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of scalarized problems. We prove that, in most cases, performing sensitivity

based path-following after obtaining one solution is the optimal strategy for

this task in terms of iteration complexity.

Keywords Multi-objective optimization · strongly convex optimization ·

path-following · Newton method · complexity analysis.

Mathematics Subject Classification (2010) 49M05 · 49M15 · 90C06 ·

90C60.

1 Introduction

Consider the following multi-objective optimization problem:

min
x∈Rn

f(x) := {fi(x)}i=1,...,m (1)

where f : Rn → Rm is a strongly convex and twice continuously differentiable

function. Our target is to find weak Pareto-optimality points for problem (1).

We recall that weak Pareto-optimality holds at a point x̃ ∈ Rn if for all d ∈ Rn,

there exists an i ∈ {1, . . . ,m} such that

∇fi(x̃)>d ≥ 0.

For single objective optimization, worst-case iteration complexity quantifies

the number of iterations that could be necessary, in the worst-case (i.e., for

the most ill-behaved problems), for an algorithm to achieve a certain level of

satisfaction of an approximate measure of optimality, typically a small norm for

the gradient [9]. Classically, the multi-objective optimization community had
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not considered attempting to derive bounds on iteration complexity for prob-

lems in vector optimization. Recently, however, works have appeared, see [6,3],

which consider the iteration complexity of gradient descent for multi-objective

optimization. In both papers rates were derived for obtaining some point sat-

isfying approximate weak Pareto-optimality.

To the best of our knowledge, only [6] considers iteration complexity for

specifically strongly convex objectives. However, in deriving their complexity

result, convergence of the algorithm to some Pareto optimal point is assumed.

Moreover, we believe that a much stronger and more meaningful result can

be shown by considering the precise meaning of the problem. In particular,

consider the so-called scalarized problem, parametrized by {λi}i=1,..,m

min
x∈Rn

m∑
i=1

λifi(x), (2)

for any {λi}i=1,..,m ∈ D = {{λi}i=1,..,m ∈ Rm / 0 ≤ λi ≤ 1,
∑m
i=1 λi = 1}, the

unit simplex of Rm. A stationary point of the problem (2) is also Pareto op-

timal for (1). Thus, one can find a Pareto optimal point, at least for strongly

convex multi-objective problems, by simply choosing any arbitrary convex

combination {λi}i=1,..,m ∈ D and solving the resulting mono-objective prob-

lem, thus the worst-case iteration complexity of finding some Pareto optimal

point is already a known problem, it corresponds to the worst-case iteration

complexity of solving a single objective strongly convex optimization problem.

In the multi-objective optimization literature, e.g., [8], scalarization is typi-

cally, at most, one step in the process of finding the solution of a multi-objective

problem, where the ultimate definition of a solution can vary. In particular, it
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can be that the goal of the optimization is (a) tracing the Pareto front itself,

so in some sense finding all, or some adequate approximation to all, station-

ary points, or (b) finding an appropriately best point along the Pareto front

through some secondary metrics, or (c) using an interactive environment with

a human participant who grades potential solutions.

In this note, we shall concern ourselves with the first task: establish com-

plexity bounds for some appropriate notion of finding the entire Pareto front.

To this end, we define the problem as, for all λ ∈ Λ, finding

min
x∈Rn

m∑
i=1

λifi(x) (3)

where Λ ⊂ D is some finite grid of elements. In the definition of D, given the

constraint on the sum, we can consider m−1 dimensions as free which in turn

entirely determine the remaining λi. We thus divide each side of the hyper-

cube [0, 1] by some desired width of the grid d, and thus there are
⌊
1
d

⌋m−1
total possible grid points, where bac denotes the greatest integer less than or

equal to a. Conversely, if there is some desired grid pre-defined by the user, we

can define the quantity d denoting the maximum width between two neighbors

on the grid, that is

d = min
(λ,λ′)∈Λ , λ 6=λ′

(
max

1≤i≤m
|λi − λ′i|

)
.

We would like to emphasize that the procedure of obtaining a Pareto front by

solving a set of scalarized single-objective reformulations is suited strictly to

strongly convex objectives, in the non-convex case this strict correspondence

between the two may be lost.
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We organize this note as follows. In Section 2, we describe our algorithm

to solve the strongly convex multi-objective optimization problem. We explain

how to use a Newton path-following procedure to find the entire Pareto front.

