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Abstract

The aim of this work is to predict human operator’s decisions in a specific operational context, such as a cooperative
human-robots mission, by approximating her utility function based on Prospect Theory. To this aim, a within-subject
experiment was designed in which the human operator has to decide with limited time and incomplete information. This
experiment also involved a framing effect paradigm, a typical cognitive bias causing people to react differently depending
on the context. Such an experiment allowed to acquire data concerning the human operator’s decisions in two different
mission scenarios: search and rescue and Mars rock sampling. The framing was manipulated (e.g. positive vs. negative)
and the probability of the outcomes causing people to react differently depending on the context. Statistical results
observed for this experiment supported the hypothesis that the way the problem was presented (positively or negatively
framed) and the emotional commitment affected the human operator’s decisions. Thus, based on the collected data, the
present work is willed to propose: (i) a formal approximation of the human operator’s utility function founded on the
Prospect Theory; and (ii) a model used to predict the human operator’s decisions based on the economics approach of
multi-dimensional consumption bundle and Prospect Theory. The obtained results, in terms of utility function fit and
prediction accuracy, are promising and show that similar modeling and prediction method should be taken into account
when an intelligent cybernetic system drives human-robots interaction. The advantage of predicting the human operator’s
decision, in this operational context, is to anticipate her decision, given the way a question is framed to the human
operator. Such a predictor lays the foundation for the development of a decision-making system capable of choosing how
to present the information to the operator while expecting to align her decision with the given operational guideline.
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Research Highlights
The research contributions of this work can be declined in the following topics:

• The presentation of an human-drones interaction experiment performed to collect data, in which the human operator has to
decide with limited time and incomplete information;

• A statistical study to verify the relationship between the Human Operator’s decision and mission context variables;

• The proposition of an Human Operator’s utility function based on Prospect Theory, for which the parameters were approximated
from experimental data including the significant results of the statistical study;

• The proposition of a model-based predictor, inspired by the economics approach of multi-dimensional consumption bundle and
Prospect Theory;

• The evaluation of the proposed decision model, the which predict’s de Human Operator’s decision depending on the mission
context and on the framing presented to the operator.
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1 Introduction

In recent years, there has been a growing interests about the use of totally autonomous robots to replace humans in a
variety of dirty, dull and dangerous missions. Recent technical progress as well as advanced artificial intelligence have
allowed to design vehicles and robots with high level of control and decisional autonomy (Matarić et al., 2003; Timotheou
and Loukas, 2009; Murphy et al., 2008; Suarez and Murphy, 2011; Xue et al., 2011; Kolling et al., 2016). However,
in complex missions, these autonomous systems still require to be supervised by humans to ensure the smooth conduct
of the mission (Schurr et al., 2009). These latter are expected to take over during unforeseen situation (de Winter and
Dodou, 2014) or when ethical concerns are at stake (Belloni et al., 2014). These issues raise the importance of human-
machine teaming as the next challenge to optimize the efficiency and the safety of operations. Indeed, careless design
of user interface, inadequate task allocation and poor authority implementation between human and artificial agents can
dramatically impair human operators performance (Dehais et al., 2015, 2005) to an extent that they can persist in irrational
decision making (Dehais et al., 2012, 2019).

In this context, mixed-initiative interaction provides a relevant framework as it considers that the agents’ (human
and robot) abilities are complementary and are likely to provide better performance when joined efficiently than when
used separately. In particular, in the human-robots interaction community (HRI), mixed-initiative implies that humans or
artificial agents can seize initiative from each other by themselves (Jiang and Arkin, 2015). The implementation of mixed-
initiative interaction driving systems presuppose to develop algorithms dedicated to learn how human make decisions in
order to optimize teaming with artificial agents (Guo et al., 2018; Gombolay et al., 2017).

A first step toward the implementation of such algorithms is to consider theories related to human decision making.
These theories that can be roughly separated in two classes: prescriptive and descriptive approaches (Baron, 2007; Kahne-
man, 2011; Bago and De Neys, 2017). The prescriptive approach explores how people should make optimal decisions. It
typically assumes ideal circumstances, as for instance, complete information, awareness of all options, abundance of time
to decide to model the best and rational path such that a person comes to the most suitable decision (Todd and Gigerenzer,
2000). Hence, it is assumed that decision makers have an utility function, and they are always trying to maximize their
utility from a stable set of preferences (Suhonen, 2007). In fact, some important contributions to descriptive theories of
thinking are not obtained by observing people’s thinking but from attempts to make computers think (Baron, 2007).

