

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is a publisher’s version published in: http://oatao.univ-toulouse.fr/26540

To cite this version:

Pantalé, Olivier [Rp] Parallelization of an object-oriented FEM
dynamics code. (2020) ReScience C, 6 (1). #8.

Official URL:
https://zenodo.org/record/3901241

Open Archive Toulouse Archive Ouverte

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/335471078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://www.idref.fr/076557677
https://zenodo.org/record/3901241

R E S C I E N C E C
Reproduction / Computational Mechanics

[Rp] Parallelization of an object-oriented FEM dynamics
code
Olivier Pantalé1, ID
1Laboratoire Génie de Production, Ecole Nationale d’Ingénieurs de Tarbes, EA 1905, Tarbes, France

Edited by
Lorena A. Barba ID

Reviewed by
Konrad Hinsen ID

Received
02 March 2020

Published
19 June 2020

DOI
10.5281/zenodo.3901241

Between 1997 and 2005, the Laboratoire Génie de Production of the National Engineer‐
ing School of Tarbes developed an Explicit Finite Elements Code for the numerical sim‐
ulation of the behavior of mechanical structures subjected to impacts in large thermo‐
mechanical deformations: the DynELA FEM code. This academic FEM code has been
used in support of different Ph.D. theses and several scientific publications [1, 2, 3, 4,
5] among which, one [6] was focused on the parallelization of the DynELA FEM code
using the OpenMP library. The purpose of this paper is to present the steps that were
necessary to allow the reproduction of the results presented in the original article [6]
using the 2005 version of the DynELA code.

1 Historical context

During my thesis work (1992‐95), discussions with my thesis supervisor led me to pro‐
pose a new research theme focused on the numerical development of a FEMcode for the
study of large deformations: the DynELA FEM code. FEM codes are typically written in
procedural programming languages such as Fortran orC.Addingnew features to already
very long programs requires programmers to work with a complexity that increases ex‐
ponentially with the initial size of the code. Object‐Oriented Design and Programming
(OOP) methods are better suited to large‐scale developments. The abstraction allowed
by OOP allows the developer to better organize the architecture of the program and to
anticipate future developments. The preferred programming language in the Finite Ele‐
ment community was C++ at the date of the original publication (maybe because of nov‐
elty in 1990‐2000), and it was our choice for the numerical implementation of the FEM
code DynELA. The main characteristics of this code are an explicit integration scheme
and a formulation in large deformations, an Object‐Oriented approach for the numeri‐
cal implementation in C++, and an open code architecture based on own developments
and use of open‐source libraries.
This work was mainly motivated by the fact that the development of a FEM code allows
a very important personal intellectual enrichment. The numerical developments allow
us to deepen the knowledge in the field of mechanics of large deformations since one
is forced to master the theory to be able to implement it numerically. It is a phase of
consolidation of knowledge directly through experience, certainly more delicate, but
much more thorough.

Copyright © 2020 O. Pantalé, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Olivier Pantalé (olivier.pantale@enit.fr)
The authors have declared that no competing interests exists.
Code is available at https://github.com/pantale/ReDynELA. – SWH swh:1:dir:e45b8b7efb002231f4081c429c4ca33664d0812d.
Open peer review is available at https://github.com/ReScience/submissions/issues/19.

ReScience C 6.1 (#8) – Pantalé 2020 1

https://orcid.org/0000-0001-7367-5453
https://orcid.org/0000-0001-5812-2711
https://orcid.org/0000-0003-0330-9428
mailto:olivier.pantale@enit.fr
https://github.com/pantale/ReDynELA
https://archive.softwareheritage.org/swh:1:dir:e45b8b7efb002231f4081c429c4ca33664d0812d/
https://github.com/ReScience/submissions/issues/19
https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

1.1 Architecture of the FEM code
In a finite element code development, the first step is defining a set of basic libraries for
data management (in the form of lists, stacks, ...) as well as the mathematical libraries
adapted to the modeling cases encountered. Our choice was to develop entirely the set
of basic libraries and to encapsulate a part of the Lapack [7] mathematical library to
develop new matrix and tensor classes because no mathematical library was available
for this purpose. For example, classicalmathematical libraries donot include the notion
of 4th‐order tensor. The FEMcodeDynELA is composed of a set of separate libraries and
executable files that complete particular tasks. A simplified list of these libraries is given
below:

• basicTools: basic library which contains the basic classes of DynELA.