Section 3 addresses the convergence of our algorithm by characterizing its iter-

ation complexity. A numerical illustration on a simple example demonstrating

the efficiency of our approach is given in Section 4. Conclusions are given in

Section 5.

2 Path-following for finding the entire Pareto front.

Recall that for a fixed λ0 ∈ Λ, using only first order information one can

solve a strongly convex optimization problem of the type (3) at best linearly

(with a gradient descent based method, see for instance [2, Theorem 3.18]).

Namely, in order to obtain a point ε distance from the solution of (3) for a fixed

λ0 ∈ Λ, O(log(1/ε)) iterations must be taken, with each iteration involving the

computation of one gradient vector. As a result, naively, one can obtain the

entire Pareto front by solving each of the
⌊
1
d

⌋m−1
scalarized problems defined

across the grid points independently with a variant of gradient descent, to

obtain an overall complexity of O
(

log(1/ε)
⌊
1
d

⌋m−1)
.

In this note, we propose finding the entire Pareto front by performing path-

following, a method based on the implicit function theorem. Later we will

show that the proposed strategy will reduce the overall iteration complexity

drastically relative to naively solving every scalarized problem separately. To

start with, for some initial grid point λ(0) ∈ Λ we obtain the solution x(0) ∈ Rn
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of the problem (3), (for instance, by using a gradient descent method with the

following stopping criterion
∥∥∥∑m

j=1 λ
(0)
j ∇fi(x)

∥∥∥ ≤ ε). Note that such point x(0)

gives the Pareto optimal point of the problem (1) associated with λ(0). Now,

let λ(1) be one of the closest neighbors to λ(0) in the finite grid Λ, our goal is

to apply a predictor-corrector scheme to compute a new x(1) corresponding to

an approximate solution to the scalarized problem associated with λ(1).

Path-following, or tracing a set of solutions for a parametrized nonlinear

system of equations across a range of parameters, is an important algorith-

mic tool, for which an introduction can be found in [1]. Closest to our work,

a predictor-corrector path-following procedure for strongly convex optimiza-

tion problems (interpreted as strongly regular variational inequalities) is given

in [5]. In this work it is shown that, for this parametric problem, a property of

uniform strong regularity holds and a procedure involving one tangential pre-

dictor (Euler) and one corrector (Newton) step result in a sequence of iterates

whose distance to a set of solutions to the parametric variational inequality

is of the order of d4, where recall that d is, in this context, the grid spacing.

Thus there exists C such that if d ≤ C(ε)1/4, a set of solutions with approx-

imate optimality ε across a set of parameters can be found. If applied to the

multi-objective Pareto front context, the number of Euler-Newton continua-

tion steps is the number of grid points, which corresponds to d−1 ≥ C−1ε−1/4.

If the desired grid is already small enough, then it is clear that this path-

following procedure outperforms the naive method of solving the standalone
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Algorithm 1: A Newton path-following for finding the Pareto front.

Input: Let Λ = {λ(0), . . . , λ(p−1)} ⊂ Rm
+ be some finite grid of cardinality p satisfying:

for all j = 0, . . . , p− 1,
∑m

i λ
(j)
i = 1, λ(j+1) is one of the closest neighbors of λ(j) not

yet visited.

Output: The entire Pareto front by performing path-following associated with Λ:

x(0), x(1), . . . , x(p−1).

Compute an initial Pareto optimal point x(0), i.e.,

x(0) = arg min
x
f (0)(x), where f (0)(x) =

m∑
i=1

λ
(0)
i fi(x). (4)

Set k = 0.

Step 1: Compute a predictor x̄(k+1), i.e.,

x̄(k+1) = x(k) −

 m∑
j=1

λ
(k)
j ∇

2fj

(
x(k)

)−1(
m∑
i=1

(
λ
(k+1)
i − λ(k)i

)
∇fi

(
x(k)

))
(5)

Step 2: Apply a Newton correction to compute x(k+1), i.e., starting from x̄(k+1)

run the Newton method to find

x(k+1) = arg min
x
f (k+1)(x), where f (k+1)(x) =

m∑
i=1

λ
(k+1)
i fi(x). (6)

If k = p− 1 then Stop, otherwise increment k by 1 and go to Step 1.

problem at every grid point. Otherwise, it depends on the magnitude of the

desired number of additional grid points required to perform path-following.