The descriptive approach focuses on how humans actually make decisions in complex and uncertain real life situa-
tions. For instance, Kahneman (2011) postulated that humans enjoy two opposite mode of thinking that are analytical
an intuitive. On one hand, analytical thinking is slow and effortful but is logical, flexible and generally yield to allows
optimal and effective conclusions. Human beings use analytical thinking when facing novel situations especially it they
are not time constrained. On the other hand, intuitive thinking is fast, automatic, often unconscious, requires few cognitive
resources and is used during most of our routine operations. By generalizing circumstances, it allows us to reduce the
complexity of a situation, recognize patterns (real or perceived) and make decisions quickly according to past experiences
or the logic of those recognized patterns. However, while this mode of thinking is exceptionally efficient and accurate,
it is biased and prone to errors especially under emotional settings Biswas and Murray (2017); Robinette et al. (2016);
Kahneman (2011).

For instance, Kahneman (2011) demonstrated that Framing Effect (FE) can bias intuitive mode of thinking when real-
life problems are presented in positive (i.e. gain) or in negative (i.e. loss). Framing Effect (FE) theory is a strong and
powerful finding (see (Steiger and Kühberger, 2018) for a recent meta-analysis) explaining that human beings tend to be
risk-averse when positive frames are presented but risk-seeking when a negative frame are presented. Researches have
shown that losses evoke stronger negative feelings than gains and choices are not reality-bound because intuitive thinking
is not bound to reality (Baron, 2007). In other words, the frame significantly affects how people infer meaning and
hence understands the situation. Unless there is a clear reason to do otherwise, most of people passively accept decision
situations as they are framed (Kahneman, 2011), because reframing is arduous and analytical thinking is typically lazy.
Levin et al. (1998) postulated the existence of three types of framing effects: (1) Risk Choice Framing (RCF) (Tversky and
Kahneman, 1981), which involves options differing in level of risk and described in different ways; (2) Attribute Framing
(AF), which affects the evaluation of the characteristics of an event or object; and (3) Goal Framing (GF), which affects
the persuasiveness of a communication. Note that, Attribute Framing (AF) seams to be the simplest case of framing, where
only a single attribute is the subject of the framing manipulation and the evaluation can be measured by choices between
yes or no.

Overall, these findings indicate that modelling human behavior is not a straightforward task and can’t be reduced in
terms of simple computation of expected utilities. There is a need to better understand human decisions. In particular
when interacting with robots under uncertain settings. Thus, to collect data of human behavior in such a context would
allow to design models and algorithms to formalize decision making and to improve humman-machine teaming on the
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long run.
The present set of work is part of a wider research in a “robust mixed-initiative multi-agent planning, control, and

execution framework”, in which the robots have to infer an human utility in order to maximize the joint system perfor-
mance. In this work, the “system” includes the human agent as part of the team, and for that it should take into account the
capacities and restrictions of each agent (human operator and robots). In this context, robust means that the performance
of the system is satisfactory even when reality differs from assumptions. The aim is, in future work, to consider human
cognitive biases (1) to adjust the robot team utility function and (2) to adapt dynamically human-drones interaction.

In this regard, a within-subject experiment was designed to collect data related with the human behavior when inter-
acting with robots under uncertain settings in two different contexts. The two different scenarios considered were: (i)
helping victims of an earthquake and (ii) sampling rocks on Mars. Twenty participants have performed this experiment,
and, the presence of a Framing Effect (FE), a cognitive bias, in which one’s reaction differs depending on the way the
problem is presented (Kahneman, 2011) was observed. The results supported the hypothesis that the way the problem
was presented (positively or negatively framed), and the emotional commitment, statistically affected the HO’s decisions.
Then, based on the data collected among the 20 participants, the present work proposes:

• in a first step, a HO Prospect theory (PT) gain-loss function approximation (Kahneman and Tversky, 1979a) to
describe the HO’s utility function. In the scenarios considered, aerial robots should search and locate potential
targets, while HO decides, with incomplete information and limited time, when and where an aerial robot had to
take an action. In this sense, the use of PT is justified since it models how intuitive thinking influences people’s
immediate reaction to a risk or gamble they are facing;

• then, in a second step, this utility function becomes part of a decisional model used to predict the HO’s decisions,
based on the economics approach of multi-dimensional consumption bundle (Kőszegi and Rabin, 2006) and PT,
without any simplifying assumption.

Results concerning utility function fit and prediction accuracy suggest that such a methodology and prediction model
could be used to infer human operator’s decisions in a given context.

