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A B S T R A C T

This paper discusses the reconstruction of partially sampled spectrum-images to accelerate the acquisition in
scanning transmission electron microscopy (STEM). The problem of image reconstruction has been widely
considered in the literature for many imaging modalities, but only a few attempts handled 3D data such as
spectral images acquired by STEM electron energy loss spectroscopy (EELS). Besides, among the methods pro-
posed in the microscopy literature, some are fast but inaccurate while others provide accurate reconstruction but
at the price of a high computation burden. Thus none of the proposed reconstruction methods fulfills our ex-
pectations in terms of accuracy and computation complexity. In this paper, we propose a fast and accurate
reconstruction method suited for atomic-scale EELS. This method is compared to popular solutions such as beta
process factor analysis (BPFA) which is used for the first time on STEM-EELS images. Experiments based on real
as synthetic data will be conducted.

1. Introduction

Electron energy loss spectroscopy (EELS) performed in a scanning
transmission electron microscope (STEM) has proved to be a powerful
tool to analyze chemical components and structures of a sample with a
sub-nanometer spatial resolution. A focused electron probe is scanned
over the sample and for each probe position an EELS spectrum is ac-
quired, as well as several other signals such as high-angle annular dark
field (HAADF). The spectrum-image thus acquired can be used to build
not only maps of the spatial distribution of the elements but also maps
of edges’ fine structures corresponding to local electronic structures.

These important capabilities of modern microscopes are somewhat
limited by sample damage, instabilities and poor signal-to-noise ratio
(SNR). Indeed, acquiring such EELS data set requires a suitable SNR and
typical EELS dwell time (exposure time per location) are in the ms
range (1 100ms). These long dwell times proportionally lead to a
significant total electron dose received by the sample. This dose

increases potential radiation damages to the sample [2]. This is parti-
cularly problematic for sensitive materials such as biological samples.
Moreover a long acquisition time may increase image distortions caused
by time-dependant instabilities of the sample and the microscope. In
particular, these instabilities may be substantial at atomic scales. Per-
forming a multi-frame acquisition, followed by a non-rigid alignment
step [3], is a promising research domain to improve the spatial re-
solution and to reduce beam-induced damage. The new generation of
direct detection cameras with negligible correlated noise could promote
the use of this multi-frame setup with even lower dwell-times. Finally
some high resolution acquisitions need to cover large areas (such as in
[4] for scanning electron microscopy (SEM)), leading to long acquisi-
tion total time, heavy data storage and long processing steps. To in-
crease acquisition speed and/or reduce the full beam exposure, a so-
lution consists in reducing dwell time and subsequently denoising the
data as a post-processing operation. Yet, reducing the exposure may be
of limited interest since the resulting SNR becomes too low to expect
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good denoising performance, especially in the case of fine structure
analysis.

A recent popular alternative is sparse (or partial) sampling. This
strategy consists in acquiring the relevant signals only in a small pro-
portion of spatial locations, which allows for higher dwell time at these
positions resulting in the same amount of total electron dose. The re-
sulting acquired image is partially empty and a reconstruction step is
required to obtain a fully exploitable image. This paradigm received a
renewed interest since the theoretical results of compressed sensing (CS)
which states that exact recovery of sub-Nyquist rate acquisitions is
possible under certain conditions – one of them is that the data should
be sparse in an appropriate basis. The CS paradigm states that the data
should be projected on n random subspaces with n far below the data
size, which is well adapted to electron microscopy tomography [5–7].
These results raised a lot of interest toward inverse problems which
estimate the image based on partial spatial acquisitions which is re-
ferred to as inpainting. It remains an active research area for STEM [8,9]
and SEM [4], among others.

The two previously described acquisition schemes have pros and
cons. Schematically, low dwell-time acquisition usually produces better
spatial results while sparse sampling images usually have rich spectral
information. Determining which approach is the best is not trivial. To
that end, recent works studied and compared these solutions [10,11]
based on experiments conducted on synthetic as well as real images.