We consider an alternative predictor-corrector scheme that is more ag-

gressive in its use of potentially longer tangential steps and multiple Newton

iterations. In particular, this is more suitable for obtaining the set of solutions

across the Pareto front with the tightest iteration complexity bound. This

predictor-corrector procedure will be repeated until we traverse the entire set

Λ. A formal description of the algorithm is given as Algorithm 1.
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The predictor step (Step 1 of Algorithm 1) is motivated by the implicit

function theorem. Therefore, first, let’s recall the implicit function theorem

adapted to our context.

Theorem 1 Let g : Rn+m → Rn be a continuously differentiable function for

a parametrized system of equations,

g(x, λ) = 0, where x ∈ Rn and λ ∈ Rm.

Consider that there exists a solution satisfying g(x0, λ0) = 0. If the Jacobian

matrix Jg,x(x0, λ0) of g with respect to x is invertible, then there exists an

open neighborhood B ⊂ Rm such that there exists a unique continuously dif-

ferentiable path x̃(λ) defined on λ ∈ B with x̃(λ0) = x0 and g(x̃(λ), λ) = 0 for

all λ ∈ B. Furthermore, it holds that the derivative of x̃(λ) over B is given by

∂x̃

∂λ
(λ) = − [Jg,x(x̃(λ), λ)]

−1 ∂g

∂λ
(x̃(λ), λ). (7)

We consider applying Theorem 1 to the optimality conditions of (2) given by

the following parametrized system of equations

g(x, λ) =

m∑
i=1

λi∇fi(x) = 0.

Precisely, for a given iteration index k, consider that we have a solution x(k)

at some λ(k) ∈ Λ, i.e.,
m∑
j=1

λ
(k)
j ∇fi(x

(k)) = 0. (8)

Since we consider strongly convex objectives, it holds that the matrix

m∑
i=1

λ
(k)
i ∇

2fi(x)
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is invertible for all x ∈ Rn, in particular the inverse norm is bounded by the

inverse of the weighted sum of the strong convexity constants of {fi}. Thus by

Theorem 1 we have that there exists some ball B(k) around λ(k) and a unique

path x̃(λ) such that x̃(λ(k)) = x(k) and
∑m
i=1 λi∇fi(x̃(λ)) = 0, for all λ ∈ B(k).

Furthermore, the derivative of the path given by (7) is defined for all λ ∈ B(k)

to satisfy,

∂x̃

∂λ
(λ) = −

 m∑
j=1

λj∇2fj (x̃(λ))

−1 [∇f1 (x̃(λ)) , . . . ,∇fm (x̃(λ))] .

Consider now a Taylor expansion of x̃(λ) along λ ∈ B(k) from the base point

x̃(λ(k)) = x(k). This is given by

x̃(λ) = x(k) −

 m∑
j=1

λ
(k)
j ∇

2fj

(
(x(k)

)−1
m∑
i=1

(
λi − λ

(k)
i

)
∇fi

(
x(k)

)
+O

(∥∥∥λ− λ(k)∥∥∥2) .
Motivated by the discussion on Newton’s method applied to path-following

in [4, Chapter 5], we define a predictor x̄(k)(λ) by computing the first order

Taylor approximation,

x̄(k)(λ) = x(k) −

 m∑
j=1

λ
(k)
j ∇

2fj

(
(x(k)

)−1
m∑
i=1

(
λi − λ

(k)
i

)
∇fi

(
x(k)

)
(9)

which is precisely the “tangent continuation method” with the order p = 2

as given in [4, Page 239]. Assuming that λ(k+1) is close enough to λ(k) (i.e.,

λ(k+1) ∈ B(k)), the predictor step x̄(k+1) given by (5) in Algorithm 1 is defined

as

x̄(k+1) = x̄(k)
(
λ(k+1)

)
.

Let η(k) be the norm of the residual x̃(λ(k+1))− x̄(k+1) , i.e.,

η(k) = ‖x̃(λ(k+1))− x̄(k+1)‖.
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There is a remaining algorithmic necessity before this becomes practical as

the predictor x̄(k+1) does not necessarily satisfy the desired level of station-

arity. In fact, to achieve a point closer to the actual solution, we consider a

“corrector” step x(k+1) using a sequence of Newton iterations. Under a set of

conditions, the ordinary Newton method is quadratically convergent towards

the solution starting from the predicted point if this point is sufficiently close

to the solution. Thus, we require that the predictor x̄(k+1) is sufficiently accu-

rate and determine the size of the step λ(k+1) − λ(k) appropriately. Note that

by definition of x̃ we have

x(k+1) = x̃(λ(k+1)).