This paper is organized as follows: The first section presents the Prospect Theory (PT). Section 3 details the experiment
that allowed to collect data to implement the human utility based on PT. Section 4 present the model used to predict the
HO’s decisions. Some discussions about the results are presented in Section 5. Finally conclusions and future work are
discussed in Section 6.

2 Prospect Theory
Hence, research is carried out based on the Prospect theory (PT) (Kahneman and Tversky, 1979a; Tversky and Kahneman,
1992) to consider human’s cognitive biases, in particular the framing effect (FE), in order to learn a function that fits the
HO utility, and helps to predict her decision.

Kahneman and Tversky (Kahneman and Tversky, 1979a; Tversky and Kahneman, 1992) formulated the (Cumulative)
Prospect Theory (PT), which shows the way mental processes affect human decisions. Mainly, how intuitive thinking
influences people’s immediate reaction to a risk or gamble they are facing.

PT describes the decision processes in two stages: editing and evaluation (Wakker, 2010; Barberis, 2013). In the first
stage – editing – , decision outcomes are intuitively ordered according to a certain heuristic, which sets a reference point
and then considers lesser outcomes as losses and greater ones as gains. In the second stage – evaluation –, people behave
as if they would compute an expected utility, based on the potential outcomes and their respective probabilities, and then
choose the alternative which has a higher utility. The PT expected utility function (Kahneman and Tversky, 1979a), is
recalled here as:

E[u] =
n∑
i=1

pv(xi)w(pi) (1)

where, E[u] is the expected utility of the outcomes, pv is a value function that assigns a personal value to outcomes
{xi...xn}, pi is the respective probability of an xi, and w(·) is a subjective probability weighting function. Kahneman
and Tversky (Kahneman and Tversky, 1979a; Tversky and Kahneman, 1992) emphasize that this transformed probability
function does not represent erroneous beliefs, rather, they are decision weights. w(·) is a strictly increasing function that
satisfies w(0) = 0 and w(1) = 1 and that may differ between gains and losses (Kőszegi and Rabin, 2006).
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Figure 1: Prospect Theory value function.

The value function pv(·), defined in Equation 2 and shown in Fig. 1, passes through the reference point, is continuous
for all objective values x, strictly increasing s-shaped and asymmetrical, leading people to be risk-averse for gains and
risk-seeking for losses and, also, showing that losses hurt more than gains feel good. This loss aversion is defined by the
λ constant factor (see Eq. 2).

pv(x) =

{
xα x > 0

−λ(−x)β x ≤ 0
(2)

This formulation (Eq. 2) illustrates three elements of PT (Kahneman and Tversky, 1979a) and corresponds to Kahne-
man and Tversky’s explicit or implicit assumptions about their value function:

• Reference dependence - people derive utility from gains and losses, measured relative to some reference point,
rather than from absolute levels of wealth.

• Loss aversion - loss aversion is generated by making the value function steeper, modeled by the λ constant, in the
region of losses than in the region of gains. If y > x > 0, then pv(y) + pv(−y) < pv(x) + pv(−x).

• Diminishing sensitivity - the value function is concave (pv′′(x) ≤ 0 for x > 0) in the region of gains but convex
(pv′′(x) ≥ 0 for x < 0) in the region of losses. It is modeled by the constants α and β. The concavity over gains
captures the finding that people tend to be risk averse over probability gains. However, people also tend to be risk
seeking over losses.

It is important to notice that the probability weighting function, the forth PT element, (see Eq. (1)) models the fact that
people does not weight outcomes by their objective probabilities pi but rather by transformed probabilities or decision
weights w(pi) (Tversky and Kahneman, 1992). In this sense, a delicate issue is how to approximate a such personal
weighting function.

Recently, several researchers have used PT to explain the decision-making process. For instance, Nadendla et al.
(2016) argues that, for hypothesis of testing, an human agent decision can be model by PT. In Zhang (2016), an emotion
driven behavior selection mechanism based on the PT’s Value Function is suggested in order to understand the autonomous
behavior of artificial life. Ren and her colleagues (Ren et al., 2016) propose a method to deal with the emergency decision
making based on PT.
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Moreover, Kőszegi and Rabin (2006) propose a formal framework for applying PT in economics. They argue that their
proposal is both disciplined and applicable to different contexts. The idea is that the reference point people use to compute
gains and losses is fully determined by their expectations (instead of the status quo). In particular, they propose that people
derives utility from the difference between consumption and expected consumption, for instance a salary of $50, 000 to an
employee who expected $60, 000 will not be assessed as a gain relative to status-quo wealth, but rather as a loss relative
to expectations of wealth. They also assume that expectations are rational, i.e. they match the distribution of outcomes
that people will face if they follow the plan of action that is optimal, knowing their expectations. The conclusion is drawn
as a person’s utility depends on her multi-dimensional consumption bundle c and also on a reference bundle r, combining
classical consumption utility with reference dependence utility by assuming people care about both. For instance, they do
not just react to the sensation of gaining or losing a mug, but they also care whether they have a mug to drink from. Thus,
this personal Utility (U) is given by:

