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Robust Active Mirror Control Based on Hybrid
Sensing for Spacecraft Line-of-Sight Stabilization

Francesco Sanfedino, Valentin Preda, Valérie Pommier-Budinger, Daniel Alazard, Fabrice Boquet, and
Samir Bennani

Abstract—Modern space observation missions de-
mand stringent pointing requirements that motivated
a significant amount of research on the topic of microvi-
bration isolation and line-of-sight stabilization systems.
While disturbances can be reduced by mounting some
of the noisy equipment on various isolation platforms,
residual vibrations can still propagate through and be
amplified by the flexible structure of the spacecraft.
In order to alleviate these issues, the line-of-sight
must also be actively controlled at the payload level.
However, such systems typically have to rely solely
on low frequency sensors based on image processing
algorithms. The goal of this paper is to present a
model-based control methodology that can increase the
bandwidth of such systems by making use of additional
rate sensors mounted on the main disturbance elements
impacting the optical path. Following a comprehen-
sive model identification and uncertainty quantification
part, the robust control strategy is designed to account
for plant uncertainty and provide formal worst-case
performance guarantees. Excellent agreement between
theoretical prediction and experimental results are ob-
tained on a test bench developed at the European Space
Agency.

Index Terms—Fast steering mirror, hybrid sensing,
microvibrations, pointing stability, robust control.

I. Introduction

THE main concern of modern high accuracy Space
missions is the isolation of on-board microvibrations,

that can severely impact the performances of sensitive
optical equipment. These low amplitude vibrations are
mostly generated by mechanical devices such as reaction
wheels (RW), control moment gyroscopes (CMG), cry-
ocoolers or solar array drive mechanisms (SADM) [1] and
can span a large bandwidth ranging from a few Hz to sev-
eral hundreds Hz. In addition, due to the flexible nature of
the spacecraft, these microvibrations can be significantly
amplified around the resonant frequencies of the structure
and strongly limit the achievable optical performance.
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Earth observation Space missions and astronomical tele-
scopes thus suffer from permanent degradation on the
information gathered in the recorded images. However, in
many instances, noisy equipment is critical to ensure the
correct orientation, temperature control or power supply
of the entire spacecraft and cannot be simply turned
off during the imagining window. Therefore, there is a
significant need to develop microvibration management
systems that ensure high levels of line-of-sight stability.
For example, NASA’s Hubble Space Telescope (HST) is
one of the first bench studies for a high-accuracy pointing
system with a performance requirement of 0.01 arcsec [2].
Modern missions, such as the James Webb Space Telescope
(JWST) [3] and Euclid [4] even aim nano-radian precision
for their optical payload.

To achieve these demanding goals, a relevant research ef-
fort focused on developing better mathematical models of
the main microvibration sources, namely RWs and CMGs,
used for attitude control [5]–[11]. These generate speed-
dependent harmonic perturbations due to mass imbalances
in the rotating flywheel, ball bearing or motor imperfec-
tions. A significant number of passive and active isola-
tion strategies have been proposed that specifically target
the vibrations induced by such equipment. For example,
the flywheels of the HST were isolated by introducing a
supplementary damping element between the disturbing
forces/torques and the spacecraft hub to reduce the trans-
missibility function [2]. Unfortunately, the main drawback
of passive isolators is that they only attenuate high fre-
quency noise and can even degrade the performance in
the low frequency by introducing new flexible modes with
a low damping ratio. Furthermore, for a solution based
solely on passive isolators, there exists a fundamental
trade-off between high frequency attenuation and peak
gain at the natural frequency. A widely adopted idea to
overcome such limitations is to combine passive isolator
with active control into so-called hybrid passive/active
isolation systems. For example [12], [13] proposed and
tested a low frequency flexible platform comprised of four
folded continuous beams arranged in three dimensions.
In [14] magnetorheological elastomers were used to build
smart sandwich beams for microvibration isolation. An-
other common configuration is the so-called Stewart or
hexapod platform [15]–[17] where six active (or hybrid)
legs are used to actuate and stabilize the platform sup-
porting the disturbance source. This arrangement was also
used by [18] on the Micro-Precision Interferometer test bed
in order to demonstrate six degrees of freedom vibration
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isolation. In [19] an original hybrid isolators configuration
was proposed consisting of an active plate mounted on
top of passive elastomer isolators. The forces and torques
transmitted to the base structure are measured using a
group of piezo-electric force cells and control inputs are
computed for a set of six proof-mass actuators mounted
on the active plate. The setup was further developed
in [9]–[11] by adopting an innovative H∞/LPV robust
control strategy that schedules the controller based on the
flywheel speed.

However, isolation at the disturbance source level for
some electromechanical subsystems such as SADM or
antenna trimming motors can be challenging from the
point of view of mechanical complexity. To compensate
for the residual LOS errors, the degraded optical path can
also be also corrected at the payload level by means of
various active optics systems. For example, Neat et al.
[18] combined piezo-electric fast steering mirror and voice
coils for spaceborn optical interferometers to meet sub-
micron accuracy. Somov et al. [20] proposed a fine image
motion stabilization for flexible large-scale remote sensing
spacecraft. Canuto [21] presented an observer-based con-
trol strategy for piezo-electric actuators employed in the
global astrometric interferometer for astrophysics (GAIA)
mission. The JWST [22] mounts a fine pointing device
driven at 30 Hz by voice coils. Sun et al. [23] designed
and validated experimentally a payload-platform driven
by four piezo-electric actuators coupled with displacement
amplifier to isolate microvibrations up to 5 Hz. However,
in these systems the full potentiality of the actuators is
underexploited because of the limitations imposed by the
sensing devices.

In this context, the main focus and contribution of
this paper is to propose a hardware-in-the-loop facility
to assess internal disturbance rejection using the full
capability of the piezo-electric technology in order to
drive an FSM to mitigate the microvibrations up to 100
Hz. The target mission is a Space telescope the optical
payload of which has a low bandwidth and a considerable
integration time, like a CCD camera. The novelty of the
approach is the introduction of a fast Angular Rate Sensor
(ARS-14 by Applied Technology Associates [24]) based on
the magneto-hydrodynamic (MHD) effect. This compact
sensor is Space qualified and can be installed on the most
sensitive optical element in the telescope, generally the
primary mirror, to collect the LOS distortions transmitted
by all the vibration sources. A robust control synthesis
is proposed to fusion the measurements provided by the
CCD camera and the ARS-14 in a µ/H∞ framework [25]–
[29] directly in the frequency domain. This framework
was selected among the different linear controller design
techniques in order to find an optimal balance between
the various constraints and objectives expressed in the
frequency domain [29]. Other techniques such as nonlinear
control were not investigated due to the linear behavior of
the considered plant.