• linearAlgebra: algebraic operations library. It defines in particular the notions of
vectors, matrices, tensors, and mathematical functions. It encapsulates part of
the Lapack and Blas libraries.

• interpretor: library that defines the interpreted command language of DynELA. It
was one of the strong points of the original software.

• femLibrary : finite element computation library (it is the heart of the finite ele‐
ment solver).

From these various libraries, we created a set of executable programs that correspond
to the various modules of the FEM code: the finite element solver, the graphics post‐
processor, the curve analysis program, the language generator, etc...

1.2 Specifics of the DynELA FEM code
In terms of size of development, one can estimate the number of C++ lines of code for
the different modules as follows:

• Command interpreter: 10,000 lines of C++ code, Flex and Bison [8]

• Graphics post‐processor: 20,000 lines of C++ code

• Finite element solver: 80,000 lines of C++ code.

Command interpreter — One of the key decisions in the development of a FEM code lies in
the way the user specifies the data of a model. Several alternatives are possible. Some
codes privilege the use of a graphical interface allowing the user to build step by step the
numerical model, others use a command file that the user edits externally. We adopted
an advanced command language as the means of defining a numerical model.
The trend at the time of this work was towards the development of command languages
for driving simulation codes to replace the command files inherited from the punched
card era that were still found in many numerical codes. Concerning the DynELA FEM
code, the choicewas a specific lexical and grammatical parser developed using standard
Flex and Bison tools. Generally speaking, this command file has a syntax close to the
C++ language and allows the manipulation of object‐oriented data, the writing of tests
and loops.

Graphics post-processor — Thenumerical results are analyzed bymeans of a graphical post‐
processor specially developed for the DynELA FEM code. The 3D graphical part uses
OpenGL formalism, and the interface is constructed using the QT graphical library. The
porting of the post‐processor to the newarchitecture did not pose any problems concern‐
ing the OpenGL library, on the other hand, concerning the QT library, the initial version

ReScience C 6.1 (#8) – Pantalé 2020 2

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

was based on QT‐3, but the porting to QT‐4 was carried out between 2005 and 2010 for
the continuity of the work related to the various Ph.D. theses in progress over this pe‐
riod. The version of the graphic post‐processor used in this work to analyze the results
and produce outputs is therefore the one developed in 2010.

Finite element solver — The finite element solver used in this work is version v.1.0 devel‐
oped in the laboratory between 1996 and 2005, the date of publication of the referenced
paper. The finite element solver subsequently evolved after 2005 and up to 2010, but
since this is after the publication of the referenced paper, it has not been used for this
work. Moreover, in 2005, there were 2 versions of the FEM code: a standard 1.0 version
(the one that has continued to evolve) and a parallel beta version (not modified after‐
wards and completely frozen in 2005), and it is the latter that was used in this work.

1.3 Computational context of the original publication
The publication selected for this work [6] used a Compaq Proliant 8000 SMP machine
running under Linux Redhat 8.0 environment. This machine, shown in Figure 1 was
equipped with 8 32‐bits Intel Xeon PIII 550/2Mb processors around a 5GB shared main
memory. The source code was compiled with the Intel Cpp 7.1 compiler without opti‐

Figure 1. The Compaq Proliant 8000 SMP machine

mization in order to be able to compare the different parallelization techniques without
any influence of the compiler. The OpenMP standard was chosen for code paralleliza‐
tion.

2 Retrieval of the software

Between 2010 and 2018, the research activities put aside the development of this Finite
Element code, but, since september 2018, a new version in C++ and Python was started
to restore this numerical tool and allownewdevelopments. This new version is based on
the latest stable version (the 2010 version) but this is another story, and only the Timer
class of this modern version was used for this paper to replace the old problematic class
dedicated to processor time measures as presented further.

