nearly vanishing (the minimum value of the aspect 
ratio is close to 1) before flattening again due to the acceleration in phase 3; the same dynamics 
is observed for D2, except that the droplet never retrieves a spherical shape during its deformation 
history. The drop acceleration at point 4 allows the column of phase 1 to be strongly extended.

Figure 9 shows the velocity fields of cases S1, D1, and D2 at point 5, which is the last instant 
before the column breaks. In all cases, the entrained fluid column behind the droplet is lighter than 
the surrounding phase 3, so a part of the fluid in the column moves back towards the interface 
whereas another part is entrained in the droplet wake. This wake is already developed from the drop 
rising in phase 1, and in these examples, it is not really modified by the presence of the interface 
because the viscosity of phases 1 and 3 is the same (λ13 = 1). The column is stretched and thinned 
by an upward and a downward flow, which leads to the presence of a zero velocity point. The 
rupture



FIG. 8. Evolution of the Reynolds number as a function of z∗ = z/R for two cases of deformable droplets
D1 and D2 and the case S1 of a solidlike droplet at the same Ar and Bo13, along with screenshots of
the simulations. The points indicated on the Reynolds number curve are relative to the images shown;

dimensionless time is indicated below the screenshots, using the characteristic timescale
√

d
ω2ri

.

takes place at point 6 for cases D1 and D2. In case D1, the detachment mechanism is similar to that 
described for cases S1 and S2 of Fig. 6, taking place first at the bottom of the column and then in the 
drop wake. However, in case D2, the column detachment first occurs behind the droplet. In all cases, 
the encapsulated droplet, detached from the interface, rises in phase 3 and a part of the column of 
phase 1 moves back to the interface, possibly breaking up into several droplets. The detachment in 
cases S1 and D1 is similar to the shallow pinch-off detachment mode, while that of case D2 is similar 
to deep seal detachment mode, both reported by Aristoff and Bush [13].

The velocity field of case D2 shows a high internal circulation inside the droplet and a high 
tangential velocity at the interface comparable to the droplet velocity, which forces the interface to 
follow the deformation of the droplet and to stay close to it up to a high separation angle. Such 
a high tangential velocity and drop internal circulation (lower value of λ12) favors a rapid film 
drainage along the interface and forces the column to detach earlier behind the droplet rear. In cases
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FIG. 9. From left to right, velocity field of cases S1, D1, and  D2 right before the column detachment. The 
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S1 and D1, the droplet has a stronger internal viscosity leading to an approximately null tangential 
velocity and internal circulation, due to the continuity of tangential stresses at the interface. This 
does not favor the film detachment close to the droplet rear as in case D2 and tends to increase the 
film volume finally covering the droplet. In case D2, the resulting film volume (Vf = 0.58Vdrop) is  
smaller than in case S1 (Vf = 0.67Vdrop) and much less than in case D1, where the film volume is 
approximately equal to the droplet volume.

Regarding the film drainage dynamics during the crossing, in the case where the drainage is slow 
(high values of λ12), the grid resolution is fine enough to capture the drainage flow (see points 2 
and  3 in Figs. 6 and 8). Obviously, this is not the case when fast drainage occurs. However, the film 
at the top of the droplet is expected to have a negligible influence regarding the interface crossing 
problem, since it has a very small thickness and the pressure across this film can be considered 
as constant (the vertical pressure gradient in the film is only hydrostatic based on the lubrication 
theory), and thus does not impact the force balance acting on the droplet, as already confirmed by 
the excellent agreement, in static conditions, between the theoretical predictions of Eqs. (8) and (9)
(also neglecting the influence of the thin film) and experimental data with solid particles [11]. This 
allows us to be confident about the results obtained by the simulations on the interface crossing 
problem in dynamic conditions.

To conclude this section, in crossing conditions at the same Ar and Bo13, we observe that a very 
viscous droplet (λ12 � 1), even deformed, has a behavior similar to a solidlike droplet regarding 
column entrainment during the crossing and further detachment that takes place at the bottom of 
the column, whereas a moderate λ12 results in a more deformed droplet and enhances the drainage 
rate in the film due to the nonvanishing tangential velocity at the interface, leading to a column 
detachment first occurring at the droplet rear and to a smaller volume encapsulating the droplet.