Thanks to multi-sensor fusion, that benefits from the
CCD outputs at low frequency and from the ARS outputs

in the high frequency (usable bandwidth between 2 and
2000 Hz), it is possible to extend the control bandwidth
up to 100 Hz. An experimental test bench developed at
the European Space Agency (ESA-ESTEC) laboratories
serves as validation of this approach. This setup is used
for a double objective:

1) to set up a high-fidelity benchmark to replicate the
LOS jitter of a Space mission with a hardware-in-
the-loop configuration. This task is carried out by
a Disturbing Fast Steering Mirror (DFSM) equipped
with an MHD sensor. The objective of the DFSM
is to generate a calibrated disturbance based on a
model of the microvibrations and deflect a laser beam.
This model can be adapted according to any specific
observation Space mission. An example of such a
model is detailed in Section III-C;

2) to validate a novel microvibration control architec-
ture based on multi-sensor fusion and a Control Fast
Steering Mirror (CFSM) to improve the traditional
pointing performances by extending the rejection
bandwidth to 100 Hz and reduce the transmitted dis-
turbances at least by 10 dB. Formal proof of stability
and performance guarantees is provided as well in the
structured singular value framework in order to make
this system robust to any model uncertainty.

The methodology presented in this paper is based on
the assumption that the system is subjected to small
deflections and the hypothesis of linear dynamics holds.
This assumption includes the majority of Space applica-
tions, that generally avoid large deflections and nonlinear
behaviour of the structures by design. In cases where this
hypothesis has to be removed, the specific nonlinearity is
taken into account in control tuning and validation phases.
The common practice consists then in iterating between a
linear controller design and a Monte-Carlo analysis of the
full nonlinear plant model.

The experimental setup is first presented in Section
II-A. The method used for identification is then described
in Section II-B. The control architecture used for the
DFSM tracking problem and for the LOS stabilization
with the CFSM are respectively outlined in Section II-C
and Section II-D. Section III shows the experimental
results with analysis of the stability and performance
robustness of the system. A short application of the setup
for spacecraft scenario simulation is finally presented in
Section III-C.

II. Materials and Methods
A. Experimental setup

The experimental bench used in this study, shown in
Fig. 1c, aims to represent a simplified Space telescope
observation mission. By taking as reference a Korsch
telescope [30] (see Fig. 1), displacements in the primary
mirror relative to the imaging sensor are assumed to be
the biggest contributor to the overall LOS error. The dis-
turbance in the LOS due to the relative movement of other
optical elements is considered negligible in comparison.
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Furthermore, the rigid body of the satellite is assumed
to be in perfect alignment with the target object.

In accordance with the previously described mission,
the setup is composed of two piezo-electric Fast Steering
Mirrors (FSMs), an autocollimator and an angular rate
sensor attached to one of the active mirrors. The autocolli-
mator (CONEX-LDS by Newport [31]) sends a laser beam
that reflects off the two mirrors and then returns back on
a position sensor embedded within the device. Based on
these sensor measurements, the angle between the outgo-
ing and incoming rays is calculated down to sub micro
rad resolution with a maximum acquisition frequency of
2000 Hz. In this study, the autocollimator is used to
simulate a low-bandwidth LOS error measurement system
based upon a camera and an image processing algorithm.
Therefore, the acquisition frequency of the autocollimator
is reduced and high frequency noise is added to match
that of a typical imaging sensor. Furthermore a variable
time delay is added to simulate the image processing time.
This new sensor block will be subsequently called virtual
CCD or simply CCD. The DFSM, product manufactured
by CEDRAT Technologies, is used to simulate the typical
pointing errors induced by the microvibration sources by
deflecting the autocollimator laser beam. As shown in Fig.
1c, a single-axis ARS is mounted on the DFSM in order to
measure the deflection rate of the mirror around the axis
parallel to the table.

The schematic diagram of the microvibrations control is
shown in Fig. 2. The software part is implemented in the
MicroLabBox provided by dSpace.

Two independent controllers are needed. The DFSM
controller takes as reference the LOS disturbing profile r
and tracks it by using the strain gauge measurements ySn
collocated with the piezoelectric actuators. The objective
of this controller is to perfectly reproduce the demanded
reference LOS error for a frequency up to 100 Hz and
minimize any gain and phase distortions.

On the other hand the CFSM controller uses the mea-
surements yCn and yAn obtained from the virtual CCD
block and the angular rate sensor to provide the command
u. This command is used to drive the piezo-electric stack
within the CFSM (model S-330.2SL produced by Physik
Instrumente [32]) and stabilize the LOS. The challenge
introduced by this architecture is the use of the ARS in
feed-forward control: it directly measures the disturbances
but is not affected by the CFSM control command u.
No high-rate measurements are thus available in feedback
to know how well the CFSM is stabilizing the LOS. The
performances of a feed-forward controller are known to be
directly linked to the accuracy of the plant modeling. This
is why a robust control synthesis in µ/H∞ framework was
adopted to cover a large set of possible plant uncertainties
and guarantee a certain level of robust closed-loop perfor-
mance. Note that this paper focuses on LOS stabilization
along a single axis for simplicity’s sake. However, the
techniques presented in this work can be extended to the
dual-axis LOS control problem without significant changes
to the overall methodology.

M1

M2

(a)

FSM
CCD

M1

M2

Target scene

ARS

Satellite platform

(b)

Autocollimator
Disturbing Fast Steering Mirror
Control Fast Steering Mirror
Angular Rate Sensor

(c)

Fig. 1. (a) Mirror architecture for the Euclid mission. Image credit:
Airbus Defence and Space. (b) Schematic of the space application
considered in this study (c) ESA’s experimental setup for line-of-
sight stabilization.

B. Model identification method
The goal of plant identification is to find mathemat-

ical models that describe the two uncertain systems to
be controlled: the DFSM ḠD for reference LOS error
tracking and the CFSM ḠLOS used for LOS stabilization.
Their Linear Fractional Transformation (LFT) models
are schematically represented in Fig. 3, with ḠD =
Fu (GD,∆D) and ḠLOS = Fu (GLOS,∆LOS), where Fu
denotes the upper LFT. The basic idea of the LFT for-
malism is to express the process model as a feedback
connection between the nominal plant and the uncertainty
description of the system [27], [33].