ReScience C 6.1 (#8) – Pantalé 2020 3

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

2.1 Finding the source code
First of all, finding the complete source code of the version used for publication was
not an easy task. Indeed, the different versions were developed and archived on various
digital supports (floppy disks, CDROM, floppy ZIP, ...)1, the incremental numbering was
not always respected, and by bad luck, the Proliant server which contained the very
last version used for the production of the scientific publication was scrapped without
saving all the sources of the code (or else, the backup has been lost since). Only the
modified files concerning the standard 1.0 version were found in a backup hard‐disk.
It was therefore possible to rebuild a version as close as possible to the final version
based on the standard 1.0 version by merging the source files of the parallel version.
The first point that emerges from the difficulties related to the recovery of old source
code concerns the need to improve the procedures for archiving the source code of the
software developped in our laboratory2. I detail hereafter, the procedure used to rebuild
a working set of source files:

• get the version 1.0 set of sources files from a backup dated 2004, those were on a
backup of my desktop computer where I never tested the parallel version of the
code,

• by hand, and one by one, merge the different updated files from the parallel ver‐
sion backup into the set of source files of version 1.0,

• install the already compiled post‐processor from the 2010 version of the code for
visualization of the results and production of output results,

• replace the processor timemeasurement class by the one from the newest version
of DynELA, as presented in the next paragraph.

Therefore, the major change made to the core of the Finite Element code concerns the
subroutine for execution timemeasurement used to know the times spent in the various
parts of the program. In fact, during the first tests, the times reported by the original
class were outliers. We therefore decided to simply replace the version 1.0 time mea‐
surement class by the one developed for the new version of the DynELA code. Hopefully
they were directly compatible to each other, because they were both developed with the
same philosophy. The measurement points in the code were thus modified to take into
account this new class for measuring processor times.

2.2 Hardware used for the reproduction
As the machine used at the time of the publication of the proposed paper (in 2005) has
been scrapped since then, the implementation of this work was done on a Dell R730
server equipped with 2 64‐bits Intel Xeon E5‐2650 v4, 2.20GHz processors (each with
12 cores) and 96GB of RAM. This server runs under Ubuntu Bionic 18.04.4 LTS with a
4.15.0‐76 kernel.
The hardware configuration is therefore clearly different from the one used in the orig‐
inal article, so we can expect that, if the Finite Element code runs correctly and gives
numerical results in agreement with those obtained in the original paper, as it will be
presented further, the performance and the behavior concerning code parallelization
will differ due to the change in processor architecture, memory and especially the evo‐
lution of the Operating System.

1Things that have more or less disappeared by now...
2As a result of this experience, we are going to set up a committee within the laboratory to reflect on the

sustainability of the research data produced by the laboratory.

ReScience C 6.1 (#8) – Pantalé 2020 4

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

3 Compilation, update of the code and benchmarks

As presented above, the DynELA code is composed of several thousand C++ lines of
code located in an organized tree structure, which more or less facilitated the compi‐
lation procedure. The compilation of the various modules must be chained directory
by directory, a library being compiled in each main sub‐directory. The number of de‐
pendencies and the complexity of the code tree made it necessary to use a tool not used
at the time of the initial development, the CMake [9] utility for the generation of differ‐
ent Makefiles in the source directories. At the time of development, the Makefiles were
handwritten, and the compilation of the sources was done directly in the source direc‐
tories themselves (which is not a good thing to do), we had a mixture of C++ sources,
headers and compiled objects in the same directories.
So the first step was to reorganize the sources on one side, a Build tree in a separate di‐
rectory and to create a set of compilation directives for the CMake utility. Of course, we
also had to take into account the required dependencies concerning external libraries:
Flex and Bison [8]mainly, but this phase does not pose any problemas these libraries are
standard on Linux, and one just has to install them using an appropriate ubuntu pack‐
age. The old Makefiles contained all the needed information concerning the required
libraries.