Following the second aforementioned acquisition scheme, this
paper addresses the problem of reconstructing spatially sub-sampled
atomic-scale STEM EELS images. In particular one motivation here aims
at reducing computational burden of the inpainting procedure to make
its future implementation possible into the acquisition process. The
experimenter should be able to visualize the full spectrum-image along
the acquisition, which requires both fast computation and a good ac-
curacy. In addition to this online setup, the experimenter should be able
to refine the reconstructed spectrum-image afterwards, where very
accurate but possibly time-consuming algorithms are allowed. To that
end, we propose a new reconstruction method exhibiting a relevant
trade-off between accuracy and complexity. We will also show that this
proposed technique can serve as a good initialization to accelerate more
efficient yet more computationally intensive methods. Moreover,
among the compared methods, we propose to apply the popular beta
process factor analysis (BPFA), originally dedicated to remote sensing
images [12]. Up to our knowledge, it is the first time BPFA is applied to
STEM-EELS images, although it was already used in many microscopy
works for 2D data restoration such as in SEM [10]. The paper is orga-
nized as follows. Section 2 presents an overview of inpainting techni-
ques already used in electron microscopy, with the emphasis placed on

2D and 3D reconstructions. Since no fast and accurate 3D method ful-
fills all requirements to envisage a fully operational online im-
plementation, Section 3 describes the newly proposed reconstruction
method. Section 4 describes the synthetic, semi-real and real data, as
well as the experiments conducted to compare the proposed approach
to previous works (especially BPFA as a 3D reconstruction method). The
experimental results are reported and discussed in Section 5. Section 6
concludes this study.

2. Related works

The focus of this paper deals with reconstructing spatially sub-
sampled STEM images. Many works considered this problem with dif-
ferent methods and modalities. Most of them were proposed to process
single 2D images while few considered the reconstruction of 3D images.
This section discusses these works which are mainly divided into two
parts. The first one considers learning-free methods which reconstruct
the images based on the single acquired dataset. The second one studies
learning-basedmethods which capitalize on a learning set to calibrate an
operator subsequently used to reconstruct the data.

2.1. Learning-free methods

Among learning-free methods, nearest neighbor (NN) interpolation
is a fast and simple solution possibly allowing for dynamic joint ac-
quisition and reconstruction. To avoid piecewise-constant image like
reconstruction, preferred solutions interpolate with a weighted mean
over a neighborhood. The weights are chosen to be the normalized
inverse distance between the interpolated pixel and the neighbor for
reconstructing SEM data in [13], energy-dispersive X-ray spectroscopy
(EDS) data in [14,15] and EELS data in [15]. An alternative considered
for SEM images in [10] was based on a natural neighbor interpolation,
which adjusts the weights based on a Vorono cell representation [16].
Note that STEM acquires full spectra at particular spatial positions.

Regularized least-square (LS) methods generally offers better results
than NN as they additionally constrain the reconstructed image to fulfill
a predefined behavior, usually promoted by a well chosen regulariza-
tion. Akin to the CS paradigm, a classical regularization is the sparsity
of the reconstructed image in an appropriate basis, as the ℓ1-norm
regularized LS problem considered in [17] for atomic force microscopy
(AFM). This type of regularized LS methods will be referred as ℓ1-LS in
Table 1. In the case of periodic structures (as for atomic-scale images),
this basis can be Fourier or discrete cosine transformation (DCT). The
authors in [18] proposed an inpainting method for atomic-scale high-
angle annular dark-field (HAADF) images based on a thresholded

Table 1
Comparison of the methods proposed in the microscopy literature for reconstructing partially sampled images. Additional references not originated from the
microscopy literature are also provided in italics. The execution time and accuracy are qualitatively evaluated based on the results of Section 4.