The steps of the identification process are the following:
1) Recording of the sensor outputs without excitation of

the outputs for noise characterization (strain gauge
noise nS , autocollimator noise nL and ARS noise
nA). The background noise caused by external sources
such as air-conditioning, road traffic together with
the electrical noise from the main supply (50 Hz and
harmonics) is integrated in these measurements. The
hypothesis taken here is that the environment influ-
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Error
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u
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yCn

r
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Fig. 2. Hardware-in-the-loop facility architecture.
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nS
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uD

GD

∆D

(a)

yL

yA

r

u

z∆w∆

nL

nA

yLn

yAn

GLOS

∆LOS

r

(b)

Fig. 3. LFT models and output noise
signals of the two plants: (a) Disturbance
Fast Steering Mirror, (b) LOS stabiliza-
tion with combined Control Fast Steering
Mirror, autocollimator and ARS sensor
blocks.

ences directly the output measurements and not the
inputs of the system. This hypothesis is due to the
difficulty to exactly separate the contribution of the
noise due to sensing and/or the external disturbances.

2) Excitation, in turn, of each input by a logarithmic chirp
with maximum amplitude set at 90% of the maximum
feasible value and record of the sensor outputs.

3) Estimation of the Amplitude Spectrum (AS) of the
noises.

4) Non-parametric estimation of the nominal plants and
the variance of the system spectral estimate by Spectral
Analysis method [34]. According to this method the
Frequency Response Function (FRF) of the plant G(s),
with s Laplace variable, is computed as the ratio
between the cross spectrum Φyu(s) and the autopower
spectrum Φuu(s) of the input-output signals [35]:

G(s) = Φyu(s)
Φuu(s) . (1)

The Welch method [36] gives an estimation of Φyu(s)
and Φuu(s) by splitting the N input-output samples in
M subrecords of N/M samples each. If

(
X(k)[m])

W
is

the windowed Discrete Fourier Transform (DFT) of the
signal x(t) computed on N/M samples and defined by

(
X(k)[m]

)
W

= 1
wrms

√
β

β−1∑
n=0

w(nTs)x(nTs)e−j
2πkn
β ,

(2)
with β = N/M , Ts sampling period and wrms =(∑N/M−1

n=0 |w(nTs)|2/(N/M)
)1/2

the root mean square
of the window w(t), the estimate of the cross- and
autopower spectra is respectively given by

Φ̂YWUW (k) = 1
M

M∑
m=1

(
Y [m](k)

)
W

(
U [m](k)

)
W
, (3)

with U complex conjugate of U and

Φ̂UWUW (k) = 1
M

M∑
m=1

∣∣∣(U [m](k)
)
W

∣∣∣2 . (4)

Using (3) and (4) the estimate of the plant in (1) is
thus given by

Ĝ(k) = Φ̂YWUW (k)
Φ̂UWUW (k)

. (5)

The quality of the spectral estimate (5) is quantified
by the coherence spectrum Γ(k)

Γ(k) =

∣∣∣Φ̂YWUW (k)
∣∣∣2

Φ̂YWYW (k)Φ̂UWUW (k)
, (6)

which is a value between 0 and 1 that highlights the
presence of a disturbing noise, nonlinear distortions,
residual leakage errors or a non-observed input [35]
when it is smaller then unity. The variance of the
spectral analysis estimate is thus defined as

σ̂2(k) = 1− Γ(k)2

Γ(k)1/2

∣∣∣Ĝ(k)
∣∣∣2 . (7)

5) Fitting the amplitude spectrum obtained at step 3 with
continuous-time minimum-phase state-space model us-
ing log-Chebyshev magnitude design [37], [38] with the
Matlab function fitmagfrd.

6) Continuous-time transfer function estimation of the
nominal plants G(s) using the discrete-time frequency-
domain data obtained at step 4 in (5) with fixed
number of poles and zeros [39], [40] and by enforcing
stability, with the Matlab function tfest of the System
Identification Toolbox [34].

7) Fitting the frequency response magnitude data of
the estimated total uncertainty model represented by
the filter Ŵ∆(k) with continuous-time minimum-phase
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state-space model W∆(s) using log-Chebyshev magni-
tude design so that the total uncertainty on the plant
results

∆(s) = W∆(s)∆̃(s), ||∆̃(s)||∞ ≤ 1. (8)

Ŵ∆(k) is due to two contributions:
• Spectral estimate uncertainty Ŵ∆np

(k) com-
puted on one standard deviation of the system es-
timate:

Ŵ∆np
(k) =

√
σ̂2(k) (9)

• Additive model fitting uncertainty Ŵ∆p
(k) due

to the difference between the non-parametric esti-
mation of the nominal plant Ĝ(k) (step 4) and the
continuous transfer function G(s) (step 5) sampled
at Ts,

Ŵ∆p
(k) = G(k)− Ĝ(k). (10)

The total estimated uncertainty Ŵ∆(k) is finally rep-
resented by the filter

Ŵ∆(k) =
∣∣∣Ŵ∆np

(k)
∣∣∣+
∣∣∣Ŵ∆p

(k)
∣∣∣ (11)

These uncertainties will be used in the next section to
directly design the weighting filters.

C. Disturbing Fast Steering Mirror control architecture
and specifications

The DFSM controller has to insure perfect tracking
of a disturbing LOS profile on a large bandwidth up to
100 Hz. Thus the synthesis and verification of this con-
troller is overriding and essential to the LOS stabilization
bench. The available DFSM has a local controller using
the strain gauge measurements to overcome the problems
of hysteresis and creep typical of piezoelectric actuators.
The performances of the device have been estimated by
preliminary identification studies. A bandwidth of ≈ 33 Hz
and a phase shift of 180◦ at 100 Hz have been measured.
The complexity to drive and identify the DFSM in open-
loop without inducing any damage in the mirror gave
rise to the development of a new control to extend the
bandwidth and rectify the phase.

The designed controller KD is used to generate the con-
trol signal uD(t) with uD = KD

[
r ySn

]T, where r(t)
is the reference profile to be tracked and ySn(t) represents
the strain gauge sensor noise outputs. This controller has
to meet stability and performance requirements:

(R1) Robust stability: Closed-loop stability must be
guaranteed with respect to all considered uncertain-
ties.

(R2) Robust tracking performance and control ef-
fort performance: The first performance goal is to
replicate the reference signal up to 100 Hz without
phase shift in the same bandwidth. The second goal is
to not induce degradation of the actuator by keeping
the control signals below manufacturer limits.

1) Closed loop transfer functions: The control synthesis
in this work is defined in the µ/H∞ framework. The
problem comes down to an optimization problem of the
worst-case H∞ norm among different closed-loop signals
scaled by the so-called weighting functions.

Consider the control diagram in Fig. 4. The DFSM
uncertain plant is represented by the block Fu(GD,∆D).
The diagonal transfer function Gref represents the desired
closed-loop transfer function between the sensor measure-
ments yS and the tip/tilt reference profiles r. The weight-
ing functions are labeled W• and they are classified in two
categories: the input weights as Wr and WnS , which are
respectively used to scale the amplitude spectrum of the
reference r and the sensor noise nS , and the performance
weights Wet and WuD , which are used to place the upper
bounds respectively of the tracking error et and of the
control effort uD.