FIG. 10. Illustration of the crossing time criterion.

2. Crossing time

When the drop reaches the interface with a nonzero velocity, it is slowed down (sometimes 
significantly), as illustrated in Fig. 6, due to the resistance of the plane interface to deformation. In 
view of the development of a continuous encapsulation process, the slowing time is an important 
quantity to take into consideration because it fixes an upper limit for the frequency of droplet arrival 
at the interface. Indeed, the time between two successive drops arriving at the interface must be 
significantly longer than a characteristic time related to the crossing dynamics.

In the case where the condition of crossing is not achieved, i.e., when the resisting forces of the 
interface overcome the drop inertial forces, the drop will bounce and its velocity will become 
negative before canceling; then the drop will finally stand below the interface. In such a condition, 
we have observed that the distance traveled by the drop above the level of the plane interface is 
always smaller than its diameter. We define a crossing time tcr as the time required for the droplet to 
travel a distance equal to its diameter d , after its center of mass reached the interface position, as 
illustrated in Fig. 10.

As shown in Fig. 11, for either solidlike or deformable droplets, it is found that tcr is well scaled 
by the arithmetic average of Umax, the drop maximal velocity prior to the interface (close to the 
terminal velocity in phase 1), and Umin, the minimal velocity reached after the slowing down when 
crossing the interface. This result is used to consider the linear behavior of the velocity in between 
the two extrema. The crossing time can therefore be predicted from the scaling of the two velocities 
Umax and Umin. This question will be addressed in Sec. III B 5.

3. Column maximal length

As clearly observed in Figs. 6 and 8, inertia has an impact on the entrained column of phase 1 in 
phase 3 during the droplet crossing: The higher the velocity at the interface, the longer the entrained 

column. We define the maximal column length Lmax as the distance between the droplet center of 
mass and the position of column detachment at the bottom of the column (see Fig. 6), which always 

occurs even in cases for which the column rupture takes place before, at the droplet rear. The scaling 
of this quantity is important because it scales the volume of phase 1 which does not stay attached to 

the drop when it breaks but is rather sent back to the interface under the form of drops. In real 
continuous process conditions, this phenomenon can be limiting since it leads to the formation of an 

emulsion that keeps on growing on the interface as the drops are continuously crossing the 
interface.With the objective to characterize the driving force responsible for the film entrainment 
during drop crossing, two force ratios are defined. The first one, F ∗, compares the importance of 

forces that
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(dimensional physical parameters are given in Table I for all cases).

push on the interface, which are both the drop apparent weight (ρ2 − ρ1)acπd3/6 and the dynamic
pressure due to drop inertia ρ2U 2

minπd2, to the stress which tends to pull back the fluid entrained of
phase 1 towards the 1-3 interface and is defined by a gravity force at the scale of the drop volume
(ρ3 − ρ1)acπd3/6, leading to

F ∗ = (ρ2 − ρ1)acd + 6ρ2U 2
min

(ρ3 − ρ1)acd
= ξ12

ξ13

[
1 + 6

ρ2

ρ2 − ρ1

U 2
min

acd

]
. (10)

The parameter F ∗ is based upon Umin, taken as the reference velocity in the film entrainment process
in phase 3. It does not include any restoring surface tension force exerted by the film on the droplet,
this force being assumed to be negligible once the crossing condition is achieved, which is fulfilled
for all cases under consideration [i.e., ξ12

ξ13
� f (Bo13)]. Once the drop (or particle) is accelerated in

phase 3, the entrained film phase will unavoidably break due to the counterflow developing in the
column, as evidenced by the velocity fields (see Fig. 9). One part is entrained in the wake of the
rising drop and one part is pulled back towards the plane interface due to gravity, leading to the
column thinning and rupture and then to the detachment of the encapsulated droplet. The second
ratio represents the inertia excess with respect to the critical value for crossing in the static case,
denoted by f (Bo13):

Iex = F ∗/ f (Bo13). (11)

The normalized maximal column length L∗
max is plotted against Iex in Fig. 12. For both drops

and solidlike droplets, L∗
max increases with Iex, and despite the scattering of the data (mainly due to 

the limitation of the numerical resolution at the instant of column breakup, leading to an average
uncertainty of 5% of the computed values of L∗

max on the basis of simulations with mesh grids of 48 
and 96 nodes per drop radius), two contrasting trends are observed even at low values of Iex, which 
are not related to drop deformation but to the Reynolds number Recol of the column flow (Recol 
is based upon phase 1 properties, the drop velocity at the instant of detachment and the column 
average thickness).



