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Abstract—In this paper, the problem of target masking induced
by sidelobes arising in an OFDM RadCom System is considered.
To fully exploit the waveform structure and address practical
scenarios, we propose to deal with the sidelobes in the subband
domain via sparse recovery. Accordingly, we design a sparsifying
dictionary modeling at the same time the target’s peak and
pedestal. Results on synthetic data show that our approach allows
one to remove not only the target random sidelobes but also range
ambiguities arising when all subbands are not active.

I. INTRODUCTION

In radar/communication waveform sharing scenarios, mul-
ticarrier modulations are usually a good choice because of
their robustness against time-frequency selective channels [1].
For example, the cyclic prefixed orthogonal frequency division
multiplexing (CP-OFDM) waveform has been proposed to
diagonalize frequency-selective channels, at the expense of
spectral efficiency loss incurred by the CP [2]. Its low-
complexity implementation and its adoption in various com-
munication standards (e.g., DVB-T, LTE) made it attractive in
both active and passive radar applications [3]–[5].

In particular, the so-called “symbol-based” radar receiver
initially proposed in a monostatic scenario in [6], [7] trans-
forms in a first stage the received signal in the “subband” do-
main via a linear multicarrier receiver. After a symbol removal
step, the range-Doppler map is directly obtained through
a two-dimensional discrete Fourier transform (2D-DFT). As
for correlation-based techniques [5], the subband approach
generates self-interference in the range-Doppler map; the latter
is however characterized not only by a pedestal (also referred
to as random sidelobes) but also by a target peak loss [8].

If self-interference can be handled on receive in the fast-
time/slow-time domain (e.g., extensive cancellation algorithm
in [9], CLEAN-based technique in [10]), operating in the
subband/slow-time domain has several merits. For example,
pilots can be easily discarded to avoid ghosting [5]. Addi-
tionally, zero-Doppler clutter can be effectively rejected at
the output of a CP-OFDM receiver, assuming a long enough
cyclic prefix [11]. In multiuser scenarios with per-subcarrier
resources allocation (e.g., LTE, 5G-NR) [12], [13], it is also
reasonable to remove contribution from other users at the early
stages of the receiver.

The work of Steven Mercier is supported by DGA/MRIS under grant
2017.60.0005 and Thales DMS.
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Fig. 1. Illustration of a typical RadCom scenario. Transmitted symbols are
known by the radar receiver.

In this paper, we consider a RadCom scenario as depicted
in Fig. 1 (also known as monostatic broadcast channel [14])
and propose to remove the target self-interference in the
subband/slow-time domain. Accordingly, we first show that
using a sparse signal representation (SSR) with an adequate
dictionary allows the targets pedestal to be removed while
recovering full gain on their peak. We then illustrate that the
SSR technique expressed in the subband domain is also able
to leverage range ambiguities arising when all subbands are
not available to the user.

The paper is organized as follows. Section II describes the
multicarrier transmitted signal, the multitarget channel model
and the observation in the subband domain. Section III recalls
a Bayesian sparse reconstruction method for targets estimation
in presence of self-interference. Section IV discusses the
performance of the proposed approach. Finally, conclusions
and perspectives are given in Section V.

Notation: IN is the integer sequence {0, . . . , N − 1}. Ma-
trices (resp. vectors) are represented by uppercase (resp. low-
ercase) italic bold letters. I and 0 are the identity and null
matrices, [A]m,n denotes the element in the mth row and nth
column of A. ·T , ·∗ and ·H refer to transpose, conjugate and
conjugate transpose. ⊗ denotes the Kronecker product, δ·,· is
the Kronecker symbol and δ() is the Dirac delta function.

II. LINEAR MULTICARRIER SYSTEM OVER A MULTITARGET
RADAR CHANNEL

In this Section, we describe the radar system depicted in
Fig. 2.
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Fig. 2. Block diagram of the proposed multicarrier radar system.