According to Fig. 4, the general open-loop intercon-
nection can be written in terms of the complex uncer-
tainty channels w∆ and z∆, the disturbances dD =[

dr dnS
]T and the performance channels eD =[

eet euD
]T as well as the command uD and the ref-

erence signal r and the noise sensor measurements ynS as
in (12).

If now KD =
[

Kr KS

]T is used to close the
loop such that uD = KD

[
r ySn

]T, define SiD =
[I + KSGySuD ]−1 and TiD = I − SiD as the input sensi-
tivity and the input complementary sensitivity functions.
Similarly, SoD = [I + GySuDKS ]−1 and ToD = I − SoD
denote the output sensitivity and the output complemen-
tary sensitivity functions. The closed-loop interconnection
matrix MD =

[
MD11 MD12

MD21 MD22

]
= Fl(PD,KD), where

Fl denotes the lower LFT and with MDkj = PDkj +
PDk3SiDKDPD3j , takes the form (13).

2) Weighting functions selection: The input reference
weight Wr is scaled with the maximum expected am-
plitude spectrum input reference to be tracked. A 4th-
order Butterworth low-pass filter with cut-off frequency
at 160 Hz is used:

The input weight WnS used to scale the strain gauges
noise is provided by the system identification as explained
in Section II-B at step 5. As shown in Fig. 5a a constant
value is chosen for WnS = 3.5379 · 10−2 mV.

The output weights Wet and WuD translate the per-
formance requirement (R2) at Section II-C and their
inverse represents the desired worst-case upper bounds
on the amplitude spectrum of the tracking error et and
the control signal uD. The limit of the achievable per-
formances is given by the nominal performance matrix
MD22 . The nominal requirements are in fact met if the
condition ||MD22 ||∞ < 1 holds. Consider the transfer func-
tion MDdr→eet

= Wet (Gref −GySuDSiDKr) Wr from
the normalized reference dr to the tracking performance
eet and assume that Wet has a high gain in a par-
ticular frequency region. In order to satisfy the condi-
tion ||MD22 ||∞ < 1, the controller also has to shape
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Fig. 4. Interconnection structure for synthesis and analysis of the Disturbing Fast Steering Mirror (DFSM).

(a) (b) (c)

A
S

(V
)

A
S

(µ
ra

d)

A
S

(V
)

Fig. 5. Amplitude Spectrum of the sensor noise: (a) DFSM strain gauges, (b) autocollimator, (c) ARS.

the function SiDKr with sufficiently high gain in the
same frequency bandwidth and decrease the open-loop
disturbance contribution to the tracking error PDdr→eet

=
WetGrefWr.

According to these considerations the tracking weight
Wet is chosen as a couple of parallel filters Wet =[
Wet Wet

]
. The weight Wet is a 5th-order Butterworth

low-pass filter with low-frequency gain 1/εmax, where
εmax = 5% is the upper bound on the tracking error,
and cut-off frequency at 2π · 150 rad/s. On the other hand
the weight Wet = 1/εmax, with εmax = 10% imposes an
upper bound on the tracking error at high frequencies. The
output weight Weu finally limits the control signal in the
band of interest with the upper bound WuD = 0.04.

D. LOS stabilization control architecture and specifications
Once the DFSM is able to replicate the desired LOS jit-

ter, a controller is required to mitigate it on a large band-
width up to 100 Hz. The CFSM controller is synthesized
in the µ/H∞ framework by fusion of the measurements of
the virtual CCD and the ARS.

The designed controller K is used to generate the control
signal u(t) with u = K

[
yCn yAn

]T, where yCn(t)
represents the CCD outputs with noise and yAn(t) are
the ARS measurements with noise. This controller has to
meet stability and performance requirements:

(R1) Robust stability: Closed-loop stability must be
guaranteed with respect to all considered uncertain-
ties.

(R2) Robust rejection and control effort perfor-
mance: The first performance goal is to reject all the
disturbances to the LOS jitter caused by the DFSM
deflection and the sensor measurements within 100 Hz
to an upper bound of 10µrad. The second goal is to
not induce degradation of the actuator by keeping the
control signals below the manufacturer limits.

1) Closed loop transfer functions: Consider the inter-
connection structure for LOS stabilization in Fig. 6. The
plant GLOS is shown in Fig. 1c, where the inputs are the
reference signal r provided to the DFSM together with
the control signal u and the outputs are the autocollimator
and the ARS measurements, yL and yA respectively. Note
that the transfer function u→ yA = 0 because the control
signal u does not affect the DFSM dynamic and the ARS
measurements as a consequence.

The CCD camera model comprises three blocks: a sec-
ond order low-pass Butterworth filter GC with a cut-
off frequency of 20 Hz, an uncertain fixed time delay
τ = 10 ms modeled with a second order Pade approxi-
mation Gτ with an additive uncertainty ∆τ which takes
into account the amplitude mismatch between the Pade
approximation and a true time delay, a variable time
delay τv modeled as a multiplicative uncertainty ∆τv . The
weighting filters W∆τ

and W∆τv
respectively scale the

complex uncertainty ∆τ (s) s.t. ||∆τ (s)||∞ ≤ 1 that takes
into account the mismatch between the Pade approxima-
tion and the true time delay and the complex uncertainty
∆τv (s) s.t. ||∆τv (s)||∞ ≤ 1 that models the variable time
delay.
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z∆
eet
euD
r

ySn

 = diag


I

Wet

WuD

I
I




Gz∆w∆ 0 0 Gz∆uD

−GySw∆ Gref 0 −GySuD

0 0 0 I
0 I 0 0

GySw∆ 0 I GySuD

diag


I

Wr

WnS

I


︸ ︷︷ ︸

PD


w∆
dr
dns
uD

 . (12)

[
z∆
eet
euD

]
= diag

(
I

Wet
WuD

)[ Gz∆w∆ + Gz∆uDSiDKSGySw∆ Gz∆u∆SiDKr Gz∆u∆SiDKS

−
(
I + ToD

)
GySw∆ Gref −GySuD

SiDKr −ToD
SiDKSGySw∆ SiDKr SiDKS

]
diag

(
I

Wr

WnS

)
︸ ︷︷ ︸

MD=Fl(PD,KD)

[
w∆
dr
dns

]
.