Family Method Works Execution time Accuracy

2D 3D

NN NN - -
Weighted neighbor [10,16] -

LS-regularized ℓ1-LS [4,17,19,21] -
TV-LS [17] -
3S - [11]

DL-based methods BPFA [9,10] [12]
EBI [10] [38]
FEPLL [28],[15] -
wKSVD - [29]
ITKrMM [30] [31]
GOAL [37],[10] -



maximizes the sparsity of the training dataset representation [37]. The
learned dictionary is then used to perform the inpainting task for test
data. Similarly, EBI which is originally a learning-free method, can be
adapted to benefit from the availability of a training set. To that end,
within the conventional EBI framework, instead of extracting the
copied patch from the neighborhood, this patch can be chosen from a
dictionary learned beforehand on uncorrupted images. This is the
strategy followed in [38] to reconstruct 3D SEM data. GOAL and the
learning-based counterpart of EBI were used in [10] for 2D SEM images
but BPFA seemed to give better results.

Learning-based approaches can also be designed to decide which
positions should be sampled in order to minimize the distortion after
reconstruction. Indeed, sub-sampled data reconstruction performance
highly depends on the sample locations [10]. To improve the re-
construction quality, the supervised learning approach for dynamic
sampling (SLADS) learns a function (called expected reduction in distor-
tion (ERD)) indicating which location should be sampled to maximally
reduce distortion [13]. This learning step is based on a list of de-
scriptors and requires labeled training data, and it was used to dyna-
mically sample SEM images. This method has been also applied to EDS
data in [14]. To that end, a convolutional neuronal network (CNN)
classifies the test data spectra and the ERD function is computed si-
multaneously for all labels. The paper [15] modified this approach to
allow mixed elements in EELS and EDS. All these approaches needs a
fast reconstruction which is achieved thanks to a weighted NN tech-
nique.

2.3. Application to EELS and feasibility

The previous subsection focused on the related works in microscopy
which are summarized in Table 1. They are rated depending on their
computational complexity and accuracy and grouped into three main
families: NN, LS-regularized and DL-based methods. The works from
the literature related to each method are given and separated de-
pending on their ability to reconstruct 2D mono-band images (e.g.,
HAADF) or 3D spectrum-images (e.g., EELS).

Among the available methods for EELS reconstruction, NN is fast
but gives generally poor reconstruction results while DL-based methods
are very efficient but remains computationally expensive, especially
when considering 3D patches. Therefore, this literature review shows
that none of the available methods can optimally reconstruct a spatially
sub-sampled spectrum-image fast enough to be included into an ex-
perimental setup for online or mini-batch processing. Note that 3S
could satisfy the accuracy and speed requirements but the results of
Section 4 will show its regularization is not suited for atomic-scale
images. In this work, we will propose to apply BPFA to EELS images,
i.e., recovering a dictionary composed of 3D patches, as this was ori-
ginally designed for.

An alternative for systematically reconstructing a spectrum-image
consists in processing separately and in parallel the 2D images associated
with each channel. In this case, note that NN as a 3D reconstruction
performs the same as a band-by-band processing. Yet, this is sub-op-
timal as the reconstruction task is expected to perform better by capi-
talizing on the information of the whole 3D data. Similar considerations
could lead to prefer reconstructing one or several single channel images
of interest necessary for element mapping. However such a strategy
may be also sub-optimal when no a priori knowledge is available re-
garding the sample to be imaged.

To conclude, NN and DL-based methods are not suited for on-line
reconstruction and only LS-regularized methods combine accuracy and
reduced computational cost. As a consequence this paper proposes a
method which belongs to the regularized LS family to reconstruct
quickly and efficiently an atomic-scale spectrum-image. This method is
detailed in the next section and will be compared to existing approaches
in Section 4 based on synthetic as well as real data experiments.

Fourier transform, which constrains the image sparsity in periodic 
basis. The method in [19] promoted the sparsity of the DCT re-
presentation to reconstruct HAADF images, using the SPGL1 algo-
rithm [20]. In the same way, this regularization can be coupled with a 
wavelet basis to dynamically reconstruct HAADF data [21]. Another 
standard regularization is total variation (TV), i.e., the ℓ1-norm of the 
image gradient promoting piecewise constant reconstructed image, as 
considered in [17] for AFM. The block-DCT representation was coupled 
with TV for reconstructing SEM data in [4]. The ℓ2-norm of the image 
gradient is also widely used as a regularization to promote spatial 
smoothness and is referred to as the Sobolev energy [11]. In the case of 
multi-band images, spectral regularizations were proposed in addition 
to the spatial one. In [11], for instance, the 3S method uses the 
weighted ℓ2-norm across the EELS spectrum-image bands or simply a 
nuclear norm (which ensures the low-rank nature of the reconstructed 
data) in addition to the classical Sobolev energy spatial regularization.

