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The route from linear towards non-linear and chaotic aerodynamic regimes of a fixed dragonfly
wing cross-section in gliding flight is investigated numerically using Direct Navier-Stokes simulations
(DNS). The dragonfly wing consists in two corrugations combined with a rear arc, which is known
to provide overall good aerodynamic mean performance at low Reynolds numbers. First, the three
regimes (linear, non-linear and chaotic) are characterized, and validated using two different fluid
solvers. In particular, a peculiar transition to chaos when changing the angle of attack is observed
for both solvers: the system undergoes a sudden transition to chaos in less than 0.1◦. Second, a
physical insight is given on the flow interaction between the corrugations and the rear arc, which is
shown as the key phenomenon controlling the unsteady vortex dynamics and the sudden transition
to chaos. Additionally, aerodynamic performances in the three regimes are given, showing that
optimal performances are closely connected to the transition to chaos.

I. INTRODUCTION

The route to chaos in unsteady vortex dominated dy-
namics of low Reynolds number flows is of high interest
for fundamentals and applications [1]. It has been first
described for the flow around a cylinder by Karniadakis
and Triantafyllou [2] at low Reynolds numbers where a
transition to chaos occurs through a successive period-
doubling associated to vortex pairing. This mechanism
was then found unrealistic because of an insufficient large
computational domain. Indeed, further work conducted
by Henderson [3] revealed that such a transition to chaos
highly depends on the computational domain size, in par-
ticular the spanwise direction: from a 2D case exhibit-
ing a periodic state, the increase of the transverse dis-
tance leads to a quasi-periodic regime, before transition-
ing to chaos for large spanwise size because of two com-
peting branches of 3D unstable modes. The transition
to chaos in the flow around an inclined flat plate, how-
ever, is driven by a period-doubling and various incom-
mensurate bifurcations associated with large flow sepa-
ration [4]. The transition to chaos of the flow past a 3D
blunt-based axisymmetric bluff was studied by Bury and
Jardin [5] showing a succession of bifurcations associated
with distinct wake patterns and symmetry breaking. The
transition was refered as a Ruelle-Takens-Newhouse sce-
nario [6], although the third frequency triggering chaos
was not identified. No other chaotic regime has been re-
ported and characterized so far for more complex fixed
2D or 3D airfoils at low Reynolds number, which is one
objective of this paper. Nevertheless, more literature
can be found on chaotic aerodynamics of moving ob-
jects [7, 8], where the onset of chaos is more prevalent.

On the other side, dragonfly wings are of interest for
micro air vehicle (MAV) applications, which are operat-
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ing in the same low Reynolds number range. The exper-
imental study from Okamoto et al. [9] has shown that a
corrugation or a sinusoidal pattern of surface roughness
may be beneficial for aerodynamic characteristics. Kesel
[10] also studied corrugated airfoils to understand how
to reach the high maximum lift coefficient measured in
wind-tunnel tests, concluding that a symmetric corruga-
tion will not be optimal for lift generation. Vargas et al.
[11] has made a CFD comparisons of a corrugated airfoil
geometry from [10] with a flat plate and a profiled air-
foil. A higher aerodynamic performance on lift-to-drag
ratio is mentioned at the highest Reynolds number tested
(Re = 1000) and moderate angle of attack (α = 5◦).
Over a large range of Reynolds numbers [140 − 10000],
the corrugation effect which increases lift with low drag
penalty is not Reynolds number dependent [12]. Finally,
numerical and experimental studies [13, 14] revealed that
corrugations may also reduce the lift and drag fluctua-
tions because of decreasing the vortex shedding magni-
tude. However, at lower Reynolds number, corrugations
may have negative effects [15] when not accompanied by
a rear arc. This scientific debate dealing with the posi-
tive and negative effects of corrugations on low-Reynolds
aerodynamic performances is still open [16]. To answer
this question will require more studies on the unsteady
complex flow around dragonfly wings to describe in de-
tails the various regimes that can arise depending on the
geometry and flow conditions. This is one motivation for
the present study.

