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images in a single image in order to improve the diagnosis

capacity of each modality.

Image fusion refers to assembling all the important infor-

mation from multiple images and including them in fewer im-

ages or into a single image. Its purpose is not only to reduce

the amount of data but also to build enhanced images that

are more comprehensible and informative for human and ma-

chine insight [2]. Fusion of medical images is becoming very

common for the study of a given pathology [3–5], and gen-

erally allows for a better medical decision in clinical studies.

Medical images that are commonly fused include CT scans

and positron emission tomography [6], or gammagraphy and

US images [7]. However, to the best of our knowledge, the

fusion of MR and US images, which is the purpose of this

work, has been less addressed in the existing literature.

In our previous work on MR and US image fusion [8], we

introduced a new algorithm performing both super-resolution

of the MR image and despeckling of the US image. That algo-

rithm was based on a polynomial function relating the US and

MR images, accounting for the discrepancy between these

two modalities. The coefficients of this polynomial were pre-

estimated from the observed images. This paper further im-

proves the polynomial relation between the two images by

estimating the polynomial coefficients patch-wise, thus allow-

ing for a better matching between the two images to be fused.

Note that a similar idea was used in [9] for MRI images.

The paper is organized as follows. Section 2 presents the

observation models, the patch-based polynomial function re-

lating the US and MR images, and the optimization problem

considered to fuse these images. The algorithm proposed to

solve the fusion problem is detailed in Section 3. Simulation

results are presented in Section 4. Conclusions and perspec-

tives are finally reported in Section 5.

2. MAGNETIC RESONANCE AND ULTRASOUND

IMAGE FUSION

2.1. Observation models

Denote as ymr ∈ R
M and yus ∈ R

N the registered MR

and US images, with M and N the number of pixels in each

ABSTRACT

This paper introduces a novel algorithm for the fusion of mag-

netic resonance and ultrasound images, based on a patch-wise 
polynomial model relating the gray levels of the two imaging 
systems (called modalities). Starting from observation mod-

els adapted to each modality and exploiting a patch-wise poly-

nomial model, the fusion problem is expressed as the mini-

mization of a cost function including two data fidelity terms 
and two regularizations. This minimization is performed us-

ing a PALM-based algorithm, given its ability to handle non-

linear and possibly nonconvex functions. The efficiency of 
the proposed method is evaluated on phantom data. The re-

sulting fused image is shown to contain complementary infor-

mation from both magnetic resonance (MR) and ultrasound 
(US) images, i.e., with a good contrast (as for the MR image) 
and a good spatial resolution (as for the US image).

Index Terms— Image fusion, magnetic resonance imag-
ing, ultrasound imaging, super-resolution, despeckling, im-

age enhancement, patch-based method.

1. INTRODUCTION

Magnetic resonance (MR) and ultrasound (US) images have 
been used intensively in many clinical diagnosis and guided 
surgery applications. While they both carry important infor-

mation in assessing the condition of organs, they exploit dif-

ferent physical phenomena and thus have their own advan-

tages and limitations. In particular, US imaging offers a good 
spatial resolution and high frame rate compared to MRI, at 
the cost of a very low signal to noise ratio (SNR), low contrast 
(depending on the central frequency of the probe), a presence 
of speckle noise and a reduced field of view. In contrast, MRI 
enables a wide field of view, with a good SNR, high contrast, 
but relatively low spatial resolution [1]. As a consequence 
of these complementary properties, MR and US images are 
commonly used jointly in various clinical applications. The 
objective of this paper is to propose a method to fuse the two

The authors would like to thank Fabien Vidal for providing the ultra-

sound and magnetic resonance data, as well as for the fruitful discussions 
about the clinical pertinence of the proposed algorithm.



image1. This section introduces two observation models ac-

counting for the low spatial resolution of MR images and the

low SNR of US images. The low resolution of the MR image

is modeled by a downsampling operation and a low pass filter

[11], while an additive noise model is considered for the US

B-mode image. Note that speckle is assumed to be a multi-

plicative noise, leading to additive perturbations when apply-

ing log-compression, which is classically considered before

forming B-mode images. Furthermore, this works assumes

that the speckle noise affecting B-mode images is distributed

according to a log-Rayleigh distribution, as in [12, 13]. The

two resulting observation models are

yus = xus + nus

ymr = SHxmr + nmr,
(1)

where yus ∈ R
N is the observed B-mode US image, xus ∈

R
N is the noiseless US image, nus ∈ R

N is the log-Rayleigh

speckle noise, xmr ∈ R
N is the high-resolution MR image,

ymr ∈ R
M is the observed (low-resolution) MR image, and

nmr ∈ R
N is an additive Gaussian noise. The matrix H ∈

R
N×N is the blurring matrix and S ∈ R

M×N (with N =
d2M ) is a decimation operator with decimation factor d. Note

that the decimation factor is such that xus and xmr have the

same spatial sampling.