Another class of reconstruction methods exploit the spatial re-
dundancy in the image, often referred to as patch-based methods. They 
form a very popular and successful class of reconstruction methods 
which raised a lot of attention in the last decades to solve inverse 
problems such as denoising, inpainting and deblurring. For example, 
the exemplar-based inpainting [22] (EBI) reconstructs partially cor-
rupted images by iteratively replacing the image patches by the best 
matching uncorrupted patch extracted from its neighborhood. To de-
scribe spatial redundancy, successful algorithms aims at sparsely re-
presenting image patches thanks to atoms of a dictionary jointly learned 
with the reconstructed data. BPFA is probably the most popular dic-
tionary learning (DL) method in the microscopy community [12]. It was 
first used for atomic-scale HAADF images in [9] and was used after-
wards in many papers for the same kind of data [23,24]. The authors of 
BPFA proposed Kruskal-factor analysis (KFA) as a tensor extension of 
BPFA [25]. KFA was used to reconstruct EELS images based on a 
multiplexed spectrum-image acquisition [26]. Last, the expected-patch 
log-likelihood (EPLL) algorithm assumes the patch distribution to be a 
Gaussian mixture [27]. Yet, its computation time is important and the 
authors in [15] preferred a simplified but accelerated version called fast 
EPLL (FEPLL) to reconstruct SEM images [28]. In addition to the patch-
based methods used in the microscopy community, wKSVD [29] and 
ITKrMM [30,31] learn the dictionary from incomplete data without 
assuming particular patch distribution. They remain state-of-the-art 
methods that will be considered in this paper.

To achieve better performance with reduced acquisition time, sev-
eral predefined scan patterns were proposed such as regular scan [32], 
random horizontal lines [17,24], mixed regular-random scan [18,32], 
spiral scans [17,33,34] or square-shape scan [17]. These results tend to 
show that the best performance is achieved by semi-random scan pat-
terns, which introduce randomness and avoid large holes. Last, adap-
tive sparse scanning enables consequent reconstruction improvement 
by selecting the pixel to sample based on previously acquired data. 
In [35], the authors proposed to perform a first low-SNR scan to locate 
the spatial edges. A second high-SNR scan is then performed on these 
edges only. Finally, in the low-SNR acquired image, the smooth regions 
are filtered and t he edges a re fi lled wi th th e pixels fr om th e second 
high-SN R acquisition. An alternative adaptive scanning scheme pro-
posed in [36] consists in iteratively locating possible points of interest 
to be sampled. Learning-based adaptive sparse scanning are discussed 
in the next subsection.

2.2. Learning-based methods

Contrary to learning-free methods which recover the full image 
based only on the partially acquired data, learning-based methods learn 
an operator based on a possibly large training set. These methods are 
known to be much more accurate as long as the geometric content of 
the image to reconstruct is similar to the content of the training data. 

For instance, the GOAL algorithm learns a dictionary which







4.2. Methods

As discussed in Section 3.2, for all algorithms, a PCA is first con-
ducted on the observed image, keeping the T most relevant principal
components. The reconstruction algorithms are then run in this lower-
dimensional subspace. The inverse transformation will be applied
afterwards to get the reconstructed image X̂. Compared methods are
NN, 3S, CLS, ITKrMM, wKSVD and BPFA. In particular, NN is the only
one to be applied band-by-band. For all methods, the algorithmic
parameters have been adjusted to reach the best performances for each
method. In particular, DL-based methods consider 3D patches of size
M × M × T with =M 25 for ITKrMM and wKSVD and =M 41 for
BPFA.