The transition from periodic to non-linear and chaotic
dynamics of the flow around a dragonfly corrugated air-
foil has never been studied. In particular, the possible
onset of chaos and its transition route are unexplored
today for such a configuration combining sharp corruga-
tions with a smooth rear arc. Additionally, it is of high in-
terest to better understood the underlying physics of this
unsteady flow, and gives new insight for designing opti-
mal applications in low Reynolds number flows. This is
achieved in the present paper using numerical simulations
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FIG. 1. Flow configuration and geometry, detailed in [13].

of a 2D dragonfly wing exhibiting two corrugations with
a rear arc (Fig. 1). First, the numerical setup is shown
in Section II. Then, results on the various aerodynamic
regimes are detailed in Section III, highlighting a sud-
den transition to chaos when varying the angle of attack,
without the classical period-doubling or quasi-periodic
states. From the authors knowledge, such an alternative
and uncommon route to chaos has been reported only
on mathematical non-linear systems by Chowdhury and
Roychowdhury [17]. Interestingly, it is also shown that
maximum lift-to-drag ratio is obtained just before the
transition to chaos, whereas maximum lift is generated
before leaving the chaotic state towards the non-linear
regime: optimal aerodynamic performances are therefore
in close connections with the transition to chaos. Finally,
the vortex dynamics and flow fields are analyzed for the
several regimes.

II. NUMERICAL SETUP

For this study, two different codes are used to ensure
that the route towards chaos is not due to numerical er-
rors or formulation artifacts. First, the commercial solver
Fluent is used as an incompressible code with a second-
order finite volume scheme in space and time. Standard
Dirichlet boundary conditions are used. In complement,
the legacy code from Stanford called CharlesX, now de-
veloped at ISAE-Supaero [18], is used as a fully com-
pressible Navier-Stokes solver. A centered third-order
finite volume scheme with low dissipation properties is
employed. The CFL number is set to 1.2. Because
of acoustic waves inherent to the compressible Navier-
Stokes equations, Characteristic Boundary Conditions
(CBC) are imposed at boundaries as well as a sponge
zone at the outlet to further prevent acoustic wave re-
flections.

Thus, the present case is solved using different set
of equations and numerical schemes. In both solvers,
no model is used for turbulence or walls. The atmo-
spheric pressure is imposed at the outlet, whereas ve-
locity is imposed on the three other boundaries with
value [V∞ cos(α), V∞ sin(α)], where V∞ = 8.76m/s to
achieve Re = 6000, and α is changed from 6◦ to 10◦.
Note that the kinematics of the wing is not considered
here, even though it might have a significant effect on
the shear layer stability, and consequently on the vari-
ous regimes observed. Thus, the present study focuses
only on the gliding flight mode, as already investigated

for instance by Wakeling and Ellington [19] for a drag-
onfly Sympetrum sanguineum. To limit the computa-
tional time, 2D simulations are performed, yet 3D cases
have been also simulated to guarantee that chaos is still
present when considering 3D effects.

The geometry is a corrugated dragonfly wing cross-
section where 2 corrugations are combined with a rear
arc (Fig. 1). The coordinates are provided in [13]. The
chord is c = 10mm, and the relative thickness is ε/c =
0.5%. The 2D domain expands from −10c to 10c. The
same mesh is used for both solvers: after a convergence
study, results are presented only for a fine structured
mesh containing 1.12 million quads. Close to the airfoil,
the mesh is uniform with cell size ∆x/c = ∆y/c = 400.

III. RESULTS

Results for various angles of attack α are analysed to
identify the aerodynamic regime depending on this pa-
rameter. Power spectrum of the lift coefficient, as well
as the phase portraits based on the lift (CL) and drag
(CD) coefficients, are displayed in Fig. 2. To ensure that
the aerodynamic regimes are not artifacts of the CFD
code, results are displayed for both Fluent (middle) and
CharlesX (right). The frequency in the spectra are nor-
malized by the dominant mode observed in the non-linear
regime: f1 = 664Hz.