2.2. Patch-based polynomial model

The patch-based polynomial model proposed in this work

(relating the gray levels of MR and US images) is moti-

vated by the fact that US images highlight the interfaces be-

tween different anatomical structures with different acoustic

impedances [14]. More precisely, the US image is expressed

as a function of the MR image and its spatial gradient is

computed in the direction of US wave propagation

xus = f(xmr,∇xH
mru), (2)

where f : RN × R
N → R

N is unknown and ∇xH
mru ∈ R

N

contains in its ith line the inner product between the ith local

gradient xmr and the US scan direction u.

The function f was represented by a global polynomial

in our previous work on image fusion [15], and in [14] for

multimodal image registration. However, the relationship be-

tween MR and US images may depend on tissue acoustic and

magnetic properties, and thus may change from one image re-

gion to another. Thus, considering a global polynomial model

may lead to inaccurate gray level matching in specific image

regions. To overcome this issue, this paper introduces a more

general patch-based polynomial model, fitting independently

low-order polynomial functions to each overlapping patch ex-

tracted from MR and US images. This patch-based polyno-

mial model is defined as

1The MR and US images are supposed to be registered with an algorithm

such as [10] and the possible registration errors are ignored.

P pxus = fp(P pxmr,P p∇xH
mru), (3)

where P p ∈ R
n×N is a binary operator that extracts the pth

patch of size n from an image of size N . In the following,

Np will denote the total number of patches. Replacing fp by

a polynomial function, the relation between patches from the

US and MR images becomes

P pxus =
∑

l+k≤dp

cl,k,p P px
l
mr ⊙ (P p∇xH

mru)
k, (4)

where p = 1, ..., Np is the patch number, dp and cl,k,p are the

order and the coefficients of the polynomial function fp cor-

responding to patch #p, ⊙ is the Hadamard product (element

by element multiplication) and the power operations applied

to vectors are element-wise. In this paper, the final function f
is obtained by averaging patch-wise polynomials, since each

pixel of the image is contained in several overlapping patches.

More precisely, the transformation of the ith pixel denoted as

fi : RN × R
N → R is the average of all the polynomials

associated with the patches containing this pixel.

2.3. Cost function

Using the observation models in (1), the relationship between

MR and US images defined in (3) and (4), and the ideas pro-

posed in [15], this paper formulates image fusion as the fol-

lowing optimization problem:

x̂ = argmin
x

1

2
‖ymr − SHx‖2

︸ ︷︷ ︸
MRI data fidelity

+ τ1‖∇x‖2 + τ2‖∇f(x,∇x
H
u)‖2

︸ ︷︷ ︸
regularization

+ τ3

N∑

i=1

[

exp(yus,i − fi(x,∇x
H
u))− λ(yus,i − fi(x,∇x

H
u))

]

︸ ︷︷ ︸
US data fidelity

,

(5)

where x̂ is the fused image, yus,i is the ith pixel of yus and

where τ1, τ2, τ3 are hyperparameters balancing the weights

of the MR and US data fidelity terms and regularizations.

Note that, following [15], total variation was used to regu-

larize the solution, thus promoting piecewise constant fused

images both in the US and MR domains.

3. OPTIMIZATION

3.1. PALM algorithm for MR and US image fusion

The cost function in (5) is non-convex because of the pres-

ence of the polynomial functions f and fi. Therefore, we

investigate a solution based on the proximal alternating lin-

earized minimization (PALM) algorithm [16]. In order to fit

the general form of this algorithm, we propose the following

parametrization:



l(x) =
1

2
‖ymr − SHx‖22 + τ1‖∇x‖2,

g(v) = τ3
∑

i

[exp(yus,i − vi)− γ(yus,i − vi)] + τ2‖∇v‖2,

H(x,v) = τ4‖v − f(x,∇xHu)‖2,

where

v = f(x,∇xHu).

This parametrization allows (5) to be rewritten as

argmin
x,v

l(x) + g(v) +H(x,v), (6)

where l and g are related to the MRI and US images, and

H ensures the coupling between the two modalities (whose

importance is controlled by the hyperparameter τ4).

The PALM algorithm iteratively minimizes the cost func-

tion in (6) with respect to x and v (the reader is invited to

consult [16] for more details about PALM). Note that this cost

function depends on the coefficients cl,k,p and degrees dp of

the different polynomials, which need to be estimated for each

patch, as shown in the next subsection.