3 Characterizing the Complexity of Algorithm 1

Based on the ideas above, we can consider iteration complexity in a new sense.

For a given iteration k, consider having an approximate solution to (3) for a

particular λ(k), up to a desired optimality tolerance ε. Then consider path-

following from λ(k) to some λ(k+1) where λ(k+1) − λ(k) is small enough (in

terms of desired grid-spacing d) to be able to determine the associated solution

on the Pareto front. The same procedure is repeated across all the grid Λ until

all solutions of the Pareto front have been found.

Before developing our complexity analysis, we formally state our working

assumptions on the objective function f .

Assumption 31 The objective function f : Rn → Rm is twice continuously

differentiable and strongly convex. In particular, there exist two positive con-



Title Suppressed Due to Excessive Length 11

stants c > 0 and L > 0, such for all i ∈ {1, . . . ,m}, x ∈ Rn and y ∈ Rn,

c‖y‖2 ≤ y>∇2fi(x)y ≤ L‖y‖2. (10)

In other words, for all i ∈ {1, . . . ,m}, the eigenvalues of the Hessian of fi are

uniformly bounded from below by c, and above by L, everywhere.

This implies the following condition regarding scaling invariance properties

appropriate for Newton methods [4].

Lemma 1 Consider Assumption 31. For all λ ∈ Λ and x, y ∈ Rn, one has∥∥∥∥∥∥∥
 m∑
j=1

λj∇2fj(x)

−1 m∑
j=1

λj∇fj(y)−
m∑
j=1

λj∇fj(x)


∥∥∥∥∥∥∥ ≤

L

c
‖x− y‖. (11)

In this case, the mapping x →
∑p
i=1 λi∇2fi(x) is said to be affine covariant

Lipschitz.

Proof Let λ ∈ Λ, then from Assumption 31, we conclude that the mapping

x→
∑m
i=1 λifi(x) is L-smooth (i.e, its gradient is Lipschitz with constant L)

and that it is c-strongly convex. In fact, for all x and y ∈ Rn, we have that

this mapping satisfies∥∥∥∥∥∥
 m∑
j=1

λj∇fj(y)−
m∑
j=1

λj∇fj(x)

∥∥∥∥∥∥ ≤ L‖x− y‖,
and that the inverse of its Hessian for all x is bounded by 1

c , i.e.,∥∥∥∥∥∥∥
 m∑
j=1

λj∇2fj(x)

−1
∥∥∥∥∥∥∥ ≤

1

c
.

By combining these two inequalities with the Cauchy Schwarz inequality, we

get (11). ut
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In the next Lemma, we will show that the remainder η(k) is at most of the

same order as the distance between λ(k+1) and λ(k). This will be instrumental

in giving sufficient conditions on the grid spacing necessary to ensure quadratic

local convergence of the ordinary Newton method when it is applied to solve

(6) starting from x̄(k+1) (see Lemma 3).

Lemma 2 Consider Assumption 31. Then there exists a constant η > 0 such

that for all k, one has

η(k) ≤ η‖λ(k+1) − λ(k)‖.

Proof In fact, one has

η(k) = ‖x(k+1) − x̄(k+1)‖

≤ ‖x(k+1) − x(k)‖+

∥∥∥∥∥
[
∂x̃

∂λ
(λ(k))

]>
(λ(k+1) − λ(k))

∥∥∥∥∥
≤ ‖x̃(λ(k+1))− x̃(λ(k))‖+ max

λ∈Λ

∥∥∥∥∂x̃∂λ (λ)

∥∥∥∥ ‖λ(k+1) − λ(k))‖.