For low angles of attack, corresponding to the classi-
cal linear periodic regime, the lift spectrum exhibits only
one mode without harmonics. Its frequency shifts from
f/f1 ≈ 4 at 7◦ toward f/f1 ≈ 3.5 close to the tran-
sition at 7.625◦. The phase portrait (CL, CD) is an
ellipse repeating itself perfectly, showing that no quasi-
periodic state or loss in synchronisation exist. Fluent and
CharlesX agree well on this regime, especially on the fre-
quency with a mismatch below 3%. However, a difference
can be observed on the predicted amplitude (e.g. a mis-
match of 13% at 7◦), with a lower amplitude for Fluent
which might be due to a higher numerical dissipation.
The mesh convergence revealed that the frequency and
amplitude of these oscillations are very sensitive to the
mesh and numerics.

When increasing the angle of attack, a sudden transi-
tion to a chaotic state arises. This chaos regime is also
observed on coarser meshes with similar spectrum and
phase portraits. The critical angle of attack is evaluated
at αc = 7.7◦ in Fluent. Using CharlesX , the transition
is slightly delayed to higher angles. 3D simulations have
been also conducted, and confirm the transition to chaos
when 3D effects are taken into account. This chaos is
characterized by broadband spectra and complex phase
portraits. After the transition, the oscillations have large
amplitudes and show no synchronisation between the lift
and drag forces. Compared to the transition to chaos
observed for a fixed flat plate [4], which arises at large
angle of attack (αc ≈ 20 − 25◦) because of the flow sep-
aration, here the transition occurs at low angle of attack
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FIG. 2. Power spectrum density of the lift (left, Fluent), and phase portrait (CL,CD) for several angles of attack α obtained
by Fluent (middle) and CharlesX (right).

(αc ≈ 7.7◦). Interestingly, no period-doubling or quasi-
periodic state appears before the transition: it occurs
suddenly from a pure periodic regime to a chaotic state
when increasing the angle of attack of ∆α = 0.075◦. Such
a transition has not been reported yet in the literature
in an aerodynamic context. Based on the phase portrait
at 8◦ and 8.5◦, Fluent and CharlesX agree well on this
chaotic regime.

Then, another periodic situation occurs for larger an-
gles of attack, here displayed for α > 8.5◦. Compared
to the linear periodic case, here the phase portraits are
no more ellipses. This is due to a non-linearity and the
presence of multiple harmonics nf1, where n is an in-
teger and f1 = 664Hz is the fundamental harmonics of
the mode. This situation is known as non-linear periodic
oscillations. Again, both solvers agree well on both the
pattern and amplitude. Note that compare to the lin-
ear regime where the frequency of the dominant mode
was drifting when increasing the angle of attack, here
the frequency f1 does not depend on α. Additionally, a
new mode at frequency f2 ≈ 115Hz appears (denoted in
blue in Fig. 2), which is not an harmonics of f1: this is

an incommensurate frequency, where f1/f2 = 5.47. This
mode f2 interacts non-linearly with the dominant mode
f1, leading to numerous interaction modes (denoted in
red) with frequencies nf1 + pf2, where n and p are inte-
gers. For example, the mode 1 is f1−f2, and the mode 2
is f1 + f2. Because of their low amplitudes, these modes
are not visible on the phase portraits which are driven by
the dominant mode f1 and its harmonics nf1. Note that
the modes associated with f2 do not appear on coarser
meshes, yet a similar dynamics of the system is observed.
It suggests that the mode f2 does not play a significant
role in the onset of chaos and its transition to the non-
linear regime.