U(c|r) = m(c) + n(c|r) (3)

where, m(c) is an intrinsic “consumption utility” (typically stressed in economics) that corresponds to the personal
outcome-based utility, and n(c|r) is a gain-loss utility, that should be in accordance with PT, given by:

n(c|r) = µ(m(c) +m(r)) (4)

Their model allows for both stochastic outcomes and stochastic reference points, and assumes that a stochastic out-
come is evaluated according to its expected utility. For instance, if c is drawn according to the probability measure F , the
person’s utility is given by:

U(F |r) =
∫
u(c|r)dF (c) (5)

However, considering the gain-loss utility n(c|r), they impose some simplifying assumptions, like linear utility for
gains and losses and no probability weighting, which differs from the proposed gain–loss utility presented in Equation
(1).

In summary, the work proposed in the following explores the PT in order to model the human’s utility based on data
collected among 20 subjects during an experiment (described hereafter), and a decisional model used to predict the HO’s
decisions, based on the economics approach of multi-dimensional consumption bundle (Kőszegi and Rabin, 2006) and
the PT, however, without any simplifying assumption.

3 Experiment for data acquisition
As in this work our first aim was to observe the utility function for gains and losses and the FE influence over the decision
taken by the human operator (HO), two different scenarios were considered in an experiment: (1) helping victims of
an earthquake and (2) collecting rocks on Mars. Recalling, such a function approximation is necessary to construct the
decisional model useful to predict HO’s decisions.

It is important to note that in this experiment the same graphical user interface (see Figure 2) was used for both
scenarios. The system selected one of them at the beginning randomly, in other words, there are no visual differences
between the scenarios, only the back-story was different. In the Earthquake scenario the idea was to help eight known
victims trapped beneath the rubble. HO (subject) should use three drones to localize the victims and to deliver eight
available first-aid kits. A guideline was presented to find and deliver a first-aid kit to the maximum number of victims
within a certain time period. In the Mars rock sampling scenario HO had three drones to localize and collect eight
different types of rocks and return then to Earth in a capsule with eight containers. The guideline was to find and collect
the maximum number of “good” rocks before the time was up.

3.1 Participants
Twenty volunteers (34.81% female, mean age: 30.73, sd: 7.54), all graduate students, participated in the experiment.
They were, unknown to them, randomly split into two groups (one for each scenario) following a within-subject protocol.
They were not rewarded for participation. We note that only 45% of the participants made the experiment in their first
language (French or English), however statistical analysis did not show any significant correlation with this variable.
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Figure 2: The operator’s graphical interface common to both scenarios (developed in Python 2.7.11).

3.2 Experimental protocol
Each participant, after a training mission, randomly executed 10 missions (repetitions) for a given scenario. Each mission
had a duration of approximately three minutes. During the evolution of a given mission scenario, when the drones found
something, 10 different pre-formulated sentences, relating to the Text Framing and to the Probability, were randomly
presented and the operator was requested to decide.

The Text Framing was the way of presenting the questions (positively or negatively). In the earthquake scenario, for
the Positive frame a sentence was like: There is 60% of chance that the kit will be useful; and, for the Negative frame
it could be: There is 40% of chance that the kit will be wasted. In the case of the Mars rock sampling scenario, for the
Positive frame a sentence was such as: There is 60% of chance of being a ‘good’ rock; and: There is 40% of chance of
being a ‘bad’ rock, in other case. Note the Text Framing has the form of an Attribute Framing (AF), the simplest case of
framing, where only a single attribute is the subject of the framing manipulation (e.g. the probability) and the evaluation
can be measured by choices between yes or no.

For the Probability, we could be interested in the values close to 50% where the attribute framing is more effective.
However, in order to evaluate the power of the framing, the values presented were uniformly selected from 0.01 to 0.99.
Then, this range of probability values was discretized into four probability levels, e.g. low, middle-low, middle-high and
high. And, each probability level has two sentences: one with a positive frame and the other with a negative one.

The participants had 10 seconds to decide between YES, i.e, take a positive action (release a first-aid kit or collect a
rock), and NO. At the end of the alloted time, if the human operator (e.g. participant) has not selected an answer for the
question asked, the drone who asked should consider the human operator’s decision as a NO. The only task of the human
operator was to answer the questions asked by the drones.