The ITKrMM and wKSVD implementations used in these

experiments are the Matlab codes provided by Prof. K. Schnass2. The
implementation of BPFA is the Matlab code provided by Dr. Z. Xing3.
The other methods have been implemented by the authors of this paper
and are available in a Python library called inpystem4. The codes to
reproduce the experiments described in this paper are also available
online5.

4.3. Metrics

To evaluate the reconstruction quality, several quantitative mea-
sures will be used to compare the ground truth X and reconstructed X̂
images. First, the normalized mean-squared error (NMSE) is chosen as
an error measure and is computed according to

=X X X X
X

NMSE( ^ , )
^

.F
2

F
2 (4)

The smaller NMSE, the better. Then, this error measure is turned out as
a performance measure by considering its negative-logarithm, defining
the signal-to-noise ratio (SNR)

=X X X XSNR( ^ , ) 10 log (NMSE(^ , )).10 (5)

The higher SNR, the better. Additionally, we also consider the average
spectral angle distance (aSAD) defined as [54,55]

Fig. 2. Reconstruction error in term of NMSE for several bases when re-
presentingR1 (top),R2 (middle) and S (bottom). The faster the curve decreases,
the better as it means the image needs less representation coefficients to be
accurately represented. The DCT basis gives the best results for all images.

Fig. 3. Location of the sampled spectrum represented in Figure 4. Image 3(a)
shows the 2nd principal component of the semi-real image R̄2 and locates the
sampled pixel (blue dot) whose spectrum is considered in Fig. 4. Fig. 3(b) and
3(c) shows zooms on the image region-of-interest and on the sampling mask.
The sampling mask white (resp. black) pixels stand for sampled (resp. non-
sampled) pixels.

2 https://www.uibk.ac.at/mathematik/personal/schnass/code/itkrmm.zip
3 https://drive.google.com/open?id=0B9548VKFKtmiY2ZNRFVUTjhyUFE
4 https://github.com/etienne-monier/inpystem
5 https://github.com/etienne-monier/2020-Ultramicro-fast





close to the best methods with a very small computational time. 3S
gives lower performance results (even if better that NN) since its reg-
ularization is not appropriate to accurately describe the periodic
structure of atomic-scale images. Note also that BPFA gives globally the
best SNR and aSAD, except for R*1 for which CLS gives a better aSAD,
while NN gives the worst aSAD.

The reconstruction of a non-sampled pixel located in Fig. 3 is also
depicted in Fig. 4. In this figure, reference data refers to the noise-free
image R̄2. Equivalent plots for a sampled pixel are omitted here since
they do not bring any meaningful insight: the reconstructed spectra are
close to be distinguished. These plots show that the NN-reconstructed
spectrum is significantly shifted with respect to the reference while
BPFA and CLS are close to the reference spectrum. Error maps are

reported in the supporting document [49].
As a consequence, CLS appears as a relevant trade-off between ac-

curacy and complexity since it gives good reconstruction with small
computational time. This method could be interesting as an experi-
mental tool whereas BPFA could be used as a post-processing refine-
ment method. Combining both methods will be discussed in Section 5.4.

5.3. Results on a real image

Some illustrative results are also provided forR2. More precisely, the
real spectrum-imageR2 is spatially subsampled with a ratio of 20% and
then reconstructed as in the previous subsection.

Visual representations of the reconstructed spectrum-images around

Fig. 5. Reconstruction results for R2. The images show the sum of 5 bands around 3 particular edges (O-K, La-M4,5 and Nd-M4,5). The reference corresponds to the
real, possibly noisy, image R2. The sampling mask is also provided in the first row where white (resp. black) pixels stand for sampled (resp. non-sampled) pixels.
These results confirm the performance gap between NN whose images are not smooth enough and DL-based methods which are close to the reference with an
additional denoising effect. CLS performs clearly better than NN and 3S and its results are close to DL-based methods.







Fig. 10. Whiteness criterion r *2 as a function of the principal component index for the real imageR1 andR2. The first powerful principal components exhibit more
spatial content than the last ones. The PCA threshold is chosen as the maximal index sufficient to reach a stationary curve behavior.

Fig. 9. Proportion maps associated with the spectral components represented in Fig. 8 used for generating the synthetic image S.
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