The route through the chaotic state, from the linear
to the non-linear periodic regimes, is investigated further
by analyzing simulations for angles of attack from 7◦ to
9.5◦. Figure 3 displays both the mean aerodynamic per-
formances (top) and the frequency content depending on
the angle of attack. The frequency content is extracted
by computing the Fourier transform of the lift fluctua-
tions. A threshold is then applied to keep only relevant
frequencies, here set to 10% of the main peaks (•). The
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dominant modes are highlighted by • corresponding to
a threshold set to 95%. Thus, each • (dominant modes)
and • (other modes) in Fig. 3 (bottom) corresponds to
one relevant frequency in the spectrum. As in Fig. 2,
three regimes are observed: (i) the linear periodic regime
dominated by one single mode, (ii) a chaotic state with a
broadband spectrum with numerous relevant modes, and
(iii) the non-linear periodic oscillations dominated by f1
and its harmonics. Note that for this regime, a second
incommensurate mode appears at f2. Since its ampli-
tude is low, this regime is not dominated by the pair
(f1, f2) but rather by (f1, 2f1): this regime is there-
fore described as non-linear periodic rather than quasi-
periodic. It also reveals the sudden transition to chaos
at αc ≈ 7.7◦. During this transition, it is found that
the dominant mode at f ≈ 2200Hz keeps on drifting
throughout the chaotic state towards the null frequency
at α = 8.5◦ (denoted f0 in Fig. 2, α = 8.5◦). Meanwhile,
the mode f1 appears with a locked frequency independent
of the angle of attack, also visible in Fig. 2. The tran-
sition when leaving the chaos to the non-linear regime
is however smooth, with a broadband content diminish-
ing with α. The main features characterizing the chaotic
state is its sudden transition to chaos and the frequency
drift towards the null frequency, highlighted by the de-
creasing dashed line in Fig 3. This is in contrast with the
gradual transition to chaos observed on a fixed flat plate
at large angles of attack and lower Reynolds number [4],
since here the system enters suddenly into the chaotic
state [7.625◦, 7.70◦] without noticeable period doubling,
quasi-periodic state, or intermittency. This alternative
route to chaos has been reported by Awrejcewicz [20]
as well as Chowdhury and Roychowdhury [17] for non-
linear oscillators forced with static and fluctuating loads.
For practical applications such as drones, identifying pre-
cursors to avoid this sudden entrance into chaos will be
challenging.

In complement, Fig. 3 also displays the evolution of
the aerodynamic performances CL (•) and CD (�) when
changing α. The mean lift-to-drag ratio is also displayed
(�). Both mean coefficients (in black) and fluctuations
(in red) are shown. The linear periodic regime is char-
acterized by a high lift-to-drag ratio due to a high lift
and low drag. This performance increases with the angle
of attack due to the higher lift, leading to a maximum
lift-to-drag ratio C̄L/C̄D = 13.6 close to the transition
at α = 7.625◦. This regime also exhibits low RMS value
for the aerodynamic coefficients, as expected from Fig. 2.
In the chaotic state, the lift coefficient is still increasing
rapidly, leading to a maximum CL = 1.19 at α ≈ 8.5,
which corresponds to a gain of 33% compared to the lin-
ear regime. This high lift capability is accompanied by
a large increase of drag and fluctuation levels, resulting
in lower lift-to-drag ratio. Thus, the high lift mechanism
might be due to the generation of an intense vortex dy-
namics that acts as a circulatory force (vortex-induced
lift), known to be an efficient lift generation in unsteady
low Reynolds number flows [21]. A further analysis of

FIG. 3. Mean (C̄L, 10C̄D and C̄L/10C̄D) and RMS (Crms
L and

Crms
D ) aerodynamic performances (top) as well as frequency

content f/f1 (bottom) depending on the angle of attack α ob-
tained by Fluent. The chaotic regime is highlighted in green.
Frequency values and trends (dashed lines) are also displayed
(black for the main mode, gray for harmonics).

the flow field is proposed in the following to validate this
assumption. Finally, in the non-linear regime, the lift co-
efficient is still large (CL ≈ 1.1) but with large oscillations
and extreme drag penalties. Interestingly, Fig. 3 reveals
that the chaotic state is tightly connected to the opti-
mal performance of the dragonfly wing: the maximum
lift-to-drag ratio is obtained just before the transition to
chaos, whereas the maximum lift coefficient is reached
before leaving the chaos towards the non-linear regime.
Thus, understanding the transitions to chaos and their
underlying physics is of key interest to propose optimal
wing designs at low Reynolds numbers.

To understand the physics governing the transition
to chaos, the flow fields obtained in the three regimes
are displayed in Fig. 4 for α = 7◦ (linear periodic),
α = 8◦ (chaos), and α = 9◦ (non-linear periodic).
In the first periodic regime, for α < αc = 7.7◦, the
vortex dynamics is dominated by the trailing-edge vor-
tex (P+

TEV) emitted from the pressure side at frequency
f = 2100Hz−2600Hz depending on α. The suction side
shear layer is not sufficiently unstable to generate vor-
tices, but small perturbations due to Kelvin-Helmholtz
instability (S−KH) can be observed with m=3 perturba-
tions along the chord, locked at the TEV’s frequency.