FIG. 12. Mapping of nondimensional maximal column length L∗
max = Lmax/d as a function of the nondi-

mensional inertia excess Iex for both nondeformable and deformable droplets (see Fig. 6 for the definition of
Lmax). According to Recol, two regimes of increase of L∗

max are observed. Based on mesh convergence tests, the
uncertainty of the reported values of L∗

max after column breakup is about 5%.

For cases with small values of Recol (typically less than or equal to 1), the growth rate of L∗
max is

about 6 times larger than that observed with larger Recol values; this behavior is observed for both
deformable and solidlike droplets. Note that, concerning the branch with a lower growth rate of
L∗

max, a different behavior between deformable droplets and solidlike drops appears at large Iex > 5:
Whereas the particles seem to remain on the same linear evolution as that for lower Iex, the increase
becomes much pronounced for the deformed droplets.

Even at low values of Iex, it is not clear how these two different regimes of film extension develop,
despite the linear evolution observed between Recol and Remin (Umin begin involved in Iex). At low
inertia, the observation of a large growth rate of L∗

max with Iex is obviously due to a delay of the
pinch-off formation behind the drop, possibly resulting from the viscous resistance of the column
to deformation that would lead to longer and thinner columns before breakup. Such an effect is
expected to be scaled by the film Ohnesorge number Oh13 (given in Table II): Indeed, Recol globally
decreases with Oh13. However, in all cases studied, Oh13 remains small (the maximum value of Oh13

is 0.2), suggesting a limited influence of phase 1 viscosity on the deformation and breakup process
of the column (in addition to the fact that, in most cases, λ13 = 1). Moreover, the use of Oh13 to find
a unique scaling law for L∗

max was not successful, leading to the exhibition of these two different
behaviors, which are both growing functions of the inertia excess Iex and which depend on the flow
regime in the column characterized by Recol.

4. Volume of the encapsulating film

Whatever the column extension is, its breakage occurs at the rear of the droplet (even when
column breakage first occurs at the bottom of the column, it is followed by a breakup event in the
droplet wake region), leading to a volume Vf of film entrained around the droplet. This encapsulating
volume of phase 1 rapidly migrates towards the rear of the droplet due to buoyancy effects. The
volume V ∗

f , normalized by the droplet volume, has been determined for each case based on the
procedure explained in Sec. II B.

For solidlike droplets, Fig. 13 reports the evolution of V ∗
f as a function of ln(F ∗). We first observe

that film volume values are smaller than the particle or drop volume in the range of parameters



FIG. 13. Dimensionless film volume V ∗
f = Vf /Vdrop as a function of the parameter F ∗ in the case of

solidlike droplets and as a function of F ∗λ0.4
12 in the case of deformable droplets. Error bars have been computed

according to the criterion discussed in Sec. II B. A series of screenshots of the phase indicator function at the
instant of column detachment is presented for some cases.

investigated. These values collapse remarkably well on a single curve which can be fitted by a
second-order polynomial. It seems that the evolution goes through a minimum around ln(F ∗) 	 2,
with a sharp increase rate at high inertia and a slight decrease rate at low inertia. For deformable
droplets, a similar trend is observed when plotting V ∗

f as a function of the logarithm of F ∗ corrected
by the viscosity ratio λ12 to the power 0.4. Such a correction is related to the film drainage rate
kinetics around the droplet during rising: The higher the λ12, the slower the film drainage and the
larger the remaining film volume at the instant of detachment. However, this effect of λ12 seems
to be of importance for deformed droplets only. Indeed, one case of deformable droplet does not
follow this trend but that of solidlike droplets (case D6, orange circles on the graph of Fig. 13).
This drop has a high viscosity ratio (λ12 = 50) and is weakly deformed at the time of column
detachment (aspect ratio equal to 1.13), possibly explaining why this drop follows the trend of
solidlike droplets. Therefore, the correction of F ∗ by λ0.4