(13)
z∆
zτ
zτv
eyL
eu

yCn
yAn

 = diag


I
I
I

WyL
Wu

I
I




Gz∆w∆ 0 0 Gz∆r 0 0 0 Gz∆u
GCGyLw∆ 0 0 GCGyLr GC 0 0 GCGyLu

GτGCGyLw∆ I 0 GτGCGyLr GτGC 0 0 GτGCGyLu

GyLw∆ 0 0 GyLr 0 0 0 GyLu

0 0 0 0 0 0 0 I
GτGCGyLw∆ I I GτGCGyLr GτGC 0 I GτGCGyLu

GyAw∆ 0 0 GyAr 0 I 0 0

diag



I
W∆τ
W∆τv
Wr

WnL
WnA
WnC

I


︸ ︷︷ ︸

P



w∆
wτ

wτv
dr

dnL
dnA
dnC

u


(14)

z∆
zτ
zτv
eyL
eu

 = diag


I
I
I

WyL

Wu


[

M̄11 M̄12
M̄21 M̄22

]
diag



I
W∆τ

W∆τv

Wr

WnL

WnA

WnC





w∆
wτ

wτv

dr
dnL
dnA
dnC


, (15)

with

M̄11 =

 Gz∆w∆ + Gz∆uS (KCGτGCGyLw∆ + KAGyAw∆) Gz∆uSKC Gz∆uSKC

GC [(I + T) GyLw∆ + SKAGyAw∆ ] GCGyLuSKC GCGyLuSKC

GτGC [(I + T) GyLw∆ + SKAGyAw∆ ] I + T T

 , (16)

M̄12 =

 Gz∆r + Gz∆uS (KCGτGCGyLr + KAGyAr) Gz∆SKCGτGC Gz∆uSKA Gz∆uSKC

GC [(I + T) GyLr + GyLuKAGyAr] GC (I + T) GCGyLuSKA GCGyLuSKC

GτGC [(I + T) GyLr + GyLuKAGyAr] GτGC (I + T) GτGCGyLuSKA T

 ,
(17)

M̄21 =
[

(I + T) GyLw∆ + GyLuSKAGyAw∆ GyLuSKC GyLuSKC

S (KCGτGCGyLw∆ + KAGyAw∆) SKC SKC

]
, (18)

M̄22 =
[

(I + T) GyLr + GyLuSKAGyAr T GyLuSKA GyLuSKC

S (KCGτGCGyLr + KAGyAr) SKCGτGC SKA SKC

]
, (19)

The input filters Wr, WnL , WnC and WnA scale the
amplitude spectrum of the reference r and of the sensor
noises nL, nC and nA.

According to Fig. 6, the general open-loop intercon-
nection can be written as done for the DFSM control
architecture as in (14).

If now K = diag (KC ,KA) is used to close the
loop such that u = K

[
yCn yAn

]T, define S =
[I + KCGτGCGyLu]−1 and T = I − S as the sensitiv-
ity and the complementary sensitivity functions. Since
the feedback is a single input single output channel
(SISO) the output sensitivity and the output comple-
mentary sensitivity functions are the same as the input

functions. The closed-loop interconnection matrix M =[
M11 M12
M21 M22

]
= Fl(P,K), where Fl with Mkj = Pkj +

Pk3SiKP3j , takes the form (15).
2) Weighting functions selection: The uncertainty

weights W∆τ
and W∆τv

, used for the CCD camera
model, scale the blocks M11 and M21. Any increase in
the weights, covering a larger uncertainty set, must be
accompanied by a corresponding decrease in the maximum
gains of some closed-loop functions, such as T and SKC ,
that are scaled by that particular weight. At the same time
the functions SKC and T also appear in the closed-loop
transfer function d→ eyL . To maximize the performances
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Wr

K

∆LOS

Wu

WyL

eyL

ueu

dr r yL

WnL

dnL

nL

yA

nA dnA

Gτ

Camera Sensor

dnC

nC

z∆w∆

zτ wτ

zτv

wτv

Pointing Performance
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Disturbance Weigth

yAn

yCn

yLn

yC

W∆τ

GC

∆τ

WnA

WnC

∆τv

W∆τv

GLOS

Gz∆w∆
Gz∆r Gz∆u

GyLw∆
GyLr GyLu

GyAw∆
GyAr 0

P

K

∆LOS

∆τ

∆τv

M

u

d =
dr
dnL
dnA
dnC



e = eyL
eu



⇒

∆ ∈ ∆ z =
z∆

zτ
zτv


w =
w∆

wτ

wτv



y =

 yCn

yAn



Fig. 6. Interconnection structure for robust synthesis and analysis of the LOS stabilization subsystem.

on the disturbance rejection, it is thus necessary to use the
smallest set of uncertainty to model the fixed and variable
time delay using low magnitude weights.

The weighting function W∆τ
scales the additive com-

plex uncertainty in order to compensate for the 2nd-order
Pade approximation used to model the fixed time delay of
the CCD camera. A 4th-order Butterworth high-pass filter
Bhp with cut-off frequency at 83 Hz and low-frequency
gain α = 2 is used to fit the difference between the true
time delay and the Pade approximation W∆τ

:

W∆τ
= α ·Bhp. (20)

The weighting function W∆τv
provides an overbound

on the multiplicative uncertainty used to model the CCD
variable time delay τv ∈ [0, τvmax ]. The model proposed by
Wang et al. [41] is used:

W∆τv
= s

1/3.465s+ τ−1
vmax

, (21)

with τvmax = 1 ms.
The input weight Wr is scaled on the maximum ex-

pected amplitude spectrum input of the disturbance signal
spectrum with a 2nd-order low-pass Butterworth filter
with cut-off frequency ωco = 2π · 100 rad/s:

Wr = βω2
co

s2 + 1.4121ωcos+ ω2
co

(22)

with β = 7%.
The input weights WnL , WnA used to scale the sensor

noises from the autocollimator and the ARS are directly
provided by the identification phase as explained in Sec-
tion II-B at step 5. These filters are shown in Fig. 5b
and Fig. 5c respectively. For the CCD model noise, a 3rd-
order high-pass filter WnC in (23) with low-frequency gain
of 32.321 nrad is chosen after analysis of real spacecraft
scenario:

WnC = 32.321 · 10−3 ·
(

s+ 2π · 9.4872
s+ 10 · 2π · 9.4872

)3
(23)

With the uncertainty and input weights properly set
the output weighting functions WyL and Wu translate
the performance requirement (R2) at Section II-D. Their

inverse indeed represent the desired worst-case upper
bound on the amplitude spectra of the absolute LOS jitter
and the normalized actuator control signal. According
to Wu a unit gain filter is used, that imposes an up-
per bound on the normalized amplitude spectrum of the
control input. This maximum amplitude corresponds to
the operational amplitude voltage range provided by the
manufacturer with guaranteed performances of the device
without encountering any degradation. The performance
filter on input disturbances rejection WyL shapes both the
sensitivity function S and the complementary sensitivity
function T as shown in (19) in the transfer function M̄22.
This architecture is a particular case of tracking problem
where the reference is 0. As a consequence, to have a
high rejection a high gain of T has to be imposed in the
bandwidth of interest. However this high gain also implies
a high level of autocollimator sensor noise in the same
bandwidth and therefore limits the pointing performance
(see transfer function dnL → eyL in (19)).