In the chaotic regime (here displayed for α = 8◦),
the shear layer developing at the suction side generates
m = 3 vortices (S−KH) with partial pairing along the rear
arc. Hence, the vortex intensity is higher, explaining
the higher lift and drag fluctuations observed in Fig. 3.
These large vortices induce a reverse flow on the suction
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FIG. 4. Five instantaneous vorticity fields and contours for the three angles of attack obtained by CharlesX: α = 7◦ (linear),
8◦ (chaotic), and 9◦ (non linear). Arrows allows the tracking of vortices in time, revealing their associated dynamics.

side of the rear arc, highlighted by a positive vortex sheet
(S+

C ) with a complex dynamics (red arrows) not yet fully
developed. One hypothesis of the occurrence of chaos
is the competitive interaction between modes from the
main and reverse flows in the cavity between the second
corrugation and the rear arc as described by Ciliberto
and Gollub [22]. In the wake, the S−KH vortex interacts

with the smaller P+
TEV shed at the pressure side creat-

ing a vortex dipole of opposite sign with fluid ejection on
the upper side. It can be noticed on the fourth snapshot
at 8◦ that the chaotic state can leads to silences due to
the intermittent damping of lift and drag oscillations. In
such silences, also observed by Bury and Jardin [5] in a
3D bluff body case at low Reynolds numbers (Re = 900),
the wake is almost steady, which may open the path to
non-linear control strategies to benefit from the large lift
coefficient obtained in the chaotic state but with low os-
cillations of aerodynamic coefficients.

In the third non-linear periodic regime (here displayed
for α = 9◦), the shear layer at the suction side is more

unstable. It sheds higher magnitude vortices with mul-
tiple pairing (S−KH and positive vortex S+

C ) in the cavity
between second corrugation and rear arc, with m = 2.
The reverse flow inducing the S+

C is also more intense,

and its dynamics is now locked with the S−KH instability
forming a vortex dipole of opposite sign. This dipole is
convected downstream on the upper side before reaching
the rear arc where the TEV vortex (P+

TEV) is generated
at trailing-edge on the lower side. Later, the two vortices
of the dipole (S−KH and S+

C ) eject fluid on the upper side
before being separated downstream in the wake. Fur-
ther downstream, not shown here, S−KH interacts with

the P+
TEV in the far wake. Note that the mode f2 is dif-

ficult to identify in the physical space because appearing
at a larger time-scale with low amplitude.
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IV. CONCLUSION

The evolution of the aerodynamic regimes of a fixed
dragonfly wing at low Reynolds number (Re = 6000) has
been investigated using Direct Navier-Stokes simulations
(DNS). The dragonfly wing section consists in two corru-
gations followed by a rear arc, which is known to provide
overall good aerodynamic performances at low Reynolds
numbers. When increasing the angle of attack, a sud-
den transition to chaos appears. It is due to the complex
interaction between the main unstable shear layer pro-
duced at the leading-edge and an induced reverse flow in
the cavity between the second corrugation and the rear
arc on the suction side. For higher angles of attack, a
non-linear periodic regime is observed. Interestingly, op-
timal performances of the dragonfly wing are connected
with this transition to chaos: the maximum lift-to-drag

ratio is obtained just before the transition, whereas the
highest lift coefficient is reached when leaving the chaotic
state towards the non-linear regime. Moreover, in the
chaotic regime, silence associated with the intermittent
damping of the lift and drag fluctuations leads to an al-
most steady wake with a high lift coefficient. It suggests
that optimal wing designs and control strategies could
be achieved for profiles with both corrugations and a
rear arc. When focusing on the flow fields and vortex
dynamics, numerical simulations reveal that the reverse
flow between the corrugation and the rear arc seem of
a crucial interest, probably controlling the transitions to
chaos and the non-linear regime. This paper highlights
that the flow in such corrugated configuration is complex,
and still requires further works to better understand its
dynamics and evolution with the flight conditions.
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