Note that it was not possible for the participants to know the real result of the mission, i.e., the participant could not
know how many victims were helped or good rocks were collected during the experiment.

3.3 Statistical results based on experimental data
We analyzed 1982 observations from 20 participants 1. Because we took multiple measures per subject (within-subject
protocol) and the dependent variable (HO’s decision) had a binomial distribution, a Generalized Linear Mixed Model -
GLMM was used (Agresti and Kateri, 2011; Bates et al., 2015).

1Anonymized data is available at:
https://personnel.isae-supaero.fr/IMG/all-more.csv
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In this study we are interested in the relationship between HO’s decision (OD) and the main explanatory variables:

• the Scenario (S);

• the Text framing (TF ):

• the Probability (P ) that a kit would be useful or not (earthquake scenario) or the target would be a good rock or not
(Mars scenario);

• and, the number of used Assets (A), that would be first-aid kits (earthquake scenario) or containers (Mars scenario).

Note that, A was used to determine the HO Reference point (according to PT, see Sec. 4) and when she considered the
action either as a gain or as a loss. The following equation describes the relation between operator’s decision (OD) and
the explanatory variables:

OD ∼ S + TF + P +A+ (1|ID) + (1|Seq) + ε (6)

It is important to notice that we started the statistical analysis with a model with all fixed effects available and dropped
one by one until all unnecessary terms were removed, for instance: age, gender and language (native or not).

The random factors that were not possible to control experimentally, were unpacked in two different variables: ID
and Seq. The first one refers to the assumption of a different intercept for each subject and the second one refers to the
sequence of the missions, which were shuffled for each subject. All the others “stochastic” differences are retained in
terms of error ε.

Table 1 shows the estimated coefficients and errors of the GLMM. Here, the positive value of an estimated coefficient
denotes that the condition increases the preference in saying “YES”. Here, the Earthquake scenario led the participants
to say more “YES” than the Mars scenario. The same is observed in the Positive frame condition. For Probability and
used Assets, the coefficients denote that increasing the probability value or the number of used assets also increase the
willingness to say “YES”. The intercept is the predicted value of decision when all the independent variables are 0.

Table 1: GLMM summary

Dependent variable:

Decision (OD)

Earthquake (S) 0.323∗

(0.192)

Positive frame (TF) 0.252∗∗

(0.127)

Probability (P) 0.731∗∗∗

(0.279)

Asset (A) 0.311∗∗∗

(0.042)

Intercept −0.938∗∗∗

(0.235)

Log Likelihood −735.662
Akaike Inf. Crit. 1,485.324
Bayesian Inf. Crit. 1,520.955

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4 Proposed PT Model
As a first step, based on the collected data, PT is explored in order to formally describe the HO’s utility function. Later,
the authors proposed a model, which predicts the HO’s decision given the explanatory variables (scenario, text framing,
probability and the number of assets). This decisional model is based on a decisional mathematical criterion, and should
be used, in future work, to decide how to frame a question to HO, in order to, at least, maximize the chances to induce a
desired decision from her in a given operational scenario.

In the following is presented our estimation for the intrinsic consumption utility, m(c), and the gain-loss function,
n(c|r) (see Equation 3). This step helps in determining the personal utility function U(·) as proposed by Kőszegi and
Rabin, but without any simplification assumption - contrary to what has been proposed in (Kőszegi and Rabin, 2006) as
linear utility for gains and losses and any probability weighting function.

4.1 Approximating the intrinsic consumption utility
According to our hypothesis, the HO had two personal goods in the previous experiment: the belief that her action
could result in a good job (helping victims or collecting rocks - h ∈ {0, 1}) and the perceived ownership value of an
asset (available kits/containers - pca ∈ R) at a given moment. Hence, she had a bi-dimensional consumption bundle
c = (h, pca). Note that, HO faced conflicted emotions while deciding: if she said YES, she got the satisfaction (gain) of
doing a good action against the probability of loosing a precious asset. Else, by saying NO, she could save the asset for a
better future opportunity, but with the risk of leaving behind a victim or a wanted rock.

In this cost-benefit dilemma, supposing that HO wanted to do a good work, for instance by doing a positive action
(saying YES) in function of her consumption bundles, the function m(c) could be, in this application case, as:

m(c) = c(h, pca, p)

=

{
(h+ − pca) · p, for a positive action
(pca − h−) · (1− p), for a negative action

(7)

where p is a given objective probability value, or the presented one, for instance.