A. Multicarrier transmitter

Let us consider a multicarrier signal composed of K sub-
carriers and M blocks (i.e., sweeps). Symbols dk,m, (k,m) ∈
IK × IM can be data or pilot elements, taken in potentially
different constellations (e.g., phase-shift keying). Each dk,m
is pulse-shaped by gk,m(t) , g(t−mT0) exp(j2πkF0t) with
g(t) a generator function with support [0;T0) and T0, F0

elementary spacing between symbols in time and frequency,
respectively. In other words, T0 is the sweep repetition interval.
In the usual CP-OFDM case, g(t) is constant over its support,
however there exists various alternatives, potentially non-
rectangular [15], [16]. If K is large enough, the occupied
bandwidth of the transmitted signal can be approximated by
KF0; the critically sampled multicarrier signal is given by [17]

s =
[
IM ⊗ (DgPF

H
K)
]
d (1)

with

d the symbol vector with [d]k+mK , dk,m;
FK the unitary K-by-K DFT matrix;
P the L-by-K cyclic extension matrix with L ,

T0F0K ≥ K and entries [P ]l,k , δl,k + δl,k+K ;
Dg is the L-by-L weighting matrix defined by Dg ,

diag{g} with [g]l , g[l] = g(l/(KF0)), l ∈ IL the
critically sampled version of the generator function
with, by convention, ‖g‖22 = K.

B. Multitarget radar channel

The radar channel consists of N targets, considered as single
point scatterers (presence of clutter is not considered within
this work). Each target n respects the following assumptions:

• constant complex amplitude αn during the coherent pro-
cessing interval MT0 (i.e., duration of the transmitted
signal);

• unambiguous range R0,n ≤ (K − 1)∆R with ∆R =
c/(2KF0) the range resolution and c the speed of light;

• Doppler-induced frequency-shift Fd,n = 2vnFc/c �
KF0 with vn the radial velocity of the target, Fc the
carrier frequency.

The latter assumption justifies a critical sampling of the
received signal at rate KF0. Without loss of generality, we

assume integer range gates l0,n , R0,n/∆R such that the
discrete-time received signal can be expressed as

r =

N−1∑
n=0

αnZns+ n (2)

where [Zn](l,l′)∈ILM×ILM , ej2πfd,nl/Lδl,l′+l0,n is the
range-Doppler shift matrix related to the nth target, fd,n =
Fd,nT0 is its normalized Doppler shift and n is the thermal
noise assumed white and Gaussian with power σ2, i.e., n ∼
CN

(
0, σ2I

)
.

C. Multicarrier receiver, symbols removal

As proposed in [6], the received signal r is projected in the
subband domain thanks to a linear multicarrier receiver

d̃ = [IM ⊗ (FKP
TDH

ǧ )]r (3)

where Dǧ , diag{ǧ} and ǧ is the L-length received pulse
vector. The latter is defined under a (bi)orthogonality con-
straint with respect to the transmitter, namely P TDH

ǧ DgP =
IK . For the particular case of CP-OFDM, expressions of g, ǧ
are given in (17); it follows that P TDH

ǧ removes the CP of
each block. An element-wise symbols removal w.r.t. the initial
mapping (1) is argued for steering vectors reconstruction if
fd,n → 0 and l0,n ≤ L−K [6]:

y = D−1
d d̃ with D−1

d , diag−1(d) (4)

As per [8], the signal y can be split into three main terms

y = y(t) + y(i)︸ ︷︷ ︸
targets

+y(n)

with

y(t) =

N−1∑
n=0

αnAǧ,g(l0,n; fd,n/L)ed(fd,n)⊗ er(l0,n) (5)

Aǧ,g(l0; fd) ,
1

K

+∞∑
l=−∞

ǧ∗[l]g[l − l0]ej2πfdl (6)

[er(l0,n)]k , exp(−j2πl0,nk/K) k ∈ IK (7)

[ed(fd,n)]m , exp(j2πfd,nm) m ∈ IM (8)

y(n) =D−1
d [IM ⊗ (FKP

TDH
ǧ )]n (9)

where
y(t) is the usual component associated with the targets

peak; it does not depend on the data symbols but



on the targets’ range and Doppler steering vectors
er, ed and on the cross-ambiguity function Aǧ,g that
induces a range-Doppler dependent loss on the peaks.

y(i) is the targets pedestal component that strongly de-
pends on 1) the target range-Doppler location and
amplitude; 2) the data symbols. Its expression is not
recalled here for conciseness [8]. This component
can be considered as a random variable, shown to be
white with power σ2

i in the range-Doppler map (if
symbols are zero-mean, independent and identically
distributed and taken in proper constellations) [8].
Hereafter, we will rather consider the pedestal com-
ponent, namely the so-called random sidelobes, as
deterministic (cf. Sec. III).

y(n) is the noise contribution after symbols removal; its
power σ2

n has a simple expression given in [8].