Three different controllers were studied in order to
highlight the advantages to make the fusion of the CCD
and ARS measurements:

1) Scenario 1: only CCD measurements available;
2) Scenario 2: only ARS measurements available;
3) Scenario 3: both CCD and ARS measurements avail-

able.
According to the previous considerations WyL were chosen
differently according to the three different scenarios.

For Scenario 1 a 4th-order Butterworth low-pass filter
Bi
lp with cut-off frequency of 9 Hz and low-frequency gain

of 1/εmax is chosen, with εmax = 10µrad upper bound on
the accepted LOS jitter spectrum amplitude:

Wi
yL = (1/εmax) ·Bi

lp (24)

This filter imposes a closed-loop upper bound on the
LOS spectrum of 10µrad up to a frequency of 9 Hz. This is
a conservative requirement since only low frequency signals
from the virtual CCD are made available.

For Scenario 2 a 4th-order band-pass Butterworth fil-
ter Bbp is used with low frequency cut-off frequency of
10 Hz and high frequency cut-off frequency of 100 Hz. The



9

Butterworth filter Bbp is built so as not to demand a low
LOS jitter where the ARS transfer function has a low gain
at low frequency and beyond the rejection bandwidth of
interest. The low frequency gain is imposed at 1/εmax and
a Notch filter N is added to compensate for the electric
noise caused by the main supply voltage at 50 Hz:

Wii
yL = (1/εmax) ·Bbp ·N (25)

where N = s2+2γminζωNF s+ω2
NF

s2+2ζωNF s+ω2
NF

, with γmin = −30 dB, ζ =
0.1 and ωNF = 2π · 50rad/s.

Finally for Scenario 3 a 4th-order Butterworth low-pass
filter Biii

lp with cut-off frequency of 100 Hz together with a
low frequency gain of 1/εmax and the Notch filter N:

Wiii
yL = (1/εmax) ·Biii

lp ·N (26)

E. Control synthesis

Both control syntheses for the DFSM and CFSM follow
the same problem formulation. The notation for CFSM
will be used in this section but the same conclusions
have to be associated with the DFSM problem. The
controller synthesis is thus expressed as a multicriteria
optimization problem on the closed-loop transfer function
M = Fl(P,K):

minimize
K∈K,

{DS ,D1,...,Dn}∈D

γ s.t.


∣∣∣∣DSM11D−1

S

∣∣∣∣
∞ < 1/ν∣∣∣∣∣∣∣∣diag

([
Di
√
ε
Xi

]
M
[ √

εD−1
i

I

])∣∣∣∣∣∣∣∣
∞
< γ

,

i ∈ {1, . . . , n},
(27)

with Xi =
[

01×(i−1) 1 01×(n−i)
]
. Here, D• are

the so-called D-scaling matrices so that, for any D• ∈ D
and ∆ ∈ ∆, the condition D•∆ = ∆D• holds [42]. In
order to increase the number of degrees of freedom, the
level of guaranteed robust performance, different D-scales
are used for the robust stability and robust performance
conditions in (27). The constraint

∣∣∣∣DSM11D−1
S

∣∣∣∣
∞ < 1/ν

is used to impose the robust stability condition (R1)
for any uncertainty ∆ ∈ ∆ with ||∆||∞ < ν. The
subsequent constraints are used to enforce each of the
robust performance requirements (R2) for ||∆||∞ < ε/γ,
where ε ∈ [0, 1] tunes the trade-off between performance
and robustness (see [11] for details). The NP-hard problem
(27) is classically solved with the DK-iteration algorithm
[33], which provides a high order controller (unstructured
controller). This approach is used in this work to initialize
the controller and the D-scales for solving (27) in order to
obtain a structured low-order and robust controller with
modern nonsmooth H∞ synthesis techniques [28], [29].
The optimization strategy used in this work is described
in further detail in the following four steps:

Step 1: The original minimization problem given in
(27) is reduced to the simpler, but more conservative,
single criteria optimization:

minimize
K̄∈K,D̄∈D

γ s.t.∣∣∣∣∣∣∣∣[ D̄
√
ε

I

]
M
[ √

εD̄−1

I

]∣∣∣∣∣∣∣∣
∞
< γ,

(28)

with fixed D̄ and ε. This problem is solved with the
classical DK-iteration algorithms that provide an unstruc-
tured controller that has the same order of the augmented
plant P.

Step 2: Model reduction of the set D obtained at Step 1
by balanced stochastic model truncation (BST) via Schur
method [43], [44] to a lower order. A 2nd-order transfer
function is generally used.

Step 3: Model reduction of the controller K̄ obtained
at Step 1 by BST to get a structured low order controller
K.

Step 4: The D-scale matrices obtained at Step 2 and
the controller K obtained at Step 3 are used to initialize
and solve the full minimization problem (27). As this prob-
lem is less conservative and with more degrees of freedom
compared with (28), it follows that the performances are
guaranteed to improve.

III. Results and discussion

In this section the results of the identification and con-
trol will be given both for the DFSM and for the complete
LOS stabilization bench. Then a practical application for
the LOS stabilization of a spacecraft will be outlined.

A. Disturbing Fast Steering Mirror: identification and con-
trol

The DFSM is a tip/tilt platform the axes of which can
be decoupled and considered as a SISO system. The results
of the system identification described in Section II-B for
the DFSM are shown in Fig.7. The nominal DFSM transfer
function between the input voltage uD and the strain
gauge voltage yS is identified as a third order. The filter
W∆D

used to scale the additive uncertainty on the plant
(see Section II-B step 7) is shown in Fig. 7b. This filter has
a two-poles two-zeros transfer function. The strain gauge
sensor noise nS is shown in Fig. 5a and is modeled as a
constant gain WnS multiplying the normalized noise dr.

The structure of the controller is obtained by a reduc-
tion to a fourth-order model of the unstructured controller
(see Section II-E at step 3). The experimental closed-loop
validation is shown in Fig. 8. The experimental results are
consistent with the predicted results and the controller
makes it possible to extend the unit gain transfer up to
100 Hz with phase recovery of 180◦ on the same bandwidth
as demanded by (R2) in Section II-C.
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Fig. 7. DFSM identification: (a) Transfer function model, (b) Uncertainty model.
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Fig. 8. DFSM closed loop validation.