12 probably reflects a more subtle coupling



FIG. 14. Profile of axial velocity (normalized by the instantaneous drop velocity) along the drop equator
(z∗ = 0), for case S9, in the droplet frame. The covering film (phase 1) is still described by four mesh points at
this instant.

between film drainage and drop deformation. For both solidlike droplets and deformable drops, the
film volume encapsulating the drop seems to be controlled by inertia and not by surface tension
forces. Of course, this is valid for particles or droplets crossing the interface, i.e., fulfilling the
criterion ξ12/ξ13 � f (Bo13), and is confirmed by the fact that V ∗

f is correlated neither to the interface

Bond number Bo13 or Bo13( ξ12

ξ13
− 1) nor to a droplet Weber number (based on γ13 and drop velocity

at the minimum point or at the film detachment instant). At high inertia, increasing inertia (i.e.,
increasing F ∗ or F ∗λ0.4

12 ) favors the growth of the encapsulating volume. It is interesting to note that
the two curves of Fig. 13 seem to merge in the limit of high inertia. At low inertia, but for crossing
solidlike or deformable droplets, their respective behaviors diverge, the encapsulating film being
significantly smaller for deformed drops than for solidlike drops, and the presence of a minimum is
much less pronounced for deformable droplets than for solidlike droplets. This observation calls for
deeper insight into the encapsulation process in this regime.

To that end, we have reported in Fig. 13 some screenshots of the phase indicator function fields,
immediately after which the film breakage occurred for a few cases corresponding to low- and high-
inertia regimes, for deformable and solidlike droplets. The encapsulated volume can be visualized
on these fields by the yellow ring around the blue droplet. Series S9, S8, and S11 correspond to
increasing values of F ∗ for solidlike droplets in the low-inertia regime [ln(F ∗) < 2]. For case S9,
the film volume is clearly composed of two significant contributions, one due to the film coating the
top of the particle and one at the rear of the particle. With S8, the contribution of this film at the top
has decreased compared to the bottom one and for case S11, the volume at the rear of the drop has
increased due to increasing inertia and keeps on increasing in cases S3 and S1 as F ∗ is increased.
Hence, the presence of a minimum of V ∗

f can be due to the relative weight of the film remaining at
the top of the drop at the instant of detachment in low-inertia conditions. This can be explained by 
the fact that the rate of film drainage coating the particle is an increasing function of inertia at the 
front of the droplet. Note that this effect is even emphasized in case S9 due to the lower viscosity 
ratio λ13 = 0.1 compared to other solidlike drop case series where λ13 = 1.

To illustrate this effect of λ13 on the film drainage, we have reported in Fig. 14 the axial velocity 
profile in the radial direction along the equator for case S9, at the instant of detachment. The 
continuity of tangential stresses at the interface imposes a strong gradient of velocity in phase 3



FIG. 15. Evolution of the Reynolds number Re = ρ1Ud
μ1

as a function of the centroid position for case D13.
The droplet deforms into a prolate shape when decelerating and then accelerating in phase 3 (λ13 = 0.1).
Screenshots correspond to the different positions indicated on the red curve with corresponding values of the
aspect ratio.

close to the interface (within the external boundary layer), making the velocity at the interface
between the film and phase 3 to be quite small. This is a condition allowing a slow film drainage in
addition to the quasinull velocity at the drop surface. Thus, a larger film thickness can be observed in
cases where λ13 < 1 (which is consistent with the results of Manga and Stone [17] on the drainage
of the column at low Reynolds number).