D. Reference algorithm: 2D-DFT

When the pedestal component y(i) can be neglected (e.g.,
targets with round-trip delays shorter than the CP and very low
Doppler), a simple two-dimensional discrete Fourier transform
can be used to compute the range-Doppler map, as initially
proposed in [6]

x = (FM ⊗ FHK)y. (10)

In the following, we focus on the case where y(i) is signifi-
cant (e.g., powerful targets with high range and/or Doppler),
potentially creating target masking issues in the range-Doppler
map obtained from (10).

III. SPARSE BAYESIAN ESTIMATION IN THE SUBBAND
DOMAIN

In this Section, we propose to use an SSR approach in the
subband domain to estimate the targets while offsetting the
self-interference phenomenon.

A. Sparse observation model

Using (2)-(3)-(4), the signal received after symbol removal
can be rewritten in the subband/slow-time domain as

y =

N−1∑
n=0

αnhn︸ ︷︷ ︸
targets

+y(n) (11)

where hn is the steering vector of the nth target; it enjoys an
efficient FFT-based implementation, i.e.,

hn = D−1
d [IM ⊗ (FKP

TDH
ǧ )]Zns. (12)

It is worth noticing that the steering vector (12) entails at the
same time the target’s peak component and its pedestal. This
is a major difference compared to sparse techniques previously
described, e.g., [18].

Given (11), a natural sparsifying dictionary can be built by
1) discretizing the range-Doppler domain; 2) concatenating the
steering vectors of the form (12) associated with each range-
Doppler bin created. The sparse observation model obtained
is thus

y = Hα+ y(n) (13)

where
H is a KM×K̄M̄ dictionary with K̄, M̄ the number of

bins in the range and Doppler domains, respectively;
α is the target amplitude vector in the reconstructed

range-Doppler domain.
The īth column of H is

hī ,D
−1
d [IM ⊗ (FKP

TDH
ǧ )]Z īs

where Z ī is the range-Doppler shift matrix introduced in (2)
with range gate l0 = k̄K/K̄ and normalized Doppler fre-
quency fd = m̄/M̄ where ī = k̄ + m̄K̄.

The parameter of interest to be estimated in (13) is the
amplitude vector α. To reflect the sparsity of the target scene
and since the problem of estimation can be ill-posed (if M̄K̄ >
KM ), additional constraints should be added to (13). To that
end, we choose the Bayesian philosophy though other SSR
techniques could be used.

B. Bayesian estimation

In this work, we use a previously described algorithm [19].
Its basic principle is recalled in the next two sections.

1) Prior model: In a Bayesian framework, unknown pa-
rameters are considered as random and are assigned a prior
probability density function (pdf). It is chosen to convey
relevant information about the parameters and must ensure
at the same time some degree of mathematical tractability.
The latter issue is usually addressed by choosing conjugate
priors [20] whereas the former is addressed by modeling
and/or selecting appropriately the parameters of the prior pdfs.

A hierarchical Bayesian model is thus designed in [19] as
follows

π(αī|w, σ2
α) = (1− w)δ(αī) + w CN

(
αī|0, σ2

α

)
(14a)

π(w) = I[0,1](w) (14b)

π(σ2
α) = IG

(
σ2
α|β0, β1

)
∝ e−β1/σ

2
α

σ2
α
β0+1

IR∗+(σ2
α) (14c)

π(σ2
n) = IG

(
σ2
n|γ0, γ1

)
∝ e−γ1/σ

2
n

σ2
n
γ0+1 IR∗+(σ2

n) (14d)

where ∝ means proportional to. In plain English (14a) means
that a target is a priori present in each range-Doppler bin
ī with a probability w and its amplitude αī is Gaussian
distributed with power σ2

α. Since the target power can greatly
vary within a target scene, σ2

α is itself assumed random with
an inverse Gamma distribution (14c). This leads to a heavy
tailed distribution thereby robustifying the prior model of αī.
In addition, the density of the target scene is unknown so that
w is assumed uniformly distributed (14b). Finally, if the noise
power σ2

n is not exactly known, it can be jointly estimated
with the target scene assuming a priori an inverse Gamma
distribution (14d).