B. LOS stabilization bench: identification and control

Once the DFSM control is validated, the entire LOS
stabilization bench is identified with the DFSM in closed-
loop as shown in Fig. 2. The reference signal r is the same
chirp signal used for the identification of the DFSM setup.
The results of the identification procedure are summarized
in Fig. 9. The autocollimator and the ARS noises are
respectively shown in Fig. 5b and Fig. 5c. The ARS
measurements are affected at 50 Hz by significant electrical
noise due to the main power supply. It impacts the model
of the transfer function r→ yA (see Fig. 9) that is highly
uncertain at 50 Hz, where the coherence spectrum (6) is
poor.

For the three scenarios, a structured controller with 8
states is chosen. For the scenario where CCD and ARS
measurements are available KC and KA both have 8
states.

1) Robust stability and worst-case analysis: For this
analysis only Scenario 1 and Scenario 3 are considered
since Scenario 2 with only ARS measurements is a pure
feed-forward that can never destabilize the system. The
computation of the structured singular value µ∆ (M11),
numerically performed here by the Matlab function rob-
stab [45], provides the stability margin of the closed loop
interconnection with respect to the set of uncertainty
∆ ∈ ∆. The impact of each uncertainty of the set ∆ on
the stability margin can be studied separately in order
to check the sensitivity of certain parameters on stability
robustness. The results of this analysis are synthesized
in Fig. 10. Note that the peak values are all lower than
one for each case, that means that the stability of the
system is guaranteed for all uncertainty blocks. When only
CCD measurements are available (Fig. 10a) the additive
uncertainty on the CCD fixed time delay ∆τ and the
multiplicative uncertainty on the CCD variable time delay
∆τv play the major role with respect to the full com-
plex system uncertainty ∆LOS at high frequency beyond
the CCD bandwidth. When ARS measurements are also
available (Fig. 10b) the stability margins are considerably
improved on the whole bandwidth of interest. The biggest

degradation appears at 50 Hz, where the ARS electric noise
is introduced in the closed-loop interconnection. Also in
this case the CCD delays are the biggest contributors to
margin degradation.

The high stability margins performed when the ARS
is introduced as high frequency sensor suggest that the
model of the camera variable time delay can be neglected
or a bigger value of τvmax can be tolerated. This is not the
case if only a CCD camera is used as LOS sensor.

The degradation of the performances with respect to the
two indicators (rejection and control effort requirements)
can be studied in the same framework. This is done by
computing the upper bound of the structured singular
value supωµ∆ (Md→e•) from all the input disturbances d
to each performance index: eyL for the rejection and eu for
the control effort. This analysis is numerically performed
by the Matlab function wcgain [45]. The results of this
computation are shown in Fig. 11 for the three scenarios.
In the three cases, the rejection index eyL is the one
limiting the performances. The worst-case H∞ gain for the
two closed-loop performances of the transfer function d→
e• with respect to the normalized complex uncertainty
sup∆∈∆,||∆||∞<1 ||Fu(M,∆)d→e• ||∞ remains everywhere
below unity meaning that the performance requirements
are robustly met in presence of the uncertainty set ∆.

2) Closed-loop validation and experimental results: The
experimental closed-loop performances are compared in
Fig. 12 with the predicted performances with respect to
the rejection and control effort performance. The worst-
case closed-loop performance over all frequencies is di-
rectly obtained from the analysis of the previous section.
As shown in Fig. 12 the system is robust to the set of
uncertainties for all three scenarios.

The advantage of the multi-sensor fusion of the CCD
and ARS measurements is finally depicted in Fig.13, where
rejection efficiency is normalized with respect to the open-
loop performances. For the three scenarios a rejection of
at least 13 dB is guaranteed (with exception of the notch
at 50 Hz) on the respective bandwidths of interest. This
performance is then reached on a 100 Hz bandwidth when
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Fig. 9. LOS stabilization Identification: (a-c) Transfer function models, (d-f) Uncertainty models.

Fig. 10. Upper bound on µ∆(M11), which is the inverse robust
stability margin, by considering separately the contribution given
by the different uncertainty structures of the system and then the
full set: (a) only CCD measurements available, (b) both CCD and
ARS measurements available.

Fig. 11. Performance worst-case analysis. Upper bound on
µ∆
(
Md→eyL

)
(blue lines) and µ∆

(
Md→eu

)
(red lines): (a) only

CCD measurements available, (b) only ARS measurements avail-
able, a zoom reveals a pick at 50 Hz (c) both CCD and ARS
measurements available.

both CCD and ARS are used. The experimental results
show even better performances with more than 20 dB
of rejection between 2 and 50 Hz when sensor fusion is
employed. The loss of performance at 50 Hz comes directly
for the ARS electrical noise as already discussed in the
previous sections. It has to be pointed out that this is
only a laboratory limit since an AC main power supply is
used. For Space application this limit is overcome by using
a continuous power source.

C. LOS stabilization of a spacecraft: an application

The experimental setup presented in this article allows
the user to test realistic spacecraft scenarios. The signal
r in Fig. 2 can in fact be produced by a real mission
LOS report or by a spacecraft model. The test bench can

then simulate the impact of an active control system for
microvibrations reduction.

A schematic view of the system considered is shown in
Fig. 14. A simple dynamic model of a flexible spacecraft
is obtained thanks to recent development of the Satellite
Dynamics Toolbox (SDT) [46]. The spacecraft taken into
account has a flexible solar array driven by a SADM and
a reaction wheel controlling the satellite axis pointing to-
wards Earth. In the spacecraft block the coupled dynamics
of the rigid main body with the flexible solar panel is
described. The spacecraft inputs are the control torques
TACS provided by the Attitude Control System (ACS).
The considered disturbances are the RWA disturbances
dRWA together with the torque SADM torque TSADM
acting on the solar array.

The SADM block (permanent magnet stepper motor
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Fig. 12. Closed loop validation - Robust rejection requirement: (a) only CCD measurements available, (b) only ARS measurements
available, (c) both CCD and ARS measurements available; Control effort requirement: (d) only CCD measurements available, (e) only
ARS measurements available, (f) both CCD and ARS measurements available.

Fig. 13. Worst-case analysis and experimental results for rejection of microvibrations.
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Fig. 14. Spacecraft control diagram.

with reduction gearbox) takes as input the current angular
acceleration of the motor shaft θ̈SADM and the reference
stepped signal provided by an electronic driver dSADM,
and provides the torque TSADM acting on the solar array.

The spacecraft outputs are the acceleration of the entire
system θ̈SC with respect to its center of mass, which
provides the LOS jitter θSC that is used as reference for the

experimental system and the acceleration of the SADM
rotor shaft θ̈SADM. The data used for the simulation are
summarized in Table I.

For this particular example, the following assumptions
were made:
1) The internal model of the reaction wheel dynamics

(dependent on wheel speed) is not taken into account in
order to simplify the study by neglecting the gyroscopic
effect on the flexible modes migrations. For further
details on this subject the reader is invited to refer to
the works [10], [11].