On the other hand, by Theorem 1, the function λ → x̃(λ) is continuously

differentiable for all λ ∈ D, thus, it is bounded and Lipschitz continuous over

the compact set D, i.e., there exists c1 > 0 and c2 > 0 such that

‖x̃(λ(k+1))− x̃(λ(k))‖ ≤ c1‖λ(k+1) − λ(k))‖ and max
λ∈Λ

∥∥∥∥∂x̃∂λ (λ)

∥∥∥∥ ≤ c2.
Hence,

η(k) ≤ (c1 + c2)‖λ(k+1) − λ(k))‖,

which completes the proof. ut

The next result will show that to ultimately get an ε-Pareto optimal so-

lution, applying the correction step will require a number of iterations of the
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ordinary Newton method of order log log
(
1
ε

)
. We will start by recalling some

sufficient conditions concerning the local convergence of the Newton method

adapted to our setting. These results are from [4]. In [4, Theorem 5.2], the

authors gave sufficient conditions on the functions {fj(·)} and the distance

between λ(k+1) and λ(k) to ensure the convergence of the ordinary Newton

method applied to solve (6) starting from x̄(k+1), and in [4, Theorem 2.3] the

authors showed the classic local quadratic convergence property of the New-

ton method when it is used to solve (6). In fact under the strong convexity

assumption and as long as the distance between λ(k+1) and λ(k) is sufficiently

small, the ordinary Newton method converges quadratically to the minimizer

of (6) from the starting point x̄(k+1).

Lemma 3 Let Assumption 31 hold. For a given iteration index k, consider

λ(k) ∈ Λ and x(k) such that∥∥∥∥∥∥
m∑
j=1

λ
(k)
j ∇fi

(
x(k)

)∥∥∥∥∥∥ ≤ ε.
Let λ(k+1) ∈ Λ such that

∥∥∥λ(k+1) − λ(k)
∥∥∥ ≤ c

ηL
, (12)

where η is as in Lemma 2. Then the ordinary Newton method with the start-

ing point x̄(k+1) (as given by (5)) converges and the computational cost of

achieving a solution point x(k+1) such that∥∥∥∥∥∥
m∑
j=1

λ
(k+1)
j ∇fi

(
x(k+1)

)∥∥∥∥∥∥ ≤ ε,
is of order log log

(
1
ε

)
.
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Proof Let
[
x(k+1)

]
j

be the jth iterate produced by an ordinary Newton method

starting from x̄(k+1). By Lemma 1, the mapping x →
∑p
i=1 λ

(k+1)
i ∇2fi(x)

is affine covariant Lipschitz. Hence, using [4, Theorem 5.2] and with x̄(k+1)

being the predictor step defined as (5), one can deduce that the sequence{[
x(k+1)

]
j

}
j∈N

generated by the ordinary Newton method starting from x̄(k+1)

converges towards the solution x(k+1) (i.e., x(k+1) = limj→∞
[
x(k+1)

]
j
). Using

Lemma 2 and (12), one gets

∥∥∥[x(k+1)
]
0
− x(k+1)

∥∥∥ =
∥∥∥x̄(k+1) − x(k+1)

∥∥∥ = η(k) ≤ η‖λ(k+1) − λ(k)‖ ≤
c

L
. (13)

In this case, using [4, Theorem 2.3], the Newton method converges quadrati-

cally, i.e., ∥∥∥∥[x(k+1)
]
j+1
− x(k+1)

∥∥∥∥ ≤ L

2c

∥∥∥∥[x(k+1)
]
j
− x(k+1)

∥∥∥∥2 .
Hence,

∥∥∥∥[x(k+1)
]
j
− x(k+1)

∥∥∥∥ ≤ ( L2c
)2j−1 ∥∥∥[x(k+1)

]
0
− x(k+1)

∥∥∥2j .
Thus, using (13), one deduces that

∥∥∥∥[x(k+1)
]
j
− x(k+1)

∥∥∥∥ ≤ c

L
2−2

j−1

.

Thus,∥∥∥∥∥∥
m∑

j=1

λ
(k)
j ∇fi

([
x(k+1)

]
j

)∥∥∥∥∥∥ =

∥∥∥∥∥∥
m∑

j=1

λ
(k)
j ∇fi

([
x(k+1)

]
j

)
−

m∑
j=1

λ
(k)
j ∇fi

(
x(k+1)

)∥∥∥∥∥∥
≤ L

∥∥∥∥[x(k+1)
]
j
− x(k+1)

∥∥∥∥ ≤ c2−2j−1
.