3.1 Compilation of the code
The compilation of the DynELA code is done using the standard compiler on Ubuntu
18.04.4 LTS: the C++ 7.4.0. Flex and Bison versions are 2.6.4 and 3.0.4 respectively. The
parallelization is done using the ‐fopenmp compiler option and the OpenMP paralleliza‐
tion libraries is provided by the gcc‐7 library.
During the compilation of the code, several warning messages are generated (mainly
concerning functions not explicitly defined at compile time and due to evolution in the
C++ standard within the last 15 years), however these have been ignored and do not
seem to be detrimental to the proper compilation of the source code or its execution.
The compilation part of the Lapack and Blas mathematical libraries is done without any
problem (note that these libraries have been translated from Fortran by the f2c utility
and are part of the CLAPACK and CBLAS packages).

3.2 Comparison of results vs. the original paper

Comparison of numerical results — After the compilation phase, the first operation was to re‐
run the simulations presented in the initial publication and to compare the results. Fig‐
ure 2 shows the results for the numerical simulation, using 4 processors, of a dynamic
tensile test with on the left side the initial mesh, and on the right side the deformed
plastic strain contourplot at the end of the simulation, corresponding to Figure 9, page
370, of the original paper [6].
We find good agreement between the two simulations thus confirming behaviour of the
FEM code. The values are not the same, but the difference is very small. Maybe they
are linked to some accumulation of floating‐point errors (explicit integration scheme
in FEM are very sensitive to this) since we have a 32‐bits processor on one hand and a
64‐bits processor on the other hand. Other comparisons confirm that the code does in‐
deed give the same numerical results as in its 2005 version, but are not reported in this
article. The good agreement between the two versions confirm the correct behavior of
the code between its two deployments 15 years apart. No crashes of the computation
code, segmentation fault type problems, or other problems that could suggest an insta‐
bility of the code structure were observed. Only abrupt stoppages due to data errors
were encountered, but they are similar to those obtained in the standard 1.0 version (so
the errors also are reproducible).

ReScience C 6.1 (#8) – Pantalé 2020 5

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

time : 0.110 ms

Figure 2. Dynamic traction: initial mesh and equivalent plastic strain contourplot

Internal forces computation parallelization — The main subject of the original publication in
2005 was the parallelization of the DynELA code and the influence of the strategies on
the Speedup. We therefore rerun the numerical experiments with the different code
parallelization strategies and tried to replicate the results obtained in 2005. Wewill focus
on the parallelization of the computation of the internal forces (presented in paragraph
4.3, page 367 of [6]) for the Taylor test with a mesh consisting of 6500 finite elements (as
presented in paragraph 4.2 page 367 of [6]).
This computation is the most processor intensive part of the FEM code. In Listing 1, the
method computeInternalForce is applied on each element of the mesh and returns the
internal force vector resulting from the integration over the element. The gatherFrom
operation assembles the resulting element internal force vector into the global internal
force vector of the structure.
V e c t o r F i n t ;
f o r (i n t e lm = 0 ; e lm < e l eme n t s . s i z e () ; e lm ++) {

V e c t o r F i n t E l m ;
e l em e n t s (e lm) . c o m p u t e I n t e r n a l F o r c e s (F i n t E l m) ;
F i n t . g a t h e r F r om (F i n t E lm , e l em e n t s (e lm)) ;

}

Listing 1. Internal forces computation (standard version)

In the original paper, 4 parallelization methods were compared, out of the 8 methods
available in the DynELA code. All simulations were redone with these 8 parallelization
methods, and the results in terms of speedup for the 4 ones corresponding to [6], and
described hereafter, are reported in Figure 3.