In the deformable drop cases (D12, D13, D9, and D1 series), such a contribution to V ∗
f of the film

coating the top of the drop seems to be strongly attenuated at low inertia, the film being drained to 
the rear of the drop before detachment occurred (see cases D12 and D13). Compared to the solidlike 
cases, smaller viscosity ratios λ12 (equal to 1 and 5, respectively) accelerate the film drainage, 
leading to smaller encapsulation film volumes with a systematic small contribution of the drop top 
film. Note that for both cases D12 and D13, λ13 = 0.1 as for S9. However, deformation also seems 
to play a role in the film drainage at low inertia. More precisely, the transition from an oblate to a 
prolate shape when the drop rises from the interface to the point of minimum velocity is thought 
to accelerate the drainage of the film from the top to the rear of the drop. This effect induced by 
deformation can be observed for D13 in Fig. 15 at Ar = 10, where the drop velocity falls to zero 
when crossing the interface, taking even small negative values due to the resistance force of the 
interface. Then the droplet becomes elongated (prolate shape) when trapped at the interface and even 
more elongated due to the strong acceleration suddenly experienced in phase 3 (of lower viscosity 
than phase 1), until point 5 in the plot, where it begins to flatten again (oblate shapes) during its 
rise in phase 3. Even though λ13 � 1, the screenshots clearly suggest that such a prolate shape 
will induce a strong downward flow inside the drop, which favors a faster drainage. Prolate shapes 
are always obtained in such cases of deformable droplets crossing the interface at low Reynolds 
number, which correspond to the lower values of F ∗ in Fig. 13. Note that, in the simulations of 
Shopov and Minev [16] and in experiments of Bonhomme et al. [19] in the case of bubbles trapped 
at a liquid-liquid interface, crossing regimes at low Re and Ar exhibited similar elongated shapes. 
On the contrary, at high values of F ∗ (cases D9 and D1 in Fig. 13), with the Reynolds and drop 
Weber numbers We12 being large, the drop is oblate before reaching the interface and during the
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FIG. 16. Kinetic energy variation ratio �E∗
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crossing, as already shown in Fig. 7. Consequently, there is no acceleration of film drainage due to a
change of shape and the evolution of film volume with inertia (corrected by λ0.4

12 ) is consistent with
the trend observed with solidlike drops.

5. Scaling to predict Umin

Because the minimum velocity Umin has been identified as a reference velocity for the scaling of
film entrainment dynamics during crossing, the scaling of this quantity to independent parameters
of the problem is required. To this purpose, first we examine the decrease in kinetic energy during
crossing, which involves Umin and the maximal drop velocity Umax before reaching the interface.
Then Umax is scaled as a function of the dimensionless parameters known a priori.

We define the normalized ratio �E∗
k of kinetic energy variation between the minimum and

maximum velocity values, accounting for the added mass coefficient dependence with deformation
in the case of deformable droplets

�E∗
k = Ekmax − Ekmin

Ekmax
, (12)

where Ekmax = 1
2 (m2 + CMmax m1)U 2

max and Ekmin = 1
2 (m2 + CMmin m1)U 2

min are the total kinetic energy
at the instant of the maximal velocity and minimal velocity, respectively, CMmax and CMmin being the
added mass coefficients at Umax and Umin for a displaced mass m1 of phase 1 and the mass m2 of
the drop. For spherical droplets, CM = 0.5, whereas for deformable droplets, CM is a function of
the instantaneous droplet aspect ratio [40] CM = α0

α0−2 , with α0 = 2(ζ 2
0 + 1)[1 − ζ0 cot−1(ζ0)] for

prolate shapes and α0 = 2(ζ 2
0 + 1)ζ0 cot−1(ζ0) − ζ 2

0 for oblate shapes, with ζ0 = (χ2 − 1)−1/2.
In Fig. 16, the kinetic energy ratio �E∗

k is plotted as a function of the excess of inertia Iex for
both rigid and deformable droplets. It can be observed that all points gather on a single master curve,
which can be fitted by a double exponential decay, which tends to zero as the excess of inertia tends
to infinity. This means that, as the inertia of the droplet increases with respect to the minimum
needed to cross the interface, the droplet will not be slowed down at the interface (Umin ≈ Umax)
and the ratio �E∗

k tends to vanish. On the contrary, at low Iex, the crossing dynamics will tend
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velocity can be reached and fits with Schiller and Naumann’s correlation (black dashed line).

towards the static configuration (i.e., �E∗
k = 1), the initial kinetic energy of the drop motion below

the interface being fully dissipated.
The fit of the curve of Fig. 16 then provides an implicit relationship allowing us to predict Umin

for a given Umax. Note that it has not been considered that the added mass coefficient can increase
depending on the distance between the drop and the interface [11,41]. However, the exact value of
the added mass coefficient has only a small effect on the value of �E∗

k here, because of the small
density difference between the liquid phases.