4.2 Approximating the gain-loss utility
Following Equations (3) and (4) the term n(c|r) = µ(m(c) +m(r)) represents the gain–loss utility, that is based on PT
(cf. Section 2) in this work. For this propose, one should define the weightingw(.) and the perceived value pv(.) functions
following Equation (1).

4.2.1 Definition of the probability weighting function - w(·)

Since the dependent variable OD (see Eq. 6) was represented by “1” and “0” (YES or NO resp.) instead of cardinal
numbers, a Binomial Logistic Regression was used to describe the average preference of the participants as a function of
the probability values. Figure 3 shows the probability of saying YES versus the objective probability, according to the
framing used, with the logistic regression curve fitted to the data. The analysis gives the result presented in Table 2.

From the point of view of the decisions, i.e. OD as a function of the objective probability P , the result indicates
that the probability of saying YES is significantly associated with the probability of a kit being useful (in the earthquake
scenario) or a rock being a good one (rock sample Mars scenario). Here, it is easy to observe the framing effect with
a significant difference between positive and negative framing. Also, by comparing the results of different scenarios,
the influence of emotional commitment on the subject’s decisions is observed. These statistical effects, related with the
emotional commitment, were also observed in our previous work (Souza et al., 2016), but for only 14 subjects.

Interestingly, each curve presented in Figure 3 is strictly increasing function that satisfies f(0) = 0 and f(1) = 1,
which is required by PT. From this, it is possible to derivate the subjective probability weighting function w(·), as:

w(p) =
1

1 + e−(I+bp)
(8)

where, I is the Interceptor, b is the estimated coefficient and p is the objective probability.
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Figure 3: Probability of saying “YES” according to the objective probability.

4.2.2 Approximating personal value function - pv(·)

From Equations (1) and (2), one should approximate the personal value function pv(·) (according to PT presented in Sec.
2).

In Figure 4, HO’s average preference is evaluated against the number of assets used. A Binomial Logistic Regression
is used again to describe this relationship. It suggests that, in the beginning, the participants had an endowment effect
for the assets (they became owners) which decreased their willingness to use them. This attachment effect made them
consider the use of an asset as a loss and only accepted to give up of it by a high price (high probability value). However,
at a certain point they changed their mind and started to act as “sellers” (which do not assess sales as loss of inventory but
as a gain of money). After the reference point, the graph suggests that they want to use the assets as much as possible.

Such a hypothesis was also observed in our previous work, where a survey was conducted after each mission and it

Table 2: Logistic regression analysis

Framing Scenario variable Coefficient error

Positive
earthquake

Intercept −5.924∗∗∗ 0.983
Probability 16.437∗∗∗ 2.219

rock sampling
Intercept −7.403∗∗∗ 1.311

Probability 18.373∗∗∗ 2.772

Negative
earthquake

Intercept −3.442∗∗∗ 1.178
Probability 9.103∗∗∗ 2.256

rock sampling
Intercept −5.287∗∗∗ 1.269

Probability 11.609∗∗∗ 2.512

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

9



Figure 4: Probability of saying “YES” according to the number of used assets. The dark blue line is the approximated
personal value function of Equation (2).

showed that the participants were more satisfied when they used more assets.
Thereby, one can assume the presence of a reference point RF across which the preference of saying YES becomes

greater than the preference of saying NO. Thus, a curve that satisfies a PT value function pv(·) (see Eq. (1)) could be fitted
over the positive framing curve in the gain region and over the negative framing curve in the loss region.

Without loss of generality, it is reasonable to assume that the perceived ownership value pca(·) (see Eq. (7)) of an
asset in a given moment is proportional to its usefulness value pv(·) at that moment, the bigger the former the smaller the
latter, so

pca(x) = (1− pv(x)) · a (9)

where a ∈ [0, 1] is a normalizer constant.

4.3 Proposed personal utility (U)
Suppose the HO wants to do a good work, according to Equation (3), her personal utility U(·) will depend on whether a
positive action (say YES) is taken or not. In this sense, one can define her utility U(·) as follows:

U(c|r) = ψ(h, pca, p)

=

{
ψ+(h+, pca, p), for a positive action, and
ψ−(h−, pca, p), for a negative action

(10)

with,
ψ+(h+, pca, p) = (h+ − pca) · p+ (h+ − λ · pca) · w+(p)

and,
ψ−(h−, pca, p) = (pca − h−) · (1− p) + (pca − λ · h−) · w−(1− p)

where, p is the current objective probability, w(·) is a subjective probability weighting function, and λ > 1 is the
loss-aversion coefficient. Note that pca refers to the corresponding “positive framing” (cyan logistic curve in Fig. 4) of
pv. The loss-aversion (“negative framing”) is obtained with λ · pca.
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Figure 5: Personal utility in function of the framing for the earthquake scenario. The green color represents the positive
framing (ψ+(·)) and the red color the negative framing (ψ−(·)).