1. Method 1, presented in Listing 2, uses a parallel for directive for themain loop and
share the

−−→
F int vector among the threads. A critical directive is placed just before

the gatherFrom operation because
−−→
F int is a shared variable. The results plotted

in red in Figure 3 shows a rapid collapse of the performance of the parallelization
algorithm beyond 10 processors.
V e c t o r F i n t ;

ReScience C 6.1 (#8) – Pantalé 2020 6

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

Figure 3. Speedup of the
−−→
F int computation for various implementations

/ / p a r a l l e l c omp u t a t i o n
#pragma omp p a r a l l e l f o r
f o r (i n t e lm = 0 ; e lm < e l eme n t s . s i z e () ; e lm ++)
{

V e c t o r F i n t E l m ; / / l o c a l i n t e r n a l f o r c e V e c t o r
e l em e n t s (e lm) . c o m p u t e I n t e r n a l F o r c e s (F i n t E l m) ;

pragma omp c r i t i c a l
F i n t . g a t h e r F r om (F i n t E lm , e l em e n t s (e lm)) ;

} / / end o f p a r a l l e l l o o p

Listing 2. Internal forces computation with method 1

2. Method 2, presented in Listing 3, uses a parallel region directive. In this parallel
region, all threads access a shared list of elements to treat until empty. The

−−→
F int

vector is declared as private. Bothmain operations are treatedwithout the need for
any critical directive. At the end of the process, all processors are used together to
assemble the local copies of the

−−→
F int vector into a global one. The results plotted

in blue in Figure 3 shows a rapid collapse of the performance of the parallelization
algorithm when the number of processor used for the simulation approaches the
maximum number of processors of the server.
i n t t h r e a d s = omp _ g e t _ma x _ t h r e a d s () ; / / number o f t h r e a d s
V e c t o r F i n t = 0 . 0 ; / / i n t e r n a l f o r c e V e c t o r
V e c t o r F i n t L o c [t h r e a d s] ; / / l o c a l i n t e r n a l f o r c e v e c t o r s
e l em e n t s . i n i t () ; / / l i s t o f j o b s t o do

/ / p a r a l l e l c omp u t a t i o n o f l o c a l i n t e r n a l f o r c e v e c t o r s
pragma omp p a r a l l e l
{

E l emen t * e l eme n t ;
w h i l e (e l eme n t = e l em e n t s . n e x t ())

{
V e c t o r F i n t E l m ; / / e l eme n t f o r c e v e c t o r

ReScience C 6.1 (#8) – Pantalé 2020 7

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

e l emen t − > c om p u t e I n t e r n a l F o r c e s (F i n t E l m) ;
F i n t L o c [omp _ g e t _ t h r e a d _ n um ()] . g a t h e r F r om (F i n t E lm , e l eme n t) ;

}
} / / end o f p a r a l l e l l o o p

/ / p a r a l l e l g a t h e r o p e r a t i o n
#pragma omp p a r a l l e l f o r
f o r (i n t row = 0 ; row < F i n t . r ows () ; row ++)
{

f o r (t h r e a d = 0 ; t h r e a d < t h r e a d s ; t h r e a d ++)
F i n t (row) += F i n t L o c [t h r e a d] (row) ;

} / / end o f p a r a l l e l l o o p

Listing 3. Internal forces computation with method 2

3. Method 3, presented in Listing 4, is similar to the previous one except that each
thread has a predetermined equal number of elements to treat. Therefore, we
avoid the use of a shared list (as in method 2), and each processor operates on a
block of elements. A dedicated class Jobs is used to manage the dispatching of
the elements over the processors. In contrast to the previous method, in this case,
there is an increase in performance regardless of the number of processors used
as reported by the green curve in Figure 3.
i n t t h r e a d s = j o b s . g e tMa xTh r e a d s () ; / / number o f t h r e a d s
V e c t o r F i n t = 0 . 0 ; / / i n t e r n a l f o r c e V e c t o r
V e c t o r F i n t L o c [t h r e a d s] ; / / l o c a l i n t e r n a l f o r c e v e c t o r s
j o b s . i n i t (e l em e n t s) ; / / l i s t o f j o b s t o do

/ / p a r a l l e l c omp u t a t i o n o f l o c a l i n t e r n a l f o r c e v e c t o r s
pragma omp p a r a l l e l
{

E l emen t * e l eme n t ;
Job * j o b = j o b s . g e t J o b () ; / / g e t t h e j o b f o r t h e t h r e a d
i n t t h r e a d = j o b s . ge tTh readNum () ; / / g e t t h e t h r e a d I d
w h i l e (e l eme n t = j ob − > n e x t ())