Finally, the maximum velocity Umax reached by the drop during its rising in phase 1 needs to be
scaled, by assuming that it is the terminal velocity. For solidlike droplets, the force balance between
buoyancy and drag sufficiently far from the interface leads to an implicit relation between Remax

and Ar:

Remax

√
3

32CD(Remax) = Ar. (13)

If we substitute in (13) the Schiller and Naumann correlation [42] for the drag coefficient, we obtain

Ar = 3
2

√
Remax

(
1 + 0.15 Re0.687

max

)
. (14)

Figure 17 plots the Archimedes number as a function of the right-hand-side term of Eq. (14). It 
is a linear fit which deviates from the first bisector by a nearly constant factor of 14%. Even if 
Schiller and Naumann’s correlation [42] has some finite accuracy (a few percent), this deviation is 
more likely to be due to the fact that terminal velocity is not reached by solidlike droplets before 
interacting with the interface (the drops travel a distance of 3d in the simulations). A proof of that 
is given by case S1, which has a maximum velocity below the interface of 0.8 m/s. When running 
the simulations on longer travel distances without the plane interface (two-phase flow simulation), 
the terminal velocity found is 0.97 m/s and the corresponding Remax value falls on the first bisector 
of Fig. 17.

For deformable drops, the plot of Remax as a function of Ar displays a linear evolution in the range 
of parameters investigated (with a slope equal to 2.25). In this case, results cannot be compared with 
the well-known law of the drag coefficient inserted in Eq. (13). Moreover, because of viscous 
effects
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(from both internal and external phases), the response in deformation to the stress is always delayed 
and when the drop center of mass velocity reaches a plateau, the drop shape is not always steady 
and keeps on deforming, as already shown in Fig. 8. However, the linear fit of Fig. 18 suggests that 
the drag coefficient in Eq. (13) is nearly constant, as a consequence of two competing effects when 
increasing Archimedes number: Increasing Remax decreases CD but also increases drop deformation, 
which increases CD. So the plateau reached by the drop velocity far from the interface corresponds to 
a regime where this balance between deformation and drag is reached and seems to be independent 
of the instantaneous value of the deformation, which strongly increases during the drop rising until 
the interface. It is interesting to note that this linear behavior does not seem to be influenced by 
viscosity ratios λ12 or λ13 and covers a wide range of drop deformation (aspect ratio varying between 
1.2 and 2.5).

To summarize, Umax can be scaled with Archimedes number Ar for both solidlike (Fig. 17) and 
deformable droplets (Fig. 18) and Umin can be deduced from Umax through a known function of 
Iex (Fig. 16). This scaling gives access to the prediction of the different quantities relevant for the 
encapsulating process in a wide range of flow parameters in the inertial regime.

IV. CONCLUDING REMARKS AND PROSPECTS

In this work, the study of a drop crossing a liquid-liquid interface under the action of a centrifugal 
field has been undertaken by means of resolved numerical simulations. The conditions for crossing 
investigated correspond to an inertial regime in phase 1 (10 < Remax < 200). Two types of drops 
have been studied: solidlike droplets with a high internal viscosity and surface tension, mimicking 
rigid particles, and deformable droplets. The level-set method used in the simulations was first 
validated in two-phase flow configurations (i.e., without the plane interface) by comparing the 
computed terminal velocity of undeformed drops at vanishing Weber number and the drop aspect 
ratio at higher Weber numbers with existing results in the literature. As three-phase flow validation, 
the crossing criterion of an interface by a solidlike droplet in static conditions (i.e., starting from 
the interface without initial velocity) was successfully compared to a theoretical model based upon 
the balance between gravity and surface tension forces. A large number of simulations were run 
in crossing conditions for both solidlike and deformable drops, covering a wide range of the 
seven nondimensional parameters describing this problem. The main results of this study can be 
summarized as follows.