In the model (14), the hyperparameters linked to the
scale and shape parameters of the inverse Gamma distribu-
tions (14c)-(14d), namely (β0, β1) and (γ0, γ1), are numeri-
cally selected by the radar operator so as to give weight to the
most probable values of σ2

α and σ2
n (cf. Sec. IV).



2) Estimation algorithm: According to the fully Bayesian
model (13)-(14), the joint posterior distribution is expressed
via Bayes theorem as

f(α, w, σ2
α, σ

2
n, |y) ∝ f(y|α, σ2

α) (likelihood)

× π(α|w, σ2
α)π(w)π(σ2

α)π(σ2
n) (priors).

Posterior distributions of each parameter ζ ∈ θ, with θ ,
{α, w, σ2

α, σ
2
n}, cannot be easily manipulated so that a nu-

merical alternative is chosen in [19]. The proposed estimation
algorithm is a Monte-Carlo Markov Chain method that iter-
atively draws samples according to each full conditional, viz

π(αī|y,θ−αī) = (1− wī)δ(αī) + wī CN
(
αī|µī, η2

ī

)
(15a)

π(w|y,θ−w) = Be
(
w|1 + ‖α‖0, 1 + K̄M̄ − ‖α‖0

)
(15b)

π(σ2
α|y,θ−σ2

α
) = IG

(
σ2
α| ‖α‖0 + β0, ‖α‖22 + β1

)
(15c)

π(σ2
n|y,θ−σ2

n
) = IG

(
σ2
n|KM + γ0, ‖y −Hα‖22 + γ1

)
(15d)

where θ−ζ = θ\{ζ}, ‖‖0 is the number of nonzero elements
in a vector, Be (|, ) is the Beta pdf and the parameters in (15a)
are

wī =

[
1− w
w

σ2
α

η2
ī

exp

{
−|µī|

2

η2
ī

}
+ 1

]−1

(16a)

η2
ī =

{
1

σ2
α

+
‖hī‖22
σ2
n

}−1

(16b)

µī =
η2
ī

σ2
n

hHī eī (16c)

with eī = y −
∑
j̄ 6=ī αj̄hj̄ .

Interestingly, the vector eī in (16c) represents the obser-
vation vector y in the subband/slow-time domain to which
all the target components have been removed except that of
the īth range-Doppler bin. The amplitude αī is thus sampled
in (15a) after rejecting all other target signatures, including
their pedestal.

After a given number Nbi of iterations, the sampler (15)
gives samples actually distributed according to their posterior
distribution. Classical Bayesian estimators can be then numer-
ically evaluated, particularly the minimum mean square error
(MMSE) estimator of any parameter ζ in θ is obtained as an
empirical mean, i.e.,

ζ̂mmse = N−1
r

Nr∑
t=1

ζ(t+Nbi)

where Nr is a sufficient number of samples.

IV. NUMERICAL RESULTS

A. Scenario

Performance of the proposed strategy is assessed on syn-
thetic data which are generated according to the model (2).

TABLE I
TARGET SCENE

n 0 1 2
Range bin l0,n 5 10 25

Doppler bin fd,nM̄ ; Doppler freq. (fd) 7;(0.44) 0;(0) 7;(0.44)
SNRth 15 17 35

Peak loss Aǧ,g(l0; fd) (dB) -2.4 -1.8 -9.5
Random sidelobes power σ2

i (dB) -15.8 -14.8 7.4

Symbols are generated as independent and uniformly dis-
tributed elements in a quadrature phase-shift keying (QPSK)
constellation; they are thus zero-mean and assumed with unit
variance. A conventional CP-OFDM waveform is considered
by setting

g[l] =

{√
K/L if 0 ≤ l ≤ L− 1,

0 otherwise,
(17a)

ǧ[l] =


0 if 0 ≤ l ≤ L−K − 1,√
L/K if L−K ≤ l ≤ L− 1,

0 otherwise.
(17b)

The target scene is described in Table I. In absence of self-
interference, the postprocessing signal-to-noise-ratio (SNR) of
a target is equal to [8]

SNRth =
E
{
|α|2

}
K2M

σ2 ‖ǧ‖22
. (18)

The SNR observed at the output of the 2D-DFT receiver (10)
is in practice lower due to both the loss on the peak and
the induced pedestal. Theoretical expressions can be found
accordingly in [8].