{
V e c t o r F i n t E l m ; / / e l eme n t f o r c e v e c t o r
e l emen t − > c om p u t e I n t e r n a l F o r c e s (F i n t E l m) ;
F i n t L o c [t h r e a d] . g a t h e r F r om (F i n t E lm , e l eme n t) ;

}
j o b − > w a i t O t h e r s () ; / / compute w a i t i n g t im e

} / / end o f p a r a l l e l l o o p

/ / p a r a l l e l g a t h e r o p e r a t i o n
#pragma omp p a r a l l e l f o r
f o r (i n t row = 0 ; row < F i n t . r ows () ; row ++)
{

f o r (t h r e a d = 0 ; t h r e a d < t h r e a d s ; t h r e a d ++)
F i n t (row) += F i n t L o c [t h r e a d] (row) ;

} / / end o f p a r a l l e l l o o p

Listing 4. Internal forces computation with method 3

4. Method 4, is the same as method 3 except that we use the dynamic load balance
operator presented in [6] after the gather block as presented in Listing 5. As in
the previous case, in this case, there is also an increasing gain in performance
regardless of the number of processors used, but this gain is greater than that of
method 3 (see the cyan curve in Figure 3).
. . .

ReScience C 6.1 (#8) – Pantalé 2020 8

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

} / / end o f p a r a l l e l l o o p

j o b s . e q u i l i b r a t e () ; / / e q u i l i b r a t e j o b s

Listing 5. Internal forces computation with method 4

The results of Figure 3 should be comparedwith Figure 7 page 369 of [6] since the current
server has 24 processors, we were able to extend the analysis beyond the 8 processors
originally used. The speedups obtained in the current version are globally lower over
beyond 8 processors, but this can be explained by:

• the fact that the OS used is better at multitasking than the one used in 2005, which
means that the machine has a different workload,

• the hardware architecture also differs (the Compaq Proliant machine had 8 inde‐
pendent 32‐bits processors, while the current one 2 multi‐core 64‐bits processors),
the working disks are now on another server, and we use an NFS protocol that can
have an impact on code parallelization performance,

• the numerical model is identical to the one used in 2005, but in order to have a
significant gain on a large number of processors (range beyond 8), the size of the
model would have to be larger in order to ensure that each processor can han‐
dle a sufficient number of elements to justify the use of parallelization (roughly
speaking, fork and join times become non‐negligible when the load/processor de‐
creases). But this would have changed with regard to the original test published
which is outside the scope of the reproducibility challenge associated with this
work.

Nevertheless, and despite these differences, we can notice that the current version repli‐
cates the trends seen in 2005 and that method 4 provides more speedup as a function of
the number of processors while method 1 shows its limits very quickly. The same con‐
clusions can, therefore, be drawn concerning the parallelization of the code as those
obtained in the article [6], which shows the replicability of the results.

The load balancing algorithm — In this last part, we compare the results obtained by the load
balancing algorithm in the computation of the internal force vector. This algorithm
seeks to minimize the waiting time of the different processors in the parallel internal
force vector evaluation phase by dynamically changing the number of elements allo‐
cated to each processor during the computation. The original results are presented in
paragraph 5 on page 371 of the article [6].
This simulation uses the test case of the tensile test presented in paragraph 3.2.1. Figure
4 shows the spatial distribution of the elements for the numerical simulation of the
tensile test on 4 processors over time, respectively, at the beginning of the simulation
(left part of the figure), at 50%of the calculation (middle part of the figure) and at the end
of the calculation (right part of the figure). Obviously, the comparison with Figure 11,
page 372 of the article [6] shows differences concerning the localization of the elements
with respect to the different processors, as well as Figure 5, to be compared with Figure
12 page 373 of the article [6]. Nevertheless, the same global remarks can be made about
the load balancing algorithm used in the DynELA code. It is therefore clear that the
number of elements held in each processor evolves over time in order to balance loads
of each processor during the calculation.
In conclusion, we can say that even if the results in terms of parallelization gain, local‐
ization of the elements with respect to the different processors, are different, the global
behavior of the DynELA code is consistent. The results of the numerical simulations are
in agreement with the results obtained in the simulations carried out in 2005.