3.2. Estimation of the polynomial functions fp

For a given degree dp, the polynomial function fp relating

patches P pxmr and P pxus is defined by (dp + 1)(dp + 2)/2
coefficients assembled in the vector cd,p = {ck,l,p | k + l ≤
dp}. To estimate these coefficients, we consider that the pth

observed MR and US patches are related according to

P pyus =
∑

k+l≤3

ckl,pP py
l
mr ⊙ (P p∇yH

mru)
k + ǫp,

or in a matrix form

P pyus = Amr,pcd,p + ǫp, (7)

where Amr,p is a matrix whose elements are P py
l
mr ⊙

(P p∇yH
mru)

k for l + k ≤ dp, and ǫp is the measurement

error. The least-squares estimator of cd,p is defined by

ĉd,p = A†
mr,pP pyus, p = 1, ..., Np,

where A†
mr,p = (AT

mr,pAmr,p)
−1AT

mr,p is the pseudo-inverse

of the matrix Amr,p.

In order to estimate the polynomial degree of the pth patch,

we minimize the least square distance between P pymr and

P pyus, i.e., solve the following problem

argmin
dp

‖P pyus − fp(P pymr,P p∇yH
mru)‖

2,

where we highlight that the polynomial degree dp depends on

the patch size. In the results provided in this paper, patches of

size 30×30 were extracted from images containing 600×600
pixels, with an overlap of 25%. The degree of the polynomial

relating the patches was constrained to dp ∈ {1, ..., 3}.

4. RESULTS AND DISCUSSION

The proposed MR-US image fusion algorithm was validated

on experimental phantom data.2. Figs. 1(a,b) show the ob-

served MR and US images.

(a) MRI (b) US image

(c) Noisy US image (d) Fused image using [15]

(e) Fused image (this paper)

Fig. 1. Original MR image (200× 200 pixels) and US image

(600 × 600 pixels) and fusion results: (a) observed MRI, (b)

original US image, (c) noisy US image, (d) fused image us-

ing a global polynomial model [14], (e) fused image with the

proposed path-based polynomial model.

To mitigate the relatively good SNR obtained due to the

phantom design, the US image was further degraded by log-

Rayleigh noise as shown in Fig. 1(c). Figs. 1(a,b,c) highlight

the differences in gray levels, spatial resolution, contrast,

and noise between the two MR and US images. Three main

structures can be observed in these images: a PVC phantom

2More details about the experimental model design and image acquisition

can be found in [17].



(a) (b)

(c)

Fig. 2. (a) and (c) show normalized pixel intensities of extracted lines from the MR, US and fused images (using [15] and the

proposed patch-based fusion). (a) shows the vertical straight lines in (b) whereas (c) displays the horizontal straight lines in (b).

(bright structure in the MR image), a piece of beef meat (gray

structure in the MR image), and the glue used to attach them,

only visible in the US image. Figs. 1(c,d) show the fused

images obtained with the algorithm in [15] and the new pro-

posed approach. Both fused images gather information from

MR and US images (with a small preference to the proposed

method): they provide a good contrast between the PVC and

the beef tissue (similar to MRI), a good spatial resolution

(similar to US) allowing small structures such as the glue

to be distinguished, and good SNR. Moreover, the image

obtained after fusion seems to carry more information than

MRI, especially in the beef tissue.

Table 1. CNR results

CNR

MRI US Fused image with [15] Proposed

48.76 dB 20.64 dB 37.73 dB 41.72

In addition to visual inspection, the performance of the pro-

posed patch-wise method was evaluated using two quanti-

tative measures and compared to the global fusion method

of [15]: 1) the contrast-to-noise ratio (CNR) [18] between

the PVC and the beef meat, and 2) the slope between two

neighboring structures as an indication of the spatial resolu-

tion [19]. As reported in Tables 1 and 2, the patch-wise ap-

proach offers a better compromise between MR and US im-

Table 2. Slope values at the interface between different regions

of interest in the MR, US and fused images, corresponding to the

vertical profile in Fig. 2.

Slope MRI US Fused image with [15] Proposed

#1 2.89 7.42 7.42 7.42

#2 -0.10 8.89 6.86 7.15

#3 3.57 5.47 4.61 5.24

#4 -1.35 -1.95 -2.05 -2.05

ages with a CNR close to that of the MRI and a slope close to

that of the US image. Fig. 2 confirms these results, showing

that the patch-wise fused image captures more details from

the MRI than the global model-based fused image.

5. CONCLUSION

This paper studied a new approach for MR and US image fu-

sion. The relation between MR and US images was modeled

locally by low-order polynomial functions associated with the

image patches. Interestingly, results obtained on a phantom

show the advantage of using local polynomials associated

with the image patches. A natural progression of this work

is to combine the proposed fusion method with multimodal

image registration in order to correct the registration errors

and to further validate the algorithm on in vivo data.
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