The result generates two surfaces (see Figure 5 - top-left) for each scenario: one for the positive framing with the
preference of saying “YES” (green - ψ+(·)) and other for the negative one with the preference of saying “NO” (red -
ψ−(·)). The top-right plot in Figure 5 shows the personal utility as function of the used assets for a given probability value
(color intensity). The bottom-left plot in Figure 5 shows the personal utility versus the probability for a given number of
used assets. The bottom-right plot in Figure 5 represents the indifference curves (same utility lines) for both framings.
These indifference curves are used to estimate the HO’s decision, comparing the utilities of the framings (the greater one
won).

4.4 Evaluation of the model
Suppose the HO wants to maximize her personal utility U(·), one can link an HO’s decision to her U(·) by means of a
maximization operator, and thus predicting HO’s decision, a positive (pos) or a negative (neg) action, as follows:

φ(h, α, p) = arg max
neg,pos

(ψ−(h−, pca, p), ψ
+(h+, pca, p)) (11)

Such a decision criterion should select which framing should be shown to HO in order to maximize the chance of
having an appropriate decision, i.e., a decision aligned with the operational guidelines.

In order to validate the model obtained, a training subset with 75% of the data (homogeneously selected between
the text framings and randomly among the individual data) is used for modeling and the remaining 25% is used to test
the model. With the purpose of avoiding selection bias, a repeated k-fold Cross Validation is done (with k = 4 and 10
repetitions), in which the average values across all k trials is computed (Strimmer., 2015; Olsen, 2017).

The results comparing the decision criterion φ(.) over the test subset in order to predict HO’s decision and the actual
decisions made by the participants, are summarized in Table 3. In this Table the overall Accuracy rate is computed along
with a 95% confidence interval, Sensitivity, also known as Recall is the number of positive predictions divided by the
number of positive class values in the test data, and PPV - Positive Predictive Value is the number of positive predictions
divided by the total number of positive class values predicted (Kuhn, 2008).
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Table 3: Confusion Matrix and Statistics for HO’s decisions prediction

Scenario Probability range
Confusion matrix

Accuracy Sensitivity PPV Prediction
Answer (%)
NO YES

Earthquake
0 - 100% 0.8156 0.9264 0.8165

NO (Negative framing) 0.21 0.04
YES (Positive framing) 0.14 0.61

40 - 60% 0.7606 1.0 0.7605
NO 0.0009 0.00
YES 0.23 0.76

Rock
sampling

0 - 100% 0.8251 0.9374 0.7897
NO 0.31 0.04
YES 0.14 0.51

40 - 60% 0.7169 0.9698 0.6852
NO 0.15 0.02
YES 0.26 0.57

These results suggest that the decision criterion φ(.) can predict HO’s decision with a (considered) good accuracy.
This means, φ(.) defines the framing that should be presented by the system, i.e., a positive framing for an expected
“YES” answer else a negative one.

5 Discussion
In general, as pointed out in the introduction of this work, the Expected utility theory is used to model human decisions,
as if the decision-maker was an unfailing machine with no time pressure to decide (Von Neumann and Morgenstern,
2007). However, Kahneman (2011) suggest that when DMs have to make crucial decisions under imperfect information
conditions, humans are more prone to make foreseeable errors in judgment caused by cognitive biases. In particular,
under situations where they are emotionally involved, as for instance, during space missions, emergencies (Robinette
et al., 2016), natural disasters (Bevacqua et al., 2015), military operations (Schmitt et al., 2018) or any other complex
and ambiguous environment (Barnes et al., 2015). In order to overcome these situations and to remain effective amid an
unpredictable and diffused environment it is important to understand and deal with these “hard-wired” human processes
(Klein, 1997). Thus, the present work proposed an interesting experiment and a formal approach to better understand
human operator’s decisions in operational contexts under uncertainty and emotional commitment.