2) The wheel introduces the disturbances dRWA due to
their mass unbalances and bearing imperfections. As
already stated, these disturbances have an harmonic
nature and they depend on the flywheel angular speed.
They can be summed up in two forces and two torques
components in the perpendicular axes to the flywheel
rotational z-axis [8]:
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TABLE I
Spacecraft parameter values

System Parameter Description Value
Spacecraft mSC Mass 100 kg
main body

[
JSC
x JSC

y , JSC
z

]
Inertia in Spacecraft body frame [10 10 20] kg ·m2

mSA Mass 50 kg
Solar

[
JSA
x JSA

y JSA
z

]
Inertia w.r.t. the SA reference frame [10 15 20] kg ·m2

Array
[
ωSA

1 ωSA
2 ωSA

3
]

Frequency of the flexible modes [0.8 15 40] Hz
ζSA
1 , ζSA

2 , ζSA
3 Damping factor of the flexible modes 0.03

LSA Modal participation factors

 3.536 3.536 0 0 0 0
0 3.536 3.536 0 0 0
0 0 0 0 0 3.162


Ω Flywheel spin range [5, 50] Hz

Reaction
[
Cf1 C

f
2 C

f
3 C

f
4
]

Multi-harmonic force coefficients [4.296 1.633 0.425 0.567] · 10−3 N/(rad/s)2

Wheel
[
Ct1 C

t
2 C

t
3 C

t
4
]

Multi-harmonic torque coefficients [1.772 0.407 0.169 0.066] · 10−3 N ·m/(rad/s)2

[h1 h2 h3 h4] Harmonic numbers [1 2 3 4]
CS Harmonic torque coefficient 0.57 N ·m

Solar Array zS Number of rotor teeth 90
Drive pS Number of motor poles 4

Mechanism nMS Number of micro-step subdivisions 8
ΩS Rotor angular speed 1 · 10−3 rad/s

Attitude ωACS Desired ACS bandwidth 0.1 rad/s
Control System ζACS Desired ACS damping ratio 0.7

dRWA =

 Fx
Fy
Tx

Ty

 = Ω2
nh∑
i=1

 −Cfi sin(hiΩt+ φfi )
Cfi cos(hiΩt+ φfi )
Cti cos(hiΩt+ φti)
Cti sin(hiΩt+ φti)


(29)

where Ci is the amplitude of the i-th harmonic, Ω is
the flywheel angular speed, hi is the harmonic number
and φi is a random phase number such that φ ∈ [0, 2π].

3) The input signal dSADM to the SADM dynamics con-
tains only the high frequency disturbance provided
by the micro-steps with respect to an ideal sinusoidal
reference. It is assumed that the SADM is in stationary
condition and that the low-frequency content of the
torque introduced into the system is already compen-
sated by the ACS. The SADM disturbance is assumed
to be harmonic and depends on the rotor speed ΩS:

dSADM = CS sin (zSpSnMSΩSt) (30)

where CS is the amplitude of the SADM disturbance
harmonic, zS the number of rotor teeth, pS the number
of poles and nMS the number of micro-step divisions.

4) For simplicity reasons, the mirror is assumed to be
rigidly connected to the spacecraft body. As such, the
LOS errors are only induced by the attitude errors
of the entire spacecraft θSC. Furthermore, the mea-
surement from the ARS corresponds to the angular
rate θ̇SC. In this case, the reference signal sent to the
DFSM was chosen as the attitude θSC. For a more
realistic scenario, the flexibility of the mirror should
also be considered by taking into account the relative

dynamics between the mirror and the rigid body of the
spacecraft.

The ACS control torques are produced by three decoupled
PD controllers tuned on the total static inertia of the
spacecraft Jtot:

TACS = −KV θ̇SC −KPθSC, (31)
with KP = ω2

ACS · diag
(
J tot
x , J tot

y , J tot
z

)
and KV =

2ζACSωACS · diag
(
J tot
x , J tot

y , J tot
z

)
, where ωACS and ζACS

are respectively the desired closed-loop bandwidth and the
damping ratio.

The spacecraft is subsequently subjected to a slowly
varying torque signal that induces a counter acting wheel
speed variation within the range Ω = [5, 50] rev/s. The
computed attitude error signal θSC is subsequently used
to drive the DSFM. Fig. 15 shows the amplitude spectrum
and the cumulative root mean square spectrum of this
signal. It can be seen that as the wheel is accelerated, the
RWA harmonic perturbations given in (29) interact with
the various flexible modes of the spacecraft around 5 Hz,
26.3 Hz and 45.7 Hz. The peak at 88.32 Hz corresponds to
SADM excitation (30).

The controller was synthesized following the procedure
presented in the previous section and uses both the CCD
camera and ARS measurements. In this case, the distur-
bance weight Wr corresponds to an upper bound on the
peak amplitude spectrum of the attitude error. With this
reference weight in place, worst-case predictions of the
LOS spectrum in closed-loop were made. The experimen-
tal closed-loop rejection results together with the worst-
case predictions are shown in Fig. 16. As predicted, the
experimental closed-loop performance remains below the
requirement.
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Fig. 15. (a) Amplitude Spectrum of the LOS: reaction wheel harmonics (dashed red lines), SADM harmonic (dotted red line), frequencies
of spacecraft flexible modes (dotted purple line), interactions of reaction wheel harmonics with spacecraft flexible modes (yellow bullets) (b)
CRMS of the LOS.
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Fig. 16. Spacecraft LOS robust rejection performance in closed-loop.

This brief application shows as many other different
experiments can be performed on the same test bench to
study a variety of spacecraft platforms and/or simulate
different optical sensitive payloads.

IV. Conclusions
This paper presents a robust line-of-sight stabilization

method for high pointing accuracy Space missions. The
core concept is based on combining measurements from
a low frequency imaging system together with high fre-
quency information from an angular rate sensor attached
to the main line-of-sight disturbance source. The design
methodology is demonstrated on an experimental test
bench representative of mission scenarios. Following a
detailed system identification and disturbance/uncertainty
quantification part, two low-order controllers are synthe-
sized within the structured µ/H∞ framework for both
LOS stabilization and accurate LOS error generation.
Both of these controllers were designed to guarantee a
certain level of worst-case performance in the presence of
plant uncertainties. Thanks to this novel control architec-
ture a worst case 13 dB microvibration rejection perfor-
mance is formally guaranteed across a 100 Hz bandwidth.

The control framework can be generalized to any kind of
observation mission under the assumption that a similar
group of sensors is installed. In this way, preliminary in-
vestigation of future LOS stabilization systems can benefit
from a significant speed-up. A short demonstration of this
capability is provided in the last part of the article where
a Space telescope with rotating solar arrays is analyzed.
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