(i) The static criterion derived for a sphere to cross an interface is still a relevant reference
of the minimum inertia required for crossing, and this conclusion stands for both solidlike and
deformable droplets. In dynamic conditions, i.e., under the influence of the drop impact velocity
(close to its terminal velocity), the interface crossing criterion remains quite similar to the static
criterion, because the effect of inertia (by neglecting the velocity decrease for the drop arriving at
the interface) is to double the drop apparent weight in the best case. This can be inferred from the fact
that with a two-liquid phase system of close density and in the inertial regime, the dynamic pressure
force exerted by the drop on the interface is of the same order as its apparent weight. This results
in an effective equivalent Bond number (Bo13eq = 1.59 Bo13) to be compared to the minimal value
required for crossing at a given ξ12/ξ13 for the system, given by the theoretical criterion in static
conditions (then inertia can only slightly shift this criterion, which remains a valuable reference).

(ii) In dynamic crossing conditions, the drop velocity during crossing goes through a minimum
velocity Umin which is used as a reference velocity to scale inertia additional to the drop apparent
weight.

(iii) During crossing, film entrainment of the lighter phase by the drop leads to the formation of a
column that extends and thins as it is pulled by the drop in phase 3, which ends to break behind the
drop, leading to the formation of a volume encapsulating the drop. The main mechanism responsible
for the rupture of the entrained column is the competition between the inertial force that makes the
drop rise in phase 3 and the gravity force acting on the lighter column phase that pulls it back in
the opposite direction (towards the interface). In order to characterize the film entrainment and the
encapsulating volume, these observations lead us to define two nondimensional parameters: The
first is based on the ratio of these two forces (denoted by F ∗) and the second corresponds to the first
one rescaled by the criterion of crossing in static conditions (named inertia excess and denoted by
Iex).

(iv) The maximum column length at breakup increases with inertia excess Iex, the evolution being
linear at low Iex but following two distinct slopes that depend upon the Reynolds number in the film
column, independently of deformation. A higher growth rate corresponds to viscous flows in the
column. The transition between these two regimes has not yet been elucidated.

(v) For solidlike droplets, the encapsulating film volume V ∗
f is remarkably well described by the

force ratio F ∗, exhibiting a minimum for increasing F ∗, which originates from the contribution
of the film volume on the top part of the particle which is non-negligible at low inertia. For
deformable droplets, V ∗

f is also very well described by F ∗ provided it is corrected by the viscosity
ratio λ12 between the drop and the film phase to the power 0.4, because λ12 has a strong
impact on the tangential velocity along the drop surface, then on the film drainage rate (in the
range of parameters investigated with 0.05 � λ13 � 1; note that the viscosity ratio λ12 has a
greater influence on V ∗

f than λ13). At low inertia, the encapsulating volume is much smaller for
deformable drops than for solidlike drops. This is promoted by two effects: First is the lower
λ12 and second is the oblate-prolate shape transition observed during the crossing between the
interface level and the location of Umin, both effects tending to accelerate the film drainage during
the drop rising in phase 3, leading therefore to minimization of the film volume attached to the
drop.

(vi) As the main inertia parameters (F ∗ and Iex) exhibited in this study are defined based on
the minimal velocity Umin, scaling laws have been proposed to predict the latter as a function of 
independent parameters of the problem. First the maximum impact velocity Umax can be computed 
from Ar by using Fig. 17 or 18 and then the relationship of the decrease of kinetic energy during 
crossing as a function of Iex, displayed in Fig. 16, involves these two velocities and can be used to 
implicitly predict Umin.

Together the results make possible the prediction of the critical condition and dynamics of cross-
ing, maximum column length entrained, and encapsulating volume for solidlike and deformable 
droplets in a rather large range of flow parameters.

Future work based on this study should address the comparison of the numerical results with 
experimental data. Then, with the objective of developing an efficient encapsulation process based



on interface crossing, surfactants are necessary to stabilize the encapsulated droplet in order to make
it resistant to breakup while the drop is rising in phase 3. An analysis of the influence of surfactants,
adsorbed at the liquid-liquid plane interface, on the crossing dynamics and encapsulation volume
seems therefore to be highly relevant to continue this work.
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