According to the Prospect Theory (PT) authors (Kahneman and Tversky, 1979a), the rational decision to choose the
best option among some risky or uncertain prospects doesn’t depend on the maximum utility value, but on the human
behavior, i. e., there is an asymmetry between gains and losses to be evaluated in case of dealing with risky situations.
More precisely, the asymmetry in the evaluation of gains and losses lead participants to make different decisions for gains
than for loss (Kahneman, 2011; Tversky and Kahneman, 1981; Kahneman and Tversky, 1979b). This asymmetry is also
confirmed by the investigation of affective reactions associated with gains and losses. For instance, participants reported
more positive affective reactions when they faced to gains compared to when they faced to losses (Stark et al., 2017). This
asymmetry was also observed in the present study (see Table 1), which leads participants to favor gains when they faced to
gains (positive framing) and to avoid losses when they faced to losses (negative framing), following then (Kahneman and
Tversky, 1979b; Stark et al., 2017). Thus, it is worth to say that the Framing Effect (FE) is a strong and powerful cognitive
bias in human decision making. Moreover, our results showed that the way the decision-making problem was presented to
participants (positively or negatively framed) and the emotional commitment involved (saving lives vs. collecting rocks)
statistically affected the choices made by the participants (see section 3.3). Table 1 shows that participants were more
inclined to say “YES” in the Earthquake scenario than the Mars scenario. Moreover, the coefficients for Probability and
used Assets in Table 1 also denote that increasing the probability value or the number of used assets also increase the
willingness to say “YES”. These factors also demonstrated to modulate the asymmetry between gains and losses (see
figures 3 and 4) showing that such other factors would also influence the human operator’s decisions in our experimental
settings. The PT based utility function allowed to integrate such factors (see sections 4.1, 4.2.1 and 4.2.2)

Considering the prediction performance of the proposed model, some considerations could be discussed. Firstly, this
random intercept model assumes that the fixed effect is the same for all subjects. However, this assumption cannot be
totally validate, as different people respond differently in the same situation. Despite the fact that our study is limited
to some extent to provide a generalization of the model, results are in line with previous studies showing that people
differentially respond to FE. More precisely, individuals respond differentially in function of the emotions that they felt
(Cassotti et al., 2012; Osmont et al., 2015) or if they have to decide for themselves or for others (Kappes et al., 2018).
Thus, the perceived value could be more a personal perceived value than a common one. In line with this argument, it has
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been shown that the perception of risk could be modulated by emotions (Lerner and Keltner, 2000). More precisely, angry
participants perceived risk as more attractive than fearful participants. Thus, fearful participants are less loss aversive than
angry participants (Lerner and Keltner, 2000). Secondly, some of the participants did not do the experiment in their first
language, so, they might have misunderstood some information that was presented (as some of them reported at the end
of the experiment), but it is important to notice that the GLMM analysis did not show any significant correlation with
that variable. However, this could reduce the accuracy of the model. And, finally, others reported that, at the begin, they
did not realize that there were different types of sentences and payed attention only in the probability value presented
(attentional tunneling), leading to an incorrect situation awareness that likely resulted in taking a “wrong” decision.

6 Conclusion
As far as the authors know, this work is the first study where an HO’s utility function based on the Prospect theory and a
decisional model to predict those HO’s decisions are proposed.The proposed model is based on the approach of multiple
dimensions proposed by Kőszegi and Rabin (2006) in another context. But, contrary to their work, any simplification
assumption (e.g. linear utility for gains and losses and no probability weighting function) is used in the present work. To
consider a more general gain-loss function, the authors have considered a non linear probability weighting function w(.)
that respects the mathematical conditions of PT (as strictly increasing function), and have identified different coefficients
from collected data to approach a personal perceived value function. The contributions of this work, should allow a
cybernetic system to choose the framing to present to the human operator in order to induce the required HO’s decision
that is within the operational guidelines.

On one hand, different people respond differently in the same situation, while on the other hand same person responds
differently in different situations. For the former case, and for increase prediction performance, the authors could explore
tools from the transfer learning literature (Pan and Yang, 2010) to: (i) in a first step, cluster people who have a similar
personal perceived value; (ii) applying the appropriate perceived value function, in accordance with this common behav-
ior. For the latter case, the results of this study show that the two scenarios induced different behaviors among participants.
It is reflected, in particular, on the resulting utilities functions. The perceived value and weighted probability functions
were different across the two scenarios. Though one could say that the methodology is generalizable, each scenario model
has to be fed with ad-hoc dataset. Consequently, more research must be conducted concerning new class of scenarios for
potential overall model generalization.

Next step in this research, is programmed to evaluate the proposed model in a closed-loop operational situation,
where the system should choose the framing to present to the HO, expecting to align her decision with the operational
guidelines. The authors hope that this closed-loop system, which will integrate the human operator’s utility function in a
global criterion, maximizes the utility of the overall system compared to a system where no framed choice is automatically
done.
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