B. Results with all subbands active

Typical range-Doppler maps obtained from the 2D-
DFT (10) and the proposed SSR-based strategy are depicted in
Fig. 3. As expected in the former approach, the strong target
with high range and Doppler produces a high pedestal that
hides the weakest ones. It is the sole target that can be clearly
distinguished in Fig. 3a. On the contrary, with the proposed
approach (cf. Fig.3b), each target can be recovered with its
actual SNR (18). The dynamic range of the target scene is
hence restored. Empirical posterior distributions obtained from
the sampler (15) are also depicted in Fig. 4 and show rather
peaked pdfs around each theoretical value despite moderately
informative priors.

C. Results with only part of subbands active

In realistic scenarios, some subbands may not be used by
the RadCom transceiver (e.g., multiuser scenarios with per-
subcarrier resources allocation). In that case on receive, the
dimension of the observation y in (11) is accordingly reduced
to the number of subbands Kuser < K exploited. Obviously,
the actual target SNR (18) is thus diminished by a factor
Kuser/K. In addition given (5), using less subcarriers results
for the target peak component in either range ambiguities
and/or range resolution loss as dictated by the pattern of active
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Fig. 3. Range-Doppler map with a CP-OFDM waveform. QPSK symbols,
M = 16, K = 32, L = 36 (i.e., L/K = 1.125), σ2 = 1 (i.e., σ2

n = 1.125),
target parameters are described in Table I. (a) 2D-DFT output |x| (10). (b)
Proposed SSR-based strategy output K2M/(σ2 ‖ǧ‖22)×|α̂mmse|2 (2D-DFT
output depicted in transparent background as a reference): K̄ = K, M̄ = M ,
(β0, β1) ≈ (3, 50), (γ0, γ1) ≈ (2, 4), (Nbi, Nr) = (200, 500).

subcarriers. As an example, we consider the case where one-
in-two subbands are actually transmitting. As can be seen in
Fig. 5a, this specific pattern leads to a pure range aliasing
of the target peaks. Though still, the SSR technique is able
to recover and disambiguate the target scene (cf. Fig. 5b).
Indeed, contrary to the target peak component (5) the pedestal
component y(i) does not become range ambiguous with less
subcarriers. Since the sparsifying dictionary is built on steering
vectors (12) that entail the target pedestal signature, range
ambiguity can be alleviated via SSR.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a strategy to estimate the
target scene illuminated by an OFDM waveform. Particularly,
a sparse representation technique is advocated for in the
subband domain. Most importantly, the sparsifying dictionary

is designed to model both the target’s peak and pedestal. The
proposed sparse recovery removes efficiently the traditional
random sidelobes while preserving the gain on the target
peak. In addition, working in the subband domain has several
merits including the possibility to address a multiuser RadCom
scenario. Interestingly, range ambiguities arising then are
leveraged by the sparse recovery owing to the non-ambiguous
nature of the pedestal signature. In future work, the presence
of diffuse clutter should be dealt with too.
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Fig. 4. Empirical posterior pdfs obtained from the proposed SSR-based
strategy. Scenario is the same as that of Fig. 3.
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Fig. 5. Range-Doppler map with a CP-OFDM waveform. Scenario is the
same as that of Fig. 3 albeit one-in-two subcarriers are used (Kuser =
K/2 = 16). Target SNR in Table I is reduced by a factor Kuser/K =
−3 dB. (a) 2D-DFT output |x| (10). (b) Proposed SSR-based strategy output
KuserKM/(σ2 ‖ǧ‖22) × |α̂mmse|2 (2D-DFT output depicted in transparent
background as a reference): K̄ = K, M̄ = M , (β0, β1) ≈ (3, 50),
(γ0, γ1) ≈ (2, 4), (Nbi, Nr) = (200, 500).