This implies that the computational cost of achieving the desired level of

stationarity is of order log log
(
1
ε

)
. ut

Thus the iteration complexity of Algorithm 1 is just of the order of com-

plexity for solving a standalone strongly convex problem (i.e., computing x(0))
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added with 1
dm−1 multiplied by the cost of a predictor and the iterated Newton

step. We formalize this with the following theorem,

Theorem 2 Let Assumption 31 hold. Define Nε to be the number of iterations

required to obtain x(0), a point that has distance at most ε from the optimal

point corresponding to (2) at λ(0). Assume that the maximum width between

any two neighbors on the grid Λ is,

d ≤ min

(
c

ηL
, d̄

)
, (14)

with d̄ the minimal desired distance between lattice points.

Then, the overall iteration complexity of Algorithm 1 is

Nε +O

(⌊
1

d

⌋m−1
log log

(
1

ε

))
.

Proof First, note that, for each iteration k of Algorithm 1, the complexity of

the predictor step is constant as its computational cost does not depend on ε.

For the corrector Newton step, since one has

‖λ(k+1) − λ(k)‖ ≤ d ≤ c

ηL
,

Lemma 3 implies that the complexity of running the Newton iterations until

approximate optimality is O
(
log log

(
1
ε

))
. The proof is thus completed since

the total number of lattice points in the grid Λ is at most
⌊
1
d

⌋m−1
.

Note that by using a gradient solver, the first term Nε is of order log(1/ε).

Hence, one can see that the complexity is generally favorable compared to

the naive method of solving the strongly convex problem at every grid point

separately, as log log
(
1
ε

)
� log(1/ε) for small ε.
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Remark 1 Note that both the naive method of solving every problem across

the grid points and path-following are both about equally parallelizable with

perfect speedup as long as the number of grid points is larger than the num-

ber of processors. We can split the grid into disjoint components, and each

processor finds one point in its part of the convex hull of allowable {λi} and

proceeds to path-follow across section of the grid assigned to it.

4 Numerical Illustration

To show the numerical performance of our approach compared to the naive

method (which corresponds to the Gradient Descent method applied sequen-

tially to the set of problems (2) defined for varying λ), we consider a simple

problem given in [7], defined by

f(x) =
[
(x1 − 1)2 + (x1 − x2)2, (x2 − 3)2 + (x1 − x2)2

]>
.

Since we have two objective functions, the vector λ has two components λ1

and λ2 where λ1 + λ2 = 1. In our experiment, we discretize λ in a uniform

grid with a grid step-size d (the desired distance between the lattice points).

In our Matlab illustration, we will call Multi-GD the naive method and

GD+Newton Pathfollowing the implementation of our Algorithm 1 (where

we used the standard Gradient Descent method to find the first Pareto optimal

point and then apply the Newton path-following procedure). For the Gradient

Descent method, we used a random initial point x0 and a stepsize equal to
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1/λmax where λmax is the maximum eigenvalue for the Hessians of f1 and f2.

We stopped the methods when the norm of the gradient was less than 10−7.

The obtained results are shown in Figure 1. One can see that both methods

are able to find a similar Pareto Front (independently of the value of the grid

spacing d). In term of the elapsed CPU time to find the front, our proposed

algorithm can be seen to be faster than the naive method. In particular, one

can see that for some values of d, the method GD+Newton Pathfollowing

can obtain the approximately optimal solution with up to 10 times faster

total run-time than the Multi-GD method. We conducted other experiments

(not reported here) on many toy problems and in all of them our method was

outperforming the naive method in run-time while finding essentially the same

front.

5 Conclusion

In this note, we studied the iteration complexity of a class of strongly convex

multi-objective optimization problems. We observed that the notion of itera-

tion complexity is not uniquely defined as there can be varying possible criteria

of what it means to solve a multi-objective optimization problem. By working

with the most context-independent criterion (namely, finding the set of all

Pareto optimal points on a front), we demonstrated that finding the solution

of one scalarized problem and then path-following across the grid to obtain

the others is superior to finding the solution of every problem independently.
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(a) Pareto Front with d = 10−1.
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(b) Pareto Front with d = 10−2.

f
1

0 1 2 3 4

f 2

0

1

2

3

4

5
Multi-GD
GD + Newton Pathfollowing

(c) Pareto Front with d = 10−3.
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Fig. 1 Pareto Front and CPU time comparison, using Multi-GD and GD+ Newton

Path-following, for different values of d.
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