ReScience C 6.1 (#8) – Pantalé 2020 9

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

thread 4
thread 3
thread 2
thread 1

begining middle end

Figure 4. Spatial distribution of the elements during computation

Figure 5. Distribution of the elements during computation

4 Conclusions

Fifteen years after the publication of the original article [6] concerning the paralleliza‐
tion of the DynELA Finite Element code, the results were found to be reproducible and
replicable. It is still possible, with some adjustments, to recompile the code as proposed
in 2005 (about 2 days of work were necessary to be able to complete the compilation of
the DynELA code). The execution of the code on modern computing architectures did
not pose any problems, as no crashes were experienced during the numerical simula‐
tions and the use of the code. The results in terms of performance are consistent with
the results obtained 15 years ago, taking into account the radical change in hardware

ReScience C 6.1 (#8) – Pantalé 2020 10

https://rescience.github.io/

[Rp] Parallelization of an object-oriented FEM dynamics code

architecture for the execution of this Finite Element code.
This paper deals with both replication (applies to the analysis of multi‐threading strate‐
gies), and reproduction (applies to the benchmark on dynamic‐traction simulation) of
the original article [6]. We found that, even if the architecture of the processors differ
(32‐bits single core on one hand and 64‐bits multi‐core on the other hand), the results
are reproducible concerning the numerical results and replicable concerning themulti‐
threading strategies with OpenMP where method 1 saturates and does not scale, and
method 4 scales the best with an increasing number of processors.
One of the consequences of participating in this challenge is to have been able to ’find’
the source code of the original publication. So, the work is reproducible now, with the
codemade available with this work. The futurewill tell us if, in a few years, these results
will still be replicable/reproducible on future hardware architectures.

References

1. O. Pantalé. “An object-oriented programming of an explicit dynamics code: application to impact simulation.”
In: Advances in Engineering Software 33.5 (May 2002), pp. 297–306.

2. O. Pantalé, S. Caperaa, and R. Rakotomalala. “Development of an object-oriented finite element program: ap-
plication to metal-forming and impact simulations.” In: Journal of Computational and Applied Mathematics
168.1-2 (July 2004), pp. 341–351.

3. L. Menanteau, O. Pantalé, and S. Caperaa. “A methodology for large scale finite element models, includingmulti-
physic, multi-domain and multi-timestep aspects.” In: Revue européenne de mécanique numérique 15.7-8
(2006), pp. 799–824.

4. I. Nistor, O. Pantalé, and S. Caperaa. “Numerical propagation of dynamic cracks using X-FEM.” In: Revue eu-
ropéenne de mécanique numérique 16.2 (2007), pp. 183–198.

5. I. Nistor, O. Pantalé, and S. Caperaa. “Numerical implementation of the eXtended Finite Element Method for
dynamic crack analysis.” In: Advances in Engineering Software 39.7 (2008), pp. 573–587.

6. O. Pantalé. “Parallelization of an object-oriented FEMdynamics code: influence of the strategies on theSpeedup.”
In: Advances in Engineering Software 36.6 (June 2005), pp. 361–373.

7. E. Anderson et al. LAPACKUsers’ Guide. Third. Philadelphia, PA: Society for Industrial and AppliedMathematics,
1999.

8. J. Levine and L. John. Flex & Bison. 1st. O’Reilly Media, Inc., 2009.
9. CMake. https://cmake.org.

ReScience C 6.1 (#8) – Pantalé 2020 11

https://cmake.org
https://rescience.github.io/

	Historical context
	Architecture of the FEM code
	Specifics of the DynELA FEM code
	Command interpreter
	Graphics post-processor
	Finite element solver

	Computational context of the original publication

	Retrieval of the software
	Finding the source code
	Hardware used for the reproduction

	Compilation, update of the code and benchmarks
	Compilation of the code
	Comparison of results vs. the original paper
	Comparison of numerical results
	Internal forces computation parallelization
	The load balancing algorithm

	Conclusions

